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Under onsideration for publiation in Math. Strut. in Comp. SieneProof Searh in Lax LogiJaob M. HoweyComputing Laboratory, University of KentReeived 13 June 2000A Gentzen sequent alulus for Lax Logi is presented, the proofs in whih naturallyorrespond in a 1{1 way to the normal natural dedutions for the logi. The propositionalfragment of this alulus is used as the basis for another alulus, one whih uses ahistory mehanism in order to give a deision proedure for propositional Lax Logi.1. Introdution and BakgroundProof searh an be used with either of two meanings. It an either be used to meanthe searh for all proofs of a formula (proof enumeration), or to mean the searh fora yes/no answer to a query (theorem proving). This paper desribes two new sequentaluli for Lax Logi. One alulus is for proof enumeration for quanti�ed Lax Logi, theother alulus is for theorem proving in propositional Lax Logi.Lax Logi is an intuitionisti modal logi �rst introdued by Curry (Curry, 1952)to illustrate ut-elimination in the presene of modalities. The logi was redisoveredby Mendler, who developed the logi in the ontext of hardware veri�ation to enableabstrat veri�ation of iruits (Mendler, 1993). The logi has a single modality (Æ,somehow) axiomatised byS � ÆS; Æ Æ S � ÆS; (S � T ) � (ÆS � ÆT )The modality is unusual in having properties of both neessity and possibility. It anbe thought of as expressing orretness up to a onstraint, abstrating away from thedetail (hene the hoie of name, Lax Logi). A formula ÆP an be read as \for someonstraint , P holds under ". The proof theory and semantis of Lax Logi, inludingGentzen aluli, natural dedution aluli and Kripke semantis, are further developedin (Fairtlough and Mendler, 1997; Fairtlough and Walton, 1997; Benton et al., 1998).The ability of Lax Logi to give an abstrat expression of onstraints has been utilisedboth in hardware veri�ation and to give a proof theoreti semantis for onstraint logiprogramming languages. In hardware veri�ation, the timing onstraints that need to besatis�ed in a iruit an be abstrated away as instanes of the modality and reasonedabout separately from the logial analysis of the iruit (Mendler, 1993; Fairtlough andMendler, 1994). In onstraint logi programming, Lax Logi has been used to extend theview of logi programming as bakwards proof searh in onstrutive logis (Miller et al.,y This work was partly supported by EPSRC grant GR/MO8769



Jaob M. Howe 21991). In essene, this approah takes normal natural dedution as the proof theoretisemantis for logi programming. Constraints an be abstrated away as modalities andthe query an be reasoned about logially. The logi is used to give proofs of queries.In turn, these proofs give the onstraints to be satis�ed. The onstraints an then beanalysed separately (Fairtlough et al., 1997; Walton, 1998).Natural dedution has a pragmati drawbak. In searhing bakwards for a proof ofa formula, it is not always obvious whih rule to apply. For example, in IntuitionistiLogi it is not obvious from the onlusion that rule (�") should be applied. Even whenthe rule has been �xed, it is hard to determine the formulae in the premiss. Cut-freeGentzen sequent alulus systems (Gentzen, 1969) are muh better from this point ofview. When a prinipal formula has been hosen, the rules appliable are restrited. Theappliation of logial rules is direted by the syntax of the prinipal formula. Struturalrules an often be built into the sequent system. In suh a system, when a prinipalformula has been hosen, the next rule appliation is exatly determined by the syntaxof that formula.There are well known translations (Prawitz, 1965) between normal natural dedutionsand sequent proofs. Therefore, one an searh for proofs in sequent alulus systemsand then translate the resulting proofs to normal natural dedutions. The drawbak isthat many sequent proofs translate to the same normal natural dedution. Hene whenone is trying to enumerate all proofs of a formula, the same proof is found many times.This gives one motivation for `permutation-free' sequent aluli (introdued in (Herbelin,1995) for Intuitionisti Logi). These are sequent aluli (enabling syntax direted proofsearh) whose proofs an be translated in a 1{1 way with the normal natural dedutionsfor the logi. Permutation-free aluli have the advantages of a sequent alulus system,whilst reeting the struture of normal natural dedutions. The �rst alulus desribedin this paper, PFLAX, is a proof enumeration alulus for �rst-order quanti�ed LaxLogi. PFLAX is a permutation-free alulus for Lax Logi { the sequent proofs naturallyorrespond in a 1{1 way to the normal natural dedutions.Propositional logis are usually deidable and therefore it is desirable to �nd e�etivedeision proedures for suh logis. Here, by studying the nature of non-terminating bak-wards searh to see where one an stop the searh, a deision proedure for propositionalLax Logi is given; this theorem proving alulus is alled PFLAXHist. The alulus usesa tehnique for deteting loops using a history mehanism, building on work of Heuerd-ing et al (Heuerding et al., 1996; Heuerding, 1998; Howe, 1997). It uses the propositionalfragment of PFLAX as the base alulus to whih a history mehanism is added, giv-ing the deision proedure. The tehnique is general and may be applied to many otherpropositional logis. We know of no other deision proedure for propositional Lax Logi.2. Natural DedutionThis setion gives the relevant material on natural dedution needed to develop thepermutation-free alulus for Lax Logi (the proofs in whih orrespond in a 1{1 way tonormal natural dedutions). A natural dedution alulus for Lax Logi (with rules forquanti�ers and falsum added) taken from (Benton et al., 1998), an be seen in Figure 1.



Proof Searh in Lax Logi 3�; P ` P (ax) � ` > (>I) � ` ?� ` P (?")�; P ` Q� ` P � Q (�I) � ` P � Q � ` P� ` Q (�")� ` P � ` Q� ` P ^Q (^I) � ` P ^Q� ` P (^"1) � ` P ^Q� ` Q (^"2)� ` P� ` P _Q (_I1 ) � ` Q� ` P _Q (_I2) � ` P _Q �; P ` R �; Q ` R� ` R (_")� ` P� ` ÆP (ÆI) � ` ÆP �; P ` ÆQ� ` ÆQ (Æ")� ` P [u=x℄� ` 8xP (8I)y � ` 8xP� ` P [t=x℄ (8") � ` P [t=x℄� ` 9xP (9I) � ` 9xP �; P [u=x℄ ` R� ` R (9")yy u not free in �Fig. 1. Sequent style presentation of natural dedution for Lax Logi.Normal natural dedutions are the objets of interest. The �-redution and ommutingonversion steps of normalisation are given in (Benton et al., 1998). The extra ases for?" and 9" an be added, and are to be found in (Howe, 1998; Howe, 1999).De�nition 1 A natural dedution is said to be in �; -normal form when no �-redutionsand no ommuting onversions are appliable.We present a restrited version of natural dedution for Lax Logi. In this alulus, theonly dedutions possible are in �; -normal form. This alulus has two kinds of `sequent',di�erentiated by their onsequene relations, � and ��. Rules are appliable only whenthe premisses have the appropriate onsequene relation. The onlusions have a �xedonsequene relation. Thus valid dedutions are of a restrited form. This alulus, whihwe all NLAX, is given (with the proof terms given in the next setion) in Figure 2.Proposition 1 The alulus NLAX only allows dedutions to whih no �-redutions andno ommuting onversions are appliable. Moreover, it allows all �; -normal dedutions.2.1. Term AssignmentWe give a proof term system for NLAX. The term system is needed to prove the re-sults given in setion 4. In (Moggi, 1989) Moggi gave a �-alulus, whih he alled theomputational �-alulus. As is shown in (Benton et al., 1998), this alulus naturallymathes Lax Logi. More about the omputational �-alulus and Lax Logi (there alledomputational logi) an be found in (Benton et al., 1998).Proof terms for unrestrited natural dedution for Lax Logi an be found in (Howe,1998; Moggi, 1989). We are interested in the `real' proofs for Lax Logi { the normalnatural dedutions. We restrit the terms that an be built, in order that they mathour restrited natural dedution alulus NLAX, giving proof objets. The proof terms



Jaob M. Howe 4�; x : P � var(x) : P (ax) ��A : P���an(A) : P (M) ���� : > (>I) ��A : ?���efq(A) : P (?")�; x : P ��N : Q����x:N : P � Q (�I) ��A : P � Q ���N : P�� ap(A;N) : Q (�")���N1 : P ���N2 : Q���pr(N1; N2) : P ^Q (^I) ��A : P ^Q�� fst(A) : P (^"1) ��A : P ^Q�� snd(A) : Q (^"2)���N : P���i(N) : P _Q (_I1) ���N : Q���j(N) : P _Q (_I2 )��A : P _Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R���wn(A;x1:N1; x2:N2) : R (_")���N : P���smhi(N) : ÆP (ÆI) ��A : ÆP �; x : P ��N : ÆQ���smhe(A;x:N) : ÆQ (Æ")���N : P [u=x℄����u:N : 8xP (8I)y ��A : 8xP�� apn(A; t) : P [t=x℄ (8")���N : P [t=x℄���prq(t;N) : 9xP (9I) ��A : 9xP �; y : P [u=x℄��N : R���ee(A;u:y:N) : R (9")yy u not free in �Fig. 2. NLAX with proof annotations.ome in two syntati ategories, A and N. V is the ategory of variables (proofs), Uis the ategory of variables (individuals in formulae), and T the ategory of terms. Theproof terms are given with an abstrat syntax, with the notation hosen to be suggestiveof the assoiated proof rules. Hene smhi(N) for the term assoiated with the somehowintrodution rule. The extra onstrutor an(A) mathes the (M) rule of NLAX.A::= var(V ) j ap(A;N) j fst(A) j snd(A) j apn(A; T )N ::= � j efq(A) j an(A) j �V:N j pr(N;N) j i(N) j j(N) j wn(A; V:N; V:N)smhi(N) j smhe(A; V:N) j �U:N j prq(T;N) j ee(A;U:V:N)NLAX together with proof annotations for normal terms an be seen in Figure 2.3. Sequent CalulusIn this setion we present a new Gentzen sequent alulus for Lax Logi, PFLAX. Theproofs allowed by PFLAX naturally orrespond in a 1{1 way to normal natural dedu-tions for Lax Logi { i.e. the proofs of NLAX. In Figure 3 we remind the reader of thesequent alulus, extending those in (Fairtlough and Mendler, 1997; Benton et al., 1998)to quanti�ers.We give a new sequent alulus, PFLAX (`permutation-free' Lax Logi). PFLAX ex-tends the permutation-free alulus MJ for Intuitionisti Logi (Herbelin, 1995; Dykho�and Pinto, 1998; Dykho� and Pinto, 1999) to a alulus for Lax Logi. Like MJ thisalulus has two forms of judgment, �) R and � Q�! R. The �rst looks like the usualkind of sequent; however, only right rules and ontration are appliable to this kind of



Proof Searh in Lax Logi 5�; P ) P (ax) �; P; P ) R�; P ) R (C) �) > (>R) �;?) P (?L)�; P ) Q�) P � Q (�R) � ) P �; Q) R�; P � Q) R (�L)�) P �) Q� ) P ^Q (^R) �; P ) R�; P ^Q) R (^L1) �; Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q� ) P _Q (_R2) �; P ) R �; Q) R�; P _Q) R (_L)� ) P� ) ÆP (ÆR) �; P ) ÆR�; ÆP ) ÆR (ÆL)�) P [u=x℄�) 8xP (8R)y �; P [t=x℄) R�; 8xP ) R (8L) �) P [t=x℄�) 9xP (9R) �; P [u=x℄ ) R�; 9xP ) R (9L)yy u not free in �Fig. 3. Sequent alulus for Lax Logi.sequent in bakwards proof searh. The seond kind of sequent has a formula (on theleft) in a privileged position alled the stoup, following (Girard, 1991). The formula inthe stoup is always prinipal in the onlusion of an inferene rule. The stoup is a formof fousing; proof searh is restrited so that, whenever possible, the ative formulae ofan inferene are prinipal in the premiss. In bakwards proof searh, left rules are onlyappliable to stoup sequents. PFLAX (together with the proof terms given in the nextsetion) is displayed in Figure 4. We give a simple example of a derivation in PFLAX:B;B; ÆB ^ (B � A) B�! B (ax)B;B; ÆB ^ (B � A)) B (C) B;B; ÆB ^ (B � A) A�! A (ax)B;B; ÆB ^ (B � A) B�A�! A (�L)B;B; ÆB ^ (B � A) ÆB^(B�A)�! A (^L2)B;B; ÆB ^ (B � A)) A (C)B;B; ÆB ^ (B � A)) ÆA (ÆR)B; ÆB ^ (B � A) ÆB�! ÆA (ÆL)B; ÆB ^ (B � A) ÆB^(B�A)�! ÆA (^L1)B; ÆB ^ (B � A)) ÆA (C)3.1. Term Assignment for Sequent CalulusWe give a term assignment system for PFLAX. The term system is a simple extension ofthat given in (Herbelin, 1995; Dykho� and Pinto, 1996; Dykho� and Pinto, 1998). Theterm alulus has two syntati ategories, M and Ms. V is the ategory of variables(proofs), U is the ategory of variables (individuals) and T is the ategory of terms. Theproof terms are given with an abstrat syntax suggestive of the assoiated proof rules.



Jaob M. Howe 6� P�! [ ℄ : P (ax) �; x : P P�!Ms : R�; x : P ) (x;Ms) : R (C) �) � : > (>R) � ?�! ae : ? (?L)�; x : P )M : Q�) �x:M : P � Q (�R) �)M : P � Q�!Ms : R� P�Q�! (M :: Ms) : R (�L)�)M1 : P �)M2 : Q�) pair(M1;M2) : P ^Q (^R) � P�!Ms : R� P^Q�! p(Ms) : R (^L1) � Q�!Ms : R� P^Q�! q(Ms) : R (^L2)�)M : P�) inl(M) : P _Q (_R1) �)M : Q�) inr(M) : P _Q (_R2)�; x1 : P )M1 : R �; x2 : Q)M2 : R� P_Q�! when(x1:M1; x2:M2) : R (_L)�)M : P�) smhr(M) : ÆP (ÆR) �; x : P )M : ÆR� ÆP�! smhl(x:M) : ÆR (ÆL)�)M : P [u=x℄�) �u:M : 8xP (8R)y � P [t=x℄�! Ms : R� 8xP�! apq(t;Ms) : R (8L)�)M : P [t=x℄�) pairq(t;M) : 9xP (9R) �; y : P [u=x℄)M : R� 9xP�! spl(u:y:M) : R (9L)yy u not free in �Fig. 4. The sequent alulus PFLAX, with proof annotations.In partiular, [ ℄ is used for the axiom term and (M :: Ms) for the term assoiated withimpliation on the left, giving a list of M terms suggestive of the ordering of rules in thealulus.M ::= � j (V ;Ms) j�V:M j pair(M;M) j inl(M) j inr(M) j smhr(M) j�U:M j pairq(T;M)Ms::= [ ℄ j ae j (M :: Ms) j p(Ms) j q(Ms) j when(V:M; V:M)smhl(V:M) j apq(T;Ms) j spl(U:V:M)These terms an easily be typed by PFLAX, as seen in Figure 4.4. Equivalene of the CaluliWe prove the equivalene of the term aluli and the soundness and adequay of PFLAX.These results prove the desired orrespondene. The proofs are extensions of those forthe MJ alulus for Intuitionisti Logi (Dykho� and Pinto, 1998), hene most detail isomitted. We start by giving pairs of funtions that de�ne translations between the termassignment systems for natural dedution (NLAX) and sequent alulus (PFLAX), ex-tending to Lax Logi those of (Herbelin, 1995; Dykho� and Pinto, 1998) for IntuitionistiLogi.



Proof Searh in Lax Logi 7Sequent Calulus ! Natural Dedution:� : M! N �0 : A�Ms! N�(x;Ms)=�0(var(x);Ms) �0(A; [ ℄)=an(A)�(�x:M)=�x:�(M) �0(A; (M :: Ms))=�0(ap(A; �(M));Ms)�(smhr(M))=smhi(�(M)) �0(A; smhl(x:Ms))=smhe(A; x:�(M))�(�)=� �0(A; ae)=efq(A)�(pair(M1;M2))=pr(�(M1); �(M2)) �0(A; p(Ms))=�0(fst(A);Ms)�(inl(M))=i(�(M)) �0(A; q(Ms))=�0(snd(A);Ms)�(inr(M))=j(�(M)) �0(A; apq(t;Ms))=�0(apn(A; t);Ms)�(�u:M)=�u:�(M) �0(A; spl(u:y:M)) = ee(A; u:y:�(M))�(pairq(t;M))=prq(t; �(M))Natural Dedution ! Sequent Calulus: : N!M  0 : A�Ms!M (an(A))= 0(A; [ ℄)  0(var(x);Ms)=(x;Ms) (�x:N)=�x: (N)  0(ap(A;N);Ms)= 0(A; ( (N) :: Ms)) (smhe(A; x:N))= 0(A; smhl(x: (N)))  0(fst(A);Ms)= 0(A; p(Ms)) (smhi(N))=smhr( (N))  0(snd(A);Ms)= 0(A; q(Ms)) (�)=�  0(apn(A; t);Ms)= 0(A; apq(t;Ms)) (efq(A))= 0(A; ae) (pr(N1; N2))=pair( (N1);  (N2)) (i(N))=inl( (N)) (j(N))=inr( (N)) (wn(A; x1:N1; x2:N2))= 0(A;when(x1: (N1); x2: (N2))) (�u:N)=�u: (N) (prq(t;N))=pairq(t;  (N)) (ee(A; u:y:N))= 0(A; spl(u:y: (N)))We give two lemmas demonstrating the equivalene of the term aluli, that is, thetranslations from one system to the other are 1{1.Lemma 1 i)  (�(M)) = M ; ii)  (�0(A;Ms)) =  0(A;Ms).Proof. By simultaneous indution on the struture of M and Ms. For full details see(Howe, 1999).Lemma 2 i) �( (N)) = N ; ii) �( 0(A;Ms)) = �0(A;Ms).Proof. By simultaneous indution on the struture of N and A. For full details see(Howe, 1999).The following two theorems state soundness and adequay. They show that the trans-lations respet provability, that is, no `sequent' (and hene its assoiated term) an beproved in one system, but not its translation in the other.



Jaob M. Howe 8Theorem 1 (Soundness) The following rules are admissible:�)M : R����(M) : R i) ��A : P � P�!Ms : R����0(A;Ms) : R ii)Proof. By simultaneous indution on the struture of M and Ms. For full details see(Howe, 1999).Theorem 2 (Adequay) The following rules are admissible:���N : R�)  (N) : R i) ��A : P � P�!Ms : R�)  0(A;Ms) : R ii)Proof. By simultaneous indution on the struture of A and N . For full details see(Howe, 1999).Sine the term systems are in 1{1 orrespondene (lemma 1 and lemma 2) and thetranslations preserve provability (theorem 1 and theorem 2), the 1{1 orrespondenebetween PFLAX and NLAX has been established. This is stated in the following theorem.Theorem 3 The normal natural dedutions of Lax Logi (the proofs of NLAX) are in1{1 orrespondene to the proofs of PFLAX.An immediate orollary of theorem 3 is that PFLAX is sound and omplete with respetto natural dedution for Lax Logi. Quanti�ed Lax Logi is demonstrated to be soundand omplete with respet to ertain lasses of Kripke model-strutures in (Fairtloughand Walton, 1997).4.1. Cut EliminationWe now briey disuss ut for PFLAX. In the usual sequent alulus, ut may be for-mulated as follows: �) P �; P ) Q�) Q (ut)In PFLAX, the two judgment forms lead to the following four ut rules (as for Intuition-isti Logi in (Herbelin, 1995; Dykho� and Pinto, 1998)):� Q�! P � P�! R� Q�! R (ut1) �) P �; P Q�! R� Q�! R (ut2)�) P � P�! R�) R (ut3) �) P �; P ) R�) R (ut4)We all PFLAX extended with the four ut rules PFLAXut. We an give redution rulesfor PFLAXut and prove the weak ut elimination theorem for the logi. We an alsoprove strong normalisation for the term system assoiated with the logi, hene strongut-elimination. Details and proofs (extending those for Intuitionisti Logi in (Herbelin,1995; Dykho� and Pinto, 1998)) an be found in (Howe, 1998).



Proof Searh in Lax Logi 9Theorem 4 The rules (ut1); (ut2); (ut3); (ut4) are admissible in PFLAX.Theorem 5 The ut redution system for PFLAX strongly normalises.5. Deiding Lax LogiIt is useful and interesting to have a deision proedure for any logi. This setion de-sribes a deision proedure for propositional Lax Logi. To the best of our knowledge,no deision proedure for propositional Lax Logi has been presented before.The new alulus uses a history mehanism to ensure termination of bakwards proofsearh. History mehanisms were introdued in (Heuerding et al., 1996; Heuerding, 1998).The re�ned history mehanism used here an be found in (Howe, 1997; Howe, 1998).Another approah to deiding propositional logis is by the use of `ontration-free'sequent aluli, suh as the one for propositional Intuitionisti Logi given in (Dykho�,1992; Hudelmaier, 1993). If suh a deision proedure for Lax Logi ould be found,we would expet it to be faster than one involving a history mehanism. An investi-gation of ontration-free aluli for Lax Logi an be found in (Avellone and Ferrari,1996). Unfortunately, this investigation did not sueed in �nding a ontration-freealulus. We believe that a ontration-free alulus for Lax Logi annot be found,as (for arbitrary n) examples an be onstruted whih require an entire formula ina sequent to be ontrated n times in a proof. As an example, onsider the sequentB � (ÆA � C) � ÆA; ÆB; ÆA � C ) C, where ÆA � C needs to dupliated in its entiretyin order to prove the sequent.5.1. Deiding Propositional Logis Using History MehanismsOne approah to �nding a deision proedure for a propositional logi is to plae on-ditions on the sequent alulus to ensure termination of searh. It is elegant to be ableto build the ontent of these onditions into the sequent alulus itself. This is how thealulus for theorem proving in this setion is developed.In order to ensure termination of bakward proof searh, we need to hek that thesame sequent (modulo number of ourrenes of idential formulae) does not appearagain on a branh, that is, proof searh does not loop. Avoiding loops an also preventthe unneessary omputation arising from a �nite number of passes through a loop in asuessful derivation. We need a mehanial way to detet suh loops. One way to do thisis to add a history to a sequent. The history is the set of all sequents to have ourred sofar on a branh of a proof tree. After eah bakwards inferene the new sequent (withoutits history) is heked to see whether it is a member of this set. If it is we have loopingand baktrak. If not, the new history is the extension of the old history by the oldsequent (without the history omponent), and we try to prove the new sequent, and soon. Unfortunately, this method is spae ineÆient as it requires long lists of sequents tobe stored by the omputer, and all of this list has to be heked at eah stage. Whenthe sequents are stored, far more information than neessary is kept. EÆieny would beimproved by utting down the amount of storage and heking needed to prevent looping.



Jaob M. Howe 10The basis of the redued history is the realisation, as in (Heuerding et al., 1996), thatone need only store goal formulae (a goal formula is the suedent of a sequent) in orderto loop-hek. In the aluli dealt with in this paper, one a formula is in the ontext itwill be in the ontext of all sequents above it in the proof tree. We say that the alulushas inreasing ontext. For two sequents to be the same they need to have the sameontext (up to multiple ourrenes of formulae). Therefore we may empty the historyevery time the ontext is (properly) extended. All we need store in the history are goalformulae. If we ome to a sequent whose goal is already in the history, then it has thesame goal and the same ontext as another sequent { there is a loop.There are two slightly di�erent approahes apturing this. There is the straightforwardextension of the alulus desribed in (Heuerding et al., 1996), whih we all the `Swisshistory'; more on this loop-heking method an be found in (Heuerding, 1998). There isalso related work on histories for Intuitionisti Logi in (Gabbay, 1991). Another approahinvolves storing slightly more formulae in the history, but whih for some aluli detetsloops more quikly. This we desribe as the `Sottish history' (Howe, 1997); it an, inmany ases, be more eÆient than the Swiss method. In this paper we give a alulusfor Lax Logi using the Sottish history as we believe this to be the better method forintuitionisti logis (Howe, 1997).The generality of this approah is attrative. The history mehanism an be attahedto many aluli to give deision proedures; appliations an be found in (Howe, 1998).5.2. PFLAXHistThis setion desribes a history alulus for propositional Lax Logi. The alulus isan extension of that for Intuitionisti Logi given in (Howe, 1997). The modality ishandled similarly to disjuntion (disjuntion is not overed in (Heuerding et al., 1996),and requires speial treatment). It uses the alulus PFLAX as a base on whih to buildthe alulus as this alulus has already redued the searh spae to a ertain extent.PFLAX has the inreasing ontext required for the appliation of the history mehanism.However, a more usual formulation ould have been used instead. PFLAXHist an be seenin Figure 5. Observe the two rules for (�R). These orrespond to the two ases wherethe new formula is or is not in the ontext. As noted above, this is very important forhistory mehanisms. Notie that the number of formulae in the history is at most equalto the length of the formula we hek for provability.A sequent is mathed against the onlusions of right rules until the goal formula iseither a propositional variable, falsum, disjuntion or a Æ formula This has been ensuredby the restrition on goal formulae given in the alulus (note that the rules for disjuntionon the right and somehow on the right are only possible on baktraking, or with an emptyontext). A formula from the ontext is then seleted using the rule (C) and mathedagainst the left rules of the alulus. The Sottish alulus keeps (as a set) a ompletereord of goal formulae between ontext extensions. At eah of the plaes where thehistory might be extended, the new goal is heked against the history. If it is in thehistory, then there is a loop, hene failure and baktraking.There are other plaes where the rules are restrited to prevent looping. Where ne-



Proof Searh in Lax Logi 11� P�! P ;H (ax) �; P P�! D;H�; P ) D;H (C) �) >;H (>R) � ?�! D;H (?L)�; P ) Q; fQg�) P � Q;H (�R1) if P =2 � �) Q; (Q;H)�) P � Q;H (�R2) if P 2 � and Q =2 H�; P ) ?; f?g�) :P ;H (:R1) if P =2 � �) ?; (?;H)�) :P ;H (:R2) if P 2 � and ? =2 H�) P ; (P;H) � Q�! D;H� P�Q�! D : H (�L) if P =2 H �) P ; (P;H)� :P�! D;H (:L) if P =2 H�) P ; (P;H) �) Q; (Q;H)�) P ^Q;H (^R) if P;Q =2 H � P�! D;H� P^Q�! D;H (^L1) � Q�! D;H� P^Q�! D;H (^L2)�) P ; (P;H)�) P _Q;H (_R1) if P =2 H �) Q; (Q;H)�) P _Q;H (_R2) if Q =2 H�; P ) D; fDg �; Q) D; fDg� P_Q�! D;H (_L) if P =2 � and Q =2 ��) P ; (P;H)�) ÆP ;H (ÆR) if P =2 H �; P ) ÆR; fÆRg� ÆP�! ÆR;H (ÆL) if P =2 �D is either an atom, ?, disjuntion or a Æ formula. Where the history has been extendedwe have parenthesised (P;H) for emphasis.Fig. 5. The alulus PFLAXHist (Sottish).essary, the left rules have side onditions to ensure that the ontext is inreasing. Forthe (�R) rule (whih attempts to extend the ontext) there are two ases orrespondingto when the ontext is and when it is not extended. Something similar is happening inthe left rules. Take (_L) as an example. In both premisses of the rule a formula maybe added to ontext. If both ontexts really are extended, then we ontinue buildingthe proof tree. If one or both ontexts are not extended then the sequent, S, with thenon-extended ontext, will be the same as some sequent at a lesser height in the prooftree { there is a loop (whih we desribe as a trivial loop). This is easy to see: sine theontext and the goal of S are the same as that of the onlusion, there must be a lowersequent (the onlusion of an instane of (C)) the same as the premiss S. As an examplewe give a derivation in PFLAXHist of the sequent in the example in setion 3:B; ÆB ^ (B � A) B�! B (ax)B; ÆB ^ (B � A)) B (C) B; ÆB ^ (B � A) A�! A (ax)B; ÆB ^ (B � A) B�A�! A (�L)B; ÆB ^ (B � A) ÆB^(B�A)�! A (^L2)B; ÆB ^ (B � A)) A (C)B; ÆB ^ (B � A)) ÆA (ÆR)



Jaob M. Howe 12Note that the derivation of this sequent given in setion 3 would be prevented by thehistory mehanism, as it ontains a loop.It is now demonstrated that PFLAXHist is equivalent to PFLAX, in terms of prov-ability. The equivalene is proved via an intermediate alulus PFLAXD . The alulusPFLAXD is the alulus PFLAX where the rule (C) is restrited so that it is only ap-pliable when the goal formula is an atom, a disjuntion, falsum or a somehow formula.Proposition 2 The alulus PFLAX is equivalent to the alulus PFLAXD. That is,sequent �) G is provable in PFLAX i� �) G is provable in PFLAXD.The following lemma is needed in the proof of theorem 6.Lemma 3 (Contration) The following rules are admissible in PFLAXHist:�; P; P ) R;H�; P ) R;H (C 0) �; P; P Q�! R;H�; P Q�! R;H (C 00)Proof. By simultaneous indution on the heights of derivations of premisses.The equivalene proof below, although long, has a simple struture. An algorithm toturn a PFLAX proof tree into a PFLAXHist proof tree is desribed in detail. A simpleindution argument shows that the algorithm terminates, proving the result.Theorem 6 The aluli PFLAX and PFLAXHist are equivalent. That is, sequent �) Gis provable in PFLAX i� sequent �) G; fGg is provable in PFLAXHist.Proof. From Proposition 2 we know that it is enough to show that PFLAXD is equiv-alent to PFLAXHist. It is trivial that any sequent provable in PFLAXHist is provablein PFLAXD. (Use ontration (C 0) above instanes of (�R2) and then simply drop thehistory part of the sequent). We prove the onverse.Take any proof tree for sequent �) G in PFLAXD. By de�nition this proof tree is�nite, with n > 0 nodes. Using this proof tree, we onstrut (from the root up) a prooftree for the sequent �) G; fGg in PFLAXHist. The major di�erene between PFLAXDand PFLAXHist is that the former permits loops, whereas the latter does not. Essentiallywe take the PFLAXD proof tree and give a reipe for `snipping out' the loops: removingthe sequents that form the loop.The onstrution uses `hybrid trees'. A hybrid tree is a fragment of a PFLAXHist prooftree with all branhes that do not have (ax), (>) or (?) leaves ending with PFLAXDproof trees. These PFLAXD proof trees have roots whih an be obtained by bakwardsappliation of a PFLAXD rule to the top history sequent (ignoring its history). Weanalyse eah ase of a topmost history sequent with non-history premiss(es) resultingfrom appliation of rule (R) in the sequent tree. We write � � �0 when the set offormulae in multisets � and �0 are the same (although the number of ourrenes maybe di�erent). We denote a series of zero or more instanes of rule (R) by (R)�. We givethe proof for the Æ;� fragment.



Proof Searh in Lax Logi 13{ The root of the PFLAXD tree. We hange (non-history) sequent �) G to historysequent �) G; fGg.{ (R) is one of (ax), (C), i.e. a rule whih in PFLAXHist has no side onditions. Thepremiss is hanged by adding the appropriate history. It beomes the history sequentobtained by applying (bakwards) the PFLAXHist rule to the original onlusion. Forexample, if the situation we are analysing is�; P P�! D�; P ) D;H (C) then it beomes �; P P�! D;H�; P ) D;H (C)We now have a new hybrid tree.{ (R) is (�R). If the ontext is extended, then add the appropriate history, allowingthe replaement of the instane of (�R) in PFLAXD by an instane of (�R1) inPFLAXHist. If the ontext is not extended and the new goal is not in the history,then again add the appropriate history, allowing the replaement of the instane of(�R) in PFLAXD by an instane of (�R2) with a (C 0) in PFLAXHist. If the newgoal is in the history, there is a loop, whih the history mehanism prevents. If thehistory ondition is not met, then below the onlusion the hybrid tree has the form:�; P ) G�) P � G;H (�R)....�0 ) G;H0where G 2 H0, H0 � H and � � �0. The history is not reset at any point in thisfragment. This an easily be seen to ontain the loop whih is the reason for thehistory ondition not being met. It is transformed by removing all sequents above,but not inluding, �0 ) G;H0 (along with any subtrees above exised sequents) upto �; P ) G. Adding the appropriate history to this sequent and using (one or moreinstanes of) (C 0) gives the new hybrid tree:�; P ) G;H0�0 ) G;H0 (C 0)�{ (R) is (�L). If the history ondition is satis�ed, then add the appropriate history,allowing the replaement of instane of (�L) in PFLAXD by an instane of (�L) inPFLAXHist. If the history ondition is not satis�ed, then below the onlusion thehybrid tree has the form: �) P � Q�! R� P�Q�! R;H (�L)....�0 ) P ;H0where P 2 H0, H0 � H and � � �0. The history is not reset at any point in thisfragment. It is transformed by removing all the sequents above, but not inluding,�0 ) P ;H0 (along with any subtrees above exised sequents) up to �) P . The se-quent � Q�! R and the subtree above it are also removed. Adding the appropriate



Jaob M. Howe 14history to �) P and using (zero or more instanes of) (C 0) gives the new hybridtree: �) P ;H0�0 ) P ;H0 (C 0)�{ (R) is (ÆR). If the history ondition is satis�ed, then add the appropriate history,allowing the replaement of the instane of (ÆR) in PFLAXD by an instane of (ÆR)in PFLAXHist. If the history ondition is not satis�ed, then below the onlusion thehybrid tree has form: �) P�) ÆP ;H (ÆR)....�0 ) P ;H0where P 2 H0, H0 � H and � � �0. The history is not reset at any point in this frag-ment. It is transformed by removing all sequents from, but not inluding, �0 ) P ;H0(along with any subtrees above exised sequents) up to �) P . Adding the appropri-ate history and using (zero or more instanes of) (C 0) gives the new hybrid tree:�) P ;H0�0 ) P ;H0 (C 0)�{ (R) is (ÆL). If the side ondition is satis�ed, then add the appropriate history, al-lowing the replaement of the instane of (ÆL) in PFLAXD by an instane of (ÆL)in PFLAXHist. If the side ondition is not satis�ed, then below the onlusion thehybrid tree has form: �; P ) ÆR� ÆP�! ÆR;H (ÆL)....�) ÆR;Hwhere P 2 �. This is transformed by removing all sequents from, but not inluding,�) ÆR;H (along with any subtrees above exised sequents) up to �; P ) ÆR. Addingthe appropriate history and using a single instane of (C 0) gives the new hybrid tree:�; P ) ÆR;H�) ÆR;H (C 0)Sine the number of sequents without a history in a hybrid tree is �nite and as every stepstritly dereases the number of sequents without a history, this proess is terminating.The instanes of (C 0) may be eliminated from the onstruted derivation.Note that the PFLAX derivation given in setion 3 is transformed by the algorithmdesribed in the proof to the derivation of the same sequent in PFLAXHist given above.We have shown that PFLAXHist is sound and omplete. To prove that it is a deisionproedure, we prove that it is also terminating { bakwards proof searh in the alulusends in suess or failure after a �nite number of steps.Theorem 7 Bakwards proof searh in the alulus PFLAXHist is terminating.



Proof Searh in Lax Logi 15Proof. We assoiate with every sequent a quintuple of natural numbers. With a sequentwithout a stoup, �) R;H, we assoiate: W = (k � n; k � m; 1; 0; r). With a sequentwith a stoup, � P�! R;H, we assoiate:W = (k�n; k�m; 0; s; r). Here, k is the numberof elements in the set of subformulae of (�; R); n is the number of elements in the set ofelements of �;m is the number of elements inH; r is the size of goal formula R and s is thesize of the stoup formula P . (Notie that although � is a multiset, we ount its elementsas a set). These quintuples are lexiographially ordered from the left. By inspetion wesee that for every inferene rule W for the premisses is lower in the lexiographi orderthan W for the onlusion. Hene bakward proof searh is terminating.When implementing a theorem prover, knowledge of the invertibility of the inferenerules an be useful. This information is given in the following proposition.Proposition 3 The following inferene rules of PFLAXHist are invertible: (�R1), (�R2),(:R1), (:R2), (�L), (:L), (^R), (_L), (ÆL). The following inferene rules of PFLAXHistare not invertible: (C), (^L1), (^L2), (_R1 ), (_R2), (ÆR).6. ConlusionThis paper has presented two proof searh aluli for Lax Logi. The �rst, PFLAX,is a sequent alulus for �rst-order quanti�ed Lax Logi. The proofs allowed by thisalulus naturally orrespond in a 1{1 way to the normal natural dedutions for �rst-orderquanti�ed Lax Logi. The alulus is well suited for enumerating, without redundany,all proofs in the logi. This makes the alulus useful in ontexts where proof searh isfor normal natural dedutions, suh as in (onstraint) logi programming.The seond alulus, PFLAXHist, builds on the propositional fragment of the �rstalulus to give a deision proedure for propositional Lax Logi. Propositional LaxLogi has been used in hardware veri�ation and PFLAXHist ould be of use in thisarea. The alulus works by adding a history mehanism to the propositional alulusto prevent looping. This tehnique is general and may be applied to a wide range ofsequent aluli for propositional logis to yield deision proedures. We believe that, todate, PFLAXHist is the only e�etive deision proedure for propositional Lax Logi.Aknowledgements I would like to thank Roy Dykho� for his helpful advie during manyuseful and interesting disussions.ReferenesAvellone, A. and Ferrari, M. (1996). Almost Dupliation-free Tableau Caluli for PropositionalLax Logis. In TABLEAUX'96, volume 1071 of Leture Notes in Arti�ial Intelligene, pages48{64. Springer-Verlag.Benton, P. N., Bierman, G. M., and de Paiva, V. (1998). Computational Types from a LogialPerspetive. Journal of Funtional Programming, 8(2):177{193.Curry, H. B. (1952). The Elimination Theorem When Modality is Present. Journal of SymboliLogi, 17(4):249{65.
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