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Abstract. A sequent calculus methodology for systems of agency based on branching-

time frames with agents and choices is proposed, starting with a complete and cut-free sys-

tem for multi-agent deliberative STIT; the methodology allows a transparent justification

of the rules, good structural properties, analyticity, direct completeness and decidability

proofs.
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1. Introduction

STIT (seeing to it that) modalities have played a pivotal role in the formal
studies of the logic of agency. As emphasized in Belnap’s et al. [2], they have
a unifying role as they can give formal meaning to expressions of various
linguistic forms, such as the indicative, imperative, and subjunctive, e.g. in
sentences as

– Alice prepares her slides before leaving to the conference.

– Alice, prepare your slides before leaving to the conference!

– Alice should have prepared her slides before leaving to the conference.

They can be either positive, referring to an action, or negative, denoting
the absence of an action (doing otherwise, avoid doing, preventing, refrain-
ing, etc.) when intentionality is involved.

As one of the above example shows, STIT modalities can be also be coun-
terfactual modalities (could have done, might have done, should have done);
they may occur in the scope of deontic modalities, in the form of obliga-
tion, prohibition, permission (to do something) and interact with temporal
modalities when the time of their evaluation may refer to a time different
from the time of action, as in the duty to apologize or the duty to admonish.

STIT modalities are traditionally defined upon indeterministic frames—
a semantics that builds upon a combination of Prior–Thomason–Kripke
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branching-time semantics and Kaplan’s indexical semantics—enriched with
agency. The temporal structure for branching time (BT) is given by trees
with forward branching time, corresponding to indeterminacy of the future,
but no backward branching, corresponding to uniqueness of the past. Mo-
ments are ordered by a partial order, reflecting the temporal relation, and
maximal chains of moments are called histories. The trees are enriched by
agent’s choice (AC), a partition relative to an agent at a given moment of
all histories passing through that moment.

In such frames, formulas are evaluated at moment/history pairs. The
reason for doing so becomes clear by thinking of the evaluation of a Will
sentence for a proposition that becomes true for certain turns of events,
i.e. along some histories, but not along others. With branching time, such
a modality does not have a well-defined truth value referred to moments
only. As for the STIT-modality, the evaluation critically depends on the
distribution of the evaluation on the frame. A formula stating that an agent
α sees to it that A (written, in Belnap’s notation, as [α stit : A]) holds at
the moment m of a history h if (i) A holds in all histories choice-equivalent
to h for the agent α, but (ii) doesn’t hold in at least one history of which
m is part of. In simple terms, an agent sees to it that A if their choice
brings about those histories where A holds, but nonetheless it could have
been otherwise (i.e. an agent can’t bring about something that would have
happened anyway).

While the semantics for STIT modalities and logics built upon them is
well-established, their proof theory has been largely restricted to axiomatic
systems (starting with [21] and [2]) with just a few exceptions, namely a
treatment of the logic of multi-agent deliberative STIT through labelled
tableaux in [19] that builds upon Belnap’s original semantics, and of the
related logic of imagination in [15]1 that exploits a newly defined neigh-
bourhood semantics, introduced in [20].

As for the meta-theoretical properties of STIT logics, as for other logics,
completeness is usually established through the method of canonical models
for axiomatic systems and through exhaustive proof search for tableaux
[15]. Decidability, on the other hand, has been achieved through filtration
methods [1,21].

Our aim in this work is to lay down the bases for the development of
systems of deduction that cover the STIT modalities presented by Belnap
et al. [2] in a way that respects all the desiderata of good proof systems, in

1See also the simplified calculus in [16] which includes a detailed proof of soundness
and completess, with proofs of some of the assumptions that were implicit in [15].
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particular to achieve a direct proof of decidability though a bound on proof
search in a suitable analytic proof system.

That this cannot be an easy task is already clear from the fact that one
cannot reason with STIT modalities using classical truth-valued logic. In
fact, STIT modalities are not in general truth-functional: If A is (always)
true, then [α stit : A] is false (since determinism prevents agentiveness),
but if A is (sometimes) false, then [α stit : A] can be either true or false,
depending on the distribution of A in the branching frame of possibilities.

Here the method of labelled sequent calculi developed since [7] comes to
rescue: relatively complex truth conditions can be transformed into rules
with the help of auxiliary modalities, as in the treatment of Lewis’ counter-
factuals [14], and additional properties for the characteristic frame condi-
tions are expressed as sequent calculus rules following [11,12]. The result is
a G3-style labelled sequent calculus which is shown to possess all the desired
structural properties of a good proof system, including invertibility of the
rules and admissibility of contraction and cut.

Moreover, we demonstrate multiple applications of the system. We prove
the impossibility of delegation of tasks among independent agents, as well
as the treatment of refraining from [2] and [18]. Finally, we demonstrate the
meta-theoretical properties of our system, namely soundness, completeness
and decidability via a bounded proof search.

2. Basic Definitions

The STIT modality that we will examine in this paper is the deliberative
STIT, or DSTIT. The language of DSTIT is (presented here in the notation
we will utilize in this paper, with ◦ standing for Booleans as standard):

A ::= ⊥ | p | A ◦ A | �iA | SA | PA | DiA

We will start by recalling the basic definitions of the semantics of DSTIT.

Definition 2.1. A pair (T, � ) is called a branching temporal frame if T is
a non-empty set (of moments in time) and � is a reflexive and transitive
relation on T (a preorder) that in addition satisfies the following properties:

– historical connectedness ∀m1,m2∃m(m � m1 ∧ m � m2)

– no backward branching

∀m1,m2,m(m1 � m ∧ m2 � m → m1 � m2 ∨ m2 � m1)
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A history in T is a maximal chain of moments (in T ) linearly ordered
by � . The set of histories passing through moment m, Hm, is defined as
{h |h is a history and m ∈ h}.

Definition 2.2. Let (T, � ) be a branching temporal frame. A DSTIT
frame is a structure (T, � ,Ag ,Ch) where Ag is a non-empty set (of agents)
and Ch is a function sending any agent/moment-pair (i, m) to a partition
of Hm (the histories choice-equivalent for i at m) satisfying the property of
no choice between undivided histories (here m < m′ ≡ m � m′ & m �= m′):

(∀i ∈ Ag)(∀H ∈ Ch(i,m))∀h, h′[(h ∈ H ∧ ∃m′(m < m′ ∧ m′ ∈ h ∩ h′))

→ h′ ∈ H]

The definition states that if two histories are undivided at a given moment
m, i.e. there is a moment successive to m that (still) belongs to both histories,
then they are choice-equivalent for any agent at that given moment. We
shall denote with ∼i

m the equivalence relation among histories for agent j at
moment m. With this notation, an equivalent formulation of the principle
of no choice between undivided histories is

∃m′(m < m′ & m′ ∈ h ∩ h′) → h ∼i
m h′

If h ∈ Hm, let Chi
m(h) be the element of the partition Ch(i, m) that

contains h.
In the presence of multiple agents, an additional condition on a DSTIT

frame is independence of agents, wherein for any finite number k of mu-
tually distinct agents (with the notation Diff (i1, . . . , ik) precisely defined
below) and histories hj , there is a history which is, for each agent ij , choice-
equivalent to hj :

(∀i1 . . . ik)(∀h1 . . . hk)[Diff (i1, . . . , ik) →
⋂

Chij
m(hj) �= ∅], 1 ≤ j ≤ k

Definition 2.3. Given a DSTIT frame (T, � ,Ag ,Ch), a DSTIT model is a
structure M ≡ (T, � , Ag ,Ch,V) where V is a valuation of atomic formulas
into sets of moment/history-pairs, called points. The valuation is extended
inductively to DSTIT-formulas as follows: (m,h) � [i dstit : A] iff

(i) ∀h′ ∈ Chm
i (h).(m,h′) � A

(ii) ∃h′ ∈ Hm.(m,h′) � A.

A formula A is said to be satisfiable in this semantics iff there exists a DSTIT
model M ≡ (T, � ,Ag ,Ch,V) and a point (m,h) such that M, (m,h) � A.
A formula A is valid if it is true at any point in any DSTIT model.
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We shall denote points by m/h rather than by (m,h). The truth condition
for the deliberative STIT, using as above the equivalence relation rather than
the choice function, can be rewritten as follows:

m/h � DiA ≡ ∀h′(h′ ∼i
m h → m/h′ � A) ∧ ∃h′′(m ∈ h′′ ∧ m/h′′ � ¬A)

The definition can be factorized (in the sense of [9]) for the first part using
a necessity operator (called in the literature cstit) with the truth condition

m/h � �iA ≡ ∀h′(h′ ∼i
m h → m/h′ � A)

2.1. Rules of G3DSTIT

We shall show in a step-by-step fashion how to obtain a sequent calculus
for the logic of DSTIT on the basis of its semantics. First, the above truth
conditions are ready to be turned into inference rules; for the �i-modality,
these have just the form of the standard rules for a necessity modality, here
with an accessibility relation given by the equivalence relation ∼i

m:

h′ ∼i
m h, Γ ⇒ Δ,m/h′ : A

Γ ⇒ Δ,m/h : �iA
R�i, h′fresh

h′ ∼i
m h,m/h : �iA,m/h′ : A, Γ ⇒ Δ
h′ ∼i

m h,m/h : �iA, Γ ⇒ Δ L�i

Observe that the rules above display the distinction between mobile and
immobile parameters made in [2]. In terms of rules the distinction corre-
sponds to the distinction between dynamic and static rules made in [6].
Static rules derive from semantic truth conditions that are verified locally,
with the available parameters, whereas dynamic rules derive from truth con-
ditions that call for additional parameters arbitrarily linked to the current
ones by some relations. Such arbitrary parameters are syntactically distin-
guished from the immobile ones by the syntactic condition of freshness. The
distinction occurs at the level of application of the rule. Once such parame-
ters have been introduced they become static. So it is better to attach this
distinction to rules rather than to variables.

It will be useful to consider two more modalities, settled true and possible,
both agent-independent, with the following truth conditions (we slightly
depart here from the notation in the literature, Sett : A, since the colon is
part of the specific syntax of labelled sequent calculi, so it might be confusing
to use it in another context):

m/h � SA ≡ ∀h′(m ∈ h′ → m/h′ � A)

m/h � PA ≡ ∃h′(m ∈ h′ & m/h′ � A)
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The rules follow the pattern of the rules for alethic modalities:

m ∈ h′, Γ ⇒ Δ,m/h′ : A

Γ ⇒ Δ,m/h : SA
RS, h′ fresh

m ∈ h′,m/h′ : A,m/h : SA, Γ ⇒ Δ
m ∈ h′,m/h : SA, Γ ⇒ Δ LS

m ∈ h′,m/h′ : A, Γ ⇒ Δ
m/h : PA, Γ ⇒ Δ

LP, h′ fresh

m ∈ h′, Γ ⇒ Δ,m/h : PA,m/h′ : A

m ∈ h′, Γ ⇒ Δ,m/h : PA
RP

These will then allow us to factorize the second part of the definition
above as:

m/h � ¬SA ≡ ∃h′′(m ∈ h′′ ∧ m/h′′ � ¬A)

The rules for DSTIT are then found as follows: first we rewrite the truth
conditions as rules using the modalities already defined (we indicate these
rules with a bar since they are not in the final form)

Γ ⇒ Δ,m/h : �iA Γ ⇒ Δ,m/h : ¬SA

Γ ⇒ Δ,m/h : DiA
RDi

m/h : �iA,m/h : ¬SA, Γ ⇒ Δ
m/h : DiA, Γ ⇒ Δ

LDi, h′ fresh

Second, we eliminate the negation by the use of the classical symmetry
of the calculus to obtain the final version:

Γ ⇒ Δ,m/h : �iA m/h : SA, Γ ⇒ Δ
Γ ⇒ Δ,m/h : DiA

RDi

m/h : �iA, Γ ⇒ Δ,m/h : SA

m/h : DiA, Γ ⇒ Δ LDi

2.1.1. Rules for Relational Atoms In addition to the rules for the STIT
modalities, we have to make explicit the rules that correspond to the prop-
erties of the equivalence relation between histories and equality of agents.
As usual, an equivalence relation can be given by just two rules, reflexivity
and Euclidean transitivity. Additionally, we have a rule of replacement of
equals. The rule is restricted to atomic formulas to guarantee the structural
properties of the calculus, and its general form is shown to be admissible.
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This follows the general treatment of equality as detailed in [13]. Observe
that in general At denotes either a relational formula, say of the form i = j,
or h′ ∼i

m h, or a labelled atomic formula.

i = i,Γ ⇒ Δ
Γ ⇒ Δ

Refl=

j = k, i = j, i = k,Γ ⇒ Δ
i = j, i = k,Γ ⇒ Δ Etrans=

i = j,At(i),At(j), Γ ⇒ Δ
i = j,At(i), Γ ⇒ Δ

ReplAt

h ∼i
m h, Γ ⇒ Δ
Γ ⇒ Δ

Refl∼i
m

h2 ∼i
m h3, h1 ∼i

m h2, h1 ∼i
m h3, Γ ⇒ Δ

h1 ∼i
m h2, h1 ∼i

m h3, Γ ⇒ Δ
Etrans∼i

m

Given the two types of relational formulas, history membership m ∈ h
and choice equivalence h ∼i

m h′, it will be useful to indicate their relation-
ship. To this end we use the rule WD, which corresponds to h ∼i

m h′ →
m ∈ h (the rule for the other part, h ∼i

m h′ → m ∈ h′, need not be added
because of symmetry of ∼i

m):

m ∈ h, h ∼i
m h′, Γ ⇒ Δ

h ∼i
m h′, Γ ⇒ Δ

WD

The usefulness of this rule can be seen in the derivation of SA ⊃ �iA. The
semantics of S and �i clearly indicate that this should hold (intuitively,
what holds in every point, for any history h such that m ∈ h, also holds in
all those histories that are choice-equivalent for i). However, since S and �
rules use different relational formulas, we can derive this valid formula only
if we connect them (proof in the next section under A3).

The axiom of independence of agents requires a predicate that expresses
distinctness of any finite number of agents. This is defined as pairwise in-
equality ranging over all pairs of non-identical agents:

Diff (i1, . . . , ik) ≡ &1≤l < m≤k¬ il = im

Correspondingly, we have the rule (to be precise, a rule for every k)

{¬ il = im}1≤l < m≤k, Γ ⇒ Δ
Diff (i1, . . . , ik), Γ ⇒ Δ

One is tempted to apply the negation rule (or L ⊃ if we prefer defined
negation) and obtain the equivalent rule

Γ ⇒ Δ, {il = im}1≤l < m≤k

Diff (i1, . . . , ik), Γ ⇒ Δ
Diff k
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Although appealing, this choice has a disadvantage: in order to frame our
treatment within the approach of “axioms-as-rules,” we need to formulate
rules where all the material from the extra-logical language, i.e. relations
such as equalities, occur all on the left of sequents. This is an essential
assumption in the proof of cut elimination in the presence of extensions with
extra-logical rules, and a deviation from this path would bring undesired
consequences (the most undesired for a sequent calculus practitioner being
the loss of cut elimination!). There is a way out, that consists in adding
a new primitive, together with the rules that correspond to its definition
(a definitional extension, in the sense of Skolem). The new primitive is of
course inequality between agents, i �= i, and the defining condition is

i �= j ⊃⊂ ¬i = j

For reasons explained at length in [4], it is enough to consider only the
semidefinitional extension, that corresponds to taking only the left-to-right
side of the above equivalence. This is good news because this is the one that
falls within the scheme of regular rules, whereas the other falls outside the
pattern of geometric implications and thus cannot receive a similarly good
proof-theoretic treatment. The rule that corresponds to i �= j ⊃ ¬i = j is
the zero-premiss rule derived from the equivalent i �= j & i = j ⊃⊥, so in
conclusion the rules for the Diff operator are

{il �= im}1≤l < m≤k, Γ ⇒ Δ
Diff (i1, . . . , ik), Γ ⇒ Δ

Diff k i �= j, i = j,Γ ⇒ Δ
�=

The axiom of independence of agents states that for every choice of k
different agents at moment m, there is a history that is compatible with
all the individual choices. As a rule, it is formulated in the following way,
by representing the k choices through representative histories; the existing
history compatible with all the choices appears as a fresh variable, linked to
all the given histories through all the individual equivalences at moment m:

h ∼i1
m h1, . . . , h ∼ik

m hk,Diff (i1, . . . , ik),m ∈ h1, . . . ,m ∈ hk,Γ ⇒ Δ

Diff (i1, . . . , ik),m ∈ h1, . . . ,m ∈ hk,Γ ⇒ Δ
Indk, h fresh

As we will see in a moment, this rule enables us to derive the independence
of agents axioms,

AIAk : P(�1A1)& . . . &P(�kAk) ⊃ P(�1A1& . . . &�kAk).

Finally, since outside of rules for relational atoms the choice-equivalence
relation features only in the rules with parametrized modalities (note that
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the relation is itself agent-relative), we can limit the rule further to its final,
parametrized version, for 1 ≤ n ≤ k:

h ∼i1
m h1, . . . , h ∼in

m hn,Diff (i1, . . . , ik), m ∈ h1, . . . , m ∈ hn, h1 ∼i1
m h′

1, . . . , hn ∼in
m h′

n, Γ ⇒ Δ
Diff (i1, . . . , ik), m ∈ h1, . . . , m ∈ hn, h1 ∼i1

m h′
1, . . . , hn ∼in

m h′
n, Γ ⇒ Δ

Indk, h fresh

It is easy to check, using results from Section 4, that in the presence
of Refl∼i

m
the systems containing either of these two rules are deductively

equivalent. The choice here is made with an eye towards the demonstration
of meta-theoretical properties.

2.1.2. Rules for the Relation ≤ The principle of no choice between undi-
vided histories, ∃m′(m < m′ & m′ ∈ h ∩ h′) → h ∼j

m h′ can be formulated,
using first-order logic, in universal form as

∀m′(m < m′ & m′ ∈ h ∩ h′ → h ∼j
m h′)

which in turn can be formulated as a rule that follows the regular rule
scheme

h ∼j
m h′,m < m′,m′ ∈ h,m′ ∈ h′, Γ ⇒ Δ
m < m′,m′ ∈ h,m′ ∈ h′, Γ ⇒ Δ NC

The principle of historical connectedness, ∀m1,m2∃m(m � m1 ∧ m � m2) is
formulated as a rule

m′ ≤ m1,m
′ ≤ m2,m

′ ∈ h1,m
′ ∈ h2,m1 ∈ h1,m2 ∈ h2, Γ ⇒ Δ

m1 ∈ h1,m2 ∈ h2, Γ ⇒ Δ HC

The principle of no backward branching, ∀m1, m2,m((m1 � m ∧ m2 � m) →
(m1 � m2 ∨ m2 � m1)), is formulated as a rule

m1 ≤ m2,m1 ≤ m,m2 ≤ m,Γ ⇒ Δ m2 ≤ m1,m1 ≤ m,m2 ≤ m,Γ ⇒ Δ

m1 ≤ m,m2 ≤ m,Γ ⇒ Δ
NBB

Finally, we require that ≤ is a preorder:
m ≤ m, Γ ⇒ Δ

Γ ⇒ Δ
Refl≤

m1 ≤ m3,m1 ≤ m2,m2 ≤ m3, Γ ⇒ Δ
m1 ≤ m2,m2 ≤ m3, Γ ⇒ Δ

Etrans≤

Observe that all the logical rules, when applied root-first, may modify
only histories, and the moment of evaluation remains unchanged. It follows
that the rules NC, HC and NBB, Refl≤ and Etrans≤ give a conservative
extension, so we will omit them from our calculus.
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Figure 1. G3DSTIT

The full system of rules of G3DSTIT is presented in Figure 1, with the
propositional rules as in [7], but with labels of the form m/h. The termi-
nology used is standard—we call the multisets Γ and Δ in a sequent its
context, the remaining formula(s) in the lower sequent principal and those
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in the upper sequent(s) active. In any rule that requires h fresh, h is called
its eigenvariable.

3. Axioms

The treatment of DSTIT in [2] is via an axiomatic system. In this section we
will show that all the axioms presented therein are derivable in our system,
or more precisely

Proposition 3.1. The axioms given in [2] are derivable in the calculus,
namely for every axiom A the sequent ⇒ m/h : A is derivable in G3DSTIT.

A1:

(i) S(A ⊃ B) ⊃ (SA ⊃ SB)

(ii) SA ⊃ A

(iii) PA ⊃ SPA

(i)

m ∈ h′,m/h′ : A,m/h′ : A ⊃ B,m/h : SA,m/h : S(A ⊃ B) ⇒ m/h′ : B

m ∈ h′,m/h′ : A,m/h : SA,m/h : S(A ⊃ B) ⇒ m/h′ : B
LS

m ∈ h′,m/h : SA,m/h : S(A ⊃ B) ⇒ m/h′ : B
LS

m/h : SA,m/h : S(A ⊃ B) ⇒ m/h : SB
RS

m/h : S(A ⊃ B) ⇒ m/h : SA ⊃ SB
R⊃

⇒ m/h : S(A ⊃ B) ⊃ (SA ⊃ SB) R⊃

(ii)

m ∈ h,m/h : SA,m/h : A ⇒ m/h : A

m/h : SA ⇒ m/h : A
RS, WD

⇒ m/h : SA ⊃ A
R ⊃

(iii)

m ∈ h′,m ∈ h′′,m/h′′ : A ⇒ m/h′ : PA,m/h′′ : A

m ∈ h′,m ∈ h′′,m/h′′ : A ⇒ m/h′ : PA
RP

m ∈ h′,m/h : PA ⇒ m/h′ : PA
LP

m/h : PA ⇒ m/h : SPA
RS

⇒ m/h : PA ⊃ SPA
R⊃

Next we have the axioms for the modality �i:
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A2:

(i) �i(A ⊃ B) ⊃ (�iA ⊃ �iB)

(ii) �iA ⊃ A

(iii) ¬�iA ⊃ �i¬�iA

(i) The first is shown as the corresponding axiom for S, so we move on
to the second and third axiom, where the rules for the equivalence relation
come into play. (ii)

h ∼i
m h,m/h : A,m/h : �iA ⇒ m/h : A

h ∼i
m h,m/h : �iA ⇒ m/h : A

L�i

m/h : �iA ⇒ m/h : A
Refl∼i

m

⇒ m/h : �iA ⊃ A
R⊃

(iii)

h′ ∼i
m h′′, h ∼i

m h′, h ∼i
m h′′,m/h′′ : A,m/h′ : �iA ⇒ m/h′′ : A

h′ ∼i
m h′′, h ∼i

m h′, h ∼i
m h′′,m/h′ : �iA ⇒ m/h′′ : A

�i

h ∼i
m h′, h ∼i

m h′′,m/h′ : �iA ⇒ m/h′′ : A
Etrans∼i

m

h ∼i
m h′,m/h′ : �iA ⇒ m/h : �iA

R�i

h ∼i
m h′,m/h : ¬�iA ⇒ m/h′ : ¬�iA

R¬, L¬

m/h : ¬�iA ⇒ m/h : �i¬�iA
R�i

⇒ m/h : ¬�iA ⊃ �i¬�iA
R⊃

A3: SA ⊃ �iA

m ∈ h′, h′ ∼i
m h,m/h : SA,m/h′ : A ⇒ m/h′ : A

m ∈ h′, h′ ∼i
m h,m/h : SA ⇒ m/h′ : A

LS

h′ ∼i
m h,m/h : SA ⇒ m/h′ : A

WD

m/h : SA ⇒ m/h : �iA
R�i

⇒ m/h : SA ⊃ �iA
R ⊃

This axiom takes �i and S as primitive, and defines Di in terms of those
two as:

DiA ⊃⊂ ¬SA & �iA

We prove each direction of the definition in turn:
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(1)

m/h′ : A,m ∈ h′,m/h : SA,m/h : �iA ⇒ m/h′ : A

m ∈ h′,m/h : SA,m/h : �iA ⇒ m/h′ : A
LS

m/h : SA,m/h : �iA ⇒ m/h : SA
RS

m/h : SA,m/h : DiA ⇒ LDi

m/h : DiA ⇒ m/h : ¬SA
R¬

(1)

h ∼i
m h′,m/h : �iA,m/h′ : A ⇒ m/h′ : A,m/h : SA

h ∼i
m h′,m/h : �iA ⇒ m/h′ : A,m/h : SA

L�i

m/h : �iA ⇒ m/h : �iA,m/h : SA
R�i

m/h : DiA ⇒ m/h : �iA
LDi

m/h : DiA ⇒ m/h : ¬SA & �iA
R&

....
m ∈ h1,m/h : �iA ⇒ m/h : �iA, m/h1 : A

m/h1 : A, m/h : SA,m ∈ h1,m/h : �iA ⇒ m/h1 : A

m/h : SA,m ∈ h1,m/h : �iA ⇒ m/h1 : A
LS

m ∈ h1,m/h : �iA ⇒ m/h : DiA, m/h1 : A
RDi

m/h : �iA ⇒ m/h : DiA, m/h : SA
RS

m/h : ¬SA, m/h : �iA ⇒ m/h : DiA
L¬

m/h : ¬SA & �iA ⇒ m/h : DiA
L&

In fact, any two of the three modalities could be taken as primitive with
the third defined. This is straightforward to prove and therefore omitted
here.

A4: Equality between agents is reflexive, symmetric, and transitive.

As emphasized in [7], in order to obtain the properties of the relational part
as derivable sequents, one would have to add initial sequents of the form,
say, i = j,Γ ⇒ Δ, i = j. However, this is not needed: because of the form of
the rules, we get all the consequences of having a reflexive, symmetric, and
transitive relation. This is a general property of the formulation of axioms
as rules (see also [13]).

A5: If i = j, A ⊃ A(i/j)

See Proposition 4.3.

AIAk: If Diff (i1, . . . , ik), then

P�i1A1 & . . . & P�ikAk ⊃ P(�i1A1 & . . . & �ikAk)

For simplicity, we prove AIA2. The generalization to k agents is straight-
forward.
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(1)
m/h4 : A1, h4 ∼i1

m h1, h4 ∼i1
m h3, . . . ,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ . . . ,m/h4 : A1

h4 ∼i1
m h1, h4 ∼i1

m h3, h3 ∼i1
m h1, . . . ,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ . . . , m/h4 : A1

L�1

h4 ∼i1
m h3, h3 ∼i1

m h1, . . . ,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ . . . ,m/h4 : A1

ETrans∼i1
m

h3 ∼i1
m h1, . . . ,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ . . . , m/h3 : �i1A1

R�1

(1) (2)
m ∈ h3, h3 ∼i1

m h1, . . . ,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ . . . , m/h3 : �i1A1&�i2A2
R&

m ∈ h3, h3∼i1
mh1, . . . ,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ m/h : P(�i1A1&�i2A2)

RP

h3∼i1
mh1, h3 ∼i2

m h2, h1 ∼i1
m h1, h2 ∼i2

m h2,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ m/h : P(�i1A1&�i2A2)
WD

h1 ∼i1
m h1, h2 ∼i2

m h2,Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ m/h : P(�i1A1&�i2A2)
Ind2

Diff (i1, i2),m/h1 : �i1A1,m/h2 : �i2A2 ⇒ m/h : P(�i1A1&�i2A2)
Ref∼i1

m
, Ref∼i2

m

Diff (i1, i2),m/h : P�i1A1,m/h : P�i2A2 ⇒ m/h : P(�i1A1&�i2A2)
LP, LP

The derivation indicated by (2) is similar to the corresponding derivation
of the left premiss of R& and therefore omitted.

4. Structural Properties

All the structural properties are easily established and their verification
follows the general pattern for labelled sequent calculi, i.e. the properties
are established in this order:

– Derivability of initial sequents of the form m/h : A, Γ ⇒ Δ,m/h : A
where A is an arbitrary formula in the STIT language.

– Height-preserving substitution on moments/histories/agents.

– Height-preserving admissibility of weakening.

– Height-preserving invertibility of all the rules.

– Height-preserving admissibility of contraction.

– Admissibility of cut.

All these results are established in a rather routine way, with the proviso
of defining a suitable notion of weight of formulas. The weight reflects the
way in which we have unfolded the rule of the STIT operator using additional
modalities, and guarantees that each time we use a rule for such modalities
the weight of active formulas is less than the weight of principal formulas.
We just illustrate the central case in the cut elimination procedure, but
before that give the definition of weight of formulas:

Definition 4.1. The weight of a labelled formula m/h : A in the STIT
language is given by the weight of A, w(A), and is defined inductively as
follows:

– w(P ) = w(⊥) = 1,
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– w(A◦B) = w(A)+w(B)+1 for ◦ conjunction, disjunction, or implication,

– w(�iA) = w(SA) = w(PA) = w(A) + 1,

– w(DiA) = w(A) + 2.

Lemma 4.2. Sequents of the form m/h : A, Γ ⇒ Δ, m/h : A are derivable
in G3DSTIT for an arbitrary formula A in the language.

Proof. Routine proof by induction on w(A). The base cases are given by
initial sequents/conclusion of L⊥. For the inductive cases, we show one
which is specific to the STIT extension, namely the case of DiA. We have
the following derivation

m/h : �iA, Γ ⇒ Δ,m/h : �iA,m/h : SA m/h : SA,m/h : �iA, Γ ⇒ Δ,m/h : SA

m/h : �iA, Γ ⇒ Δ,m/h : DiA,m/h : SA
RDi

m/h : DiA, Γ ⇒ Δ,m/h : DiA
LDi

where the topsequents are derivable by induction hypothesis because both
w(A) and w(�iA) are less than w(DiA). The other cases (�iA, SA, PA) are
shown in a similar way.

Height is defined routinely, with derivability with height bounded by n
noted as �n.

Substitution of labels is likewise defined routinely. In addition to moment
and history labels we have labels for agents. Even if the latter are not la-
bels in the usual sense, but rather parameters, we can extend to them the
property of height-preserving substitution.

Proposition 4.3. 1. If �n Γ ⇒ Δ, then �n Γ(m′/m) ⇒ Δ(m′/m);

2. If �n Γ ⇒ Δ, then �n Γ(h′/h) ⇒ Δ(h′/h);

3. If �n Γ ⇒ Δ, then �n Γ(j/i) ⇒ Δ(j/i).

Proof. All statements are proved by induction on the height of the deriva-
tion. The base cases with height zero (initial sequents, conclusion of L ⊥)
are immediate. For the inductive steps, we consider the last step in a deriva-
tion of height n + 1 and distinguish two cases: in the first case the last
step is a rules with eigenvariable and the label to be substituted is the
same as the eigenvariable. In this case we have to first apply inductive
hypothesis to the premiss of the rule to replace the eigenvariable with a
new fresh variable, we then apply inductive hypothesis with the substi-
tution to be made, and finally the rule. To give some flesh to this ab-
stract description, suppose the sequent is Γ ⇒ Δ,m/h : �iA, the last



488 S. Negri, E. Pavlović

rule R�i with premiss h′ ∼i
m h, Γ ⇒ Δ,m/h′ : A, and the substitu-

tion h′/h. We have by inductive hypothesis a derivation of height n of
h′′ ∼i

m h, Γ ⇒ Δ,m/h′′ : A where h′′ is the new fresh variable, then by
inductive hypothesis again we get h′′ ∼i

m h′, Γ(h′/h) ⇒ Δ(h′/h),m/h′′ : A,
and by R�i, Γ(h′/h) ⇒ Δ(h′/h),m/h′ : �iA in n + 1 steps.

In all other cases (rule without eigenvariable or label to be substituted
different from the eigenvariable) we just apply the inductive hypothesis to
the premiss(es) of the rule and then the rule.

Lemma 4.4. Weakening is height-preserving admissible:

1. If �n Γ ⇒ Δ, then �n m/h : A, Γ ⇒ Δ

2. If �n Γ ⇒ Δ, then �n Γ ⇒ Δ,m/h : A

3. If �n Γ ⇒ Δ, then �n B,Γ ⇒ Δ

4. If �n Γ ⇒ Δ, then �n Γ ⇒ Δ, B

Where B is a relational formula, of the form i = j, h ∼i
m h′, m ∈ h, m < m′,

or Diff (i1, . . . , ik).

Proof. By induction on the height of the derivation, using Proposition 4.3
to deal with eigenvariables.

Lemma 4.5. The rules of G3DSTIT are height-preserving invertible.

Proof. Routine by induction on the height of the derivation. Standard for
propositional rules.

For rules L�i and LS the proof is like that of L�, for R�i, and RS the
proof is like that of R�, and for LP and RP like L♦ and R♦, respectively,
of [7].

For Refl=, ETrans=, ReplAt, Refl∼i
m

, ETrans∼i
m

, WD and Indk, it
follows from Lemma 4.4. Simple for Diff k.

For LDi, if n = 0, then m/h : DiA, Γ ⇒ Δ is an initial sequent, and
then so is m/h : �iA, Γ ⇒ Δ,m/h : SA. If n > 0, then if the final rule R
is some other than LDi, we obtain m/h : DiA, Γ ⇒ Δ from some m/h :
DiA, Γ′ ⇒ Δ′ (m/h : DiA, Γ′′ ⇒ Δ′′) of height n− 1. We possibly apply the
Proposition 4.3, then the inductive hypothesis, and then R to obtain the
desired sequent with height n. We do the same if R is LDi with the principal
formula in Γ, and if it is LDi with m/h : DiA principal, the upper sequent
of R is already the desired sequent. Similar for RDi.

Lemma 4.6. Contraction is height-preserving admissible in G3DSTIT.

Proof. Routine, using case analysis on the last rule used to derive the
premiss of contraction and Lemma 4.5.
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Lemma 4.7. Cut is admissible in G3DSTIT.

Proof. The interesting case here is when the cut formula is a Di-formula
principal in both premisses of Cut. The instance of Cut is then:

Γ ⇒ Δ,m/h : �iA m/h : SA,Γ ⇒ Δ

Γ ⇒ Δ,m/h : DiA
RDi

m/h : �iA,Γ ⇒ Δ,m/h : SA
m/h : DiA,Γ ⇒ Δ

LDi

Γ ⇒ Δ
Cut

This is transformed into:

Γ ⇒ Δ,m/h : �iA

m/h : �i : A, Γ ⇒ Δ,m/h : SA m/h : SA, Γ ⇒ Δ
m/h : �i : A, Γ ⇒ Δ

Cut1

Γ ⇒ Δ Cut2

where both Cut1 and Cut2 are of lesser weight. All other cases are
routine.

5. Applications

As already discussed in the introduction, STIT modalities have a number of
uses. In this section we examine several applications of the DSTIT modality
in order to demonstrate the usefulness of the labelled approach.

5.1. Impossibility of Delegation

It is clear that we can treat nested STIT modalities and that agents can
be different for each of the nested modalities, that is, we have individual
multiple agency. So one can ask, for example, whether it is possible that an
agent sees to it that another agent sees to it that A, as in the delegation of a
task. In [2, p. 274], a semantic argument is given to show that this is impos-
sible for the achievement STIT. We can give a proof-theoretic argument to
show that this holds also for the deliberative STIT. We show that assuming
m/h : Di1Di2A leads to a contradiction (independently on the form of A).
This is expressed in our system as a derivation for the sequent (throughout
i1 and i2 are assumed different)

m1/h : Di1(Di2A) ⇒
Before giving the derivation we prove a useful lemma:

Lemma 5.1. The following sequent is derivable in G3DSTIT:

h1 ∼i1
m h2,m/h1 : Di1A ⇒ m/h2 : Di1A.
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Proof. By the following derivation (where the topsequents are derivable
by Lemma 4.2):

(1)

m/h3 : A,m ∈ h3, . . . ,m/h2 : SA ⇒ m/h3 : A . . .

m ∈ h3, . . . , m/h2 : SA ⇒ m/h3 : A . . .
LS

. . .m/h2 : SA ⇒ m/h1 : SA . . .
RS

h1 ∼i1
m h4, . . . ,m/h4 : A,m/h1 : �i1A ⇒ m/h4 : A,m/h1 : SA
h1 ∼i1

m h4, . . . ,m/h1 : �i1A ⇒ m/h4 : A,m/h1 : SA L�i1

h4 ∼i1
m h2, h1 ∼i1

m h2,m/h1 : �i1A ⇒ m/h4 : A,m/h1 : SA
Etrans∼i1

m

h1 ∼i1
m h2,m/h1 : �i1A ⇒ m/h2 : �i1A,m/h1 : SA R�i1

(1)

h1 ∼i1
m h2,m/h1 : �i1A ⇒ m/h2 : Di1A,m/h1 : SA RDi1

h1 ∼i1
m h2,m/h1 : Di1A ⇒ m/h2 : Di1A

LDi1

We are now ready to prove impossibility of delegation:

Theorem 5.2. The following sequent is derivable in G3DSTIT:

m1/h : Di1(Di2A) ⇒

Proof. The topsequent is derivable by Lemma 5.1. The derivation then
proceeds as follows:

(1)
. . . ,m/h5 : Di2A, h5 ∼i1

m h1, h5 ∼i2
m h2, h4 ∼i2

m h2, h1 ∼i1
m h1,m/h1 : �i1Di2A, . . . ⇒ m/h2 : Di2A,m/h4 : A, . . .

. . . , h5 ∼i1
m h1, h5 ∼i2

m h2, h4 ∼i2
m h2, h1 ∼i1

m h1,m/h1 : �i1Di2A, . . . ⇒ m/h2 : Di2A,m/h4 : A, . . .
L�i1

. . . , h4 ∼i2
m h2, h1 ∼i1

m h1,m/h1 : �i1Di2A,m ∈ h1, . . . ⇒ m/h2 : Di2A,m/h4 : A, . . .
Ind2

. . . , h1 ∼i1
m h1,m/h1 : �i1Di2A, . . . ⇒ m/h2 : Di2A,m/h2 : �i2A, . . .

R�i2 ,WD

(2)
m/h3 : A,m/h2 : SA,m ∈ h3, h1 ∼i1

m h1,m ∈ h2,m/h1 : �i1Di2A,m/h1 : �i2A,m/h3 : A ⇒ m/h3 : A

m/h2 : SA,m ∈ h3, h1 ∼i1
m h1,m ∈ h2,m/h1 : �i1Di2A,m/h1 : �i2A ⇒ m/h3 : A

LS

(1) (2)
m ∈ h3, h1 ∼i1

m h1,m ∈ h2,m/h1 : �i1Di2A,m/h1 : �i2A ⇒ m/h2 : Di2A,m/h3 : A
RDi2

h1 ∼i1
m h1,m ∈ h2,m/h1 : �i1Di2A,m/h1 : Di2A ⇒ m/h2 : Di2A

LDi2 , RS

m ∈ h2,m/h1 : �i1Di2A ⇒ m/h2 : Di2A
L�i1 , Refl∼i1

m

m/h1 : Di1Di2A ⇒ LDi1 , RS

In addition to adapting the result to deliberative STIT, we can likewise
show it is impossible to prevent somebody from doing something (i.e. make
them not do it):

m/h : Da¬DbA ⇒
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Proof.
....

. . . , hi ∼b
m h′, . . . , m/h′ : �bA ⇒ . . . , m/hi : �bA

m/h′′ : A, . . . ⇒ m/h′′ : A, . . .

m/hi : SA,m ∈ h′′, . . . ⇒ m/h′′ : A, . . .
LS

hi ∼a
m h, hi ∼b

m h′, . . . ,m ∈ h′, h′′,m/h : �a¬DbA,m/h′ : �bA ⇒ m/h′′ : A,m/hi : DbA
RDb

hi ∼a
m h, hi ∼b

m h′, . . . ,m ∈ h′, h′′,m/h : �a¬DbA,m/hi : ¬DbA,m/h′ : �bA ⇒ m/h′′ : A
L¬

hi ∼a
m h, hi ∼b

m h′, . . . , m ∈ h′, h′′,m/h : �a¬DbA,m/h′ : �bA ⇒ m/h′′ : A
L�a

h ∼a
m h, h′ ∼b

m h′,m ∈ h′, h′′,m/h : �a¬DbA,m/h′ : �bA ⇒ m/h′′ : A
Ind2

h ∼a
m h, h′ ∼b

m h′,m ∈ h′,m/h : �a¬DbA,m/h′ : DbA ⇒ LDb, RS

h ∼a
m h, h′ ∼b

m h′,m ∈ h′,m/h : �a¬DbA ⇒ m/h′ : ¬DbA
R¬

m ∈ h′,m/h : �a¬Db4A ⇒ m/h′ : ¬DbA
Refl∼a,b

m

m/h : Da¬DbA ⇒
LDa, RS

5.2. Refraining

A good starting point in the discussion of refraining appears in G.H. von
Wright [18], and the account of events therein. There von Wright treats
events as ordered pairs of states of affairs, the first, initial state temporally
preceding the second, end-state, and the event itself a transition from the
former to the latter. In von Wright’s (somewhat cumbersome) notation, an
event is written as p T q—a transformation from the initial p state to the
end q state [18, pp. 28–29].

An act, then, is the bringing about of an event by an agent, written as
d (p T q). An accurate, if, as von Wright notes, clumsy way to express, say,
d(∼ p T p) is to say it is the “doing so that p” [18, pp. 42–43]. The link
to the phrase see-to-it-that should be clear here. The connection of this
consideration to STIT is reinforced by the conditions for doing d(∼ p T p)
that p does not happen “independently of the action of the agent” [18, p. 43].
The counter (or could-have-been-otherwise) condition is a crucial feature of
STIT.

The “correlative” of doing is to refrain from doing something (von Wright
uses the term ‘forbear’). This, however, is not simply not doing an action.
Rather, to forbear p, written as f(∼ p T p), is to be able to do it, but not
do it [18, p. 45], so in our notation it would be understood as:

Ref iA ≡def. PDiA & ¬DiA

Both acts and forbearances are a mode of action [18, p. 48], and it is
likewise the condition of forbearance that it does not come about indepen-
dently of an agent [18, p. 46]. Doing and forbearing are closely correlated
but separate in von Wright’s analysis.

In [2, pp. 42-43] the authors find that refraining can be more thoroughly
analysed by using, unlike von Wright, embedded modalities. Then noting
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that refraining itself is a mode of doing (something the first definition doesn’t
state), the definition becomes

Ref iA ≡def. Di¬DiA

We can show that the two accounts are equivalent (cf. [2, p. 438]), i.e.

Di¬DiA ≡ PDiA & ¬DiA

in our system by proving:

Proposition 5.3. The following sequents are derivable in G3DSTIT:

(a) m/h : Di¬DiA ⇒ m/h : PDiA & ¬DiA;

(b) m/h : PDiA & ¬DiA ⇒ m/h : Di¬DiA.

Proof. (a) We have the following derivations:
(1)

m/h1 : DiA,m ∈ h1,m/h : �i¬DiA ⇒ m/h : PDiA,m/h1 : DiA

m ∈ h1,m/h : �i¬DiA ⇒ m/h : PDiA,m/h1 : DiA,m/h1 : ¬DiA
R¬

m ∈ h1,m/h : �i¬DiA ⇒ m/h : PDiA,m/h1 : ¬DiA
RP

m/h : Di¬DiA ⇒ m/h : PDiA
LDi, RS

(2)

h ∼i
m h,m/h : �i¬DiA,m/h : ¬DiA ⇒ m/h : ¬DiA,m/h : S¬DiA

h ∼i
m h,m/h : �i¬DiA ⇒ m/h : ¬DiA,m/h : S¬DiA

LDi

m/h : �i¬DiA ⇒ m/h : ¬DiA,m/h : S¬DiA
Refl∼i

m

m/h : Di¬DiA ⇒ m/h : ¬DiA
LDi

and the compound derivation:

(1) (2)
m/h : Di¬DiA ⇒ m/h : PDiA & ¬DiA

R&

(b) We have the following derivation:

(1)

m/h : S¬DiA,m ∈ h1,m/h1 : DiA,m/h : ¬DiA ⇒ m/h1 : DiA

m/h1 : ¬DiA,m/h : S¬DiA,m ∈ h1,m/h1 : DiA,m/h : ¬DiA ⇒ L¬

m/h : S¬DiA,m ∈ h1,m/h1 : DiA,m/h : ¬DiA ⇒ LS
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h2 ∼i
m h,m ∈ h1,m/h1 : DiA,m/h2 : DiA ⇒ m/h : DiA

Lemma 5.1

h2 ∼i
m h,m ∈ h1,m/h1 : DiA,m/h : ¬DiA ⇒ m/h2 : ¬DiA

L¬, R¬

m ∈ h1,m/h1 : DiA,m/h : ¬DiA ⇒ m/h : �i¬DiA
R�i

(1)
m ∈ h1,m/h1 : DiA,m/h : ¬DiA ⇒ m/h : Di¬DiA

RDi

m/h : PDiA,m/h : ¬DiA ⇒ m/h : Di¬DiA
LP

m/h : PDiA & ¬DiA ⇒ m/h : Di¬DiA
L&

Under this interpretation, it holds for DSTIT that doing is equivalent to
refraining from refraining [2, p. 50, 439]:

(Refref): DiA ≡ Di¬Di¬DiA

We can likewise show that this holds for DSTIT.

Proposition 5.4. This equivalence, meaning the sequents in both direc-
tions, holds in G3DSTIT.

m/h : DiA ⇔ m/h : Di¬Di¬DiA

Proof. We start with the proof of the direction left-to-right. For legibility
we write m ∈ h, . . . , m ∈ h′ as m ∈ h, . . . , h′.

(1)
m ∈ h, h1, . . . , m/h : �iA, . . . ⇒ m/h1 : A,m/h : �iA

m/h1 : A,m/h : SA,m ∈ h, h1, . . . , m/h : �iA, . . . ⇒ m/h1 : A

m/h : SA,m ∈ h, h1, . . . , m/h : �iA ⇒ m/h1 : A
LS

m ∈ h, h1, . . . , m/h : �iA, . . . ⇒ m/h1 : A,m/h : DiA
RDi

m ∈ h, h1 . . . , m/h : ¬DiA,m/h : �iA, . . . ⇒ m/h1 : A
L¬

m ∈ h, h1,m/h1 : S¬DiA,m/h : �iA, . . . ⇒ m/h1 : A
LS

(2)
h2 ∼i

m h1,m/h2 : �iA, . . . ⇒ m/h1 : A....
h2 ∼i

m h1,m ∈ h, h1, h5,m/h : �iA,m/h2 : �iA, . . . ⇒ m/h1 : A,m/h1 : Di¬DiA,m/h5 : A

h2 ∼i
m h1,m ∈ h, h1,m/h : �iA,m/h2 : DiA, . . . ⇒ m/h1 : A,m/h1 : Di¬DiA

LDi, RS

h2 ∼i
m h1,m ∈ h, h1,m/h : �iA, . . . ⇒ m/h1 : A,m/h1 : Di¬DiA,m/h2 : ¬DiA

R¬

m ∈ h, h1,m/h : �iA, . . . ⇒ m/h1 : A,m/h1 : Di¬DiA,m/h1 : �i¬DiA
R�i

(1)
m ∈ h, h1,m/h : �iA, . . . ⇒ m/h1 : A,m/h1 : Di¬DiA

RDi

m ∈ h1,m/h : �iA, . . . ⇒ m/h1 : A,m/h1 : Di¬DiA
WD

m ∈ h1,m/h : �iA, . . . , m/h1 : ¬Di¬DiA ⇒ m/h1 : A
L¬

m ∈ h1,m/h : �iA,m/h : S¬Di¬DiA ⇒ m/h1 : A
LS

m ∈ h1, h3, h4, . . . , m/h : �iA, . . . ⇒ . . . , m/h : �iA m ∈ h1, h3, h4, . . . ,m/h1 : A, . . . ⇒ m/h1 : A, . . .

h2 ∼i
m h, m ∈ h1, h3, h4,m/h : �iA,m/h2 : �i¬DiA,m/h3 : �iA ⇒ m/h1 : A,m/h : DiA,m/h4 : A

RDi

h2 ∼i
m h, m ∈ h1, h3,m/h : �iA,m/h2 : �i¬DiA,m/h3 : DiA ⇒ m/h1 : A,m/h : DiA

LDi, RS

h2 ∼i
m h, m ∈ h1, h3,m/h : �iA,m/h2 : �i¬DiA,m/h : ¬DiA ⇒ m/h1 : A,m/h3 : ¬DiA

L¬, R¬

h2 ∼i
m h, m ∈ h1, h3,m/h : �iA,m/h2 : �i¬DiA ⇒ m/h1 : A,m/h3 : ¬DiA

L�i

h2 ∼i
m h,m ∈ h1,m/h : �iA,m/h2 : Di¬DiA ⇒ m/h1 : A

LDi, RS

h2 ∼i
m h,m ∈ h1,m/h : �iA ⇒ m/h1 : A,m/h2 : ¬Di¬DiA

R¬

m ∈ h1,m/h : �iA ⇒ m/h1 : A,m/h : �i¬Di¬DiA
R�i

(2)
m ∈ h1,m/h : �iA ⇒ m/h1 : A,m/h : Di¬Di¬DiA

RDi

m/h : DiA ⇒ m/h : Di¬Di¬DiA
LDi, RS
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We now demonstrate the right-to-left direction of the equivalence.

(1)

h3 ∼i
m h,m/h3 : DiA ⇒ m/h : DiA

Lemma 5.1
....

h3 ∼i
m h, h ∼i

m h,m ∈ h1, h2,m/h : �i¬Di¬DiA,m/h1 : �i¬DiA,m/h3 : DiA ⇒ m/h : DiA,m/h2 : ¬DiA

h3 ∼i
m h, h ∼i

m h,m ∈ h1, h2,m/h : �i¬Di¬DiA,m/h1 : �i¬DiA ⇒ m/h : DiA,m/h3 : ¬DiA,m/h2 : ¬DiA
R¬

h ∼i
m h,m ∈ h1, h2,m/h : �i¬Di¬DiA,m/h1 : �i¬DiA ⇒ m/h : DiA,m/h : �i¬DiA,m/h2 : ¬DiA

R�i

(1)
. . . , m ∈ h1, h2, . . . , m/h2 : ¬DiA, . . . ⇒ . . . ,m/h2 : ¬DiA

. . . , m ∈ h1, h2, . . . ,m/h : S¬DiA ⇒ . . . ,m/h2 : ¬DiA
LS

h ∼i
m h,m ∈ h1, h2,m/h : �i¬Di¬DiA, m/h1 : �i¬DiA ⇒ m/h : DiA,m/h : Di¬DiA,m/h2 : ¬DiA

RDi

h ∼i
m h,m ∈ h1, m/h : �i¬Di¬DiA, m/h1 : Di¬DiA ⇒ m/h : DiA,m/h : Di¬DiA

LDi, RS

h ∼i
m h,m ∈ h1,m/h : �i¬Di¬DiA, m/h : ¬Di¬DiA ⇒ m/h : DiA,m/h1 : ¬Di¬DiA

L¬, R¬

h ∼i
m h, m ∈ h1, m/h : �i¬Di¬DiA ⇒ m/h : DiA,m/h1 : ¬Di¬DiA

L�i

m ∈ h1, m/h : �i¬Di¬DiA ⇒ m/h : DiA, m/h1 : ¬Di¬DiA
Refl∼i

m

m/h : Di¬Di¬DiA ⇒ m/h : DiA
LDi, RS

6. Meta-theoretical Properties of DSTIT Logics

In this section we demonstrate the meta-theoretical properties of the system,
namely decidability, soundness and completeness, starting with the former.
As previously noted, decidability of STIT logics has been achieved using
filtration [1,2,21]. Here instead we shall present a direct proof of decidability
through a bound on proof search in the given sequent calculus.

6.1. Decidability

To obtain a decidable system we adopt the following axiom. As shown in [2,
p. 437], the validity of APCn in DSTIT frames is equivalent to the require-
ment that the agent i has at most n choices at any moment, i.e. there are
at most n elements of a partition given by ∼i

m.
APCn:

P�iA1 & P(¬A1 & �iA2) & . . . & P(¬A1 & . . . & ¬An−1 & �iAn)

⊃ A1 ∨ . . . ∨ An

The corresponding rule extends our calculus G3DSTIT and the resulting
calculus will be denoted by G3Ldmn:
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h1 ∼i
m h2,m ∈ h1, . . . , hn+1,Γ ⇒ Δ . . . hn ∼i

m hn+1,m ∈ h1, . . . , hn+1,Γ ⇒ Δ

m ∈ h1, . . . ,m ∈ hn+1,Γ ⇒ Δ
Apcn

We can demonstrate that the axiom APCn is derivable in our system. For
simplicity we demonstrate this for the case n = 2, but the generalization to
any n is straightforward.

Lemma 6.1. The sequent

m/h : P�iA1 & P(¬A1 & �iA2) ⇒ m/h : A1 ∨ A2

is derivable in G3Ldm2.

Proof.

(1)

m/h : A1, h ∼i
m h1, m ∈ h, h1, h2, m/h1 : �iA1, . . . ⇒ m/h : A1,m/h : A2

h ∼i
m h1,m ∈ h, h1, h2, m/h1 : �iA1, . . . ⇒ m/h : A1,m/h : A2

L�i

(2)

m/h : A2, h ∼i
m h2,m ∈ h, h1, h2, . . . ,m/h2 : �iA2 ⇒ m/h : A1,m/h : A2

h ∼i
m h2,m ∈ h, h1, h2, . . . , m/h2 : �iA2 ⇒ m/h : A1,m/h : A2

L�i

(3)

m/h2 : A1, h1 ∼i
m h2,m ∈ h, h1, h2,m/h1 : �iA1, m/h2 : ¬A1, . . . ⇒ . . .

h1 ∼i
m h2,m ∈ h, h1, h2,m/h1 : �iA1,m/h2 : ¬A1, . . . ⇒ . . .

L�i

(1) (2) (3)
m ∈ h, h1, h2, m/h1 : �iA1,m/h2 : ¬A1,m/h2 : �iA2 ⇒ m/h : A1,m/h : A2

Apc2

m ∈ h, h1, h2, m/h1 : �iA1,m/h2 : ¬A1 & �iA2 ⇒ m/h : A1,m/h : A2
L&

m ∈ h1, h2, m/h1 : �iA1,m/h2 : ¬A1 & �iA2 ⇒ m/h : A1,m/h : A2
WD

m/h : P�iA1,m/h : P(¬A1 & �iA2) ⇒ m/h : A1,m/h : A2

LP, LP

m/h : P�iA1,m/h : P(¬A1 & �iA2) ⇒ m/h : A1 ∨ A2
R∨

m/h : P�iA1 & P(¬A1 & �iA2) ⇒ m/h : A1 ∨ A2
L&

We now provide a decision procedure for G3Ldmn by showing that proof
search always terminates in a finite number of steps, adapting the proof
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from [8]. To begin, we first define several auxiliary concepts, and then the
saturation conditions.

To keep track of the new moment/history labels generated during the
proof search, we create a graph Th defined as follows:

Definition 6.2. Let B = {Γn ⇒ Δn} be a (finite or infinite) branch in
proof search for Γ ⇒ Δ, and let Γ∗ =

⋃
Γn, Δ∗ =

⋃
Δn. For a branch B

of a proof-search tree for ⇒ m/h0 : A0, the graph Th is generated from the
root and relation �−→ as follows:

1. The root of Th is m/h0.

2. If m/h′ is a point with a fresh history h′ generated by an application of
rules R�i, RS or LP, and m/h occurs in the principal formula of the
respective rule, then m/h �−→ m/h′.

3. If m/h′ is a point with a fresh history h′ generated by an application of
rule Indk and m ∈ h1 . . .m ∈ hn are among the principal formulas of
the rule, then m/hi �−→ m/h′, 1 ≤ i ≤ n. We call m/h′ an independence
point.

Definition 6.3. The saturation conditions for the rules of G3Ldmn are:

1. (Init): For all n, there is no m/h : p in Γn ∩ Δn; m/h : ⊥ is not in Γn.

2. (�=): For all n, i = j and i �= j are not both in Γn ∩ Δn.

3. (Prop): Standard for propositional rules.

4. (L�i): If h′ ∼i
m h and m/h : �iA are in Γ∗, then m/h′ : A is also in Γ∗.

5. (R�i) If m/h : �iA is in Δ∗, then for some history h′, h′ ∼i
m h is in Γ∗

and m/h′ : A is in Δ∗.

6. (RDi): If m/h : DiA is in Δ∗, then either m/h : SA is in Γ∗ or m/h : �iA
is in Δ∗.

7. (LDi): If m/h : DiA is in Γ∗, then m/h : �iA is in Γ∗ and m/h : SA is
in Δ∗.

8. (RS): If m/h : SA is in Δ∗, then for some history h′, m ∈ h′ is in Γ∗

and m/h′ : A is in Δ∗.

9. (LS): If m ∈ h′ and m/h : SA are in Γ∗, then m/h′ : A is also in Γ∗.

10. (RP): If m ∈ h′ is in Γ∗ and m/h : PA is in Δ∗, then m/h′ : A is also
in Δ∗.

11. (LP): If m/h : PA is in Γ∗, then for some history h′, m ∈ h′ and
m/h′ : A are also in Γ∗.
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12. (Refl=): For every i in Γ∗ ∪ Δ∗, i = i is in Γ∗.

13. (ETrans=): If i = j and i = k are in Γ∗, then j = k is also in Γ∗.

14. (ReplAt): If i = j and At(i) are in Γ∗, then At(j) is also in Γ∗.

15. (Refl∼i
m

): For any i such that m/h : �iA is in Γ∗, h ∼i
m h is in Γ∗.

16. (ETrans∼i
m

): If h ∼i
m h′ and h ∼i

m h′′ are in Γ∗, then h′ ∼i
m h′′ is also

in Γ∗.

17. (WD): If h ∼i
m h′ or m/h : A is in Γ∗ ∪ Δ∗, then m ∈ h is in Γ∗.

18. (Diffk): If Diff (i1 . . . ik) is in Γ∗, then {il �= im}1≤l<m≤k are also in Γ∗.

19. (Apcn): If m ∈ h1, . . . , m ∈ hn+1 are in Γ∗, then for any ai in Γ∗ ∪ Δ∗,
either h1 ∼ai

m h2 or . . . or hn ∼ai
m hn+1 is in Γ∗.

20. (Indk): If Diff (a1 . . . ak) is in Γ∗, and for any ai and aj , 1 ≤ i < j ≤ k,
hi ∼i

m h′
i and hj ∼j

m h′
j are in Γ∗, then for some history h, h ∼i

m hi and
h ∼j

m hj are also in Γ∗.

We call the branch B saturated w.r.t. an application of a rule if the corre-
sponding condition holds, and saturated simpliciter if it is saturated w.r.t.
all the rules.

We can now build (root-first) a proof-search tree for a sequent ⇒ m/h0 :
A0 in G3Ldmn. The building of the tree obeys the following rules:

1. No rule is applied to an initial sequent.

2. Rule �= is applied to a sequent Γi ⇒ Δi containing i = j and i �= j in
Γi.

3. Rule R is not applied to a sequent Γi ⇒ Δi if the branch B down to
⇒ m/h0 : A0 is saturated w.r.t. R.

4. All rules with no freshness constraint are applied before any rules
with a freshness constraint.

5. Whenever a bottom-up application of a rule requires a moment/history
label m/h′ with a fresh history h′, a history that has not occurred
anywhere else in the tree is chosen.

6. Rule Indk is applied when a branch is saturated w.r.t. every other
rule, and then in accordance with the procedure described in Lemma
6.6.

We now show that this proof-search procedure terminates. We do so
through several lemmas.
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Lemma 6.4. Any formula of the form PA occurring labelled in Γ∗ or of the
form SA occurring labelled in Δ∗ generates at most one fresh point in Th.

Proof. It follows straightforwardly from the saturation criterion for LP
that, if that rule had been applied to m/h : PA (obviously, in Γ∗), then the
rule is not applied for any m/h′ : PA (in Γ∗). Same for RS.

Lemma 6.5. For any formula �iA occurring labelled in Δ∗, the application
of R�i can only add a finite number of points to each path in Th.

Proof. We show for any formula �iA occurring labelled in Δ∗, by Noe-
therian induction on the length of the branch B, that for any length of the
branch rule R�i is applied at most n times. If m/h : �iA occurs in Δ∗

and the rule has been applied n times, then there is a history h′ such that
m/h′ : A occurs in Δ∗ and (by the saturation criterion for WD) m ∈ h′ oc-
curs in Γ∗, and therefore (by the saturation criterion for Apcn and possibly
ETrans∼i

m
) h ∼i

m h′. Recall that since neither of these rules has a freshness
condition, they are applied prior to R�i. Therefore, the saturation criterion
is met for m/h : �iA and the rule is not applied.

Moreover, the tree Th is finitely branching and by the subformula property
the number of different formulas �iA is finite. Therefore, the number of
points generated by the application of rule R�i is finite.

Given Lemmas 6.4 and 6.5, and given the subformula property, it follows
that all the formulas in B can only generate a finite number of points.

What remains to be shown is that only a finite amount of points can be
generated from other points via the rule Indk. Intuitively, the main idea is
that each application of Indk generates a new independence point, which
inherits all the choice equivalence relations. So, now we need to apply Indk

to it as well. However, this process will not go on indefinitely—once we
have generated three independence points, each of which are connected to
the other two with all the inherited choice-equivalence relation, the pro-
cess stops due to the saturation criteria. Cf. Etrans, where once we have
three objects connected via an identity relation, each formula satisfies the
saturation criterion for the other two and the process likewise terminates.

Lemma 6.6. Given an arbitrary subset S of Γi of some sequent Γi ⇒ Δi,
such that S = {hl ∼al

m h′
l, . . . , hn ∼an

m h′
n,Diff (a1, . . . , ak)}, where 1 ≤ l <

n ≤ k and for each aj from Diff (a1, . . . , ak) there is at most one relational
formula hj ∼aj

m h′
j, we have that S produces at most three applications of

Indk, each of which generates one new independence point.
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Figure 2. Choice-equivalence relations among histories

Proof. We will show that the generation of any further points is blocked
by the saturation criterion. First note that, by saturation for WD, for each
distinct hj ∼aj

m h′
j , there is a relational formula m ∈ hj in Γi. Therefore, we

can apply Indk.
Now apply Indk to S to create a new independence point m/h′. Apply

rule WD to obtain m ∈ h′ in Γi and let S′ = S[h′ ∼al
m hl/hl ∼al

m h′
l] for some

al (which one is irrelevant, but as a convention we can always use the one
with lowest l). Applying Indk to S′ will create a new independence point
m/h′′. Repeat the same procedure for h′′ to obtain h′′′:

h′′′ ∼al
m h′′, . . . , h′′′ ∼an

m hn, . . . ,Diff (a1, . . . , ak),m ∈ hl, . . . , hn, h′, h′′, Γ′
i ⇒ Δi

h′′ ∼al
m h′, . . . , h′′ ∼an

m hn, . . . ,Diff (a1, . . . , ak),m ∈ hl, . . . , hn, h′, h′′, Γ′
i ⇒ Δi

Indk

h′′ ∼al
m h′, . . . , h′′ ∼an

m hn, . . . ,Diff (a1, . . . , ak),m ∈ hl, . . . , hn, h′, Γ′
i ⇒ Δi

WD

h′ ∼al
m hl, . . . , h

′ ∼an
m hn, . . . ,Diff (a1, . . . , ak),m ∈ hl, . . . , hn, h′, Γ′

i ⇒ Δi
Indk

h′ ∼al
m hl, . . . , h

′ ∼an
m hn, . . . ,Diff (a1, . . . , ak),m ∈ hl, . . . , hn, Γ′

i ⇒ Δi
WD

hl ∼al
m h′

l, . . . , hn ∼an
m h′

n,Diff (a1, . . . , ak),m ∈ hl, . . . , hn, Γ′
i ⇒ Δi

Indk

With these applications of rules, and using Etrans for the appropriate
agents, we obtain the choice-equivalence relations among histories as illus-
trated in Figure 2. The choice-equivalence relations created by Indk are
marked in black, and those created by Etrans in gray.

The saturation criterion is now met for any combination of histories in S
and independence points. There are three cases to check:
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1. two histories from S: the saturation criterion is fulfilled by h′ (given
Etrans, any of the other two independence points likewise fulfil it).

2. a history from S and an independence point: for some hj from S and agent
aj , and an independence point hi and an agent ai, it holds (possibly
using Etrans) that hj ∼aj

m h′ and hi ∼ai
m h′ for any of the other two

independence points h′, so the saturation criterion is fulfilled.

3. two independence points: for an independence point hj and agent aj ,
and an independence point hi and an agent ai, it holds (possibly using
Etrans) that hj ∼aj

m h′ and hi ∼ai
m h′ for the third independence point

h′, so the saturation criterion is fulfilled.

We now have that

Lemma 6.7. The graph Th is finite.

And from there

Theorem 6.8. Any branch B of a proof-search for ⇒ m/h : A built in
accordance with the strategy is finite, therefore the entire proof-search comes
to an end in a finite number of steps, and each branch is either closed or
saturated.

6.1.1. Towards Decidability Without APCn Since APCn is a fairly strong
condition, one might wish to have a system without it which is still decidable.
To that end we present here a proof of decidability for a one-agent system
without APCn.

The proof is largely the same as the one in the previous section—we need
to demonstrate that the graph Th is finite. In a one-agent system the rule
Indk is rendered irrelevant, so we need to demonstrate two lemmas—that
the number of points generated by the applications of the rules LP and RS
is finite, and that any sequence of points which have all been generated by
R�i is finite. The former follows from the subformula property and Lemma
6.4, so we now turn towards the latter.

Definition 6.9. Call sequence of points m/h1 . . . m/hn in Th a R�i-subtree
iff m/h1 is the lowest element, for every 1 < j ≤ n it holds that m/h1 �−→
. . . �−→ m/hj and m/h2 . . .m/hn have all been created by R�i.

Lemma 6.10. Every R�i-subtree in Th is finite.

Proof. The tree Th is built by applying all possible instances of ETrans∼i
m

before applying the rule R�i. Therefore, for any m/hj and m/hk, 1 ≤ j <
k ≤ n it holds that hj ∼i

m hk. So, for any formula �iA occurring in Δ∗
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labelled by any point m/hj , 1 ≤ j ≤ n, the rule R�i can only be applied once
to �iA due to the saturation criterion for the said rule. But by subformula
property, the number of such formulas is finite. Therefore, the R�i-subtree
is likewise finite.

Finally, we get

Lemma 6.11. The graph Th for the single-agent G3DSTIT (without APCn)
is finite.

Proof. The graph Th is extended only by the applications of the rules
LP, RS or R�i. The first two only generate a finite number of points, and
any sequence containing only points generated by R�i is of finite length.
Therefore, the entire graph is finite.

6.2. Soundness

Next in line is the proof of soundness of G3Ldmn. To establish this we will
first define the notions of interpretation, valuation and validity:

Definition 6.12. Let D = (T, � ,Ag ,Ch) be a DSTIT frame, where Ch
maps agent-moment pairs to a set of histories and obeys reflexivity and
Euclidean transitivity, an interpretation of agent terms I(a) ∈ Ag, an inter-
pretation of moment terms I(m) ∈ T , and an interpretation of history terms
I(h) ⊆ T . An interpretation of labels m/h is a moment/history pair (m,h).
A valuation V of atomic formulas assigns to each atomic formulas p a set of
moment/history pairs (m,h) in which p holds. We write (m,h) ∈ V(p) as
m,h � p. The extension of V to a valuation of arbitrary formula of DSTIT
is standard.

Definition 6.13. A sequent Γ ⇒ Δ is valid for a valuation and an inter-
pretation in D if for all labelled formulas m/h : A and relational atoms
R in Γ, if R holds in D and I(m/h) � A, then for some m/h′ : B in Δ,
I(m/h′) � B. A sequent is valid in D if it is valid under any valuation and
interpretation.

Theorem 6.14. If a sequent Γ ⇒ Δ is derivable in G3Ldmn, then it is
valid in every D.

Proof. By induction on the derivation of Γ ⇒ Δ. We illustrate on the
example of the rules for Di.

(i) If Γ ⇒ Δ is a conclusion of the rule LDi, then it follows from the
premiss m/h : �iA, Γ′ ⇒ Δ,m/h : SA. We assume by inductive hypothesis
that the premiss is valid. Let I be an arbitrary interpretation such that it
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validates m/h : DiA and all the formulas in Γ′. We want to show that it
validates some formula in Δ.

Since I validates m/h : DiA, it also validates m/h : �iA, but not m/h :
SA. Clearly, I validates the antecedent of the premiss, and therefore also the
succedent. But I does not validate m/h : SA, so it validates some formula
in Δ.

(ii) If Γ ⇒ Δ is a conclusion of the rule RDi, then it follows from premisses
Γ ⇒ Δ′,m/h : �iA and m/h : SA, Γ ⇒ Δ′. We assume by inductive
hypothesis that the premisses are valid. Let I be an arbitrary interpretation
such that it validates all the formulas in Γ. We want to show that it validates
some formula in Δ′ or m/h : DiA.

Since I validates all the formulas in Γ, it validates some formula in Δ′

or m/h : �iA. If the former case we are done. In the latter, if I validates
m/h : SA then it again validates some formula in Δ′, and otherwise it
validates m/h′ : ¬A and therefore m/h : DiA.

6.3. Completeness

Finally we prove the completeness of our system. Following up on our proof
of decidability, and specifically using the notion of a saturated branch, we
now show that

Theorem 6.15. The calculus G3Ldmn is complete with respect to the se-
mantics of DSTIT frames.

Proof. By generating a countermodel from a saturated branch. Given such
Γ∗ ∪Δ∗ in a search for a proof of the sequent Γ ⇒ Δ, we generate a DSTIT
countermodel M that makes all the formulas in Γ∗ true and all formulas in
Δ∗ false. The model M = (T, ≤,Ag ,Ch,V), with the frame (T, ≤,Ag ,Ch)
is defined as follows (intuitively, the set P represents the past of m, given
by a linear chain of moments, and the set F its futures, given by multiple
linear chains fanning out).

Hm = {h | m ∈ h occurs in Γ∗}
A = {m | m occurs in Γ∗ ∪ Δ∗} = {m}
P = {mi | i ≥ 1}, disjoint from A, ordered by ≤ so that if i ≤ j then
mj ≤ mi.

Fhk = {mhk
i | i ≥ 1} for every hk ∈ Hm, where each Fhk is disjoint from any

other, as well as P and A, and ordered by ≤ so that if i ≤ j then mi ≤ mj .

F =
⋃

Fhk
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T = P ∪ A ∪ F

hk = P ∪ A ∪ Fhk , ordered by ≤ so that mi ≤ m ≤ mhk
j for all i, j ≥ 1.

Ag = {ai | ai occurs in Γ∗ ∪ Δ∗}
Chai

m = {[h]∼ai
m

| h ∈ Hm} where [h]∼ai
m

= {h′ | h ∼ai
m h′ occurs in Γ∗}

For every m′ < m, for every ai ∈ Ag, Chai

m′ = Hm.

For every m < m′, for every ai ∈ Ag, Chai

m′ = {h′ | m′ ∈ h′} = {h′}.

We write Chai
m(h) for the equivalence class [h]∼ai

m
.

The interpretation I of term τ in Γ∗ ∪ Δ∗ is the appropriate t in T , Hm or
Ag. The interpretation of the label m/h, I(m/h), is a pair (m,h) such that
m ∈ T and h ∈ Hm. For legibility below I is left unwritten.
The valuation V of relational atoms in M is

M � m ∈ h iff h ∈ Hm,

M � h ∼ai
m h′ iff h′ ∈ [h]∼ai

m
and [h]∼ai

m
∈ Chai

m

The valuation for atomic formula p is M, (m,h) � p iff m/h : p ∈ Γ∗.
Remaining valuations are standard. Importantly,

M, (m,h) � �aiA iff ∀h′ ∈ Chai
m(h) : M, (m,h′) � A,

M, (m,h) � DaiA iff (a) ∀h′ ∈ Chai
m(h) : M, (m,h′) � A and

(b) ∃h′′ ∈ Hm : M, (m,h′′) � A

It is easy to show that

Lemma 6.16. The frame (T, ≤, Ag, Ch) is a DSTIT frame. Specifically, it
satisfies no backward branching, historical connectedness and no choice be-
tween undivided histories. Moreover, in the presence of multiple agents it
likewise satisfies independence of agents.

Proof. The only branching occurs at m, and none occurs prior, so the
no backward branching condition is satisfied. Moreover, for any m1 and m2

some m′ ∈ P satisfies historical connectedness. Next, all histories divide at
m and are choice-equivalent for any agent prior to m, so no choice between
undivided histories holds.

Finally, in the presence of multiple agents, if the moment is m, indepen-
dence of agents holds by saturation. For any moment in F it holds trivially
(equivalence classes are singletons) and for any moment in P equivalence re-
duces to than in m, so independence of agents is inherited from m. Therefore
independence of agents is satisfied.
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Moreover it is now easy to show that

Lemma 6.17.

1. M, (m,h) � A if m/h : A is in Γ∗.

2. M, (m,h) � A if m/h : A is in Δ∗.

Proof. By simultaneous induction on the weight of A.
The basic case holds by definition of V. We will illustrate the inductive case
on the example of �i:

Assume m/h : �iA is in Γ∗. Then, for every m/h′ such that h ∼i
m h′, by

the saturation criterion and the extension of Γ∗ ∪Δ∗, m/h′ : A is likewise in
Γ∗, and by the inductive hypothesis, M, (m,h′) � A. Therefore, M, (m,h) �
�iA.

Assume m/h : �iA is in Δ∗. Then, by the saturation criterion, there is
some h′ such that h ∼i

m h′ is in Γ∗ and m/h′ : A is in Δ∗. Therefore, by the
inductive hypothesis, M, (m,h′) � A and therefore M, (m,h) � �iA.

If all branches are closed we have a derivation. Otherwise, by Theorem
6.8, there is a saturated branch and by Lemma 6.17 we have a
countermodel.

7. Concluding Remarks

In this paper we have presented a number of results concerning the DSTIT
modality. First, we have developed a G3-style labelled sequent calculus,
using auxiliary modalities to deal with the complex truth conditions and
moreover adding frame conditions. The resulting system is shown to have the
desired structural properties, most notably admissibility of contraction and
cut. Furthermore, we have also shown that it possesses the meta-theoretical
properties of soundness, completeness and decidability, using direct proofs.
We have likewise shown a number of interesting applications of our system
in dealing with notions of delegation and refraining. Looking at a broader
picture, we have also established a basis for further uses, especially in dealing
with other STIT modalities.

In exploring the deliberative STIT, we have used cstit and settled true
as auxiliary modalities. An exploration of a system without those, along the
lines of [21], is left for future research, as are numerous other approaches to
stit modalities (e.g. [1]). An important one we have laid the groundwork for
here is the other major STIT modality presented by [2], the achievement
STIT. Here the basic idea is that the present fact that, say, A, has been
achieved by the previous choice of an agent. Unlike DSTIT, which deals
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with multiple histories on a single moment, the achievement STIT makes
uses of multiple successive moments. Since we are dealing with multiple
moments along histories, their relations come into effect, and therefore the
rules for the relation ≤, which were presented but not used in this paper,
can be made use of. Of course, in addition to the application of previously
unused rules, we are still dealing with the branching time models, and we
have shown in this paper how well suited the labelled approach is for them.
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