
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

IRCS Technical Reports Series Institute for Research in Cognitive Science

September 1995

Proof Theoretic Approach to Specification Languages Proof Theoretic Approach to Specification Languages

Jawahar Lal Chirimar
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/ircs_reports

Chirimar, Jawahar Lal, "Proof Theoretic Approach to Specification Languages" (1995). IRCS Technical
Reports Series. 132.
https://repository.upenn.edu/ircs_reports/132

University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-95-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ircs_reports/132
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/ircs_reports
https://repository.upenn.edu/ircs
https://repository.upenn.edu/ircs_reports?utm_source=repository.upenn.edu%2Fircs_reports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ircs_reports/132?utm_source=repository.upenn.edu%2Fircs_reports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ircs_reports/132
mailto:repository@pobox.upenn.edu

Proof Theoretic Approach to Specification Languages Proof Theoretic Approach to Specification Languages

Abstract Abstract
In this thesis I study FORUMFORUM as a specification language. FORUMFORUM is a higher-order logic based on the
logical connectives of Linear Logic. As an initial example, I demonstrate that FORUMFORUM is well suited for
specifying concurrent computations by specifying the higher-order π calculus. Next, I focus on the
problem of specifying programming languages with higher-order functions, and imperative features such
as assignable variables, exceptions and first-class continuations. I provide a modular and declarative
specification of an untyped programming language, UML<, which contains the above mentioned UML<, which contains the above mentioned
features. Further, I use the proof theory of FORUM to study program equivalence for the functional core of features. Further, I use the proof theory of FORUM to study program equivalence for the functional core of
UML, augmented with assignable variables. Using my compositional specifications in FORUM, I prove UML, augmented with assignable variables. Using my compositional specifications in FORUM, I prove
equivalence of programs that have been challenging for other specification languages. Finally I study the equivalence of programs that have been challenging for other specification languages. Finally I study the
operation semantics of DLX, a prototypical RISC machine. I specify the sequential and pipelined operation semantics of DLX, a prototypical RISC machine. I specify the sequential and pipelined
operational semantics of DLX with important optimizations such as call-forwarding and early branch operational semantics of DLX with important optimizations such as call-forwarding and early branch
resolution, and prove them to be equivalent. Furthermore, I study the problem of code equivalence via the resolution, and prove them to be equivalent. Furthermore, I study the problem of code equivalence via the
FORUM specification, and, in particular, analyze the problem of code rescheduling for DLX. FORUM specification, and, in particular, analyze the problem of code rescheduling for DLX.

Comments Comments
University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-95-21.

This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/ircs_reports/132

https://repository.upenn.edu/ircs_reports/132

University of Pennsylvania
3401 Walnut Street, Suite 400C

Philadelphia, PA 19104-6228

September 1995

Site of the NSF Science and Technology Center for
Research in Cognitive Science

IRCS Report 95-21

Institute for Research in Cognitive Science

Proof Theoretic Approach to
Specification Languages

Jawahar Lal Chirimar

PROOF THEORETIC APPROACH TO SPECIFICATION

LANGUAGES

JAWAHAR LAL CHIRIMAR

A DISSERTATION

IN

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Ful�llment of the

Requirements for the Degree of Doctor of Philosophy�

����

Dale Miller

Supervisor of Dissertation

Mark Steedman

Graduate Group Chairman

c� Copyright ����

by

Jawahar Lal Chirimar

ACKNOWLWDGEMENTS

I would� �rst and foremost� like to thank my parents and my wife for their endless support

and love during my life as a Ph�D� student�

My committee members� Dale Miller� Carl Gunter� Robert Harper� Jon Riecke� Val Tan�

nen and Peter Buneman provided me with important feedback on this research� I would

especially like to thank Dale Miller who encouraged me to think independently and in a

scienti�cally disciplined manner� I learned not only about technical matters from Carl� my

supervisor for the �rst three years� but also about the global picture and the way research

is done� From Andre Scedrov� who was on my committee in all but name� I learned the

value of rigor � without rigor there is no mathematics and mathematics is not all rigor� I

must thank Anil Nerode specially for introducing me to proof theory� functional languages

and type theories� I have bene�ted from various technical discussions with Jean Gallier�

Doug Howe� Jim Lipton and Chet Murthy�

There are many people whom I met in my stay at University of Pennsylvania� The numerous

discussions with Vijay Gehlot� Ramesh Subramanium� Anuj Dawar� Chuck Liang� Sandeep

Biswas� Jon Riecke� Teow Hin Ngair� and other fellow students helped shaped my concepts

and opinions� Jon Riecke� Sandeep Biswas and Ernesto Pimentel helped with proof reading

this dissertation� Nandini� my wife� helped me clean up the grammar and insert all the

appropriate commas and articles� hopefully� The sta	 of the graduate students o
ce and

business o
ce put up very patiently with my eccentric habits and got all my papers through

in time�

iii

ABSTRACT

PROOF THEORETIC APPROACH TO SPECIFICATION LANGUAGES

Jawahar Lal Chirimar

Advisor� Dale Miller

In this thesis I study FORUM as a speci�cation language� FORUM is a higher�order logic

based on the logical connectives of Linear Logic� As an initial example� I demonstrate that

FORUM is well suited for specifying concurrent computations by specifying the higher�

order � calculus� Next� I focus on the problem of specifying programming languages with

higher�order functions� and imperative features such as assignable variables� exceptions and

�rst�class continuations� I provide a modular and declarative speci�cation of an untyped

programming language� UML� which contains the above mentioned features� Further� I use

the proof theory of FORUM to study program equivalence for the functional core of UML

augmented with assignable variables� Using my compositional speci�cations in FORUM� I

prove equivalence of programs that have been challenging for other speci�cation languages�

Finally I study the operation semantics of DLX� a prototypical RISC machine� I specify the

sequential and pipelined operational semantics of DLX with important optimizations such as

call�forwarding and early branch resolution� and prove them to be equivalent� Furthermore�

I study the problem of code equivalence via the FORUM speci�cation� and� in particular�

analyze the problem of code rescheduling for DLX�

iv

Contents

� Introduction �

� FORUM �

��� FORUM � Logic programming with multiple heads � � � � � � � � � � � � �

��� Specifying HO� in FORUM ��

� Specifying UML ��

��� �v � Functional Core of UML ��

��� �vs � State in UML ��

��� �ve � Exceptions in UML ��

��� �vc � Continuations in UML ��

��� UML � Putting it together ��

� Program Equivalence for �vs in FORUM ��

��� De�ning Observational Equivalence ��

��� Reduction in �vs preserves Observational Equivalence � � � � � � � � � � � � �

v

��� Observational Equivalence proofs in FORUM � � � � � � � � � � � � � � � � � �

� Specifying DLX � a RISC architecture 	�

��� The DLX architecture ��

��� Sequential speci�cation for DLX architecture � � � � � � � � � � � � � � � � � � ��

��� Pipelining DLX � facing the hazards ��

��� Call�forwarding and early branch resolution � � � � � � � � � � � � � � � � � � ���

��� Program equivalence for DLX � Correctness of code scheduling � � � � � � � ��

� Conclusion and Future Work ���

��� Conclusion ���

��� Future Work ���

A Proofs from chapter � ��	

Bibliography ���

vi

List of Figures

��� Proof Rules for Forum ��

��� Specifying inequality of natural numbers in FORUM � � � � � � � � � � � � � ��

��� Reduction semantics for HO��calculus ��

��� Syntax for �v ��

��� Natural Semantics speci�cation for �v ��

��� �v� Signature for �v evaluator ��

��� �v � Valuesv � vl� Hv � �v � tm ��

��� �v � vl� Valuesv� Lv � tm� �v ��

��� Clauses in Ev � the evaluator for �v �

�� One step in the evaluation of �M N� ��

��� Syntax for �vs ��

��� Natural Semantics speci�cation for the new constructs in �vs � � � � � � � � ��

���� Constants for translating �vs terms ��

���� Speci�cation in FORUM for new constructs in �vs � � � � � � � � � � � � � � ��

vii

���� Syntax for �ve ��

���� Natural Semantics speci�cation for the new constructs in �ve� � � � � � � � � ��

���� Constants for translating �ve terms ��

���� Translating the new construct of �ve to FORUM � � � � � � � � � � � � � � � ��

���� Constants for exception management in FORUM � � � � � � � � � � � � � � � �

��� Speci�cation in FORUM for new constructs in �ve � � � � � � � � � � � � � � ��

���� Syntax for �vc ��

���� Constants for translating �vc terms ��

���� Speci�cation in FORUM for new constructs in �vc � � � � � � � � � � � � � � ��

���� Cvc� translation of EvContvc to FORUM terms of type vl� o � � � � � � � � ��

���� Speci�cation for callcc in the presence of exceptions � � � � � � � � � � � � � � �

��� Contexts in �vs ��

��� Cvs� translation of EvContvs to FORUM terms of type vl� o � � � � � � � � ��

��� Semantics of example instructions in DLX� ��

��� List of DLX instructions selected for speci�cation� � � � � � � � � � � � � � � � ��

��� Block diagram for the connectivity of functional blocks in the DLX� � � � � � ��

��� Signature for speci�cation of DLX ��

��� Grammar for DLX programs ��

��� Sequential speci�cation of DLX ��

�� Example program in DLX ��

viii

��� DLX pipeline structure ��

��� Signature for speci�cation of DLX ���

���� DLX pipeline state transition functions for clock � � � � � � � � � � � � � � � � ���

���� �� � table for hazard detection in the DLX pipeline � � � � � � � � � � � � � � ���

���� Speci�cation for the DLX pipeline � clock� bg� IF and ID� � � � � � � � � � � � ���

���� Speci�cation for the DLX pipeline � EX� ���

���� Speci�cation for the DLX pipeline � MEM� ���

���� Speci�cation for the DLX pipeline � WB� ��

���� Changes in the DLX pipeline to reduce branch penalty� � � � � � � � � � � � � ��

��� �� � new table for hazard detection in DLX pipeline � � � � � � � � � � � � � ���

���� DLX pipeline state transition functions in the presence of call�forwarding and

early branch resolution ���

���� � � Call forwarding functions ���

���� Speci�cation for the DLX pipeline � IF and ID� � � � � � � � � � � � � � � � � ���

���� Speci�cation for the DLX pipeline � clock� bg� EX� � � � � � � � � � � � � � � ���

���� Speci�cation for the DLX pipeline � MEM and WB� � � � � � � � � � � � � � � ���

A�� Constants in �ml used in translating UML to FORUM � � � � � � � � � � � � ���

A�� Translating UML to FORUM ���

A�� Translating answers in UML to FORUM ���

A�� Translating FORUM terms to UML ���

ix

A�� Matching �nal con�gurations of computations in FORUM � � � � � � � � � � ���

x

Chapter �

Introduction

Ever since we have had programming languages� we have had to specify the computational

behaviors of the languages� In the most naive sense� we specify the actions of if M then N

else P � a typical phrase in a programming language � by saying that �rst execute M�

and if the result is true then evaluate N � otherwise evaluate P� Even in this simple example�

there are many ambiguities inherent in the above speci�cation� For example� it is not clear

whether P is to be computed only when M evaluates to false� or even if M evaluates to

some other value� say �� On the one hand� we would like a speci�cation to be precise in as

much as we would like di	erent implementations of the same speci�cation to have identical

computational behavior� On the other hand� if a speci�cation is as precise as an actual

implementation of a programming language� then the entire purpose of a speci�cation as a

tool to understand the language independently of its implementation is defeated�

Rigorous speci�cations which de�ne the grammar and meaning of programming languages

are indispensable in the present context for a variety of reasons� These include verifying

safety of programs� developing optimizing compilers� and maintaining programs as language

design evolves� Unfortunately� very few widely used programming languages have such a

rigorous speci�cation� the only two I know of being �HMT��� BR���� In this thesis� I use

�

FORUM �Mil��� as a speci�cation language� Speci�cations in FORUM convert computa�

tions into proofs � formal objects amenable to logical analysis within the meta�theory of

FORUM� I call this style of speci�cation proof�theoretic for the key emphasis placed upon

proofs and their analysis�

Precise speci�cation provides the sound basis on which one builds implementations of the

language and programs� To quote �HMT��� �

� � � for a robust program written in an insecure language is like a house built

upon sand�

The main point is that a programming language is di	erent from its implementation �

speci�cations are a way of making precise the behavior that an implementation must exhibit

in order to implement a given programming language� Speci�cations play a crucial role in

the present software environment where di	erent commercial vendors are implementing the

same language� It will be highly undesirable if programs written in a programming language

have di	erent behaviors in two implementations of the same language�

I expect speci�cation languages to play a variety of roles� The most important among these

are �

� a speci�cation language should be rich enough to specify imperative� functional and

concurrency features modularly

� provide modular speci�cation of di	erent features of the programming language� re�

sulting in better and easier understanding of the programming language itself� and

� should be able to use the meta�theory of the speci�cation language to study the

program transformations and verify the correctness of implementations of the speci�

�cations�

In this thesis I use FORUM to specify the operational semantics of programming languages�

I specify the operational semantics of UML� a prototypical functional language� and the

�

sequential and pipelined operational semantics of the DLX machine �HP���� I take UML �

an untyped higher�order functional language with exceptions� state and callcc� i �e� �rst�class

continuations � as a prototypical functional language� UML is the same as the untyped

core Standard ML �SML� �HMT���� excluding data�types and pattern matching� augmented

with callcc� UML is a signi�cant language in as much as it contains both the functional

and imperative features of SML� and thus provides a simpler setting to study the problems

that arise due to these features in SML� UML supports �rst� class continuations because

of the rich programming paradigm they provide� The DLX machine is representative of

the eminently successful and popular RISC architectures of the last decade including Intel

i���� MIPS R�����R����� Motorolla ������ SPARC� PowerPC� The speci�cation of DLX

resolves data and structural hazards� and implements optimizations characteristic of modern

pipelined machines� The speci�cation of pipelined DLX underlines the fact that FORUM

provides the appropriate framework to specify a variety of computational processes � from

as high�level and abstract as UML to as low�level and concrete as DLX�

Many attempts have been made at specifying the operational semantics of fragments of UML

�Lan��� FF��� WF��� HMT��� MP��� HM��� Han���� In this thesis I am able to address

many issues regarding the speci�cation of UML which the above semantics could not address

satisfactorily� Firstly� I am working in a rich meta�theory where concurrency� higher�order

functions and imperative features can be speci�ed� This is a mixture of features which

has traditionally been very di
cult to specify� Secondly� in my translation computations

become proofs � formal objects � which I analyze using proof transformations� Using

this analysis I am able to prove many program equivalences in �MS��� OT��� SF��� MT����

Finally� declarative and modular descriptions of imperative features such as mutable state�

�rst�class continuations� and exceptions has been an elusive goal for speci�cation languages�

which I believe is satisfactorily answered by the speci�cations in FORUM�

Although the extant formal presentations of pipelines specify the temporal behavior of the

pipeline �TK���� they are unable to provide a concurrent computational speci�cation of the

pipelined operational semantics� The FORUM speci�cation of the DLX pipeline is a concur�

rent executable logic program � one obtains a simulation tool for free� In my thesis� I specify

�

the sequential and pipelined operational semantics for DLX� with important optimizations

such as call�forwarding and early branch resolution �HP���� Since �oating�point operations

and interrupts introduce unilluminating details to the speci�cation� I have excluded them

from the DLX instruction set that I specify� I prove the crucial equivalence theorem assert�

ing the equivalence of the sequential and pipelined speci�cations of DLX� Furthermore� I

de�ne notions of program equivalences for DLX programs� and prove the correctness of the

code rescheduling typically done for RISC machines �HP���� The declarative speci�cation

of pipelined DLX operational semantics and the proofs of correctness of code rescheduling

underlines the richness of FORUM as a speci�cation language�

The point behind the speci�cations of imperative features is to extract the logical essence

of imperative extensions of programming languages� The speci�cation of state in natural

semantics� higher order logic or other similar meta�theories �HMT��� MT��� represents

state by non�logical means� such as a �nite function� making the extension of state non�

modular� In FORUM state is represented by logical propositions and is maintained in the

sequent by logical rules� Thus� one can reason about state variables using cut�elimination�

The understanding of this logical nature of imperative features underlines the richness of

FORUM and its meta�theory�

The thesis has �ve main parts� In the �rst part I explain the logic programming methodology

of FORUM� and then specify Higher�Order � Calculus �HO��calculus�� a typical calculus for

concurrent processes� �MPW��a� MPW��b� substantiating the idea that FORUM provides

an appropriate framework for specifying concurrent processes� In the second part� I specify

UML in stages starting from the functional part of UML� and adding exceptions� mutable

store and callcc modularly in separate steps� I prove that the FORUM speci�cation of

UML without callcc is the same as the speci�cation in �HMT���� In the third part� I

de�ne a notion of program equivalence induced by the translation into FORUM� and prove

that it coincides with the standard de�nition of program equivalence� Furthermore� using

FORUM speci�cations I prove several of the program equivalences involving mutable store

in �MS��� Sie��� SF��� OT���� In the fourth part� I specify the sequential and pipelined

operational semantics for DLX� I also prove that the sequential and pipelined operational

�

semantics are equivalent� Furthermore� I formulate a notion of program equivalence for

DLX programs� and prove correctness of code�rescheduling for the DLX machine� In the

�nal section� I explain the extensions that I seek of my current research and how I intend

to carry those out�

�

Chapter �

FORUM

In this chapter I introduce FORUM� a new meta�logic proposed in �Mil���� FORUM can

encode linear logic �Gir�� without using any non�logical constants� On the one hand� prov�

ability in FORUM is the same as provability in linear logic� On the other hand� in FORUM

all right hand rules permute with each other � a property which is not true of the proof sys�

tems for linear logic in �Gir��� The novelty of FORUM is in the choice of connectives which

makes all right hand rules permute� Since uniform proofs are complete for FORUM� follow�

ing �MNPS��� a logic programming language can be designed for FORUM� FORUM extends

earlier work in designing logic programming languages from linear logic �HM��� AP��� in

the sense that the provability in FORUM is the same as the provability in linear logic�

Clauses in FORUM can have multiple heads� I show some programming examples which

exploit multiple heads to represent synchronization in FORUM� The basic intuition is that

concurrent computations can be represented in FORUM� I substantiate this claim by trans�

lating a particular presentation of a fragment of Higher�Order � �HO��calculus� calcu�

lus �San��a� which is rich enough to encode Lazy Lambda calculus �San��b� San��a� Chi����

The parallel combinator of HO��calculus is mapped to � � the multiplicative disjunction of

Linear Logic� This identi�cation of concurrency with proof search in a multiple conclusion

�

logic where all the right�hand rules permute with each other makes the intuitions techni�

cally precise� The handling of names using the restriction opreator in HO��calculus and the

universal quanti�er in FORUM are quite di	erent� and consequently the translation into

FORUM is sound but not complete� The computational mechanism of FORUM provides

a new �avor of process theories which are very expressive� and the translation shows how

computations maybe mapped from HO��calculus to FORUM�

In the �rst section� I introduce FORUM and de�ne its syntax and proof rules precisely� I

illustrate the programming style in the presence of multiple heads via some examples� In the

second section� I introduce the syntax� structural equivalence� and reduction semantics of

HO��calculus� I translate HO��calculus into FORUM and prove that if process P reduces

to Q� then the translation of Q entails the translation of P � Furthermore� I illustrate the

di	erence between the restriction operator of HO��calculus and the universal quanti�er in

FORUM�

��� FORUM � Logic programming with multiple heads

FORUM �Mil���� is best explained as a particular presentation for Linear Logic which

gives us access to the entire Linear Logic as a logic programming language in the sense of

�MNPS��� AP���� Linear logic was introduced in �Gir�� as a new logic which decomposed

the connectives of the familiar classical and intuitionistic logics� This �ner analysis of

connectives had immediate implications in the design of logic programming languages which

analyzed connectives as directions for proof search �MNPS���� LO�AP��� and Lolli �HM���

were two new logic programming languages which resulted from di	erent sets of connectives

of linear logic� However� the logical constants in neither of these languages were rich enough

to encode the entire linear logic� In �Mil��� classical linear logic is encoded in FORUM

without using any non�logical constants� The logical connectives in FORUM are �� � ��

� � � � �� � and �� �� � � � � � �� � and � are linear logic connectives as de�ned

in �Gir��� Instead of the modalities of linear logic� FORUM has �� the intuitionistic

implication� In �Mil��� it was proved that the proof system of FORUM has the uniform

proof and focussing property �MNPS��� AP���� FORUM can be thus thought of Linear

Logic and Church�s simple theory of types �Chu��� put together� I begin by de�ning the

syntax of FORUM�

De
nition ��� �Types� Terms and Formulas in FORUM� Let � be a set of base types and

o � � the type of propositions� The set of well formed types is de�ned as

� if � � � then � is a type� and

� if �� and �� are types then so is �� � ���

Let � be a set of pairs whose �rst component is a term� and the second component is the

type of the term� written as f � � � if f is a term with type � in �� �� � o � o � o�

�� o � o � o� � � o � o � o� � � o � o � o� �� � �� � o� � o� � � o and � � o are

the logical constants in �� � denotes intuitionistic implication and the in�x symbol ��

denotes the converse of �� � The set of terms over � is de�ned as �

� If c � � � � then c is a term of type � �

� If f � � � � and t � � then �f t� is a term of type ��

� If x is a variable of type � and t � � then 	x� t is of type � � � �

Terms of type o are de�ned to be formulas� The order of a type �� � �� � � � �� �n � ��

is the one plus the max of the orders of �� � � � �n� and �� � �� The order of the elements of

� is �� For a non�logical constant c � �� � �� � � � �� �n � �� � �� �� is a member of ��

and if �� is o then c is called a predicate�

I follow �Bar��� in conventions regarding free and bound variables and
 conversion� As

usual�� associates to the right and application to the left� The logical constants are written

in the familiar in�x form� and I write ��	x� t as �x � �� t� Let t � s� for 	�terms t and s

mean that t and s are
 equivalent� If the variable x and term s are of the same type� then

�

t�x �� s� denotes the capture�free substitution of s for x in t� Besides
 conversion� terms

are also related by the following rules of � and � conversions�

� The term s� ��converts to the term s� if s� contains a subformula occurrence of

the form ��	x� t�� t�� and s� arises from replacing that subformula occurrence with

t��x �� t���

� The term s� ��converts to the term s� if s� contains a subformula occurrence of the

form 	x� �t x�� in which x is not free in t� and s� arises from replacing that subformula

occurrence with t�

The proof system for FORUM as presented in �gure ��� is a minor variation on the one in

�Mil���� The sequents comprise of �ve parts� �� � !� B and "� The signature of the terms

in the sequent is given by �� The intuitionistic part of the sequent� � is treated like a set�

i �e� contraction� weakening and exchange are allowed on formulas in � The linear parts of

the sequent� ! and "� are treated as multisets of formulas� allowing only exchange on these

parts of the sequent� In the sequent � � # !
B
�� "� one applies left rules to the formula

B� By abuse of notation I write B to mean fBg	 � and !�!� to stand for the multiset

union of the multisets !� and !�� and B!� to stand for the multiset union of the multisets

fBg and !�� �c �� t� denotes the capture�free substitution of t for c in all formulas in the

set and !�c �� t� denotes the capture�free substitution of t for c in all formulas in the

multiset !� I write A
� B as an abbreviation for the statement that both � � # A �� B

and � � # B �� A are provable in FORUM� I say that A is logically equivalent to B when

A
� B� One can prove a cut�elimination theorem for FORUM� which states that CutL�

CutI� and CutS are redundant in FORUM �Mil���� Also note that if � � # ! �� " is

provable� � � �� and � �� then �� � � # ! �� " is also provable�

Following the line of reasoning in �MNPS���� logic programs can be viewed as collections

of formulas specifying the meaning of non�logical constants� and computation is identi�ed

�

� � # !� �� B"� � � # !� B �� "�
� � # !�!� �� "�"�

CutL

� � # �� B � � B # ! �� "

� � # ! �� "
CutI

t is a ��term of type � � c � � � # ! �� "

� � �c �� t� # !�c �� t� �� "�c �� t�
CutS

� � # ! �� �"
��R

� � # ! �� "

� � # ! �� �"
��R

� � # ! �� B" � � # ! �� C"

� � # ! �� B � C"
� �R

� � # B! �� C"

� � # ! �� B �� C"
�� �R

� � B # ! �� C"

� � # ! �� B � C"
� �R

� � # ! �� BC"

� � # ! �� B �C"
� �R

y� �� � # ! �� B�y�x�"

� � # ! �� �x � �� B"
��R

� � # !
B
�� "

� � # B! �� "
decide�

� � B # !
B
�� "

� � B # ! �� "
decide�

� � #
A
�� A

initial
� � #

�
��

��L

� � # !
B
�� "

� � # !
B � C
�� "

� �L
� � # !

C
�� "

� � # !
B � C
�� "

� �L

� � # !� �� B"� � � # !�
C
�� "�

� � # !�!�
B��C
�� "�"�

�� �L

� � # �� B � � # !
C
�� "

� � # !
B�C
�� "

� �L

� � # !�
B
�� "� � � # !�

C
�� "�

� � # !�!�
B�C
�� "�"�

� �L

t is a ��term of type � � � # !
B�t�x�
�� "

� � # !
�x���B
�� "

��L

Figure ���� The rule ��R has the proviso that y is not declared in the signature ��

��

�neq �s X� z� �� �

�neq z �s X�� �� �
�neq �s X� �s Y �� �� �neq X Y �

Figure ���� Specifying inequality of natural numbers in FORUM

with the search for uniform proofs� The key feature of FORUM is that the right�hand side

of the sequent can now have more than one formula� How does one interpret uniform proofs

in the presence of more than one goal formula � The answer in �Mil��� comes from the

concept of permutabilities in proof theory �Kle���� Informally� it is required that the order

in which goal formulas are processed does not a	ect the success of the proof search� This

novelty lets us represent concurrent computations in FORUM� as was exhibited in �Mil���

by specifying Algol�like implementations of CML� and First�order ��Calculus in �Mil����

I illustrate the computational mechanism of FORUM with a simple example� I begin by

specifying the natural numbers in FORUM� I introduce a new type in FORUM called nat

and two new constants z � nat and a function s � nat � nat� The intended meaning is

that nat is the type of natural numbers� z denotes �� and s denotes the successor function�

I now want to de�ne a predicate neq � nat � nat � o� which should be provable of the

two terms m and n of type nat� if m is not equal to n� The meaning of neq is speci�ed

by the universal closure of the clauses in �gure ���� called Cneq� The collection of clauses

is called the program for the non�logical constant neq� In the speci�cation I use a new

logical connective �� It can be de�ned as � �� �� and the proof rule can be derived

correspondingly� I show the right�hand side rule below�

� � # �� �
�� R

To check neq for �s z� and �s s z�� I try to construct a proof of

z � nat s � nat� nat � Cneq # �� �neq �s z� �s s z���

��

If the sequent is provable then the two numbers are not equal� For the example at hand�

the proof is constructed below� The �rst rule I apply is the backchain rule� The backchain

rule is an abbreviation� instead of constructing the following proof

�
� � C �� B # ! �� C" � � C �� B # !

B
�� B

initial

� � C �� B # !
C��B
�� B"

�� �L

� � C �� �B� � �� �Bn� # ! �� �B� � �� �Bn�"�"� � � � "n"n��
decide�

� � C �� �B� � � � � �Bn� # ! �� "� B�"� � � � "n Bn"n��
exchange � � R

I abbreviate it as

�
� � C �� �B� � � � � �Bn� # ! �� C"�"� � � � "n"n��

� � C �� �B� � � � � �Bn� # ! �� "� B�"� � � � "n Bn"n��
backchain

B is an abbreviation for B� � � � � �Bn� and " is an abbreviation for "� � � � "n���

The formula on the right hand side uni�es the head of the clause �neq �s X� �s Y �� ��

�neq X Y �� So I then have to prove �neq z �s z��� The goal now uni�es with the head of the

clause �neq z �s X�� �� �� leaving me to prove �� I complete the proof using the � rule� In

this manner� proof search for cut�free proofs is identi�ed with computation�

z � nat s � nat� nat � Cneq # �� �
�

z � nat s � nat � nat � Cneq # �� �neq z �s z��
backchain

z � nat s � nat� nat � Cneq # �� �neq �s z� �s s z��
backchain

The novelty of FORUM lies in the fact that the clauses can contain multiple heads� i �e�

formulas like A�B� I want to specify a predicate inc� �nat � o� � o� which takes a

predicate of type nat � o as an argument� such that every time inc is executed in a proof

a new number is returned� Let ctr� nat � o be a non�logical constant� denoting a memory

cell in the environment storing the next number to be used by inc� Suppose ctr is initialized

to some number� then the only clause required will be the universal closure of the following

clause called Inc�

��inc P �� �ctr X�� �� ��P X�� �ctr �s X����

��

Both �inc P � and �ctr X� must be on the right hand side of the sequent before one can

backchain on the clause� In this sense� clauses with multiple heads enforce synchronization

between various predicates� The last step in the uniform proof of

inc � �nat� o�� o ctr � nat � o P � nat� o � Inc # �� �inc P�� �ctr �s z��

is shown below�

���
ctr inc P � Inc # �� �P �s z��� �ctr �s s z��

ctr inc P � Inc # �� �inc P�� �ctr �s z��
backchain

To use the clause Inc� I need to have both �inc P � and �ctr �s z��� or� in other words� �inc P �

and �ctr �s z�� synchronize with each other� Now� by backchaining on Inc the goal becomes

�P �s z��� �ctr �s s z��� Note that because ctr is linear it is destructively read by the Inc

clause � the number stored in ctr is increased by one as a result of backchaining�

The examples above point towards a relationship between concurrency and proof search in

multiple conclusion logic where the right hand side rules permute� The idea is that all the

processes on the right hand side are free to compute concurrently and synchronize with each

other� Some of these intuitions will be made precise in the next section� where I specify a

particular presentation of a fragment of HO��calculus in FORUM�

��� Specifying HO� in FORUM

In this section I specify a fragment of HO��calculus as de�ned in �San��a� to make

concrete my claim that FORUM can be used to represent both abstraction and concur�

rency� I begin with a brief presentation of HO��calculus� and refer the interested reader

to �Mil��� MPW��a� MPW��b� San��b� San��a� for a detailed introduction to� and analyses

of HO��calculus and ��calculus� The motivating idea of HO��calculus is to provide higher

order communication in the framework of synchronous mobile process algebras� The frag�

ment of HO��calculus that I consider can encode call�by�value and call�by�name lambda

��

calculus �Mil��� San��b� San��a�� I use x y � � � possibly subscripted� to stand for Names

and their capitalized versions to range over Vars� Moreover� K stands for a process or a

name� and U stands for a variable or a name�

De
nition ��� �Syntax for HO��calculus�� The processes in HO��calculus are de�ned by

P and the pre�xes by
�

P ��� �

j �X�

j �P j P �

j ��x�P ��

j �
�P �

 ��� x�U� j xhKi

� is the inactive process � not capable of any action or interaction� x�U��P accepts input

for variable U along the channel x� while xhKi�P transmits K along the channel x� �x�P �

makes the name x private to the process P � and P jQ places the two processes P and Q in

parallel� The variable U is bound in x�U��P � and x is bound in �x�P �� I often abbreviate

�� as
� The reduction relation for HO��calculus is divided in two parts� the structural

equivalence and the reduction relation� We illustrate the reduction semantics and explain

the syntax conceptually with some examples�

Example ��� Examples of reductions in HO��calculus�

�� xhQi�P j x�Y ��R �� P jR�Y �� Q�

�� �x�whxi�P jQ� j w�y��R �� �x�Q jR�y �� x�� j P � x �� FV�P � and x �� FV�w�y��R��

�� xhQi�� j x�Y ���Y j P � �� Q j P

��

xhQi�P j x�Y ��R �� P jR�Y �� Q�
ComP

xhyi�P j x�z��R �� P jR�z �� y�
ComN

P �� Q

�x�P � �� �x�Q�
�R

P �� P�

P jQ �� P� jQ
Par

P
� P� P� �� Q� Q�
� Q

P �� Q
Struct

P �� P
Re�

P �� Q� Q� �� Q

P �� Q
Trans

Figure ���� Reduction semantics for HO��calculus

In example ������ xhQi�P transmits Q along the channel x and x�Y ��R receives Q on

the x� The rule underlines one key feature of the calculus � the communications are

synchronous� i �e� a process� e�g � xhQi�P � that wants to send a message waits until there

is a process� e�g � x�Y ��P � in the environment which will accept that message� hence the

name synchronous message passing� This also ensures a �avor of sequencing in the process�

e�g � in
��
��P the action corresponding to
� must happen before the action for
� can

occur� Another basic feature of HO��calculus is the capability of changing the connectivity

amongst processes during computation� In example ������ the channel x in �x�whxi�P jQ�

is a private channel between whxi�P and Q� However� it is possible for x to extrude its

scope and be sent to w�y��R� In this sense� the connectivity of the processes can change

during the computation� and hence the name mobile processes� Example ����� illustrates

the novelty of Higher� order processes� x�Y ���Y j P � can be viewed as a process that will

execute whatever process it receives from the environment in parallel with P � Higher�

order communications provides the familiar substitution of 	�calculus in the context of

HO��calculus� �San��b� San��a� gave a nice encoding of Lazy 	�calculus in HO��calculus

��

and showed the correspondence betweenHO��calculus and First Order �� �Chi��� compares

the encoding of Lazy 	�calculus in HO��calculus to the Continuation�passing semantics�

Now� I de�ne the structural equivalence and reduction semantics of HO��calculus formally�

De
nition ��� �Structural Equivalence�
� �
� is de�ned as the least congruence con�

taining the following rules�

�� P j �
� P �

�� P jQ
� Q j P �

�� �P jQ� jR
� P j �Q jR��

�� �x�P � jQ
� �x�P jQ�� x �� FV�Q��

�� �x�P �
� P � x �� FV�P ��

�� �x��y�P ��
� �y��x�P ���

The reduction semantics for HO��calculus is speci�ed as an unlabeled system in terms

of proof rules� One notable feature is that the separation of structural equivalence from

reduction rules enables a concise presentation of the latter� It should be noted that reduction

is built as a congruence for all term constructors except pre�xing� as seen in the rules �R�

Par � agentR and Struct # this feature forces a strict order of evaluation on pre�xed processes�

as we saw in example ������

De
nition ��� �Translation of HO��calculus in FORUM� Let i be a new basic type� the

type of names� and �� be the set consisting of the following constants needed to describe

the translation of HO��calculus into FORUM�

��

sendnm � i� i� o� o

receivenm � i� �i� o�� o

sendpr � i� o� o� o

receivepr � i� �o� o�� o

The translation ��o takes a process in HO��calculus to a formula� i �e� terms of type o� in

FORUM�

�o � �

Xo � X

�P jQ�o � P o �Qo

��x�P ��o � �x � i� P o

�xhQi�P �o � sendpr x Q
o P o

�x�Y ��P �o � receivepr x 	Y� P
o

�xhyi�P �o � sendnm x y P o

�x�z��P �o � receivenm x 	z� P o

Let E� be the set consisting of the universal closure of the following clause� which describes

the meaning of the non�logicals in ���

�receivenm x R�� �sendnm x y P � �� �Ry��P NameCl

�receivepr x R�� �sendpr x Q P � �� �RQ��P ProcessCl

Synchronization for processes exchanging names� i �e� terms of type i� is speci�ed by

NameCl � while ProcessCl speci�es synchronization for processes exchanging processes� i �e�

terms of type o� For the clauses in E� to make sense� I need to show that the translation

commutes with substitution� The proof is a straightforward induction on the structure of

the process P �

Lemma ��� �Substitution Lemma for ��o Let P and Q be processes� then

�

� P o�x �� y� � P �x �� y�o

� P o�X �� Qo� � P �x �� Q�o

This translation is a simple extension of the one in �Mil��� to the case of HO��calculus�

Although I cover a small fragment of the calculus here� it is easy to extend these ideas along

the line of reasoning in �Mil��� to handle richer versions of HO��calculus� However� speci�

fying HO��calculus augmented with constants and agents� i �e� abstractions over variables

or names in processes is rather subtle� The translation is fairly simple� and gives concrete

intuition about the nature of concurrency in FORUM� Concurrency is identi�ed with proof

search in a multiple conclusion logic� where all the right�hand rules permute with each

other� The usage of � as the translation of the parallel combinator of HO��calculus in the

above translation makes this intuition technically precise� The fact that the intention of the

HO��calculus is captured by the translation is underlined by lemma �� and theorem ����

Lemma �� states that if two processes are structurally equivalent� then their translations

are logically equivalent� The proof for lemma �� follows from the logical equivalences in

�Gir��� Let P � �def ��x� P o� where �x are all variables of type i in the signature of P o�

Theorem ��� states that if P reduces to Q� then Q� entails P �� In the proof of theorem ����

going from left to right� the proof for theorem ��� is an induction on the height of reduction

in HO��calculus�

Lemma ��� Given two processes P and Q in HO��calculus� if P
� Q then P o
�� Q
o�

Theorem ��	 Let P and Q be HO��calculus processes� and � contain the names and

process variables in P and Q�

if P �� Q then ��� � E� # Q
� �� P �

is provable in FORUM�

The reductions in translated processes have a simple shape� One essentially reorganizes

the shape of the process using structural equivalences until either NameCl or ProcessCl

��

is applicable� Although it is an interesting topic� I do not consider the issue of explaining

interesting equivalence relations onHO��calculus in FORUM� because the above translation

makes my point � concurrent computations can be represented in FORUM� In �Mil���

bisimulations and trace equivalences for First Order ��calculus without � are analyzed in

the framework of a FORUM like language�

The translation of HO��calculus into FORUM is proved sound by theorem ���� but is it

complete $ This question was answered a
rmatively in �Mil��� for the ��calculus without

the restriction operator� However� in FORUM

� � # �x� �y� Q�c �� x��d �� y� �� �z� Q�c �� z��d �� z�

is provable� where Q is the translation of some process into FORUM� If the translation is

complete� then for any process Q� this would imply that

�x�Q� �� �x��y�Q���

This is false� Hence� the universal quanti�er has a logical nature which is richer than

that of the restriction operator in HO��calculus� In the later chapters� I explore various

speci�cations in the %process theory& obtained from FORUM� and its expressive power

and abstraction mechanisms are made clear� Nonetheless� the question of a proof theoretic

analogue of HO��calculus remains� and there is some work in progress with new quanti�ers

which might shed more light on the restriction operator�

��

Chapter �

Specifying UML

In this chapter I specify UML �Untyped ML� � untyped core SML excluding pattern

matching and data�types� augmented with callcc � in FORUM� I prove that a program P

in UML without callcc evaluates to a value V as per the speci�cation in FORUM� if and only

if P evaluates to V as per the speci�cation in �HMT���� The correspondence between the

two operational semantics is restricted to core UML without callcc because �HMT��� does

not provide a speci�cation for callcc� The main point of this section is that FORUM allows

us to specify imperative features � exceptions� mutable state� �rst�class continuations �

in a modular and declarative way� In particular� I �rst specify the functional core of UML�

and then specify exceptions� mutable state� and �rst�class continuations independently� If I

need the speci�cation for the functional core� and any combination of the imperative parts

of UML� I just put the corresponding speci�cations together� For example� if I want the

speci�cation for the functional core of UML with exceptions� all I have to do is put my

speci�cation for the functional core of UML together with the speci�cation for exceptions�

Modularity of speci�cations is as helpful in understanding the design of a programming

language as it is in the design of the language itself� However� modularity is crucial not

only for such esoteric purposes as 'understanding� and 'designing� languages� but also for

many practical concerns including proving correctness of implementations �HM���� verifying

��

M ��� V ��v�
j �f M M� f � O
j �M M�
j �if M M M�
j �let val x � M inM�
j �let fun f x � M in M�

V ��� x x � Vars �Valuesv�
j n n � Z
j b b � B
j �	x�M�
j �

E ��� � � �EvContv�
j E�f � �M � f � O
j E�f V � �� f � O
j E�� �M �
j E�V � ��
j E�if � �M M �
j E�let val x � � � in M �

Figure ���� Syntax for �v

correctness of optimizations in compilers� understanding program equivalences� and proving

meta�theoretic properties such as type soundness in statically typed languages �WF����

The plan for this chapter is to introduce the separate parts of UML in stages� and provide

their speci�cations� I �rst introduce the syntax and operational semantics for �v� the

functional core of UML� which is most familiar and similar to the language considered in

�HM��� MP���� Next� I specify �v in FORUM� and de�ne when a translated program in

FORUM evaluates to a value� I then prove the correspondence theorem between the FORUM

speci�cation and the speci�cation in �HMT���� The program is extended modularly to the

functional core with exceptions� state� and continuations�

��� �v � Functional Core of UML

The syntax of �v � the functional core of UML � is very similar to the functional part of

��

SML without data�types� The syntax of �v is de�ned formally in �gure ���� The language

contains integers� Z � and booleans� B� as constants� Arithmetic operators and equality test

for integers are included in the language as term constructors in the set O� Functional

abstraction in the form of 	 abstraction and application are represented by 	x� M and

�M N� respectively� I include in the language let val x � M in N which is treated like

��	x� N�M�� let fun f x � M in N allows recursive de�nitions in �v� � is a token� like the

only value of type unit in SML �HMT���� The evaluation contexts� EvContv in �gure ����

are a way of parsing a given �v�term to �nd out the next redex to be contracted during

evaluation� One can write standard functional programs in this language� The following

program� exp� calculates m raised to the power n for non�negative numbers m and n� The

constant � stands for subtraction and for multiplication�

let fun f x � 	y z� if �� x �� y �f ��x �� �y z� z�

in

	y x� if �� x �� � �f x y y�

The operational semantics for �v as presented in �gure ��� is culled out from the speci��

cation for SML in �HMT��� by using substitutions instead of environments� This style of

presentation is called natural semantics following �Kah��� The evaluator is presented as a

series of rules� all of which have a simple format � to evaluate an expression �rst evaluate

the subexpressions and then put the results together as per the outermost term constructor�

For example� to evaluate �M N�� �rst evaluate M to a function� 	x� P � and N to a value

U � then �nally evaluate P �x �� U � to a value V � the value of �M N�� The evaluator thus

speci�ed is call�by�value� as the argument to a function is evaluated before it is passed to

the function� f V U denotes the constant in �v� which is obtained as a result of performing

f viewed as an arithmetic operator on the numbers denoted by V and U � e�g � (� � denotes

the constant ��

The order of evaluation of the subterms is not a part of the syntax � it is an additional

requirement that the hypothesis to the rules should be read from left�to�right� In a language

with partial arithmetic operations such as �� division� the order of evaluation is crucial�

��

c � c
c � Z 	 B

	x�M � 	x�M

M � 	x� P N � U P �x �� U � � V

M N � V

M � U N �x �� U � � V

let val x � M in N � V

N �f �� 	x� let fun f x � M in N � � V

let fun f x � M in N � V

M � V N � U

f M N � f V U
f � O

M � true N � V

if M N P � V

M � false P � V

if M N P � V

Figure ���� Natural Semantics speci�cation for �v

For example� consider the program �(P �� � ���� where P is any non�terminating program�

In a language with exceptions� evaluating the program left�to�right will cause it to diverge�

However� evaluating the program right to left may raise a division�by�� exception� Using the

given speci�cation� left to right evaluation will result in an in�nite search for a computation

tree re�ecting the non�termination of P � whereas right�to�left evaluation will cause a �nite

evaluation tree in which one can detect the division�by�� error�

The speci�cation of �v in FORUM requires that one translates �v terms into the higher

order abstract syntax of FORUM� The translation reveals the binding structure of the

language� Issues such as capture free substitution and
�conversion in the object language�

i �e� �v � are taken care of by substitution and the binding mechanism of the meta�language�

i �e� FORUM� The terms and types required to de�ne the translation comprise the set �v�

and are de�ned in �gure ���� I de�ne two basic types� vl and tm� along with a coercion

function� h�i� mapping terms of type vl to terms of type tm� vl is the type of values� and tm

is the type of terms� I then introduce terms at appropriate types to encode the terms of �v�

��

abs � �vl� tm�� vl

c � vl c � B 	 Z 	 f�g

h�i � vl� tm

f � tm� tm� tm f � O
app � tm� tm� tm

cond � tm� tm� tm� tm

letval � �vl� tm�� tm� tm

letfun � �vl� tm�� �vl� vl� tm�� tm

ifbr � vl� tm� tm� tm

apply � tm� tm� o

eval � tm� �vl� o�� o

Figure ���� �v� Signature for �v evaluator

e�g � app is a term construct which will be the target of application terms in the translation�

For every integer and boolean� I introduce a constant of vl type� For every operator f � I

introduce a constant f in the signature of type tm� tm� tm�

Following is the translation of exp into a term of type tm in FORUM�

letfun 	f� �abs 	y� �abs 	x� cond �� x h�i� h�i �app �app �app f x� y� y���

	f x� �abs 	y� �abs 	z� cond �� x h�i� y �app �app �app f �� x ��� � y z�� z���

The �rst argument of letfun is the body of the let fun declaration� and the second argument

is the function declaration� The body is parameterized over the function variable de�ned

by the let fun as made explicit by the meta�level 	�binding of f in the �rst argument of

letfun� The example also illustrates how the 	 bindings in the object language get converted

into 	�bindings in the meta�language� For example� 	x� M is translated as �abs 	x� Mo��

Mo is the translation of M � and the 	 binding in abs is at the meta�level� Other than

this clean explanation of variable bindings� the translation� although heavy on usage of

new syntax� is similar in spirit to parsing concrete terms into abstract syntax trees� The

translation of �v terms to FORUM is rather cumbersome� but it is crucial to the statement

of the correspondence theorem between FORUM speci�cation and the natural semantics

��

�v�x� � x

�v�	x�M� � abs 	x � vl�Hv�M�
�v�c� � c c � Z 	 B 	 f�g

Hv�V � � h�v�V �i
Hv�f M N� � f Hv�M� Hv�N�
Hv�M N� � app Hv�M� Hv�N�

Hv�if M N P � � cond Hv�M� Hv�N�Hv�P �
Hv�let val x � M in N� � letval �	x�Hv�N��Hv�M�

Hv�let fun f x � M in N� � letfun �	f�Hv�N�� �	f x�Hv�M��

Figure ���� �v � Valuesv � vl� Hv � �v � tm

�v�x� � x
�v�abs 	x�M� � 	x�Lv�M�

�v�c� � c c � Z 	 B 	 f�g

Lv�hV i� � �v�V �
Lv�f M N� � f Lv�M� Lv�N� f � O

Lv�app M N� � Lv�M� Lv�N�
Lv��ifbr V N P �� � if �v�V � Lv�N� Lv�P � b � B
Lv�cond M N P � � if Lv�M� Lv�N� Lv�P �
Lv�letval R N� � let val x � Lv�N� in Lv�Rx� x fresh

Lv�letfun R� R�� � let fun f x � Lv�R� f x� in Lv�R� f� f x fresh

Figure ���� �v � vl� Valuesv� Lv � tm� �v

speci�cation� I provide the details in �gure ���� ifbr and apply are constants which are not

used in the translation Hv � but arise during evaluation of translated �v�terms in FORUM�

There are some rather subtle issues in the translation in �gure ���� For instance� on what

basis do I choose abs 	x� x over ��	u� u ��abs 	x� x�� as the encoding of 	x� x$ The choice

comes from the fact that there are unique ���long normal forms in FORUM terms� So

I pick the ���long normal form as the encoding of the given �v term� The translations

from FORUM to �v� and vice versa� in �gures ��� and ��� respectively� are straightforward

recursions on the structure of the terms�

I would like to evaluate with the translated programs� Hence� I need to check whether

��

substitution commutes with the two translations Hv and Lv � The following lemma states

these identities precisely# proofs are deferred to the appendix�

Lemma ��� Let M � �v� V � Valuesv� N and U be FORUM terms of types tm and vl

respectively �

� Hv�M �x �� V �� � Hv�M��x �� �v�V ���

� Lv�N �x �� U �� � Lv�N��x �� �v�U���

Armed with the precise de�nitions� I am now in a position to de�ne the evaluator and the

correspondence theorem� Keeping in mind that �v is to be evaluated left�to�right� and in

fact� considering this as a part of the speci�cation of �v operational semantics� I would like

to specify the evaluator such that left�to�right evaluation is enforced on implementations

complying with my speci�cations� Hence� a natural choice is to use a continuation�passing�

style semantics for �v �Plo�� Rey��� How is my speci�cation then di	erent from the

standard continuation�passing�style semantics for �v �Plo�� Rey��$ The main point is

that just the translation of programs to continuation�passing semantics does not yield the

operational semantics� One also needs a strategy for executing the resulting programs� As

my speci�cations are logic programs� search for cut�free proofs corresponds to computation

� I get an evaluator for �v from very simple clauses�

The evaluator is presented as a set of universally quanti�ed clauses de�ning the meaning

of the non�logical constants I used in translating �v into FORUM� �eval M K� is a two

place predicate� the �rst argument being of type tm and the second being of type vl � o�

the type of continuations� with the intended meaning that the term M is to be evaluated

with K being the continuation� The computational paradigm is that I evaluate M � and

whatever is its result� I pass it to K which then completes the evaluation� The evaluator

Ev is de�ned in �gure ���� The order of evaluation for the terms in �v does not matter as

far as one is concerned only with the values produced by the evaluations� In this sense�

specifying the exact evaluation order may seem to be an overkill� However� the failure

��

�eval hV i K� �� �K V �
�eval �app M N�K� �� �evalM 	v� �eval N 	u� �apply v u K���
�apply �abs R� U K� �� �eval �RU� K�
�eval �f M N�K� �� �evalM 	v� �eval N 	u� �K f v u��� f � O

�eval �cond M N P � K� �� �evalM 	v� �eval �ifbr v N P � K��
�eval �ifbr true M N�K� �� �evalM K�
�eval �ifbr false M N�K� �� �eval N K�
�eval �letval R M� K� �� �evalM 	v� �eval �R v� K��
�eval �letfun R� R�� K� �� �eval �R� �abs 	x� letfun �	f� R� f x� R��� K�

Figure ���� Clauses in Ev � the evaluator for �v

to produce a value may be for two reasons� Firstly� the evaluator may get stuck� or the

arithmetic operators may be unde�ned for some values� and secondly� the evaluation may

never terminate� Suppose P is a divergent program� The program �(P �� � ��� will have an

in�nite evaluation tree under left�to�right evaluation� whereas under right�to�left evaluation

it will result in a �nite failure caused by a division by � error�

Now I have to de�ne when a term evaluates to a value in FORUM� As computation corre�

sponds to search for cut�free proofs� the de�nition will involve statements about existence

of proofs of sequents in FORUM�

De
nition ��� �Evaluating �v terms in FORUM� M � tm evaluates to V � vl� written as

evalv�MV �� if

�v � Ev # �� �K � vl� o� �K V � �� �evalM K�

is provable in FORUM�

I compare the evaluation of programs using Ev to the natural semantics evaluator to high�

light some key aspects of Ev� Lets look at the computation of �app P Q� and �M N� where

P and Q are Hv�M� and Hv�N� respectively�

In �gure �� I use the backchain rule� This is essentially a composite rule in which I choose a

clause from the evaluator clauses such that a right�hand side formula uni�es with the head of

�

�v K � Ev # �K V � �� �eval P 	v� �eval Q 	u� �apply v u K���

�v K � Ev # �K V � �� �eval �app P Q� K�

M � 	x� L N � U L�x �� U � � V

M N � V

Figure ��� One step in the evaluation of �M N�

the clause� The justi�cation of the rule follows with use of �� �L followed by the observation

that the right sub�proof of �� �L will trivially follow from initial� as the head of the clause

and right�hand side formulas uni�ed� The key point of the above example is the role of

the continuation� The natural semantic proof has three sub�proofs� whereas the Ev proof

is linear � this corresponds to the idea that the evaluation order is completely speci�ed�

Furthermore� notice the structure of the continuation 	v� �eval Q 	u� �apply v u K�� � this

term encodes the fact that the value of P � �abs R�� will be bound to v� and then Q will

be evaluated and its value� W � will be bound to u� and �nally �R W � will be evaluated�

Hence� continuations provide notation within the syntax for the incomplete parts of natural

semantics evaluation trees� This capability of representing incomplete proofs within the

syntax plays a crucial role in the speci�cation of exceptions and callcc� In fact� it seems

that it is problematic to specify callcc in the natural semantics framework because of this

de�ciency in its syntax�

Ev and the natural semantics in �gure ��� are two speci�cations of �v� I prove that the

two speci�cations are identical to the extent that the values computed are identical� The

complete proof is deferred to the appendix�

Theorem ��� �Correspondence theorem for �v For all closed �v terms M and val�

ues V �

M � V if and only if evalv�Hv�M� �v�V ���

The proof of theorem ��� is rather interesting� Going from left�to�right I induct on the

evaluation tree for the term� i �e�� I build computations for larger terms using computations

of the subterms� I illustrate the general strategy by showing the case for M � �N P ��

��

Suppose �N P � � V � then the only way this may happen is by the use of rule for application

terms� which implies that

� N � 	x� Q�

� P � U and

� Q�x �� U � � V �

The evaluation trees of N � P and Q�x �� U � are smaller than the evaluation tree of �N P ��

Let N� �def Hv�N�� P� �def Hv�P �� Q� �def Hv�Q�� U� �def �v�U� and V� �def �v�V ��

By induction hypothesis I get proofs ��� �� and �	 in FORUM respectively for

� �v K� � Ev # �K� �abs 	x� Q��� �� �eval N� K���

� �v K� � Ev # �K�U�� �� �eval P� K�� and

� �v K	 � Ev # �K	 V�� �� �eval Q��x �� U�� K	��

In the proof �	 I use lemma ��� to rewrite Hv�Q�x �� U �� as Q��x �� U��� Using the above

proofs I need to construct a proof for the sequent

�v K � Ev # �K V�� �� �eval �app N� P�� K��

I show below how to construct the required proof� To keep the proof readable� I do not

write Ev in the intuitionistic context and the signature which is �v K in all the sequents

shown in the proof� In the proof let C� �def 	v� �eval P� 	u� �apply v u K�� and C� �def

	u��apply �abs 	x�Q�� u K�� It is interesting to note that the CutL rules are needed exactly

at those points in the computation when a term passes its values to its continuation� The

CutL passes the value of N� to C�� the continuation of N��

�
�K V � �� �eval P� C��

��
�C� �abs 	x� Q��� �� �eval N� C��

�K V � �� �eval N� C��
CutL

�K V � �� �eval �app N� P�� K�
backchain

��

� is constructed as shown below� The CutL passes the value of P� to C�� the continuation

of P��

�	
�K V � �� �eval Q��x �� U�� K�

�K V � �� �apply �abs 	x� Q�� U� K�
backchain ��

�C�U�� �� �eval P� C��

�K V � �� �eval P� C��
CutL

Each �i� i � �� �� is constructed from �i using CutS� Note that

�v K� K � Ev # �K� �abs 	x� Q��� �� �eval N� K��

is provable by �� as �v K� � �v K� K� Hence �� can be completed by cutting on K� with

C�� Similarly� one can build �� and �	�

This completes the proof for the case M � �N P �� The important point is that proofs in

FORUM are built using various cut rules rather than analyzing the structure of the proof�

as one would expect for the left�to�right direction� Computation in FORUM is represented

by search for cut�free proofs� However� since the proofs constructed above have cuts� I am

implicitly using the cut�elimination theorem for FORUM� In the other direction� I analyze

the proofs in FORUM and construct the natural semantics evaluation trees from FORUM

proofs� The proofs are detailed in chapter A�

��� �
vs
� State in UML

In this section I specify �vs� �v extended with state� �v is a higher�order functional language

where values are associated to variables via 	 binding� For example� let val x � � in M

associates the value � with the variable x in the term M � The salient property of such

variable bindings is that it cannot be changed � x will remain bound to � throughout the

evaluation of M � Although in principle� one can program only with 	 bindings� in practice

there are many situations where one would like to update the binding of a variable� For

example� in �v� I cannot write a function� inc� such that it takes a dummy argument and

��

M ��� � � � ��vs�
j ref M
j deref M
j asg M M

E ��� � � � �EvContvs�
j E�ref � ��
j E�deref � ��
j E�asg � �M �
j E�asg V � ��

Figure ���� Syntax for �vs

generates a new number every time it is called� Assignable variables introduce a notion of

state in the programming language� The state of the computation is the current binding

for the assignable variables� As I can update the binding for the assignable variables� the

state may change during the computation�

The syntax for �vs is formally de�ned in �gure ���� The de�nitions ofM and E in �gure ���

are extended with the clauses in �gure ��� to obtain �vs and EvContvs� respectively� The

de�nition for V in �gure ��� remains unchanged for Valuesvs� However� the non�terminal

M ranges over the extended de�nition� The result of evaluating �ref M� is a fresh location

in the state which is bound to the value of M � �deref M� evaluates M to a location and

then returns the contents of the state at that location� �asg M N� assigns the value of N to

the location resulting from evaluating M � if that location is already de�ned in the current

state� The inc function described above may be implemented in �vs as�

let val x � ref � in

	y� �	z� deref x� �asg x �(�deref x� ���

Evaluating M in store S may create a new location� say l� What should I do with l$ One

approach would be to extend S with l� and let l be in the state at the end of evaluating

M � Another approach would be to treat l as a variable local to M � which must not be

in the state at the end of evaluating M � While the �rst approach results in a global view

��

hl S�i � hl S�i
l � dom�S��

hMS�i � hV S�i

href MS�i � hl S��l �� V �i
l �� dom�S��

hMS�i � hl S�i

hderef MS�i � hS��l� S�i
l � dom�S��

hMS�i � hl S�i hN S�i � hV S�i

hasg M NS�i � h� S��l �� V �i
l � dom�S��

Figure ���� Natural Semantics speci�cation for the new constructs in �vs

of state as taken by SML �HMT���� the second approach is adopted by block�structured

languages like ALGOL �Rey��a� Rey��b�� State is thought of as a �nite function from Vars

to Valuesvs� dom�S� for a state S is the set of variables which are bound in the state� i �e�

the set of assignable variables currently de�ned� If l � dom�S� then S�l �� V � denotes the

state which maps l to V � If l �� dom�S� then S�l �� V � denotes a new state� say S�� such

that dom�S�� is the union of dom�S� and flg� and S��l� � V �

I specify �vs in natural semantics in the style of �HMT���� The speci�cation for the new

constructs is in �gure ���� In the evaluation of �ref M� the side condition � l �� S� � causes

the creation of a new location in the state which is bound to V � deref reads the value of the

state at a location l# the side condition l � S� ensures that S� is de�ned for l� �asg M N�

rede�nes the binding of S� at the location l to be V � only if l is a variable already de�ned in

S�� Note that all currently de�ned assignable variables are treated as values� The changes

to state are cumulative� e�g �� in the rule for �asg M N�� evaluation ofM results in the state

S� which is then passed along as the starting state for the computation of N � If I de�ne

some new locations in the process of evaluating M � they will be in dom�S��� and hence

�nally in S��l �� V �� Thus the rules specify a global view of state�

Unfortunately� the evaluator for �vs is not simply the union of rules in �gure ��� and

�gure ���� Although no new rules are needed for the constructs of �v due to the addition

of state� the existing rules in �gure ��� need to be modi�ed� In this sense� the speci�cation

of �v is not modularly extended to the speci�cation of �vs� However� the damage is mild

��

cell � tm� tm

read � tm� tm

write � tm� tm� tm

get � vl� �vl� o�� o
set � vl� vl� �vl� o�� o

Figure ����� Constants for translating �vs terms

compared to the situation in section ���� where extending �v with exceptions will create

new rules for the constructs in �v� The modi�cation to the rules in �gure ��� is obtained

by applying the state convention in section ��� to states� For example

M � 	x� P N � U P �x �� U � � V

M N � V

is considered to be an abbreviated form of

hMS�i � h	x� P S�i hN S�i � hU S�i hP �x �� U � S�i � hV S	i

hM NS�i � hV S	i

Thus the natural semantics speci�cation for �vs is obtained by taking the rules in �gure ���

and the rules obtained by applying the state convention to the rules in �gure ���� I will

freely use the abbreviated form of the natural semantics rules� because using the state

convention I can always recover the full form�

I want to specify state in FORUM not as a �nite function� but as some form of concurrent

computation� I think of every location in the state as a separate process storing a value�

which interacts with its environment only via read and write messages� Interaction on a read

message causes the process to transmit the value it stores to the environment� Interaction

on a write message causes the process to accept a value from the environment which replaces

the value it stores� Adopting the paradigm used in section ��� to specify HO��calculus in

FORUM� I directly specify the above process�style reading of state in FORUM�

The signature for the translation� �vs� is the union of �v and the constants in �gure �����

��

�eval �cellM� K� �� �evalM 	v� �P l� getC�P l�� setC�P l�� ��K l�� �P v���
�eval �readM� K� �� �evalM 	v� �get v K��

�eval �writeM N�K� �� �evalM 	v� �eval N 	u� �set v u K���

where getC�P l� �def �KU� ��get l K�� �P U�� �� ��KU�� �P U��

setC�P l� �def �K V U� ��set l V K�� �P U�� �� ��K ��� �P V ��

Figure ����� Speci�cation in FORUM for new constructs in �vs

I de�ne translations �vs � Valuesvs � vl� Hvs � �vs � tm� �vs � vl � Valuesvs and

Lvs � tm� �vs in the appendix� For example� Hvs�ref M� � cell Hvs�M�� The following

lemmas regarding the translations and substitution are proved in the appendix�

Lemma ��� Let M � �vs� V � Valuesvs� N and U be a FORUM terms of types tm and vl

respectively�

� Hvs�M �x �� V �� � Hvs�M��x �� �vs�V ���

� Lvs�N �x �� U �� � Lvs�N��x �� �vs�U���

The evaluator for �vs� Evs� is the union Ev and the clauses in �gure ����� �cell M� is

evaluated by �rst evaluating M to a value V � Next� a new predicate P is created and

placed in the environment storing V as �P V �� The process identi�er� l� for the process P �

is passed to the continuation K� Along with the creation of the process� two more clauses

are introduced� namely getC and setC� getC speci�es the handling of read messages passed

along the process identi�er l� while setC speci�es the handling of write messages passed along

the identi�er l� A read message� �get l K�� synchronizes with the process identi�ed by l�

reads its value� and passes the value to the continuation K� A write message� �set l V K��

synchronizes with the process identi�ed by l� sets its value to V � and passes the token �

to the continuation K� indicating the successful completion of the write message� �read l�

issues the read message to the process identi�ed by l� and �write l V � issues the write

message to the process identi�ed by l� I now prove the correspondence theorem between the

��

two speci�cations� namely Evs and natural semantics� for �vs� Before I can do this� I have

to de�ne when a term evaluates to a value in FORUM and translate state into FORUM�

Remark ��� I de�ne notation that I use in describing evaluation in FORUM� Let S be a

state� and m be the number of elements in dom�S��

� PS �def P� � � � Pm�

� lS �def l� � � � lm� li � dom�S� i � �� m��

� �S �def fP� � � � Pmg 	 fl� � � � lmg�

� CLS �def fgetC�P� l�� � � � getC�Pm lm�g 	 fsetC�P� l�� � � � setC�Pm lm�g�

� "S �def �P� V��� � � � � �Pm Vm��

� Vi �def �vs�S�li��� i � �� m��

� FV�S�li�� � dom�S�� i � �� m��

� A term M is closed in a state S� written as close�SM�� if FV�S�li�� � dom�S��

i � �� m� and FV�M� � dom�S��

De
nition ��� �Translating state into FORUM� The translation of state S� written as So�

is a FORUM term of type o� o�

So �def 	u � o�� PS lS� getC�P� l��� setC�P� l��� � � ��

getC�Pm lm�� setC�Pm lm�� �u�"S �

The application of a term M to So would require that the free variables in M be named

apart from the bound variables in So including lS � I abuse notation because I want the

location names to be %captured& by the substituion� Suppose S is 	u� �l� getC�P l� �

��

setC�P l� � �u�"S� and M is hli� then �S hli� is �l� getC�P l�� setC�P l�� �hli�"S��

Note that l is free in hli but in �S hli� it gets captured by the universal quanti�cation on l�

This abuse of syntax comes in very handy� and should not be confusing�

De
nition ��� �Evaluating �vs terms in FORUM� LetM be a �vs�term� and S� be a state

such that close�S�M�� M with S� evaluates to V with S�� written evalvs�MS� V S��� if

�vs � Evs # �� �K � vl� o� S�
o�K V � �� S�

o�eval Hvs�M� K�

is provable in FORUM�

Theorem ��	 �Correspondence theorem for �vs Let M be a �vs term� and S� a

state such that close�SM��

hMS�i � hV S�i if and only if evalvs�MS� V S��

The proof of theorem ��� is deferred to the appendix� It is along the same lines as the proof

for theorem ���� Given the fact that �vs has an imperative state� it is not a priori clear

whether I can use Cut rules to compose proofs � the richer proof�theory of FORUM permits

me to use Cut rules essentially because environments are maintained using logical constants�

I illustrate the proof strategy going left�to�right when hasg M NS�i � h� S��l �� V �i� The

last rule in the evaluation tree has to be for asg� which implies that

� hMS�i � hl S�i�

� hN S�i � hV S�i� and

� l � dom�S���

The evaluation trees of M and N are smaller than the evaluation tree of �asg M N�� Let

M� �def Hvs�M�� N� �def Hvs�N�� S	 �def S��l �� V � and V� �def �vs�V �� By induction

hypothesis I get proofs �� and �� in FORUM respectively for

��

� evalvs�MS� l S��� and

� evalvs�N S� V S���

Further� note that l � �S� � Using the above proofs� I need to construct a proof for the

sequent

�v K�S� � Evs # S	
o�K �� �� S�

o�eval �writeM� N�� K��

Below� I construct the required proof� To keep the proof readable� I do not write Evs in

the intuitionistic context� and �vs K in the signature part of the sequent� as these parts

are present in all the sequents in the part of the proof shown� Furthermore� I do not show

the introductions of �S and CLS in the sequents below� because these can be deduced from

the context� Let C� �def 	v� �eval N� 	u� �set v u K�� and C� �def 	u� �set l u K��

In the proof� I �rst do a bunch of right � introductions followed by a bunch of right �

introductions to introduce �S� and CLS� � Next� I backchain on the clause for asg clause�

and then I do a CutL� I am left with the construction of � and ���

�
S	

o�K �� �� S�
o�eval N� C��

��
S�

o�C� l� �� �evalM� C���"S�
S	

o�K �� �� �evalM� C���"S�
S	

o�K �� �� �eval �write M� N�� K��"S�
backchain

��� �R� R

S	
o�K �� �� S�

o�eval �write M� N�� K�

The construction of � is given below� I �rst do a bunch of right � introductions followed

by a bunch of right � introductions to introduce �S� and CLS� � Next� I do a CutL�

��
S	

o�K �� �� S�
o�set l V� K�

��
S�

o�C� V�� �� �eval N� C���"S�
S	

o�K �� �� �eval N� C���"S�
��� �R� R

S	
o�K �� �� S�

o�eval N� C��

�

Suppose dom�S�� �def l� � � � ln� As l � dom�S��� for some i � �� n�� l is li� Construction

of �� is shown below� I start the proof with a bunch of right � introductions followed by

a bunch of right � introductions to introduce �S� and CLS� � Now I backchain over the

setC�Pi li� to change the value stored as Pi to be V�� I am left with the construction of ���

��
S	

o�K �� �� �K ��� �PiV��� �P�U�� � � � � �Pn Un�

S	
o�K �� �� �set li V� K�� �PiUi�� �P�U�� � � � � �PnUn�

S	
o�K �� �� �set li V� K�� �P�U��� � � � �PiUi� � � � � �PnUn�

��� �R� R

S	
o�K �� �� S�

o�set li V� K�

The construction of �� is rather interesting� I start a proof with a bunch of left � intro�

ductions� The purpose of these is to identify the location names in the �nal state with the

locations created during the evaluation of the term� Next� I perform a bunch of left �

introductions� The purpose of these is to constrain the substitution for the P variables�

Essentially� the getC and setC clauses for each location are matched o	 against each other�

I then reorganize the memory on the right�hand side to match the order in "S� � and use

identity�

�K ���"S� �� �K ���"S�
���

�K ���"S� �� �K �� � �Pi V��� �P�U�� � � � � �PnUn�

��� �L� L

S	
o�K �� �� �K ���"S�

The construction of �� and �� from �� and �� is straightforward� Note that CutL is only

used when terms pass values to their continuations� The novelty of this proof lies in the

way the cell l is updated to store V�� The proof makes crucial use of multiple heads to

synchronize between the set instruction and Pi� the process identi�ed by l� Values can be

updated by backchaining� because memory cells are linear objects in FORUM� When a cell

synchronizes with a message from the environment� it is consumed� and thus needs to be

refreshed� When refreshed� it may be updated as the setC clause does�

��

��� �ve � Exceptions in UML

In this subsection I specify �ve � �v with exceptions� Exceptions are a very important feature

of any programming language� and especially indispensable in programs which accept inputs

from users or external programs� The openin function of SML is a good example� Given

the name of a �le� the function opens a stream for reading the data in the �le� However� if

there does not exist a �le with the speci�ed name� then openin is faced with an exceptional

situation� At this point openin has two acceptable strategies� The �rst strategy is that

openin returns some value indicating the fact that the �le does not exist � the path taken by

C� The shortcoming of this strategy is that the programmer must check the value returned

by openin to see whether the �le was actually opened or not� If the programmer forgets to

do so� one may get some obscure error in a possibly unrelated part of the program� and then

have to trace the error back to the non�existence of the �le� The second strategy is to send

a signal to the function which invoked openin� Now� if the programmer does not check for

the signal intentionally� it will cause the program to stop� and print an error message saying

that the speci�ed �le did not exist� However� if not checking the signal was an oversight�

then the error will be reported as being caused by the fact the speci�ed �le did not exist�

and hence is easily detectable�

The SML exception mechanism makes possible the second of the two choices outlined above�

There is no restriction on the number of exceptions that one may have in a SML program�

exceptions can be created on the �y� Furthermore� exception handlers are scoped� i �e� I can

declare a handler for an exception for any given sub�part of my program� These features

make the exception mechanism of SML rich and elaborate� I begin by extending the syntax

of �v for exceptions in �gure ����� The de�nitions ofM � V and E in �gure ��� are extended

with the clauses in �gure ���� to obtain �ve� Valuesve and EvContve respectively� Declared

exception names are also values� For this� I introduce a new countable syntactic class of

ExnNames ranged over by l� The result of a computation now may not be a value� e�g � an

uncaught exception� I introduce a new syntax class called answers for this purpose� and

the natural semantic clause M � A will now read as M evaluates to the answer A� �pk l V �

��

M ��� � � � ��ve�
j exception l M l � ExnNames
j handle M M M

j raise M M
V ��� � � � �Valuesve�

j l l � ExnNames

A ��� V �Answersve�
j �pk l V � l � ExnNames

E ��� � � � �EvContve�
j E�raise � �M �
j E�raise V � ��
j E�exception x � ��
j E�handle M � �M �
j E�handle M V � ��
j E�handle � � V V �

Figure ����� Syntax for �ve

is a called a packet� raising the exception l with the value V �

�exception l M� binds the exception name l� in the scope of M � It is entirely conceivable

to write a program such as �exception l ��exception l N� M��� This scoping of exceptions

creates the need for renaming of exception names� i �e�
�conversion� This problem is han�

dled in �HMT��� by evaluating the exception l to a new exception name� and carrying this

binding around in the environment� �raise l V � indicates that the exceptional circumstance

as indicated by l has occurred� and the function handling this exception should be called

with the value V � �handle M l N� declares that during the evaluation ofM � if the exception

l is raised and uncaught within M � then N will be the handling function� Furthermore� if

the evaluation of M to a value is completed without raising l� then N is removed as the

function handling the exception l� This semantics of installing handlers locally provides

�exibility during programming�

I illustrate the point with the following example� Let xn be some exception name resulting

from the declaration of some exception� and P some function de�ned in the environment�

��

�handle�if �� x ��

�handle �P x� xn N��

M

�xn N��

Now� which handler is used for the exception exn depends upon the value of x� Furthermore�

if P is called and in P handlers are installed for xn� then those handlers take precedence over

N�� There are some elements of dynamic binding in the mechanism for determining which

handler catches a raised exception� It is rather tricky to specify this exception mechanism

because of the above mentioned considerations�

The speci�cation of exceptions in �HMT��� is presented in a very slick manner� The speci�

�cation proceeds in two stages� First� the rules needed for the new constructs are speci�ed

as in �gure ����� The spirit of the rules remains the same as the rule for �v� The eval�

uation of a term is a result of the synthesis of the evaluations of its subterms� However�

now I need to keep track of the exception names which have been declared thus far� which

means that I need to carry along a state in the evaluation rules� The operational semantics

as presented here di	ers from �HMT��� to the extent that I use substitution instead of

maintaining closures�

Clearly� the mere addition of the above rules to Ev is not enough to specify �ve� One problem

is that the propagation of exception names has to be handled for all the existing rules for

�v terms� For this purpose� the state convention is adopted in �HMT���� which tells us how

to restore exception states in a rule which omits them� According to this convention� if a

rule is presented as

M� � V� � � � Mn � Vn
M � V

then its full form is intended to be

��

hl Exi � hl Exi
l � ExnNames

hM �x �� l� Ex� 	 li � hVEx�i

hexception x MEx�i � hVEx�i
l �� Ex�

hMEx�i � hl Ex�i hNEx�i � hVEx�i

hraise M NEx�i � h�pk l V � Ex�i

hNEx�i � hl Ex�i hPEx�i � hWEx�i hMEx�i � hVEx	i

hhandle M N PEx�i � hVEx	i
)

hNEx�i � hl Ex�i
hPEx�i � hWEx�i

hMEx�i � h�pk l U � Ex	i
h�W U� Ex	i � hVEx
i

hhandle M N PEx�i � hVEx
i

hNEx�i � hl� Ex�i hPEx�i � hWEx�i hMEx�i � h�pk l� U � Ex	i

hhandle M N PEx�i � h�pk l� U � Ex	i
l� �� l��)

Figure ����� Natural Semantics speci�cation for the new constructs in �ve�

hM� Ex�i � hV� Ex�i � � � hMn Exn��i � hVn Exni

hMEx�i � hVExni

As I can always derive the full�form of a rule using the state convention� I will freely use

the abbreviated versions of natural semantic rules from now on� The speci�cation is still

not complete� For example� what do I do if the evaluation of N in �raise M N� raises an

exception$ In fact� this question comes up in each and every rule speci�ed in �gure ����

Unfortunately� this leads to adding more clauses for all the rules� The description of the

additional rules needed can be done concisely along the lines of �HMT���� An exception

convention de�nes new natural semantic rules based on the ones in �gures ��� and �����

except for the rules labeled) in �gure ����� Suppose the form of a rule is�

M� � V� � � � Mn � Vn
M � V

Then for every k� � � k � n� such that Vk is not a packet� we add another rule of the form

��

�

M� � V� � � � Mk � �pk l V �

M � �pk l V �

For example� the rule for application will now result in the following three new rules�

M � �pk l V �

M N � �pk l V �

M � 	x� P N � �pk l V �

M N � �pk l V �

M � 	x� P N � U P �x �� U � � �pk l V �

M N � �pk l V �

The natural semantics evaluator for �ve is speci�ed by the rules in �gure ����� ��� and the

ones created as a result of adopting the exception convention explained above� Thus� the

exception convention causes the number of rules in the evaluator to increase from fourteen

to thirty�two�

Let me present another way of looking at the operational semantics for exceptions� Suppose

I am evaluating the term E�handle M l V � where �handle M l V � is the redex that I am

reducing currently� and E is the current evaluation context or the part of the program that

will take the value of �handle M l V � and complete the evaluation of the term� i �e� the

current continuation� Further� let us suppose l and l� are two exception names� and no

handler is installed for l�� The evaluation of M � if it terminates� will yield

�� a value U�� or

�� a packet �pk l U��� or

�� a packet �pk l� U	��

��

In case �� the computation continues with E�U��� In case �� the computation continues with

E�V U��� But what should happen in case �$ A signal� l�� has been raised for which there

is no handler� The only reasonable thing to do is to throw away the current continuation�

i �e� E� and report to the top level or the next outer handler� that the exception l� was

raised with the value U	� What is clear from the explanation is that exceptions can cause

the computation to discard its current continuation up to a handler�

Consider the evaluation of the termE�handle ��raise l U�N� l V �� The program will evaluate

�handle ��raise l U�N� l V � causing the handler V to be installed for the exception l� and

then proceed with the evaluation of ��raise l U�N�� which in turn will cause it to evaluate

�raise l U�� Evaluating �raise l U� will result in a packet �pk l U �� which can only be handled

by V � However� notice that the answer computed by �raise l U� is passed not to the current

continuation at that point� but rather to the continuation at the time when the handler V

was installed� Thus exceptions can also change the current continuation�

My point is that a natural operational reading of the evaluation mechanism involves the

idea of continuations� a concept which has no direct representation in the syntax of natural

semantics� The clever presentation in �HMT��� is a way of overcoming this shortcoming

of natural semantics� However� one has to pay a price for extending natural semantics to

cope with exceptions � the blow up in the number of rules for �v terms from eight to

twenty� Of particular concern is the fact that the evaluator has to be rede�ned for the term

constructs of �v� e�g � one has four rules for application now� In this sense� the speci�cation

of exceptions in �HMT��� is not modular� An exception mechanism very similar to that

of UML has been speci�ed in �WF��� using term rewriting machines� The speci�cation

is indeed modular � speci�cations for the existing term constructs do not change when

the language with exceptions is considered� However� the style in �WF��� introduces two

new notions of contexts� one used to maintain the scope of exceptions and the other used

to match a raised signal with its handler � the basic intuition about manipulation of

continuations is not brought out very clearly�

The speci�cation of �ve in FORUM follows the same pattern as the speci�cation of �v� I

��

ex � ext� vl

exn � �ext� tm�� tm

install � tm� tm� tm� tm

signal � tm� tm� tm

uncaught � ext� vl� o

Figure ����� Constants for translating �ve terms

�ve�l� � �ex l� l � ExnNames

Hve�exception l M� � exn 	l�Hve�M�
Hve�handle M N P � � install Hve�M� Hve�N�Hve�P �

Hve�raiseM N� � signal Hve�M� Hve�N�

Figure ����� Translating the new construct of �ve to FORUM

introduce a new type ext� the type of exception names in FORUM� First� I translate �ve

terms into FORUM syntax using �v augmented with the constants in �gure ����� For

example� install � tm � tm � tm � tm is the target of the translation of handle terms�

�pk l V � is translated using uncaught � ext � vl � o� I de�ne translations �ve � Valuesve �

vl� Hve � �ve � tm� �ve � vl� Valuesve and Lve � tm� �ve� I show the translation from �ve

to FORUM for the new constructs in �gure ����� The complete translations are deferred

to the appendix� The following lemmas regarding the translations and substitutions are

proved in the appendix�

Lemma ��� Let M � �ve� V � Valuesve� N and U be a FORUM terms of types tm and vl

respectively�

� Hve�M �x �� V �� � Hve�M��x �� �ve�V ���

� Lve�N �x �� U �� � Lve�N��x �� �ve�U���

Instead of specifying the semantics of catching raised exceptions in the style of �HMT����

I take the route of using the continuations explicitly� Consequently� I have to manage

��

explicitly the installation and removal of handlers� and the matching of raised exceptions

with handlers� I �nd this description to be more enlightening because it highlights the

manipulation of continuations by exceptions� and explains the maintenance of exception

handlers separately� I represent the exceptions via a predicate� exnst� which takes a list of

exception handlers as an argument� An exception handler is a term� �pkt l V K�� where l is

the exception name� V is the function installed as the handler� and K is the continuation

which will be invoked if this handler is chosen� To maintain exnst I need predicates push

and pop to add and remove handlers from the list of exception handlers� Further� I need a

predicate lookup to search the list of handlers�

�lookup l V � searches the list X in �exnst X� for the �rst packet whose exception name

is l� The search program for lookup would therefore need to check whether two exception

names are equal or not� i �e� I need an inequality predicate for exception names� Specifying

inequality in the presence of � is a rather delicate matter� Suppose I am able to prove

�x y� x �� y� how can I then use it$ Obviously� instantiating the proof for x � c and

y � c� where c is a constant� will lead to inconsistencies� �HSH��� SH��� Gir��� analyze

such situations� However� the results are not very conclusive as yet�

The solution I adopt is to take the type ext to be nat of section ���� and as shown in sec�

tion ���� inequality between numbers can be speci�ed in FORUM� I generate new exception

names using the paradigm of inc in section ���� The signature for the various constants is

given in �gure ����� In the translation in �gure ����� l is translated to �ex l�� Given the

new interpretation of ext� I have to rede�ne the translation� As ExnNames is a countable

set� there is an isomorphism between ExnNames and ext� Hence� by abuse of notation I

let l denote a term of type ext� which denotes the number to which l is mapped by the

isomorphism�

The signature for the additional constants is given in �gure ����� The signature for spec�

ifying �ve� �ve� is de�ned as the set consisting of the elements of �v � the constants in

�gure ����� and the constants in �gure �����

��

pkt � ext� vl� �vl� o�� packet

push � ext� vl� �vl� o�� tm� o
pop � o� o

nil � packet list
�� � packet� packet list� packet list

exnst � packet list � o
isexn � vl� �ext� o�� o

z � ext
s � ext� ext

neq � ext� ext� o
sigctr � ext� o

Figure ����� Constants for exception management in FORUM

I consider handle as an instruction to store an exception handler with the current continu�

ation� and raise as an instruction to search for the most recently installed handler for the

raised exception� �handle M l V � will cause V to be pushed on the stack of handlers as

the handler for l before the execution of M begins� and if the execution of M terminates

without raising l to the handler V � then V is removed from the stack of exception handlers�

�raise l V � causes the system to look in the exception stack from top to bottom for a handler

for l� If a handler is found for l� then control is passed to the handler and its continuation�

or else the exception returns to the top�level as an uncaught exception� The speci�cation

for the new constructs along with the speci�cation for the auxiliary non�logical constants

is presented in �gure ���� The evaluator� Eve� is de�ned to be the universal closure of the

clauses in �gure ���� the clauses in Ev �

The clauses in �gure ��� highlight various aspects of the exception mechanism� The fact

that new exceptions can be created on the �y is implicit in the usage of the sigctr to generate

a new constants for exception names� The way continuations are handled by exceptions

is made explicit by handle storing the current continuation along with the handler in the

exception stack� The search for a matching exception explains how exceptions can cause

a program to discard its current continuation and reinstate the continuation stored with

the handler� The issue of locally installing and removing handlers is a separate concern�

managed by the stack like maintenance of exnst via push and pop� The clause for lookup

�

�eval �exn R� K�� �sigctr Y � �� �eval �RY � K�� �sigctr �s Y ��
�eval �install M N P � K� �� �eval N 	v � vl� isexn v 	w � ext�

�eval P 	u � vl� �push w u K M���
�eval �signalM N� K� �� �evalM 	v � vl� isexn v 	w � ext�

�eval N 	u � vl� �lookup v u���

�isexn �ex L� K� �� �KL�
�push L V K M�� �exnst X� �� �evalM 	v� �pop �K v���

� �exnst �pkt L V K� �� X�
�pop P �� �exnst �pkt L V K� �� X� �� P � �exnst X�

�neq �s X� z� �� �
�neq z �s X�� �� �

�neq �s X� �s Y �� �� �neq X Y �
�lookup L V �� �exnst �pkt L U K� �� X� �� �apply U V K�� �exnst X�
�lookup L V �� �exnst �pkt L� U K� �� X� �� �neq L L��

� ��lookup L V �� �exnst X��
�lookup L V �� �exnst nil� �� �uncaught L �signal L hV i��� �exnst nil�

Figure ���� Speci�cation in FORUM for new constructs in �ve

uses a new constant � � Although the use of � makes the intention clear� it is not essential

because in FORUM

� # A �� B �� C �� �A � B� �� C

is provable�

The key point is that neither do I introduce any new clauses for the constructs in �v� nor

do I modify the existing clauses in �v� The speci�cation of the exception mechanism is

a modular extension to the speci�cation for �v� The fact that I can specify the stack in

the environment using a logical connective� i �e� � � is rather important� If I attempt to

specify �ve using non�logical constants in the spirit of abstract machines� then I will not

have to add new clauses for �v� but I will have to rede�ne the clauses for �v to explicitly

carry along the exception stack� However� because of the proof rules for � � I am able

to keep the stack passively in the environment� and interact with it only when I have to

deal with exceptions� The rich proof theory of FORUM provides me the tools to specify the

maintenance of the environment in a logical fashion� I now state the correspondence theorem

��

between the two speci�cations� namely Eve and �HMT���� If Ex is a set of exception names�

let lEx be one plus the largest number to which any element of Ex is mapped� Further�

G�l P � �def P � �exnst nil�� �sigctr l��

De
nition ���� �Translating Answersve to FORUM� Ave translates terms in Answersve to

terms in FORUM of type o� Let K be a constant of type vl� o in FORUM�

Ave�VK� � �K �ve�V ��

Ave��pk l V � K� � �uncaught l �ve�V ��

De
nition ���� �Evaluating �ve terms in FORUM� LetM be a �ve�term� A � Answersve�

and Ex� be an exception state such that all the free variables of M are in Ex�� M in

exception state Ex� evaluates to A with the exception state Ex�� written as

evalvs�Hve�M� lEx�Ave�AK� lEx��� if

�ve � Eve # �� �K � vl� o� G�lEx�Ave�AK�� �� G�lEx� �evalHve�M� K��

is provable in FORUM�

Theorem ���� �Correspondence theorem for �ve Let M be a �ve term� Ex� be the

exception state consisting of all the exception names in M � A � Answersve� and Ex� be the

exception state consisting of all the exception names in A� All the free variables of M are

in Ex��

hMEx�i � hAEx�i if and only if evalvs�Hve�M� lEx�Ave�AK� lEx��

The proof of theorem ���� is deferred to the appendix� The proof is along the same lines

as the proof for theorem ���� The logical maintainence of environments permits me to use

cuts to compose proofs� I illustrate the proof strategy going left to right when hN PE�i �

h�pk l V � E	i� One way this may happen is that

��

� hNE�i � h	x� QE�i�

� hPE�i � hUE�i and

� hQ�x �� U � E�i � h�pk l V � E	i�

The evaluation trees of N � P and Q�x �� U � are smaller than the evaluation tree of �N P ��

Let N� �def Hve�N�� P� �def Hve�P �� Q� �def Hve�Q�� U� �def �ve�U�� V� �def �ve�V �

and A �def �uncaught l V �� By induction hypothesis I get proofs ��� �� and �	 in FORUM

respectively for

� �v K� � Ev # G�lEx� �K� �abs 	x� Q���� �� G�lEx� �eval N� K����

� �v K� � Ev # G�lEx� �K�U��� �� G�lEx� �eval P� K���� and

� �v K	 � Ev # G�lEx� A� �� G�lEx� �eval Q��x �� U�� K	���

In the proof �	 I use lemma ��� to rewrite Hv�Q�x �� U �� as Q��x �� U��� Using the above

proofs I need to construct a proof for the sequent

�v K � Ev # G�lEx� A� �� G�lEx� �eval �app N� P�� K���

I construct the required proof below� To keep the proof readable� I do not write Eve in

the intuitionistic context� and the signature which is �ve K� In the proof let C� �def

	v� �eval P� 	u� �apply v u K��� and C� �def 	u� �apply �	x� Q�� u K�� Note that

�C� �abs 	x� Q��� is � equivalent to �eval P� C��� and that �C�U�� is � equivalent to

�apply �abs 	x� Q�� U� K�� The last proof rule is CutL in the construction below�

�
G�lEx� A� �� G�lEx� �eval P� C���

��
G�lEx� �eval P� C��� �� G�lEx� �evalN� C���

G�lEx� A� �� G�lEx� �evalN� C���

G�lEx� A� �� G�lEx� �eval �app N� P�� K��
backchain

To complete the proof I have to construct � and ��� �� is constructed from ��� by using

CutS on K� with C�� I show the construction of �� I use a CutL followed by a backchain

on the left sub�proof of CutL�

��

�	
G�lEx� A� �� G�lEx� �eval Q��x �� U�� K��

G�lEx� A� �� G�lEx� �eval C� U���
��

G�lEx� C�U�� �� G�lEx� �eval P� C���

G�lEx� A� �� G�lEx� �eval P� C���

The construction of �� and �	 is along the lines of ��� using �� and �	� respectively� The

surprising fact is that the structure of the proof construction given above� and the construc�

tion of �i�i � �� �� is identical to the construction given in the example for theorem ���� The

fact that I can use Cut rules to compose proofs and cut�elimination to obtain computations

in the presence of exceptions is a convincing argument for the claim that Eve is a declarative

speci�cation of �ve�

��� �vc � Continuations in UML

In this subsection I specify �vc � �v with continuations� A continuation is that part of a

program which must be evaluated to obtain the �nal value of the computation� For example�

consider the evaluation of �(�(� �� ��� When I am evaluating �(� ��� the remaining part

of the computation is �(� ��� The idea being that the value of �(� �� will replace �� and

then computation will start once again� or� in other words� 	x� �(x �� is the continuation�

Informally� one may think of a continuation as a function which takes the value of the term

being evaluated currently as its argument� and then continues the computation� If I can

represent the continuation of a program in the program itself� then I can change the control

�ow of the program during its evaluation� Thus� continuations provide a functional means

of representing the control �ow of the program�

Continuations have been used widely in the semantics� compilation and design of program�

ming languages �Gor�� Sto� SW�� AJ��� App��� Ste�� RC��� SF���� Many program�

ming languages provide language constructs which allow the programmer to take control

of the continuation of the program during the computation and manipulate it� e�g � callcc

in SML of New Jersey� and call�with�current�continuation in scheme� Programming with

continuations introduces a rich programming style� �Fri��� DH��� Wan��� implemented

��

coroutines and process schedulers using scheme�style call�with�current�continuation� �Rep���

implemented CML� a concurrent higher order functional language with concurrency primi�

tives� using callcc in SML of New Jersey�

Continuations are not a part of the core SML �HMT���� The reasons for not providing

language support for manipulating continuations are not presented in �HMT���� However�

given the obvious utility of continuations as a programming paradigm� I consider �rst�class

continuations as an important aspect of a programming language� Moreover� SML of New

Jersey does include callcc� a construct that allows the programmer to capture the current

continuation� We saw in section ��� that exceptions can be speci�ed in natural semantics�

and that continuations are manipulated when exceptions are raised� Hence� some level

of continuation manipulation can be speci�ed in the natural semantics framework� Thus

encouraged� I attempted to specify callcc in the natural semantics framework outlined in

�HMT���� The operational semantics of callcc is informally speci�ed as � �rst evaluateM to

V � and then apply V to whatever the current continuation is� Hence� to specify callcc I need

to formalize the notion of current continuation within the syntax of the language� Without

changing the essential nature of the natural semantics framework it seemed impossible to

specify callcc�

In natural semantics� the continuation at any point of the computation is not a part of the

syntax� For example� let us look at the evaluation for �M N� in �gure ����

M � 	x� P N � U P �x �� U � � V

M N � V

The continuation of M is a program which will take 	x� P � compute N to U and then

compute P �x �� U � to V � This information is encoded in the above rule by the three

separate hypotheses of the rule� and demanding that the hypotheses be read from left to

right� If I want to capture the current continuation in the program� then I must be able to

represent the continuation in the evaluation rule � it is not clear how to do this in natural

semantics� Exceptions also manipulate continuations � how can exceptions be speci�ed

in natural semantics� Exceptions can be speci�ed in natural semantics because of two

��

M ��� � � � ��vc�
j callccM
j throw M M

E ��� � � � �EvContvc�
j E�callcc � ��
j E�throw � �M �
j E�throw V � ��

Figure ����� Syntax for �vc

key reasons� Firstly� exceptions do not allow the programmer to capture the continuation

as a part of the program� Secondly� exceptions do not allow the programmer to use a

continuation more than once� Although the path taken in �CF��� is a beginning towards

using a concurrent meta�theory with side�e	ects� it is however restricted by the fact that

there are essentially two threads� the program evaluator and the administrator�

The syntax for �vc is presented in �gure ����� The de�nitions of M and E in �gure ���

are extended with the clauses in �gure ���� to obtain �vc and EvContvc respectively� The

de�nition for V in �gure ��� remains unchanged for Valuesvc� However� the non�terminal

M ranges over the extended de�nition� I think of �callcc V � as creating a process out of the

current continuation� called the continuation process� the process identi�er for the created

process is passed to V � Unlike processes created in concurrent languages� the continuation

process does not start computing on its own� in fact it lies dormant� The process identi�ed

by l is invoked by �throw l U�� As �vc is a sequential language� only one process should be

active at any given time� Hence� the continuation process is dormant when created� and

when a continuation process is invoked using throw� the evaluation thread terminates and

the continuation process becomes the evaluation thread� I �nd this view of callcc to be very

useful� especially in light of the fact that one of the most signi�cant uses of callcc has been to

implement CML in SML of New Jersey �Rep���� Adopting the paradigm used in section ���

to specify the HO��calculus in FORUM� I directly specify the above process�style reading

of callcc in FORUM�

��

catch � tm� tm

jump � tm� tm� tm

resume � vl� vl� o

cont � vl� �vl� o�� o

Figure ����� Constants for translating �vc terms

�eval �catch M� K� �� �evalM 	v� �l� contC�l K�� ��apply v l K�� �cont l K���
�eval �jumpM N� K� �� �evalM 	v� �eval N 	u� �resume v u���

where contC�l K� �def �U� ��resume l U�� �cont l K�� �� ��KU�� �cont l K��

Figure ����� Speci�cation in FORUM for new constructs in �vc

The signature for the speci�cation� �vc� is de�ned to be �v extended with the constants

in �gure ����� e�g � callcc is translated to catch� I de�ne translations �vc � Valuesvc � vl�

Hvc � �vc � tm� �vc � vl � Valuesvc and Lvc � tm � �vc in the appendix� For example�

Hvc�callcc M� � catch Hvc�M�� The following lemmas regarding the translations and

substitutions are proved in the appendix�

Lemma ���� Let M � �vc� V � Valuesvc� N and U be a FORUM terms of types tm and

vl respectively�

� Hvc�M �x �� V �� � Hvc�M��x �� �vc�V ���

� Lvc�N �x �� U �� � Lvc�N��x �� �vc�U���

The evaluator Evc for �vc is the universal closure of the clauses in �gure ���� along with the

clauses in Ev� Below� I outline the evaluation of �eval �catch M� K� to highlight the novel

features of this speci�cation�

� To evaluate �eval �catch M� K�� I �rst evaluate M to a value V � which is passed to

the continuation 	v� �l� contC�l K�� ��apply v l K�� �cont l K���

��

� Evaluation of �l� contC�l K�� ��apply V l K�� �cont l K�� creates a new name l � vl

and makes contC�l K� a part of the evaluator�

� Finally� I proceed with the evaluation of �apply V l K�� �cont l K��

Placing �cont l K� in the environment of �apply V l K� is the creation of the continua�

tion process as a dormant entity � l is the process identi�er for the continuation process

�cont l K�� Every time I create a continuation process� I introduce the contC�l K� clause

which associates the process identi�er l to �cont l K�� the continuation processes� When

�resume l U� synchronizes with �cont l K�� it results in the evaluation of �K V � with

�cont l K� in the environment� �jump M N� terminates the current evaluation thread and

invokes one of the dormant continuation processes� The main novelty lies in the way I can

create new entities in the environment� e�g� �cont l K�� The created processes lie in the

environment dormant� and can be activated by passing control explicitly to them� e�g� the

contC�l K� clause� This speci�cation provides a view of catch and jump as a restricted form

of concurrency where it is possible to have more than one process� However� only one of

the processes can compute at a given time� Given this basic understanding� it is natural

that callcc in SML of New Jersey was the basis of the CML implementation in SML of

New Jersey �Rep��� and call�with�current�continuation was used to implement co�routines

and process schedulers �Fri��� DH��� Wan����

I would like to de�ne when a termM evaluates to a value V � When computation starts� there

may be continuation processes de�ned in the environment in which M is to be evaluated�

As the computation of M proceeds� new continuation processes may be created� Hence�

the value V will have a continuation state� i �e� the continuation processes associated with

it� In this sense continuations behave like a mutable store� Hence� to evaluate �vc terms

one has to carry the continuation processes and the corresponding process identi�ers created

thus far� just as in evaluating programs with assignable variables one must carry along the

mutable store� A continuation state� written as "c� possibly subscripted� is de�ned to be

a �nite function from variables to EvContvc� dom�"c� denotes the domain of the function

"c� Let l�c denote a list of the variables in dom�"c� in any order� A key di	erence between

��

Cvc�� � K� � K

Cvc�E�f � �M � K� � 	v� �eval Hvc�M� 	u� K
� f v u�

Cvc�E�f V � �� K� � 	v� K � f �vc�V � v

Cvc�E�� �M � K� � 	v� �eval Hvc�M� 	u� �apply v u K
���

Cvc�E�V � �� K� � 	v� �apply �vc�V � v K��
Cvc�E�if � �M N � K� � 	v� �eval �ifbr v Hvc�M� Hvc�N��K

��
Cvc�E�let val x � � � in M � K� � 	v� �eval Hvc�M��x �� v� K ��

Cvc�E�callcc � �� K� � 	v� �l� contC�l K��� ��apply v l K��� �cont l K���
Cvc�E�throw � �M � K� � 	v� �eval Hvc�M� 	u� �resume v u��
Cvc�E�throw V � �� K� � 	v� �resume �vc�V � v�

where K� �def Cvc�EK � vl� o�

Figure ����� Cvc� translation of EvContvc to FORUM terms of type vl� o

the continuation state and the mutable store is that the process identi�ers in "c cannot be

reassigned� Consequently� "c is cycle�free� i �e� there is an ordering on l�c� say li� � � � lim

where dom�"c� has m elements� such that for all l � FV�"c�lij��� l � lij � j � �� m�� In

particular� l �� FV�"c�l��� for all l � dom�"c� and FV�"c�li��� � �� By a continuation

state I will henceforth mean a cycle�free continuation state� Cvc in �gure ���� translates

E � EvContvc to the terms in FORUM of type vl� o�

De
nition ���� �Translating continuation state into FORUM� The translation of "c� writ�

ten as "co� is a FORUM term of type o� o�

"co �def 	u � o�� l�c contC�l� K��� � � ��

contC�lm Km�� �u� �cont L K��� � � � � �cont lm Km��

Where m is the number of elements of dom�"c� and Ki �def Cvc�"c�li� K�� i � �� m��

Note the substitution of a term M for u in "co is treated like the substitution a term in in

the translation of a state� In particular� the free variables l�c in M will get %captured& by

the substitution�

��

�eval �catch M� K� � �exnst X� ��
�evalM 	v� �P l� contC�l KX�� ��apply v l K�� �cont l K X�� �exnst X���

where� contC�l KX� �def

�U Y� ��resume l U�� �cont l K X�� �exnst Y �� �� ��KU�� �cont l K X�� �exnst X��

Figure ����� Speci�cation for callcc in the presence of exceptions

De
nition ���� �Evaluating �vc terms in FORUM� Let M be a �vc�term� and "c� be a

continuation state such that all free variables of M are in dom�"c��� M with the continua�

tion state "c� evaluates to V with the continuation state "c�� written evalvc�M"c� V"c��

if

�vc � Evc # �� �K � vl� o� "c�
o�K V � �� "c�

o�eval Hvc�M� K�

is provable in FORUM�

A further issue arises when callcc and throw need to be speci�ed in the presence of exceptions�

i �e� I am extending �ve with �rst�class continuations� The question is regarding the status

of exception handlers when I throw to a continuation process� In SML of New Jersey� the

exception handlers are stored along with the continuation� Consequently� if I throw to a

continuation� then along with restoring the saved continuation as the current continuation� I

install the saved exception handlers as the currently installed exception handlers� Since the

de�nition of the continuation is extended to include exception handlers� the clause for catch

is changed to treat exceptions� The achievement here is that only the speci�cations for catch

and contC need to be changed
 everything else remains the same� The new speci�cations

for catch and contC are given in �gure ����� Note that the type of cont is vl� �vl� o��

packet list� o� The integration of �rst�class continuations will be done in detail later� when

I put together the speci�cation for UML using all the pieces� As �HMT��� does not specify

callcc and throw� I cannot prove equivalence between the two semantics for �vc�

�

��� UML � Putting it together

In this section I provide the speci�cation for UML � �v with state� exceptions and con�

tinuations� The syntax for UML is obtained by putting together the syntax in �gures ����

���� ����� and ����� A natural semantic speci�cation for �v with state and exceptions is

obtained in two steps� First� take the rules in �gures ���� ���� and ����� Now� apply the

state and exception convention to the rules thus obtained� The resulting set of rules is the

natural semantic speci�cation for �v with state and exceptions� As discussed in section ����

I do not have a natural semantics speci�cation of �rst�class continuations�

In FORUM� it is possible to specify UML as evidenced by the speci�cations of its parts in

sections ���� ���� ��� and ���� The signature of the translation� �ml� is the union of �v�

�vs� �ve and �vc� The translations from UML to FORUM and back� � � Values � vl�

H � � � tm� A � Answers � �vl � o� � o� C � EvCont � �vl � o�� � � vl � Values�

and L � tm � �� are obtained by putting the translations for the fragments together�

The de�nitions are deferred to the appendix� The evaluator for UML� E is de�ned as

the universal closure of the clauses in �gures ���� ����� ���� and ���� � I put together

the di	erent modules specifying di	erent pieces of FORUM� A con�guration is a triplet of

continuation state� state and the exception names with respect to which a UML term is

evaluated� I now de�ne the translation of a con�guration in FORUM� and the evaluation

for UML terms in FORUM�

De
nition ���� �Translating con�guration to FORUM� Let C �def h"c S Exi be a

con�guration� where "c is a continuation state� S is a state and Ex a set of exception

names� The translation of C� written as Co� is a FORUM term of type o� o�

Co �def

	u � o�� PS lS p�c� getC�P� l��� setC�P� l��� � � �� getC�Pn ln�� setC�Pn ln��

contC�p� K��� � � �� contC�pm Km��

�u�"S � �cont p� K��� � � � � �cont pm Km�� �sigctr lEx�� �exnst nil��

��

Where

� n is the number of elements in dom�"c�� and m is the number of elements in dom�S��

� Ki �def C�"c�pi� K�� i � �� n��

The domain of a con�guration C �def h"c S Exi� written as dom�C�� is the union of

dom�"c�� dom�S� and Ex� These are the variables which have been declared to be values

by the con�guration C� Note that analogous to the case of So and "co� applying a term M

to Co causes the free occurances of lS and p�c in M � if any� to get captured�

De
nition ���� �Evaluating UML terms in FORUM� Let M be a UML term� A �

Answersve� and C� a con�guration such that FV�M� � dom�C��� M in the con�gura�

tion C� evaluates to A in the con�guration C�� written as eval�MC� A C��� if

�ml � E # �� �K � vl� o� CoA�AK� �� Co�evalM K�

is provable in FORUM�

The part of UML speci�ed by natural semantics� �vse� does not contain �rst�class contin�

uations� If I restrict the above de�nitions to UML without callcc and throw� then I can

prove a correspondence theorem between the two speci�cations� For this fragment I con�

sider con�gurations in which the continuation state is empty� The proof is deferred to the

appendix�

Theorem ���	 �Correspondence theorem for �vse Let M � �vse� A � Answersvse�

C� �def h� S� Ex�i and C� �def h� S� Ex�i� Further� M is closed with respect to C��

hMC�i � hAC�i if and only if eval�H�M� C�A�AK� C��

��

Chapter �

Program Equivalence for �vs in

FORUM

In this chapter� I study observational equivalence for �vs programs in FORUM� A program

is treated like a black�box � the only way to determine the behavior of a program is to

give it some inputs and watch the output it generates� In this paradigm� two programs

are equivalent if whenever they are given identical inputs they generate identical outputs�

Equivalence of programs is relative to what can be observed about their computation� For

example� the two sorting routines� binary sort and quicksort �Set���� are equivalent if all

I can observe is that the algorithms sort their inputs� However� if I can observe the time

taken to sort inputs by binary sort and quicksort� then they will not be equivalent�

Understanding observational equivalence of programs is of fundamental importance for a

variety of reasons� For example� the compiler for SML of New Jersey �rst transforms

programs into a continuation�passing�style �CPS� intermediate language� and then performs

various transformations on the program in the intermediate language to improve its run�

time performance �App���� Let us assume that SML programs and their translations to CPS

language evaluate to the same value� Still� there is a question regarding the transformations

done on the CPS programs � what is the relationship between the original CPS program

��

and the transformed CPS program$ Unfortunately� �App��� does not answer this question in

a formally precise manner� Suppose I take a program P in the CPS language and transform

it to Q following �App���� What is the relationship between the observations I can make of

P and Q$ If the observable properties of P and Q are identical� then up to our de�nition of

observations the transformation maintains the essential nature of the program� However�

if the observable properties of P and Q are not identical� then there will be situations

in which the observable results produced by Q will di	er from the ones produced by P �

Such a transformation can only be justi�ed if Q is observationally equivalent to P in the

environment in which Q is used� The claim is that observational equivalence provides a

framework to study transformations performed by compilers� Along similar lines� one can

want to change pieces of existing programs as better algorithms and implementations are

developed� Observational equivalence provides a framework to verify whether two programs

can be exchanged�

The study of observational equivalence for functional languages with state has been partic�

ularly di
cult �MS��� OT��� SF��� MT��� Sie��� OT���� In specifying �vs� I have placed

the evaluator for �vs within the rich proof theory of FORUM� I use the meta�theory of

FORUM to analyze observational equivalence� I �rst de�ne observational equivalence for

�vs programs with respect to the natural semantics and the speci�cation in FORUM� Evs�

Next� using a theorem in �MT���� I prove that the two de�nitions are equivalent� I prove

that reduction preserves observational equivalence� This is the basis for the equational the�

ory for �vs in �SF���� I also prove the observational equivalence for some of the examples in

�MS��� OT���� One of the main focuses of my future work will be to analyze proof�theoretic

properties of the transformations required for proving observational equivalences�

��� De�ning Observational Equivalence

In this section� I de�ne two notions of observational equivalence� Firstly� I de�ne when

two �vs �de�ned in �gure ���� programs are observationally equivalent with respect to

their natural semantics speci�cation �de�ned in section ����� Secondly� I de�ne when two

��

�vs programs are observationally equivalent with respect to Evs� the speci�cation of �vs

in FORUM� de�ned in section ���� Next� I prove that the two notions of observational

equivalence are identical� This result lets me study the observational equivalence for �vs

programs in FORUM � the main aim of this chapter�

The basic idea of observational equivalence is that one places a program in a context� and

then observes its behavior� Two programs are observationally equivalent if and only if in

all contexts the observable behavior remains the same� There are two key concepts here �

context and observable behavior� Suppose I have two programs�M and N � in �vs� In what

contexts can I place M and N� If I think in terms of program transformations� then M is

a part of a larger �vs program� and I am replacing it with N � the contexts must come

from the syntax of �vs� Following the argument� a context would be a �vs program with

one of its pieces missing� The idea would then be that programs M and N have identical

observational behavior with respect to contexts of the given language� in this case �vs�

What are the observable properties of a program� Many observations can be made about the

computation of a program in a context� Some of the many observable properties of interest

are � whether the evaluation of programs terminate� whether the programs evaluate to

the same answer� whether the programs yield the same answer with identical execution

time� whether the programs create identical number of new memory locations� etc� The

most primitive of the choices listed above is observing whether the programs evaluate to

the same answer� As the evaluator for the language is deterministic� observing whether

programs evaluate to the same answer yields the same relation as observing whether two

programs terminate� The other choices for observations are more re�ned versions of these

two primitive observations� If I transformM to N � the minimal property that I would want

of the resulting programs is that one terminates if and only if the other does � guaranteeing

the safety of the transformation� I take termination of the evaluation of programs as the

observation I make�

Contexts� ranged over by C� are de�ned in �gure ���� I use � to denote the place in the

context where the program will be placed� For example� 	x� � is a context� Note that

��

C ��� j � �Contextsvs�
j x x � Vars
j n n � Z
j b b � B
j �	x� C�
j �
j �f C C� f � O
j �C C�
j �if C C C�
j �let val x � C in C�
j �let fun f x � C in C�

Figure ���� Contexts in �vs

placing a term�M � in the holes in a context� C� written as C�M �� may cause binding of free

variables in the term� For example� if I place x in the hole in 	x� �� then I get 	x� x � the

free variable x gets captured by the context� I now de�ne when a program terminates in a

state with respect to natural semantics�

De
nition ��� �Termination of programs in �vs in natural semantics� Let M � �vs and

S� be a state such that close�S�M�� M in the state S� terminates� written as �MS���ns�

if there exists a value V and a state S� such that hMS�i � hV S�i�

Observational equivalence using program contexts was �rst de�ned by �Mor���� It has been

studied extensively for call�by�name and call�by�value ��calculus� and its extensions with

state �Abr�� AO��� Abr��� Hoa��� MT��� MS��� OT��� Plo�� PS��� SF���� The de�nition

of observational equivalence for �vs is an extension to the de�nition for �v �Mor��� along

the lines of �MT����

De
nition ��� �Observational Equivalence with natural semantics� Let M and N be two

�vs terms� and � be the empty state� M is said to be observationally equivalent to N with

respect to the natural semantics� written as M ��ns N � if

�C � Contextsvs such that C�M � and C�N � are closed terms� �C�M � �� �ns if and only if

�C�N � ���ns�

��

To determine whether two programs are equivalent� I have to check for their termination

in all contexts in Contextsvs� This obviously becomes a very di
cult problem because one

has no control over what the arbitrary contexts might do� �MT��� provides an alternate

de�nition of observational equivalence in which they are able to reduce the contexts to

EvContvs� the evaluation contexts� I use a slight variation of the de�nition of ��ciu in

�MT����

De
nition ��� ���ciu� Let M and N be two �vs terms� M is said to be observationally

equivalent to N with respect to natural semantics� written as M ��ciu N � if

for all E � EvContvs and for all states S� such that close�SE�M �� and close�SE�N ���

�E�M � S��ns if and only if �E�N � S��ns�

Going from arbitrary contexts to evaluation contexts� one loses the capability to bind vari�

ables using 	 and state� Since we are only evaluating programs which are closed with

respect to the 	 bound variables� the main concern is the binding of assignable variables�

Consider the two programs �asg l �# �� and �asg l # ��� where M #N is syntactic sugar for

��	d� N� M�� d �� FV�N�� I evaluate the programs in a state which maps l to �� Clearly�

the two programs are not observationally equivalent with respect to the de�nition for ��ns�

However� if in the de�nition of ��ciu I had insisted on E being closed� then the two pro�

grams would have been equivalent� The point is that E�M � may have free variables which

are de�ned in the state in which E�M � will be evaluated� The testing of the program is

done by not only placing it in di	erent evaluation contexts� but also by altering the state

in which it is evaluated� The following theorem showing the equivalence of ��ns and ��
ciu

was proved in �MT����

Theorem ��� �Theorem ciu� �MT��� Let M and N be two �vs terms�

M ��ns N if and only if M ��ciu M �

I translate the de�nition of ��ciu into FORUM� In order to do this� I have to generalize the

de�nition of evalvs� because the initial continuation instead of being K� as in the de�nition

��

Cvs�� � K� � K

Cvs�E�f � �M � K� � 	v� �eval Hvs�M� 	u� K
� f v u�

Cvs�E�f V � �� K� � 	v� K� f �vs�V � v

Cvs�E�� �M � K� � 	v� �eval Hvs�M� 	u� �apply v u K
���

Cvs�E�V � �� K� � 	v� �apply �vs�V � v K��
Cvs�E�if � �M N � K� � 	v� �eval �ifbr v Hvs�M� Hvs�N��K

��
Cvs�E�let val x � � � in M � K� � 	v� �eval Hvs�M��x �� v�K��

Cvs�E�cell � �� K� � 	v� �P l� getC�P l�� setC�P l�� ��K � l�� �P v��
Cvs�E�read � �� K� � 	v� �get v K ��

Cvs�E�write � �M � K� � 	v� �eval Hvs�M� 	u� �set v u K
���

Cvs�E�write V � �� K� � 	u� �set �vs�V � u K
��

where K� �def Cvs�EK � vl� o�

Figure ���� Cvs� translation of EvContvs to FORUM terms of type vl� o

of evalvs� is now speci�ed by E� I �rst de�ne Cvs� the translation of E into FORUM in

�gure ���� The de�nition of evalvs needs to be changed�

De
nition ��� �Evaluation in FORUM given an initial continuation E� Let M � �vs�

E � EvContvs and S� be a state such that close�S� E�M ��� M with S� in the initial

continuation E evaluates to V with S�� written as evals�EM S� V S��� if

�vs � Evs # �� �K � vl� o� S�
o�K V � �� S�

o�eval Hvs�M� Cvs�EK��

is provable in FORUM�

It is quite obvious that evalvs will be true of E�M � exactly when evals is true of M in the

continuation E� The following lemma states the relationship precisely� and follows from an

easy induction on the structure of E and the de�nition of Cvs�

Lemma ��� Let M � �vs� E � EvContvs� V � Valuesvs� S� be a state� and S� be a state

such that close�S� E�M ���

evalvs�E�M � S� V S�� if and only if evals�EM S� V S��

��

I now de�ne the termination property� �f � for programs with respect to Evs using the notion

of evaluation de�ned by evals� Next� I de�ne when two �vs programs are observationally

equivalent on the basis of their evaluation in FORUM�

De
nition ��� �Termination of programs in �vs in FORUM� LetM � �vs� E � EvContvs�

and S� be a state such that close�S� E�M ��� M in the state S� with the initial continuation

E terminates� written as �EM S�� �f � if there exists a value V � and a state S� such that

evals�EM S� V S���

De
nition ��	 �Observational Equivalence with Evs� Let M and N be two �vs terms� M

is said to be observationally equivalent to N with respect to Evs� written as M ��f N � if

for all E � EvContvs and for all states S� such that close�SE�M �� and close�SE�N ���

�EM S��f if and only if �EN S��f�

In order to use the translation in FORUM to prove observational equivalence� I �rst need

to prove that ��f de�nes the same relation as ��ciu�

Theorem ��� ���ciu and ��f coincide Let M and N be two �vs terms�

M ��ciu N if and only if M ��f N �

Proof� To prove the above theorem� it is enough to prove that �EM S�� �f if and only

if �E�M � S�� �ns� for any state S� and E � EvContvs� such that close�S� E�M �� and

close�S� E�N ���

Unraveling de�nitions of �f and �ns� all I need to prove is that if for some V � Valuesvs

and state S�� evals�EM S� V S�� then hE�M � S�i � hV S�i� Conversely� if for some

V � Valuesvs and state S�� hE�M � S�i � hV S�i then evals�EM S� V S���

By the Correspondence theorem ��� in section ���

evalvs�E�M � S� V S�� if and only if hE�M � S�i � hV S�i�

��

Further note that by lemma ���

evalvs�E�M � S� V S�� if and only if evals�EM S� V S���

Using these facts the proof is completed�

Now suppose I want to prove that two programs M and N are observationally equivalent�

Suppose� for someE � EvContvs� states S� and S�� and V � Valuesvs such that FV�E�M �� �

dom�S�� evals�EM S� V S�� is true� I look at the resulting proof tree in FORUM and

transform it to a proof tree for evals�EN S� V S��� If I can exhibit such transformation

to and fro� then I have established thatM is observationally equivalent to N � The problem

of determining whether two programs are observationally equivalent has been reduced to

specifying proof transformations�

��� Reduction in �vs preserves Observational Equivalence

In this section� I use Evs to prove that if a program reduces to another program� then the

two programs are observationally equivalent � the basis for the equational theory in �FH����

evals de�nes the evaluation of a termM in the state S� and continuation E to a value V and

state S� In this sense� evals is not specifying reductions� rather� it is specifying complete

evaluations� However� using lemma ��� it can be easily proved that

evals�EM S� V S�� if and only if evals�� � E�M � S� V S���

Using this basic intuition� I de�ne when M reduces to N �

De
nition ���� �Reduction in �vs� Let MN � �vs� S� be state� and S� be a state such

that close�S�M�� M in state S� evaluates to N in state S�� written as reds�MS� N S���

if

�

�vs � Evs # �� �K � vl� o� S�
o�eval Hvs�N�K� �� S�

o�eval Hvs�M� K� is provable in

FORUM�

I would like to prove that reduction preserves observational equivalence� i �e� if

reds�MS� N S�� then M ��f N � Unfortunately� as stated my claim would be false� Fol�

lowing is a counter�example�

Example ���� Let M �def ref �� S� �def �� N �def l� and S� �def hl �i� Clearly

reds�MS� N S�� is true�

However� ref � is not observationally equivalent to l� To distinguish the two terms� take

E � deref � � and S � hl P i� where P is a divergent program�

The problem is that evaluation of a program may create new memory cells and change the

existing state� However� the statementM ��f N throws away this information� In the above

example l is de�ned in the state S�� but this information was not used in the attempted

proof of ref � ��f l� On the other hand� �ref �� is observationally equivalent to l with respect

to all states which map l to �� Suppose we had a way of representing state in the syntax

of �vs� then the situation can be repaired� I would change the succedent of my claim to

M � ��f N �� where M � and N � are �vs terms� such that M � incorporates the state S� and

M � while N � incorporates the state S� and N � I will prove the new statement of my claim

below� I de�ne the translation of a state into the syntax of �vs �MT��� SF���� �M #N� is

syntactic sugar for �	d� N�M � d �� FV�N��

De
nition ���� Given a state S� I de�ne a �vs term S�� the encoding of state S in �vs�

S� �def ��	x� � � � xn y�asg x� V�# � � � # asg x� V�# y��ref �� � � ��ref n��

Where

� lS � x� � � � xn�

��

� y is distinct from all xi� i � �� n��

� S�xi� � Vi� i � �� n��

The proof of the following lemma is immediate from the construction of S� for a state S�

Lemma ���� Let N � �vs� and S a state such that close�SN��

reds��S
�N� � N S� is true�

Theorem ���� Let M be a redex� N � �vs� S� be a state� and S� a state such that

close�S�M��

If reds�MS� N S�� then �S�
�M� ��f �S�

�N��

Proof� Assume givenMN � �vs� S� a state such that close�S�M�� and reds�MS� N S��

is true� LetM � �def �S�
�M� andN � �def �S�

�N�� Unraveling the de�nition ofM � ��f N
��

I have to prove that for any arbitrary state S and E � EvContvs� such that close�SE�M
���

and close�SE�N ���� �EM � S��f if and only if �EN � S��f �

Going from right to left� I have to prove that if there exists V � Valuesvs� and a state

S� such that evals�E� N
� S V S��� then evals�E�M

� S V S���

Assume evals�E� N
� S V S ��� I have to construct a proof for evals�E�M

� S V S��� Evs

is in the intuitionistic part and �vs K is in the signature of all the sequents shown in

all the proofs that I construct� I start by constructing a proof below� called ��� In ���

�� is obtained by unfolding the de�nition for reds�MS� N S�� and lemma ���� gives me

��� Let M� �def Hvs�M�� N� �def Hvs�N�� M
�
� �def Hvs�M

��� N �
� �def Hvs�N

���

K� �def Cvs�EK�� and V� �def �vs�V ��

��

��
S�

o�eval N� K� �� S�
o�evalM� K�

��
S�

o�evalM� K� �� �eval M �
� K�

S�
o�eval N� K� �� S�

o�eval M �
� K�

CutS

By de�nition of evals� and N
� I must have the following proof in FORUM�

��
�S �S� K � CLS # S�

o�K V�� �� �eval N� K
���"S �"S�

��� backchain on ref clause �R� R

�S K � CLS # S
�o�K V�� �� �eval N �

� K
���"S

��� �R� R

�� �K � vl� o� S�o�K V�� �� So�eval N �
� K

��

Using �� in the above proof� I construct �� below�

��
�S �S� K � CLS # S

�o�K V�� �� �eval N� K
���"S �"S�

��� � R �R

�S K � CLS # S
�o�K V�� �� So

��eval N� K
���"S

Using ��� I construct the required proof below� To keep the proof readable� I do not write

�S K in the signature� and CLS in the intuitionistic part of some of the sequents�

��
S�o�K V�� �� �eval N� K

���"S
�

S�
o�eval N� K

�� �� �evalM� K
��

�S K � CLS # S
�o�K V�� �� �evalM �

� K
���"S

CutS

��� �R� R

�� �K � vl� o� S�o�K V�� �� So�evalM �
� K

��

To complete the construction� I build �
 below� �	 is obtained from �� by in�ating the

signature and the intuitionistic parts of the sequents in the proof�

K� is a �S term
�	

�S K � CLS # S�
o�eval N� K�� �� S�

o�evalM� K��

�S K � CLS # S�
o�eval N� K

�� �� �evalM� K
��

CutS

�

Going from left to right� I use the fact the Evs is deterministic� because there is exactly

one clause for every term constructor� Hence� if reds�MS� N S��� then every evaluation

of M that evaluates the term beyond N must pass through the reduction of M to N �

Assuming evals�E�M
� S V S��� I have to construct a proof of evals�E� N

� S V S��� The

proof in evals�E�M
� S V S�� must have the following shape� To keep the proof readable�

I do not write the signature and the intuitionistic part of the sequent in all the sequents in

the proof�

�
�S �S� � CLS CLS� # S

�o�K V�� �� �eval N� K
���"S �"S�

��� reduction of M� in S� to N� in S�
S�o�K V�� �� �evalM� K

���"S �"S�
��� backchain on ref clause �R� R

S �o�K V�� �� �evalM �
� K

���"S
��� �R� R

S �o�K V�� �� So�eval M �
� K

��

Using � I construct the required proof below�

�
�S �S� � CLS CLS� # S

�o�K V�� �� �eval N� K
���"S �"S�

��� backchain on ref clause �R� R

�S � CLS # S�o�K V�� �� �eval N �
� K

���"S
��� �R� R

S�o�K V�� �� S�
o �eval N �

� K
��

The above proof highlights some key aspects Evs� IfM reduces toN � thenN �� the translation

of N � entails M �� the translation of M � Hence� whenever N � evaluates to a value� so will

M �� The proof going from right to left uses this fact and CutS to construct the required

proof� Now� N � entails M �� This does not necessarily imply that an evaluation ofM � has to

have N � as an intermediate state� Since Evs is deterministic� i �e� for every term construct

of type tm there is exactly one clause� if M � evaluates to a value� and N � entails M �� it

�

necessarily follows that the evaluation has N � in some intermediate state� This observation

yields the proof going from left to right in the above theorem�

��� Observational Equivalence proofs in FORUM

In this section I present the Meyer�Sieber examples �MS��� in the UML� and prove the

desired equivalences� interpreting equivalence as ��f � I have converted the Algol�like no�

tation of �MS��� into UML syntax following �MT���� State introduces new nuances into

the programming language� and correspondingly into any theory which tries to study the

equivalence of programs with state� The idea behind the examples was to highlight some

of the novel issues that come up when state is added to a higher order language� Let * be

a divergent program in UML�

Example ���� �Example �� LetM � �vs� andM� �def let val x � ref � in M � x �� FV�M��

M ��f M�

The intuitive justi�cation is simple� As x �� FV�M�� the creation of x has no e	ect on the

behavior of M �

The proof for this example follows from the following more general statement of the problem�

The lemma is proved by a straightforward induction on the height of the evaluations of

�S�
	 M� and M in FORUM� The essential point is that the evaluation of �S�

	 M� creates

new locations by picking new eigen�variables in FORUM� Hence� if �S�
	 M� is placed in an

evaluation context E� then E cannot access the newly created locations� The computations

of �S�
	 M� and M are identical except for this di	erence�

Lemma ���� �Elimination of inaccessible cells Let M � �vs� L �def l� � � � ln � and

S� be a state such that �

�

� close�S�M��

� L � dom�S���

� for all l � L� l �� FV�M��

� if l � FV�M�� then for all l� � L� l� �� FV�S��l���

� S	 is the restriction of S� to L�

�S�
	 M� ��f M

I �rst point out some equivalences for which I do not need induction on the height of proofs�

The proofs in FORUM for these terms are permuted to each other�

Remark ���� Let MN P�vs� and V � �vs�

�� let val x � V in M ��f �	x�M�V �

�� E�M � ��f let val x � M in E�x�� x �� FV�E��

�� E�let val x � M in N � ��f let val x � M in E�N �� x �� FV�E��

� let val x � ref M in E��� ��f let val x � ref V in E�asg x M �� x �� FV�M��

�� let val x � ref P in ��	z�M� N� ��f ��let val x � ref P in 	z�M�N�� x �� FV�N�

�� let val x � ref V in ��	z� M� N� ��f ��	z� let val x � ref V in M�N�� x �� FV�N��

z �� FV�M� 	 FV�V �

Equivalence � is obvious from the interpretation of letval� Equivalence � and � follow from

lemma ���� For equivalence �� observe that x is inaccessible from M � thus evaluating M

with or without x declared in the environment makes no di	erence� Equivalences � and �

result from the permutation of proofs because of information about variable occurrences�

Example ���	 �Example �� M � �vs�

�

� M� �def *�

� M� �def let val x � �ref �� in ��asg x true� # �M �� # if �deref x� * ��� x �� FV�M��

Lemma ���� M���
��f M���

Proof� The strategy is to show that for any E � EvContvs� and any state S such that

close�SM��� �EM� S��f is not true�

On the contrary� suppose that �EM� S�� �f is true for some E� � EvContvs� and state

S� such that close�S� E��M���� Then there exists a value V and a state S� such that

evals�E�M� S� V S�� is true� Now by the equivalence in remark ����

M�
��f ��M �� # let val x � �ref �� in �if �deref x� * ����

� V � �def �vs�V ��

� M � �def Hvs�M��

� *� �def Hvs�*��

� Q �def �let val x � �ref �� in �if �deref x� * ���� Q� �def Hvs�Q��

� N �def ��M �� #Q�� N � �def Hvs�N��

� C� �def Cvs�EK��

� C� �def 	u� �apply �abs 	d� Q�� u C��� d �� FV�Q��

By de�nition of ��f I have a proof � of

�vs K�S� � EvsCLS� # S
o
��K V �� �� �eval N � C���"S

�

in FORUM�

The last rules of � must be as shown below�

��
�vs K�S� � EvsCLS� # S

o
��K V �� �� �eval �app M � �� C���"S�

���
�vs K�S� � EvsCLS� # S

o
��K V �� �� �eval N � C���"S�

Suppose h�M �� S�i diverges then there cannot exist a �� because of theorem ���� There is

a contradiction� hence I am done�

Suppose h�M �� S�i � hU S�i� Hence� by theorem ��� I would get �� as shown below� Let

U � �def �vs�U�� S	 �def S��l �� ��� l �� dom�S���

��
�vs K�S� � EvsCLS� # S

o
��K V �� �� �eval *� C���"S�
���

�vs K�S� � EvsCLS� # S
o
��K V �� �� �eval Q� C���"S�

�vs K�S� � EvsCLS� # S
o
��K V �� �� �apply �abs 	d� Q�� U � C���"S�

���
�vs K�S� � EvsCLS� # S

o
��K V �� �� �eval �app M � �� C���"S�

Using theorem ��� and the fact that * is divergent I get that �� cannot exist in FORUM�

Example ���� �Example �� Let M � �vs�

� M	�� �def let val x � �ref �� in �let val y � �ref �� in M��

� M	�� �def let val y � �ref �� in �let val x � �ref �� in M��

Lemma ���� M	��
��f M	��

�

Proof� The idea is to show that given a proof for the evaluation of M	�� I can transform

it to an evaluation of M	��� and vice versa�

Let E be an arbitrary evaluation context and S� any state such that close�S� E�M	�����

Suppose hE�M	��� S�i � hV S�i� for some value V and state S�� Let V
� �def �vs�V ��

C� �def Cvs�EK�� N
�
� �def Hvs�M	���� N

�
� �def Hvs�M	����

By theorem ���� I have a proof in FORUM� ��� of

�vs�S� K � EvsCLS� # S
o
��K V �� �� �eval N �

� C���"S� �

I need to transform ��� into a proof for the evaluation of N
�
� in FORUM� The shape for ��

is shown below�

��
�vs�S� K � EvsCLS� # S

o
��K V �� �� �eval �app �app Q� l�� l�� C���"S� � �P� ��� �P� ��

���
�vs�S� K � EvsCLS� # S

o
��K V �� �� �eval N �

� C���"S�

Using ��� I can trivially get the evaluation for M	�� in FORUM� The proof in the other

direction follows from a similar argument�

The above proof shows the advantage of using eigen�variables to generate names of new

assignable variables� The two terms in this example can essentially be renamed to each

other� This fact is made precise by the usage of the eigen�variables�

Example ���� �Example �� Let M � �vs�

� M
�� �def *�

� M
�� �def let val x � �ref �� in

let val f � 	d� �asg x �(� �deref x���# �deref x� in

�M f� # �if �� � �mod �deref x� ��� * ��� x f �� FV�M��

�

Lemma ���� M
��
��f M
��

Proof� The strategy is to show thatM
�� will have no evaluation in FORUM� I only consider

the case when �M f� converges� as otherwise the argument is trivial� I introduce a new

idea in this proof�

The essential point of the example is that access to the local variable x is passed to M

only via f � Hence� the content of x can only be incremented by �� and then read out �

no other operation is possible on x� In a way� an abstract data type has been created with

the only interface function being f � The if statement checks whether this abstraction was

maintained by M or not�

Let

F �def �K V U� ��apply c V K�� �P U�� �� ��K � �U�� (���� �P � �U�� (�����

P and c are declared in the signature� F encapsulates the computational behavior of f �

Note how it does away with the name of the cell �P U�� and need for getC and setC clauses

for P �

Suppose I have a proof� �� in FORUM of

�vs�S� K c P l � EvsCLS� F # S
o
��K V

�� �� �eval �app M � c� C���"S� � �P ��

where E � EvContvs�

� S� is a state such that close�S� E�M ���

� V � �def �vs�V ��

� M � �def Hvs�M��

� C� �def Cvs�EK��

In � the only interaction for P is via F as there are no getC and setC clauses for P and l in

the sequent above� Thus� it is trivially true that S��l� is a multiple of ��

I construct �� from � using CutS� Let F � �def F �c �� Add��� and

Add� �def Hvs�	d� �asg x �(� �deref x���# �deref x���

Add� is a �vs l term
�

c P l � F # So
��K V

�� �� �eval �app M � c� C���"S� � �P ��

P l � F � # So
��K V

�� �� �eval �app M � Add�� C���"S� � �P ��

I construct �� below� Let CLl �def fgetC�P l� setC�P l�g� In this proof I have used the

equation � �U�� (�� � U (�� which is true if the division is for real numbers�

P lK U V � CLl Evs # �KU (��� �P U (�� �� �KU (��� �P U (��

��� evaluate Add�
P lK U V � CLl Evs # �KU (��� �P U (�� �� �apply Add� V K�� �P U�

��� �R �� R

P l�vs � CLl Evs # �� F �

Using �� and ��� I construct �	 below� �	 is the computation of �app M
� Add�� in FORUM�

By the observation regarding ��� S��l� is a multiple of �� Hence� it is clear that �if ��

� �mod �deref l� ��� * �� will evaluate to the value of *� Using theorem ��� and the fact that

* is a divergent program� I have proved that M
�� does not converge�

��
P l � CLl # �� F �

��
P l � F � # So

��K V
�� �� �eval �app M � Add�� C���"S� � �P ��

P l � CLl # So
��K V

�� �� �eval �app M � Add�� C���"S� � �P ��

To complete the proof I have to convert any evaluation of �app M � Add�� into an evaluation

of �app M � c�� I prove this by a straightforward induction on the height of the evaluation

of �app M � Add���

�

Example ���� �Example �� Let M � �vs�

� M��� �def �M 	d� ��

� M��� �def let val x � �ref �� in

let val f � in 	d� asg x �(� �deref x��

�M f�

Lemma ���� M���
��f M���

Proof� The strategy is to show that an evaluation of M��� can be transformed to an eval�

uation of M���� and vice versa� The essential point of this example is that incrementing

achieved by f is useless for M because it can never read the contents of x� Hence� might

as well as use 	d� � instead� This equivalence has been especially problematic for various

denotational semantics �OT����

The proof strategy is the same as in example ��

Let F �def �K V� ��U� ��apply c V K�� �P U�� �� �W� ��K ��� �P W ����

P and c are declared in the signature� F encapsulates the computational behavior of f and

	d� �� Note how it does away with the name of the cell �P U�� and need for getC and setC

clauses for P �

Suppose I have a proof� �� in FORUM of

�vs�S� K c P l � EvsCLS� F # S
o
��K V

�� �� �eval �app M � c� C���"S� � �P ��

where E � EvContvs�

� S� is a state such that close�S� E�M ���

� V � �def �vs�V ��

�

� M � �def Hvs�M��

� C� �def Cvs�EK��

I construct �i from � using CutS� i � �� ��� Let Fi �def F �c �� Di�� where

D� �def Hvs�	d� asg l �(� �deref l���� D� �def Hvs�	d� ��� and i � �� ���

Di is a �vs l term
�

c P l � F # So
��K V

�� �� �eval �app M � c� C���"S� � �P ��

P l � Fi # S
o
��K V

�� �� �eval �app M � Di� C���"S� � �P ��

I construct �	 below� Let CLl �def fgetC�P l� setC�P l�g�

P lK U V � CLl Evs # �K ��� �P U (�� �� �K ��� �P U (��

P lK U V � CLl Evs # �W� �K ��� �P W � �� �K ��� �P U (��

��� evaluate D�

P lK U V � CLl Evs # �W� �K ��� �P W � �� �apply D� V K�� �P U�

��� �R �� R

P l�vs � CLl Evs # �� F �

I construct �
 below� Let CLl �def fgetC�P l� setC�P l�g�

P lK U V � CLl Evs # �K ��� �P U� �� �K ��� �P U�

P lKU V � CLl Evs # �W� �K ��� �P W � �� �K ��� �P U�

��� evaluate D�

P lK U V � CLl Evs # �W� �K ��� �P W � �� �apply D� V K�� �P U�

��� �R �� R

P l�vs � CLl Evs # �� F �

Composing �� and �	� I construct the evaluation of �app M
� D�� in FORUM� Composing ��

and �
� I construct �� � fails to be the evaluation of �app M � D�� in FORUM� because of

the extra cell P in the environment� However� I can use lemma ���� to get rid of this extra

cell� To complete the proof I have to convert proofs of evaluation of �app M � Di�� i � �� ��

to an evaluation of �app M � c�� I prove this by a straightforward induction on the height of

the evaluation of �app M � Di��

��

Using the meta�theory of FORUM� I have proved many of the Meyer�Sieber examples from

�MS��� and an example from �OT���� This style of reasoning bears a close resemblance to

the style in �OT��� using logical relations� The use was most remarkable in the fourth and

�fth example where I was able to use CutS and CutL to get the proofs� One direction in

this proof still needed to induct on the height of evaluation proof tree� a weakness of the

argument that I would like to get rid of in my future work� The �rst three proofs were

essentially arguments about permutations of evaluations in FORUM� I want to investigate

whether I can make these proofs compositional using resolution on the proof rules� The

meta�theory gives me distinct advantage in the above proofs� However� I would like to

develop the meta�theory so that composition� and permutation of resolution can be studied

in �ner detail�

��

Chapter �

Specifying DLX � a RISC

architecture

In this chapter I specify the sequential and pipelined operational semantics for the DLX

�HP��� architecture � a prototypical RISC �Reduced Instruction Set Computer� architec�

ture � in FORUM� DLX is a generic load�store machine representative of the RISC machines

which have become very popular since the late �����s� e�g � Intel i���� MIPS R�����R�����

Motorola ������ SPARC� PowerPC� I will prove that the sequential and pipelined speci�ca�

tions of DLX are identical� and using this equivalence give a simple proof of the correctness of

code rescheduling� The main point of this chapter is that FORUM facilitates the declarative

speci�cation of the concurrent pipelined operational semantics of DLX with complex synchro�

nizations� Furthermore� the framework allows me to handle structural and data�hazards�

and specify optimizations such as call�forwarding and early�branch prediction declaratively�

The key feature of the FORUM speci�cation is that it speci�es the computation of the

pipeline as compared to the existing speci�cations in the literature which specify the

pipeline�s temporal behavior �AL���� The speci�cations in FORUM are executable as logic

��

programs yielding a prototype implementation of the pipeline which can be used for collect�

ing statistics and experimentation� This seems to be a unique feature of the FORUM spec�

i�cation amongst all the speci�cations for DLX style pipelines� Furthermore� the FORUM

speci�cation is concurrent � di	erent stages of the pipelines can be computed independently

of each other� Moreover� the equivalence of sequential and pipeline operational semantics

provides me with a tool to prove correct various optimizations done by the back�end opti�

mizer and�or hardware such as code rescheduling� The proofs of program�equivalence are

once again achieved by proof transformations very much along the lines of chapter ��

In this chapter I �rst introduce the DLX architecture� and specify its sequential operational

semantics� I specify only the integer part of DLX and as such� the discussion will be

restricted to relevant parts of the architecture� the reader is referred to �HP��� for a detailed

description� The speci�cation of the �oating�point operations and interrupts in the pipeline

do not require any new speci�cation techniques� and thus they have been left out from the

present discussion� Next� I specify the operational semantics of DLX pipeline� I prove that

the DLX pipeline speci�cation is equivalent to the sequential speci�cation� The program is

then extended to call�forwarding and early�branch prediction� Finally� I use the sequential

operational semantics to prove the correctness of code scheduling�

��� The DLX architecture

The architecture of the DLX machine � the user visible part of the instruction set of DLX

� emphasizes design for pipeline e
ciency� an easily decoded instruction set and e
ciency

as a compiler target� In this section� I describe the architecture for the integer part of

DLX� for a complete description and discussion of the entire DLX architecture the reader is

referred to �HP���� I have left out the jump instructions because their introduction needs

no new ideas � the presence of branch instructions causes all the complications that they

may cause�

DLX has thirty�two �� bit general�purpose registers �GPRs�� Memory is word addressable

��

Instruction Instruction name Meaning
lw R� I�R�� Load word R� �� M�I(R��
add R�R�R� Add R� �� R�(R�

sll R�R�R� Shift left logical R� �� R�� R�

seq R�R�R� Set equal to if �R� � R�� R� �� �
else R� �� �

beqz R� �I Branch equal zero if �R� � �� PC �� PC(I (�#
��PC(��� ���� � PC(I � ��PC(�� (����

Figure ���� Semantics of example instructions in DLX�

in Big Endian mode with ���bit address� and all memory references are through loads

or stores between memory and the GPRs� I treat memory as word addressable to avoid

unilluminating details regarding byte and halfword addressability� All instructions are ���

bits and all memory accesses must be aligned� Since I am only specifying the integer part

of DLX� I use the GPRs for integer multiply and divide instructions�

There are three classes of instructions for the integer part of DLX � loads and stores�

ALU operations� and branches� A load instruction is written as lw R� I�R�� with the

intended semantics being that R� is assigned the contents of the memory array� M� from

the address R� plus the ���bit integer I � A store operation written as sw I�R��R� results

in M�I(R�� �� R�� The operands and results for all ALU operations are stored in registers�

The operations include simple arithmetic and logical operations � add� subtract� and� or�

exclusive or� shifts and compares� One of the arguments in the operations can be the

number itself �called the immediate� instead of a register� However� to focus on the central

issues in the speci�cation� I do not consider these variants of the instructions� Typical ALU

instruction is written as op R�R�R� with the intended semantics being that R� is assigned

the value R� op R��

The branch instructions can only test for equality with zero and the o	sets are limited to

���bit integers� To present the speci�cation in a more understandable way� I have chosen

a representative set of instructions from each class for the DLX �HP���� I have added

instructions end and begin� which cause the computation to halt and start� respectively�

��

Data transfers Move data between registers and memory
lw sw Load�word� store word �to�from GPR��

Arithmetic�Logical Operations on integer or logical data in GPRs

add addu sub subu Add and subtract# signed and unsigned�
mult divmultu divu Multiply and divide# signed and unsigned�
and or xor And� or� exclusive or�
sll srl sra Shifts� left and right logical� and right arithmetic�
s Set conditional� % & may be lt� le� eq� ne�

Control Conditional branches
beqz bnez Branch GPR equal�not equal to zero#

���bit o	set from PC(��
end begin Halt� start computation�

Figure ���� List of DLX instructions selected for speci�cation�

A sample of instructions from the di	erent classes along with their intended semantics is

given in �gure ���� A list of the selected DLX instructions is given in �gure ����

��� Sequential speci�cation for DLX architecture

In this section� I specify the sequential semantics of the DLXmachine� The DLX instructions

are of a very simple nature� In particular� no instruction can both perform an arithmetic

operation and a memory operation� Consequently all instructions can be broken into �ve

distinct parts� fetch the instruction to be executed� decode instruction� execute instruc�

tion� perform required memory�access� and write�result� The block diagram detailing the

connectivity of the various units is shown in �gure ���� In the �gure only MAR �Memory

Address Register� can set the address for a memory load�store� and only MDR �Memory

Data Register�� can send�receive data from memory� IR �Instruction Register�� and PC

�Program Counter�� save the current instruction being executed and the address of the

next instruction to be executed� respectively� The latches A� B and AOUT provide storage

for the inputs and the outputs of the ALU� The block named CONTROL decodes the in�

struction in IR� and sets all the switches to generate the appropriate �ow of data required

��

File

Register

A

L

U

C

O

N

T

R

O

L

IR

C

B ��

PC

MAR

MDR

�

�

�

�

Data In

Memory

Data out

Adress

A
� �

S� bus S� bus

M
U
X

t

t

t

t

t

t

t

t

�

� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

AOUT

Dest bus

Figure ���� Block diagram for the connectivity of functional blocks in the DLX�

��

to execute the current instruction� The individual parts in the execution of an instruction

are further elaborated below�

�� Instruction fetch �IF�� MAR �� PC# IR ��M�MAR�

Operation� Send out the PC and fetch the instruction from memory into the instruc�

tion register� IR� PC is transferred to MAR because PC is connected to memory only

via MAR�

�� Instruction decode�register fetch �ID�� A �� Rs�# B �� Rs�# PC �� PC(�

Operation� Decode the instruction and access the source registers from the register

�le� The PC is also incremented to point to the next instruction to be executed�

Decoding is done in parallel with reading registers to the latches A and B� because of

the �xed format of the DLX instructions� Moreover� as the immediate argument occurs

in the same bits in all DLX instructions� the sign�extended immediate� if needed� is

also calculated in this step�

�� Execution�e	ective address �EX�� The ALU operates on the operands� performing

one of the following functions depending upon the DLX instruction type�

� Memory reference� MAR �� A (�IR�����IR����	�# MDR �� Rd

Operation� The immediate is calculated by taking the upper ���bits of the IR

and �lling the lower ���bits of the immediate with the ��th bit of the IR� The

immediate is added to the latch A� The destination register Rd is stored in MDR�

because GPRs can store data into memory only via MDR� IR����	� are the lower

�� bits of IR� and �IR��
� is the ��th bit of IR repeated �� times�

� ALU instruction� AOUT �� A op B

Operation� The ALU performs the operation speci�ed in the opcode on the value

in latch A and on the value in B� The result is stored in another latch called

AOUT�

� Branch� AOUT �� PC(�IR��
���IR����	�# cond �� �A op ��

Operation� The ALU computes the branch target address by adding the PC to

the immediate� It then compares A to �# op can be either � or ���

�

�� Memory access�branch completion �MEM�� The only DLX instructions active in this

step are loads� stores and branches�

� Memory reference� MDR �� M�MAR� or M�MAR� �� MDR

Operation� For a load data comes from memory to MDR� and for a store data

from MDR goes to memory�

� Branch� if �cond� PC �� AOUT

Operation� For branch instructions PC is updated if cond is ��

�� Write�back �WB�� Rd �� AOUT or MDR

Operation� Write the result into the register �le� whether coming from the memory

system or from the ALU�

The idea behind specifying DLX is pretty clear� given the above explanation of the operation

semantics of the instructions� I look at the various registers and the memory array as

entities in some common pool� The evaluation of the program consists of a synchronization

between the PC� the registers� and the memory� which contains both the program and the

data� Memory is represented by a two place predicate� �mnV �� the �rst argument is the

address � an integer � of the memory cell and the second argument is the contents of the cell�

Similarly� registers are represented by binary predicates �r i V � and program memory by

�p i x�� An instruction is represented as �ix X s� s� d I op�� where X denotes the class of the

instruction� s� the �rst register argument� s� the second register argument� d the destination

register� I is an immediate and op the particular function to calculate� It should be obvious

that all instructions can be represented with this representation� however� it is not necessary

that all �elds will have meaningful data for all the instructions�

The signature� called �s� specifying the constants used in the sequential speci�cation of DLX

is given in �gure ���� A function for every arithmetic�logical function of DLX is assumed

in FORUM � I treat these functions as if they were in�built� Further� the type int is

declared with all the integers as terms of type int� The built�in functions are represented

by tokens which are members of func� Members of the type class represent the classes of

instructions� The predicate cont signals that computation should continue� and num is a

��

predicate whose argument counts the number of instructions executed� �eqN� is provable

if and only N is �� and �neN� is provable if and only if N is ��

cont � o
num eq ne � int� o

op � int� int� int

r m � int� int� o
a b pc � int� o

p � int� inst� o
ix � class� int� int� int� int� func� inst

op � func

alu br ld st ht bg noop � class

Figure ���� Signature for speci�cation of DLX

The speci�cation for DLX� called Es� is the set of universal closure of clauses in �gure ����

Di	erent kinds of parentheses have been used in �gure ��� to enhance readability� Note that

for every instruction type � speci�ed by its class � there is exactly one clause in �gure ���

with a matching head� The one subtlety in the speci�cation is that I cannot perform a

multi�way synchronization amongst the operand registers� destination register� and PC for

the ALU operations� The problem is that there is only one Rn� while the instruction may

need three copies � a deadlock would occur� The speci�cation thus decouples the reading

of the two source registers into individual unsynchronized steps� The idea is that the two

source registers are read in any order into the latches A and B� Once the latches are loaded

the operation is performed and result is stored in the destination register� In this approach

all of the register arguments may be identical or di	erent � a deadlock will not occur�

The DLX programs in FORUM are de�ned by the terms parsed by the non�terminal Pl�

l � nat in �gure ���� A program is loaded in program memory� and then evaluated with

respect to a state speci�ed by the contents of the special purpose registers� general purpose

registers� memory and PC � the data state� The de�nitions of program state and data state

are given below�

De
nition ��� �Program State� Let P be an abbreviation for

	m x� � � � xm� �p � x��� � � � � �pmxm� for m � nat� For any dlx program Pl� �P l �P � is a

��

R ��� n n � �� ���
C ��� ld j st j alu

Il��l�m�n ��� q q � �l� l� 	 �� m�	 ��n ��
Ixl��l�m�n ��� �ix brRRRIl��l�m�n op�

j �ix C RRRI����q�q op� q � ���

B��l�m�n ��� Ixm�l�n�����n��

Bl��l�m�n ��� Ixm�l����l�n���l����n��#Bl����l�m�n�� �l� (n� m � l and � � l�

A��l�m�n ��� Ix��l������m�n������n��

Al��l�m�n ��� Ix��l���l�����m�n����l������n���#Al����l�m�n�� �l� (n� m � l and � � l�

H��l ��� Ix�������l
Hl��l ��� Ix����l����l�l���#Hl����l � � l� � l

S ��� �ix bgRRRI��� op�

E ��� �ix htRRRI��� op�
Q� ��� S � E

Ql�� ��� S#Bl�l����#E � � l
Ql�� ��� S#Bl��l�m��#Hm#Al���l�m��#E l � l� (l��(m � � l� l�� m

Pl ��� Ql j Ql� #Pl�� l � l� (l�� and � � l� l��

Figure ���� Grammar for DLX programs

program state� �P are the instructions in Pl� and by de�nition l is the number of instructions

in �P �

De
nition ��� �Data State� �r � � � � ��r �� � are the DLX registers� n � nat is the number

of memory cells� pc is the program counter� and num stores the number of instructions

executed� Let S be an abbreviation for

	n �V �U L� �pcL�� �r �V��� � � � �r ��V	��� �m �U��� � � � �mnUn�� �numUn����

The lengths of �V and �U � �� and n (� respectively � if implicit� are assumed to be as

required�

For any n � �� L V� � � � V	� U� � � � Un�� � int� �S n �V �U L� is a data state�

It is worth pointing out that execution cannot start without executing bg as clauses for all

instructions other than bg synchronize with cont� and that the execution cannot terminate

��

�pcL�� �pL �ix aluS� S�D I O��� cont� �numM� ��
��pL �ix aluS� S�D I O��� �num�M (��� ��

���rS�V�� �� �rS�V��� �aV���
� ��rS�V�� �� �rS�V��� �bV���
� ��rDV	�� �aV��� �bV�� �� �rD �V� O V���� cont� �pc �L(������

�pcL�� �pL �ix ldS� S�D I O��� cont� �numM� ��
��pL �ix ldS� S�D I O��� �num�M (��� ��

���rS�V�� �� �rS�V��� �aV���
� ��rDV��� �aV��� �m �V�(I�V	� ��

�rDV	�� cont� �pc �L(���� �m �V�(I�V	����

�pcL�� �pL �ix stS� S�D I O��� cont� �numM� ��
��pL �ix stS� S�D I O��� �num�M (��� ��

���rS�V�� �� �rS�V��� �aV���
� ��rDV��� �aV��� �m �V�(I�V	� ��

�rDV��� cont� �pc �L(���� �m �V�(I�V�����

�pcL�� �pL �ix brS� S�D I O��� �rS�V��� cont� �numM� ��
�pL �ix brS� S�DI O��� �rS�V��� cont� �num �M (����
���eq �V� O ��� � �pc �L(� (I���� ��ne �V� O ��� � �pc �L(�����

�pcL�� �pL �ix htS� S�D I O��� cont� �numM� ��
�pc �L(���� �pL �ix htS� S�DI O��� �num �M (���

�pcL�� �pL �ix bgS� S�D I O��� �numM� ��
�pc �L(���� �pL �ix bgS� S�DI O��� cont� �num �M (���

�eq �� �� �

�ne �� �� �

Figure ���� Sequential speci�cation of DLX

��

successfully without executing ht because the clause for ht is the only one that consumes

cont� Hence� the value of pc in the initial data state must address a bg instruction in the

program state� The program state is static � its contents do not change during execution �

it instructs the machine how to alter the data state� Thus� the evaluation� given a program

state� transforms one data state into another� The de�nition of evaluation is made precise

below�

De
nition ��� �Sequential evaluation in DLX� Es� Given data states S� and S�� and

�P l �Pl�� a program state� Pl evaluates in S� to S� written as S�� �P l �Pl� ��s S�� �P l �Pl��

if

�s � Es # S� � �P l �Pl� �� S� � �P l �Pl�

is provable in FORUM�

A small example of an evaluation will explain the speci�cation better� I consider a program

that adds the contents of second and third register� and places the result in the second

register� The program is stored in the memory starting at the �rst cell� The data state�

and the program state are described in �gure ��� I use S� as an abbreviation for the entire

expression in the �gure� At the end of the computation the resultant state� S� will have �

in the second register� � in the pc� � in the num and otherwise be identical to S�� The proof

of the computation is detailed below�

�pc ��� �r � ��� �r � ��� �r � ��� � � � � �r ��V	��� ��mnUn�� �num���

�p � �ix bg � � � �(��� �p � �ix alu � � � I(��� �p � �ix ht � � � �(��� ��pmWm�

Figure ��� Example program in DLX

Let S�� be identical to S�� except that it does not contain pc and num� and S��� be identical

to S� except that it does not contain pc� �r � � and num� I begin the proof by backchaining

on bg clause� which generates cont� Next� I backchain on the alu clause� and then the only

clauses that I can use for backchaining are the ones introduced by the alu clause to read

��

the two source operands� Hence� I read second and third registers into a and b� respectively�

Next the actual computation is performed using the values in the latches� and the value

of �r � � is updated to �� To complete the proof� I have to construct �� Es and �s are not

written in the proofs for the sake of readability� It is also worth pointing out that neither

provability nor the actual answers computed depend upon the order in which the source

registers are read�

�
S� �� S��� � �r � ��� cont� �pc ��� �num��

S� �r � ��� �a ��� �b �� �� �r � ��� cont� �pc ���� S�� � �b ��� �a ��� �num��

�r � ��� �a ��� �b �� �� �r � ��� cont� �pc ��
S� �r � �� �� �r � ��� �a �� �� S��� �b ��� �num��

�r � ��� �a ��� �b �� �� �r � ��� cont� �pc ��
�r � �� �� �r � ��� �b ��
S� �r � �� �� �r � ��� �a �� �� S�� � �num ��

���alu clause� �� �R� � �L

S� �� �pc ���S��� cont� �num��

�s � Es # S� �� S�
bg clause

To construct � notice that by de�nition of S�� the state S��� � �r � ��� �pc��� �num�� is

identical to S� upto associativity and commutativity of � � the states are being treated as

multisets� Hence� � is constructed by �rst backchaining on the ht clause� and then using

the identity rule� The proof is detailed below� Es and �s are not written in the proofs for

sake of readability�

S� �� S��� � �r � ��� �pc��� �num��
Initial

S� �� S��� � �r � ��� cont� �pc ��� �num��
ht clause

One consequence of de�nition ��� is that evaluation can be composed using cuts� Suppose

S�� S� and S	 are three states� and P is a program state such that S� �P ��s S��P and

S� �P ��s S	 �P � The computation for S� �P ��s S	�P is obtained by a linear cut on ��

and ��� which are provided by de�nition ����

��
�s � Es # S	 �P �� S� �P

��
�s � Es # S� �P �� S� �P

�s � Es # S	 �P �� S� �P
CutL

��

Hence� proofs of evaluations for the DLX machine will be composed using cuts � I use the

cut�elimination theorem for FORUM� The main point is that the computation of an entirely

imperative program is being represented declaratively and analyzed by proof theoretic tools

such as cut�elimination�

��� Pipelining DLX � facing the hazards

Pipelining is an implementation technique in which multiple instructions are overlapped in

execution� Today� pipelining is a key technique used to make fast CPU�s �Central Processing

Unit�� The basic idea of pipelining was �rst implemented in IBM ��� �Blo��� Buc����

The CDC ���� �Tho�� and IBM ������ �AST��� introduced many important concepts in

pipelining� including scoreboarding� use of multiple functional units� simple architecture for

e
cient pipelining� and tagging of data� dynamic memory hazard resolution� and generalized

forwarding� With the advent of RISC �AC��� e
cient pipelining and compilation became

integral parts of the architecture design� Many new ideas and designs for RISC architectures

have been explored in the last decade� resulting in the design of important machines such

as the Intel i���� MIPS R�����R����� Motorola ������ SPARC� PowerPC� As we see in

�gure ���� all instructions in DLX have �ve distinct parts� The intention is to execute the

�ve distinct parts of �ve instructions at the same time� and complete the execution of an

instruction every time unit� Since the time unit for the pipeline will be determined by the

execution time of its slowest segment it is important to have similar work loads for the

di	erent stages of the pipeline� Furthermore� since the performance gain for the pipeline

will be maximized if all stages of the pipeline are kept busy it is important to minimize

stalls in the pipeline�

Pipelining exploits the simple nature of the DLX architecture which facilitates well balanced

pipeline segments� and early detection and elimination of possible stalls in the pipeline�

Although the intentions are concisely stated� the design of pipelines is a tight rope walk�

balancing various parameters to improve performance� The DLX instructions are not seen

as atomic entities any longer � the �ve stages� i �e� IF� ID� EX� MEM and WB� are the atomic

��

ALU LOAD STORE CONTROL

IF IR �� M�PC� IR �� M�PC� IR ��M�PC� IR �� M�PC�
PC �� PC(� PC �� PC(� PC �� PC(� PC �� PC(�

ID A �� Rs� A �� Rs� A �� Rs� A �� Rs�

B �� Rs� B �� Rs� B �� Rs� B �� Rs�

PC� �� PC PC� �� PC PC� �� PC PC� �� PC

IR� �� IR IR� �� IR IR� �� IR IR� �� IR

EX AOUT �� A op B MAR �� A(MAR �� A(AOUT �� PC�(
�IR���

���IR�����	� �IR���
���IR�����	� �IR���

���IR�����	�

SMDR �� B cond �� �Rs� op ��

MEM AOUT� �� AOUT LMDR ��M�MAR� M�MAR� �� SMDR if �cond� f
PC �� AOUTg

WB Rd �� AOUT� Rd �� LMDR

Figure ���� DLX pipeline structure

activities� The parallel execution of these atomic steps for di	erent instructions requires

complex control to ensure that the results computed are identical to the ones computed by

Es�

I view pipelining as an alternate operational semantics for DLX programs � a di	erent evalu�

ator for DLX programs� The declarative speci�cation of the pipelines which can be executed

to simulate pipelined computation has not been attempted to the best of my knowledge�

The thrust of the existing work has been either to verify the correctness of a pipelined

processor all the way down to the circuit level �TK���� or to automate the production of

control circuitry from high level descriptions of pipelines �AL���� My goal is to provide an

executable and declarative speci�cation of pipelines explaining the intricate synchroniza�

tions required to implement the basic concepts in modern pipelined architectures�

In this section� I begin by introducing the basic pipeline structure for DLX� and structural

and data hazards� The pipeline is then speci�ed using external functions to resolve the haz�

ards� The speci�cation in this section does not incorporate any of the standard techniques

��

to improve the CPU throughput� The implementation of call�forwarding and early branch

resolution will be the subject of the next section� Furthermore� I prove that the pipeline

speci�cation is equivalent to the sequential speci�cation� Es�

Hazards in Pipeline

I model IF� ID� EX� MEM and WB and the clock as cyclic processes� The clock generates

signals prompting the stages to start their respective computations� When all the stages

complete their designated computations they notify the clock� which once again generates

the enabling signal for the stages� and the cycle continues� Although there is no synchro�

nization amongst di	erent stages� the computation for every stage is synchronized via the

clock signal�

Once the processes for the clock and the pipeline stages start running in parallel� it is

possible to run into a variety of problems� Imagine that a machine can only write�read

to one register at a time� In such a machine executing the WB stage and ID stage of

two alu instructions would cause a contention for register port� The point is that when

execution of stages is done in parallel� certain resources need to be duplicated to avoid

con�icts over resource usage� Existence of such a con�ict can stall the pipeline because one

instruction will have to wait while the other uses the resource� causing the entire pipeline

to waste one time unit� Such con�icts are called structural hazards� Informally� if there is

a combination of instructions which causes contention for resources� then the machine is

said to have structural hazards�

In the DLX machine that I outline there will be no structural hazards� essentially because all

instructions are assumed to complete in one time unit and resources have been duplicated

su
ciently� Although eliminating structural hazards from pipelines yields better through�

put� designers sometimes allow structural hazards since� either duplicating resources is too

expensive or eliminating them results in a larger time unit for the pipeline�

��

The concurrent execution of parts of DLX instructions alters the relative timing of instruc�

tions� In the sequential speci�cation an instruction is executed only after the preceding

instruction is completed� whereas� in the pipeline there are up to �ve instructions whose

various parts are being computed at the same time� So for example �ix ld � � � I op� could

be in the EX stage while �ix alu � � � I(� is in the ID stage� Now I have a problem� since

�ix alu � � � I(� reads the value in R� before the ld has fetched the contents of memory

addressed by R� and stored them in R�� which happens at the end of the WB stage ��g�

ure ����� The problem is that there is a data�dependence in the sequence of instructions

above� It causes no problems for Es� because alu starts only after the completion of ld�

Thus the pipeline must be stalled while alu waits for ld to �nish� Such problems are

signi�cantly eliminated by code rescheduling and forwarding �HP����

De
nition ��� �Data Hazard� If the order of access to operands by instructions is changed

due to overlapping execution in pipeline� then there is a data hazard� Data Hazards are

classi�ed by the order in which the read and writes are supposed to occur in the program�

Let i be an instruction occurring before j in the execution�

� RAW �read after write� � j tries to read a source before i writes it� and thus gets the

old value�

� WAR �write after read� � j tries to write a destination before i has read it� and thus

i gets the new value�

� WAW �write after write� � j tries to write an operand before it is written by i� and

thus the writes are performed in the wrong order�

Note that RAR �read after read� is not an error� In the DLX pipeline stages all instructions

complete in one time unit� and registers are read early at ID as compared to written later

at WB� Moreover the memory accesses are kept in order� and hence no WAR hazard is

�

possible in DLX� Since the WAW hazard is only possible in pipelines that write in more

than one stage of the pipeline� this hazard is avoided by DLX which writes registers only in

the WB stage� The only kind of data hazard in the DLX pipeline is RAW� as exhibited in

the example above regarding the ld and alu instructions�

The concurrent execution of instructions causes another kind of synchronization problem�

Suppose �ix br � � � I � � enters the ID stage� The IF stage now needs to fetch the next

instruction to be executed� but this is not possible before the branch instruction is resolved

and new pc is available at the end of the MEM stage� �gure ���� Moreover� at the beginning

of the IF stage it is not known whether the previous instruction was a br or not� Thus

the IF fetches the next instruction� and invalidates the fetched instruction if the preceding

instruction is a br instruction� The pipeline is stalled until the end of the MEM stage

for the br instruction when the new pc is available� The fact that I fetch and invalidate

an instruction introduces wasteful computation and is di	erent in nature from the stall

introduced by data hazards� Informally� if the pipeline is stalled for a br instruction to

calculate the new pc� then there is a control hazard�

Even in the simple setting of the integer DLX architecture hazards and stalls arise due to

the concurrent nature of the pipeline� The presence of instructions which do not complete

in one time unit and interrupts further complicates the control circuitry� However� the

speci�cation techniques used to resolve the hazards for the simple unoptimized pipeline

present the ideas needed to tackle the various synchronization and control issues that arise

in the speci�cation� To keep the presentation concise and convey the essential ideas� I chose

to specify only the integer DLX with call�forwarding and early�branch resolution� and not

deal with �oating�point arithmetic and interrupts� Floating�point arithmetic and interrupts

are challenging aspects of pipeline design� the comments above are only with respect to the

speci�cation techniques used to specify the pipeline design for these features�

��

Specifying the pipeline

Given the hazards in DLX pipeline� it will not be enough to specify the processes repre�

senting the pipeline stages and the clock� The crucial ingredient in the speci�cation is

the synchronization which avoids all the hazards that may occur during execution� The

resource conscious language of FORUM provides an ideal setting to specify the complex

interactions required to specify the pipeline�

I begin by giving the signature� �p� for the speci�cation of the pipeline� The signature is

the union of �s and the constants in �gure ���� lr stores the data to be written back to

the register �le� The cond predicate stores conditional value for branch instructions� mar

stores the memory address to be accessed� lmdr stores the data read from the memory

and smdr stores the data to be written into memory� The aout predicate stores the ALU

result at the end of the EX� and aout� stores the ALU result at the end of the MEM� The

pc� predicate stores the old pc to EX� ir stores the instruction� and it stores the class�

destination� immediate and operator of the instruction� The predicates with a l before the

above predicate names are latches which hold temporary values in between reading and

writing to the registers� The beginning of the read and write pahse for IF are signalled by

ifrb and ifwb� respectively� while ifrd and ifwd signal the completion of the read and

write phase� respectively� for IF� Similarly there are predicates for ID� EX� MEM and WB

pre�xed by their names� The class of an instruction is tested by alu$� ld$� st$� br$ and

noop$ predicates�

The following de�nitions make the presentation more concise� I sometime use �n as an

abbreviation for n� n� n	 n
 n��

� crb �def 	�n� �ifrbn��� �idrbn��� �exrbn	�� �merbn
�� �wbrbn��

� crd �def 	�n� �ifrdn��� �idrdn��� �exrdn	�� �merdn
�� �wbrdn��

� cwb �def 	�n� �ifwbn��� �idwbn��� �exwbn	�� �mewbn
�� �wbwbn��

� cwd �def 	�n� �ifwdn��� �idwdn��� �exwdn	�� �mewdn
�� �wbwdn��

��

lr � int� int� o

cond mar lmdr smdr � int� o
lcond lmar llmdr lsmdr � int� o

aout aout� � int� o
la lb laout laout� � int� o

pc� lpci � int� o i � f� �g
ir lir � inst� o

iti liti � class� int� int� func� o i � f� � �g
ifrb idrb exrb merb wbrb � int� o

ifrd idrd exrd merd wbrd � int� o
ifwb idwb exwb mewb wbwb � int� o
ifwd idwd exwd mewd wbwd � int� o

alu$ ld$ st$ br$ noop$ � class� o

Figure ���� Signature for speci�cation of DLX

I sometimes use �crb �n� as abbreviation for �crb n� n� n	 n
 n��� and similarly for crd� cwb

and cwd� Thus �crb �n�� is the signal for the read begin phase for the stages of the pipeline�

and the numbers ni i � �� � � � �� denote di	erent states of the signal in question� ��� ���

�	� �
 and ��� speci�ed in �gure ����� are the transition functions for IF� ID� EX� MEM and

WB stages� respectively� The states of the �ve signals in the clock are arguments to each

of the transition functions� and the output is the state of the clock signal for its stage� In

�gure ����� ni � f� �g i � �� � � � ��� and for any input not exhibited the functions ��� ���

�	� �
 and �� return �� For the ID clock signal� i � f������g are the states for a data

hazard where the stalled instruction has to wait for �i cycles� i � f����g are the states

for a control hazard� and i � � is the state when the pipeline will stop within the next �ve

cycles� For example� from �gure ����� ���������� � �� thus IF will remain idle in the next

cycle� I sometimes use �crb ���n�� as an abbreviation for �crb ����n� ����n� �	��n� �
��n� ����n���

and similarly for crd� cwb and cwd�

The speci�cation for the pipeline� Ep� is the set of universal closures of clauses in �g�

ures ����� ����� ���� and ����� In the ID stage in �gure ����� RAW and control hazards are

detected by the function �l� whose return value sets the state for idrd� �l is de�ned below�

De
nition ��� ��l � Hazard detection function for Ep�

���

IF ID EX MEM WB �� �� �	 �
 ��
� � � � � � � � � �
� �� � n
 n� � �� � � n

� �� � � n� � �� � � �
� �� � � � � � � � �
� � � n
 n� � � � � n

� � � � n� � � � � �
� � � � � � � � � �
� �� n	 � n� � �� � n	 �
� �� � n
 � � � � � n

� �� n	 n
 � � � � n	 n

� �� n	 n
 n� � �� � n	 n

� �� � n
 n� � �� � � n

� �� � n
 n� � �� � � n

� �� � � n� � �� � � �
� �� � � � � � � � �
� � � � � � � � � �
� � n	 n
 n� �� � � n	 n

�� � � n
 n� � � � � n�
� � � � n� � � � � ��

Figure ����� DLX pipeline state transition functions for clock

��lS� S� �Di
�CiC� � minf���S� �Di

�CiC� ���S� �Di
�CiC�g C � falu stg

� ���S� �Di
�CiC� otherwise

Where� �� is the function in �gure ����� C is the instruction type� and S� and S� are the

two source registers of the current instruction� Ci is the instruction type and Di is the

destination register of the ith preceding instruction� for i � f� � �g�

Note the di	erence between the control hazard and data hazard� In the case of a data hazard

the instruction signaling the hazard and the ones following it are stalled� However� in the

case of a control hazard� the br instruction which signals the hazard continues execution

while the instructions following it are stalled� Thus� if there is both a control and data

hazard� the data hazard must be processed �rst� The table for �� is given in �gure �����

In �gure ����� A � falu br ld stg� Y � falu br ld st noop bgg� and Z � falu ldg�

Furthermore� �j in the column for Di means that the destination register Di is the source

���

register Sj � ��j means that the destination register Di is di	erent from the source register

Sj � and Xj means either �j or ��j � If the current instruction is a noop or the destination

registers of the three preceding instructions are di	erent from the source registers� then

there is no hazard� A data hazard is detected if any of the previous three instructions write

either S� or S�� A control hazard is signaled if the current instruction is a branch and there

is no data hazard� If the current instruction is ht� then the pipeline is stopped after the

execution of ht is �nished�

C C� C� C	 D� D� D	 �

noop Y Y Y Xj Xj Xj �
A Y Y Y ��j ��j ��j �
A Z Y Y �j Xj Xj ��
A Y Z Y ��j �j Xj ��
A Y Y Z ��j ��j �j ��
br Y Y Y ��j ��j ��j ��
ht Y Y Y Xj Xj Xj �

Figure ����� �� � table for hazard detection in the DLX pipeline

The complex looking clauses in the Ep warrant some explanation� The clock is speci�ed by

the �rst two clauses in �gure ����� It is a cyclic process consuming the completing signals for

read�write� to enabling signals for write�read�� The clock stops if the state for wbwd is ���

The state information of the clock is calculated by �� de�ned in �gure ����� Each of the �ve

stages of the pipeline � IF� ID� EX� MEM and WB � are implemented by two clauses� One of

the clauses synchronizes with the read begin signal� reads data into temporary latches� and

produces the read done signal� The other clause synchronizes with the write begin signal�

consumes data in the temporary latches� and produces the write done signal� The actions

performed by a stage depend on the type of the instruction being processed and the state

of the clock� Note that a register might be updated in one stage and read in another stage

during the same cycle� To ensure availability of proper data� in the read phase required

data is stored into latches� and only after all data is read� registers and memory may be

updated in the write phase�

The bg instruction is handled specially as the clock is started by this instruction� This

���

instruction also loads several latches in the environment needed by the pipeline� I use L

as an abbreviation for the various latches as de�ned below� and �L �C �D �I �O �S �V � is a latch

state� L� is the initial state for these latches� When the lengths of the vectors are not

mentioned explicitly� they are of the required length� as assumed in the de�nition below�

L �def 	�C �D �I �O �S �V � �� i�f����	g�itiCiDi IiOi��� �ir �ix C
 S� S�D
 I
O
��

� �aV��� �bV��� �aoutV	�� �aout�V
�� �pc�V��� �marV��

�lmdrV��� �smdrV��� �condV��

L� �def �L �noop �� �� �(�� ���

Now� evaluation of DLX programs can be de�ned using Ep� The idea behind evaluation is

the same as that for Es� A program is loaded in the program memory� and then the program

state is evaluated in a given data state� The program state remains static� while the data

state may possibly change due to the execution of instructions� The de�nitions of program

and data state are taken from de�nitions ��� and ����

De
nition ��� �Pipelined evaluation in DLX� Ep� Given data states S� and S�� and �P l �Pl��

a program state� Pl evaluates in S� to S� written as S� � �P l �Pl� ��p S� � �P l �Pl�� if

�p � Ep # S� � �P l �Pl� �� S� � �P l �Pl�

is provable in FORUM�

I use the example program in �gure �� to illustrate the speci�cation Ep� I use S� as an

abbreviation for the entire expression in the �gure� At the end of the computation� the

resultant state� S� will have � in the second register� � in the pc� � in the num and otherwise

be identical to S�� The proof of the computation is detailed below� Let S
�
� be identical to

S�� except that it does not contain pc and num� and S��� be identical to S� except that it

does not contain pc� �r � � and num�

���

�crd �N� �� �cwb �N�

�cwd �N� ��

��ne �N� � ���� � �crb �� �N����

��eq �N� � ���� �� ��� ��L �C �D �I �S �V � �� ����

�pL �ix bgDS� S� I O��� �pcL�� �numM� ��

�pL �ix bgDS� S� I O��� �pc �L(���� �crb ����L� � �num �m(���

�ifrbN�� �pLV �� �pcL� �� �pcL�� �pLV ��
���eq �N � ��� � ��lir V �� �lpc �L(���� �ifrdN����
��eq �N � ���� � ��lir �ix noop � � � �(��� �lpc �L� ���� �ifrdN����
��eq �N � ��� � �ifrdN���

�ifwbN� ��
��eq �N � ��� � �ifwdN���
���eq �N � ���� �eq �N � ����� ��
��� ��irV ��� �pcL��� �lirV �� �lpcL� �� �ir V �� �pcL�� �ifwdN����

�idrbN�� �� i�f����	g�itiCiDi IiOi��� �pcL�� �ir �ix C DS� S� I O�� ��
�� i�f����	g�itiCiDi IiOi��� �pcL�� �ir �ix CDS� S� I O���
���ne �N � ��� � �idrdN���
��eq �N � ����
����eq �u � ���� �eq �u � ����� � ��lit�C DI O�� �lpc�L�� ��
���rS�V�� �� �rS� V��� �laV���S��
��rS�V�� �� �rS�V��� �lbV���S��
�S �S �� �idrdu�����
��ne �u � ��� � �ne �u � ���� � �idrdu�����

Where u �def ��l S� S�
�Di

�Ci C�

�idwbN�� �it�C DI O� ��
��ne �N � ��� � �ne �N � ���� � ��it� noopDI O�� �idwdN����
���eq �N � ���� �eq �N � ����� ��
���aW��� �laV��� �bW��� �lbV��� �pc�L��� �lpc�L��� �lit�C

�D� I �O�� ��
�aV��� �bV��� �pc�L��� �it�C�D� I �O��� �idwdN�� ����

Figure ����� Speci�cation for the DLX pipeline � clock� bg� IF and ID�

���

�alu$ alu� �� �

�ld$ ld� �� �

�st$ st� �� �

�br$ br� �� �

�noop$ noop� �� �

�exrbN�� �it�CD I O� �� �it�CD I O�� �lit�C DI O��
���ne �N � ��� � �exrdN���
��eq �N � ����
��alu$C� ��
��aV��� �bV�� �� �aV��� �bV��� �laout �V� O V���� �exrdN��� ���
��ld$C� ��
��aV�� �� �aV��� �lmar �V� (I��� �exrdN��� ���
��st$C� ��
��aV��� �bV�� ��
�aV��� �bV��� �lmar �V� (I��� �lsmdrV��� �exrdN��� ���

��br$C� ��
��pc�L�� �aV�� ��
�pc�L�� �aV��� �laout �L(I��� �lcond�V� O ���� �exrdN��� ���

��noop$C� � �exrdN����

�exwbN�� �it�C
�D� I �O��� �lit�CD I O� �� �it�CD I O��

���ne �N � ��� � �exwdN���
��eq �N � ����
��alu$C� ��
��aout V��� �laoutV�� �� �aout V��� �exwdN��� ���
��ld$C� ��
��marL��� �lmarL�� �� �marL��� �exwdN��� ���
��st$C� ��
��marL��� �lmarL��� �smdrW��� �lsmdrW�� ��
�marL��� �smdrW��� �exwdN��� ���

��br$C� ��
��aout V��� �laoutV��� �condU��� �lcondU�� ��
�aout V��� �condU��� �exwdN��� ���

��noop$C� � �exwdN����

Figure ����� Speci�cation for the DLX pipeline � EX�

���

�merbN�� �it�CDI O� �� �it�CDI O�� �lit�CD I O��
��ne �N � ��� � �merdN���
��eq �N � ����
��alu$C� ��
��aoutV�� �� �aout V��� �laout�V��� �merdN��� ���
��ld$C� ��
��marL�� �mLV � ��
�marL�� �mLV �� �llmdrV �� �merdN��� ���

��st$C� ��
��marL�� �mLV �� �smdrV�� ��
�marL�� �mLV��� �smdrV��� �merdN��� ���

��br$C� ��
��condM�� �aoutV��� �pcL�� ��
���ne �M � ��� � ��lpc�L��� �merdN����

��eq �M � ��� � ��lpc�V��� �merdN����
� �condM�� �aoutL��� �pcL���� ���

��noop$C� � �merdN���

�mewbN�� �it�C
�D� I �O��� �lit�C DI O� �� �it�C DI O��

��ne �N � ��� �� �mewdN�� ���
��eq �N � ����
��alu$C� ��
��aout�V��� �laout�V�� �� �aout�V��� �mewdN��� ���
��ld$C� ��
��lmdrW��� �llmdrW�� �� �lmdrW��� �mewdN��� ���
���st$C�� �noop$C�� � �mewdN���
��br$C� ��
��pcL��� �lpc�L�� �� �pcL��� �mewdN��� ���

Figure ����� Speci�cation for the DLX pipeline � MEM�

���

�wbrbN�� �it�C DI O�� �numM� �� �it�CD I O��
��eq �N � ��� � ��wbrdN�� �numM����
��eq �N � ���� � ��wbrdN�� �num�M (������
��eq �N � ����
��alu$C� ��
��aout�V�� �� �aout� V��� �lr� d V��� �wbrdN�� �num�M (����� ���
��ld$C� ��
��lmdrV�� �� �lmdrV��� �lr� d V��� �wbrdN�� �num�M (����� ���
���st$C�� �br$C�� � ��lr � d V��� �wbrdN�� �num�M (������
��noop$C� � ��lr� d V��� �wbrdN�� �numM����

�wbwbN� ��
��ne �N � ��� � �wbwdN���
��eq �N � ��� ��
���lr� d V��� �r d V�� �� �r d V��� �wbwdN�� �
��lr� d V�� �� �wbwdN��� ���

Figure ����� Speci�cation for the DLX pipeline � WB�

��
S� �� �ifrd ��� �irX��� �pc ���"	

S� �� �cwb ���� �lirX��� �lpc ���"�
ifwb

S� �� �crd ���� �lirX��� �lpc ���"�
Clock

idrb exrb
��� merb wbrb

S� �� �ifrd ��� �lirX��� �lpc ���"�

S� �� �pc ���S��� �crb ����L�� �num��
ifrb

�p � Es # S� �� S�
bg

The proof begins by backchaining on the bg clause� Each of the it registers has a noop

instruction �by the de�nition of L��� Thus� only the execution of ifrb and ifwb stages are

shown� Note that there is no hazard detected because the instruction in it� was a noop�

X� is the instruction �ix alu � � � I(�� and X� is the instruction �ix ht � � � �(�� Now I

complete �� below�

��

��
S �S �� �idrd ��

�r � �� �� �r � ��� �b ���S
S� �r � �� �� �r � ��� �a ���S��

�ifrd ��� �lirX��� �lpc ��� �lpc� ��
� �lit� alu � �(��"�

ifrb idrb
��� other logical rule

S� �� �crb ���� �irX��� �pc ���"

ifrb

S� �� �cwd ���� �irX��� �pc ���"

Clock

idwb exwb
��� mewb wbwb

S� �� �ifrd ��� �irX��� �pc ���"	

I use "i in the proofs above for the part of the context which is inactive in the rule� The

construction of �� is similar to the plan above� First the ID stage is completed for X�� the

EX� MEM and WB have noop instructions� In the next cycle� ht is detected and the state of

idwd becomes �� X� proceeds to EX stage� Now the pipeline goes through the �nal stages

as the clock shuts down� The construction of �� is not made explicit because it gets very

tedious and the idea is clear from the above constructions�

Note that in the read and the write phase I choose a given order for backtracking on

the various clauses� It is a key fact that the order in which the various read clauses are

chosen for backtracking during the read phase is irrelevant to provability� and similarly for

the write phase � a similar point was made in the context of process theories in �Mil����

The reason for this %permutability& in the read phase is that information is read by the

various stages into di	erent latches� and in the write phase the stages use the latches they

%created& to update the values of distinct storage locations� In other words� there is no

contention for resources in a given phase� read or write� amongst the various stages� It

is this permutability of backtracking which underlines the concurrent nature of the pipeline

speci�cation in FORUM�

Now I have Es and Ep� two operational semantics for DLX� On the one hand� Es is much

easier to work with and understand� and on the other hand� Ep speci�es a much more

interesting algorithm� The natural question to ask is whether Es and Ep are equivalent�

Following is the Correspondence theorem that I would like to prove�

Theorem ��� �Correspondence between Es and Ep For any DLX program Pl� and

���

data states S� and S��

S�� �P l �Pl� ��s S�� �P l �Pl� i	 S� � �P l �Pl� ��p S� � �P l �Pl�

The theorem will be proved by induction on the number of instructions executed� Since the

internal states of the two speci�cations are di	erent� the theorem is obtained as a corol�

lary to the lemma ��� which establishes relationships between the sequential and pipelined

evaluation using the di	erent internal states� Before I present these lemmas� I prove some

properties about the evaluation using Ep� I de�ne it to be consistent if �it�C�D� I�O��

is the instruction in EX stage� �it�C�D� I�O�� is the instruction in MEM stage� and

�it�C	D	 I	O	� is the instruction in WB stage� The actual proofs� which are constructions

of proofs in FORUM� are not shown in the proofs of the lemmas in this section� essentially

because the construction gets very tedious and unilluminating� However� the steps outlined

provide the recipe for constructing the required proofs�

Lemma ��	 �Ep � it consistency� data hazards� and control hazards If

� L� and L� are two latch states� and it is consistent in L��

� S� and S� are two data states� such that the pc in S� does not address a bg or ht

instruction in P�

� P is a program state� and

� �p � Ep # S� �L� � �cwd �N��P � S� �L� � �crb �N��P�

then

�� it is consistent in L��

�� if the instruction in the ID stage depends upon a preceding instruction in the pipeline

for data� then the data hazard is resolved� and

���

�� if the instruction in the ID stage is a br� then the control hazard is resolved�

Proof� Part � � For this part� notice that in every completion of a read and write phase

it� gets the values of it�� which in turn gets the values from it�� which in turn get the

values from ir in the ID� This movement of values of it exactly matches the de�nition of

the consistency of it�

Part � � Given the consistency of it� �l returns one of ��� �� or ��� i �e� a data hazard� if

and only if the instruction in ID stage depends upon one of the preceding instructions for

data� From the de�nition of the state transition function in �gure ����� it is clear that the

instruction with the dependency and the ones following that instruction are stalled till the

preceding instruction completes execution�

Part � � Given the consistency of it� �l detects returns ��� i �e� a control hazard� if and

only if the current instruction is a br and there are no data hazards� The absence of data

hazards enables the execution of br� From �gure ����� the pipeline after the br is stalled

till the br completes the MEM stage� when the new pc is available� Thus the instruction

after a br is fetched from the right address�

The problem in relating the computations of Es and Ep are manifold� Firstly� the number

of steps taken to compute a program are di	erent � Ep takes �ve steps for each instruction �

hence an induction on the height of the proof trees would not work� Secondly� the internal

states of the two evaluators are di	erent� The induction measure that I use is the number

of instructions which have completed evaluation� However� I have to treat the case when the

last instruction is ht separately from other instructions because it cleans up the environment

of the latch state�

Lemma ��� �Lemmas for Correspondence between Es and Ep Given

� m � � and m � nat�

���

� S� and S� two data states minus the pc� num has � and m in S� and S�� respectively�

� Pl is a DLX program� P� �def �P l �Pl� is a program state�

� L� �def �
�C �D �I �O �S �V � �L �C �D �I �O �S �V �� and

� C �def �
�N� �cwd �N��

�� if the mth instruction is not ht then

�s � Es # S� � cont� �pcL��P� � S� � �pcM��P� i	

�p � Ep # S� � �pcK��L�� C �P� � S� � �pcM��P�

�� if the mth instruction is ht then

�s � Es # S� � �pcL��P� � S�� �pcM��P� i	

�p � Ep # S� � �pcL��P� � S� � �pcM��P�

Proof� Proof Part � �Left to Right� � The mth instruction is not ht�

We have

�s � Es # S� � cont� �pcL��P� � S�� �pcM��P��

Suppose the mth instruction is a bg� Then there are two cases �

m � � � Then bg is the �rst instruction� S� and S� are identical except for the count in

num� and the proof is completed by following the execution of the bg instruction�

m � n (� � � n � Then bg is not the �rst instruction� By the grammar for programs

��gure ����� the nth instruction executed must be a ht� Thus S��� the state at the end of

���

the nth instruction� is the same as S� except for the count in num� Using induction on Part

�� I get

�p � Ep # S
�
� � �pc �L� ����P� � S�� �pcM��P��

The shape of the right�hand side of the sequent at the point when num is incremented to n

will be

S��� �pc �L� ����P��

Backchaining on the clause for bg increments num by � and the right�hand side of the sequent

becomes

S�� �pcL��L�� �crb����P��

Now in the linear part of the left�hand�side of the sequent� I replace

S��� �pc �L� ����P� by S� � �pcL��L�� C �P��

Note that this replacement does not e	ect the structure of the proof thus far� and the

sequent that I am now constructing the proof of is

�p � Ep # S� � �pcL��L�� C �P� � S� � �pcM��P��

After the transformation all that I have left to prove is

�p � Ep # S� � �pcL��L�� C �P� � S� � �pcL��L�� �crb����P��

The proof is easily completed by using � � L� � � L and Id� and hence I am done�

���

Suppose the mth instruction is not a bg� Then the de�nition of the DLX programs

implies that m � n (� � � n and that the nth instruction cannot be ht� By induction

hypothesis on Part �� I get

�p � Ep # S
�
� �L� � C � �pcK��P� � S� � �pcM��P��

S�� di	ers from S� in that it has n in num and is missing the side e	ects� if any� of the mth

instruction�

First consider the case when the nth instruction is not a branch instruction� The

computation up to the execution of the nth instruction matches for Es and Ep� Note that

the nth instruction is at �L � �� address in the program memory� By lemma ��� parts �

and �� it is consistent� and data�dependency� if any� for the mth instruction is resolved�

Thus� the arguments to the mth instruction are identical to the sequential computation�

and hence� so are the results� At the point when num is incremented to n the right�hand

side of the sequent has the following shape

S��� �pcK
��� �L �V �� �crb �W ��P��

Where K� depends upon the data and control hazards encountered by the instructions

following the nth instruction� For example� if there are no hazards then K
� will be L (��

Backchaining over clauses to complete the execution of the mth instruction results in a

right�hand side that looks like

S�� �pcK�� �L �V ��� �crb �W ���P��

To complete the proof� in the linear part of the left�hand�side of the sequent� replace

S���L� � C � �pcK��P� by S� �L� � C � �pcK��P��

The transformation does not e	ect the structure of the proof� and as a result of it I am now

���

constructing the proof for the sequent

�p � Ep # S� �L� � C � �pcK��P� �� S� � �pcM��P��

Given the right�hand side above� the proof can be �nished by � � L� � � L and Id� and

hence I am done�

Now consider the case when the nth instruction is a branch instruction� Firstly�

the argument to br is identical to the one in the sequential run� and thus by lemma ���

part �� the next pc calculated at the end of the MEM stage will also be �L � ��� Again�

using part � of lemma ���� the data dependency� if any� for the mth instruction is resolved�

and thus the result produced by the mth instruction are identical to the ones produced in

the sequential run� By the de�nition of the transition functions in �gure ����� at the end of

the cycle when num is incremented to n the right�hand side of the sequent has the following

shape

S��� �pcL�� �L �V �� �crb �W ��P�

and the mth instruction will have completed its IF stage� The rest of the argument can be

completed analogous to the case above when the nth instruction was not br�

Proof Part � �Left to Right �

We have

�s � Es # S� � �pcL��P� � S� � �pcM��P��

The mth instruction to be executed � ht � is at the �L� �� address in the program memory�

By the grammar for DLX programs ��gure ���� there has to be at least one instruction that

was completed before ht� and the immediately preceding instruction could not be another

���

ht� Thus m � n (� � � n� The state S�� at the end of the nth instruction is the same as

S�� except that num stores n�

By induction hypotheses on part �� I have

�p � Ep # S
�
� � �pcK��L�� C �P� � S� � �pcM��P��

First consider the case when the nth instruction is not a branch instruction�

Note that the nth instruction is at the �L � �� address in the program memory� In the

proof I look at the point when the nth instruction completed its ID phase� At this point

the right�hand side of the sequent will have the following shape�

S��� �L �V �� �pcL�� �cwd �W ��P��

Now� in this proof at the point ht completed the ID stage� the state of the idrd was set

to �� and pc has �L(��� �� sets the state for ifrb is set to �� which causes the pc to be

decremented by � by the IF stage� and thus pc has L� Now� from the de�nition of the state

transition functions it is clear that the stages of the pipeline become idle as the ht passes

through them� WB knows that ht has arrived when the state of wbrb is ��� and it increases

the count in num without looking at the class of the instruction in it�� Now the clock will

detect the �� as its �fth argument and it will consume the �L �V �� from the environment�

and I am left with S� � �pcL��P��

In the proof thus far� in the linear part of the left�hand�side of the sequent� I replace

S��� �pcK��L�� C �P� by S� � �pcL��P��

This transformation does not e	ect the structure of the proof thus far� and now I am proving

�p � Ep # S� � �pcL��P� � S� � �pcM��P��

As a result of the transformation the proof can be completed immediately using an identity

axiom�

���

Now consider the case when the nth instruction is a branch instruction� Firstly�

the argument to br is identical to the one in the sequential run� and thus by lemma ���

part �� the next pc calculated at the end of the MEM will also be �L� ��� By the de�nition

of the transition functions in �gure ����� at the end of the cycle when num is incremented

to n the right�hand side of the sequent has the following shape

S��� �pcL�� �L �V �� �crd �W ��P�

and the mth instruction will have completed its IF stage� The rest of the argument can be

completed analogous to the case above when the nth instruction was not br�

The proofs going from right to left can be completed along similar lines � the proofs for Es

are composed using linear cuts�

The proof highlights the main fact that the key ingredient in the speci�cation of the pipeline

is the complex synchronization and hazard detection� The lemma ��� is a inductive argu�

ment using the basic properties of the Ep as proved in lemma ���� The proof is rather

straight forward� given the choice of induction measure� however� the complete construc�

tion of FORUM proofs is rather cumbersome� The nice feature is that the two declarative

speci�cations � Es and Ep � were proved equivalent� and cuts were used in one direction of

the proof�

��� Call�forwarding and early branch resolution

The speci�cation Es exhibits the basic ideas of the pipeline� However� the pipeline deals

naively with the data and control hazards it faces � it stalls whenever it may need to� In

this section I look at � call forwarding� early branch resolution� branch prediction � simple

and important techniques to reduce the stalls caused by data dependencies and branch

instructions�

Suppose an instruction� X�� in the ID stage needs the result of an alu instruction which is in

���

CONTROL

IF IR �� M�PC�# PC �� PC(�

ID A �� Rs�# B �� Rs�# PC� �� PC# IR� �� IR

BTA �� PC(�IR��
���IR����	�

if �Rs� op �� fPC �� BTAg

EX

MEM

WB

Figure ����� Changes in the DLX pipeline to reduce branch penalty�

the MEM stage� According to the scheme of Ep� X� has to stall for alu to go through MEM

and WB before it can get the result of alu � this is clearly ine
cient� The rather straight�

forward idea of short�circuiting the loop� i �e� %forwarding& the result from aout directly to

the input of X�� works very well in practise� Sending results from one functional units in

the pipeline to another functional unit directly is called call forwarding� Call forwarding

reduces dramatically the stalls generated in the pipeline due to data dependencies�

The second ine
ciency of Ep is regarding the cost of branch instructions� The idea here

is to calculate the outcome of the branch instruction as early as possible in the pipeline �

early branch resolution� The basic change to the �ow for branch instructions is shown in

�gure ����� By using dedicated adders� extra latches and other circuitry it is possible to

compute the new pc by the end of the ID stage� This reduces the penalty for branches from

three cycles to one cycle� The other aspect of optimization for branches is to �rst predict

whether a branch will be taken or not� and then continue to fetch and execute from the

predicted address till the branch is resolved � branch prediction� In case the branch alters

the pc� the earlier instructions are invalidated� and the execution starts at the new pc� In

case the branch does not alter the pc� the machine has incurred no penalty by continuing to

compute rather than sit idly as Ep does� The number of instructions computed speculatively

will never be more than one in the DLX pipeline� because the new pc is ready at the end

��

of the ID stage of the branch instruction�

Call forwarding and speculative computation become more critical to the performance of

the pipeline in the presence of instructions which take more than one cycle to complete�

Extensions to� and variants of these ideas are embodied in many of present day RISC

machines �HP���� The speci�cation of these features require more complex synchronizations�

new de�nitions of the state transition functions� and call forwarding functions� Further� the

IF and ID stages will have to synchronize directly with each other� Consider the situation

when a branch instruction is in the ID stage� The branch instruction might alter the pc at

the same time when IF wants to increment the old value in the pc� Thus� there is a race for

the pc� and the �nal value in the pc is unpredictable� I force the write phase of IF to start

after the write phase of the ID stage� and thus only IF writes to the pc� avoiding the race�

I begin by presenting the de�nition for the new hazard resolution function� �o� for de�

tecting hazards given that I am implementing call�forwarding and early branch resolu�

tion� The table for �� is given in �gure ���� In �gure ���� A � falu br ld stg� and

Y � falu br ld st noop bgg� Furthermore� �j in the column for Di means that the des�

tination register Di is the source register Sj � ��j means that the destination register Di is

di	erent from the source register Sj � and Xj means either �j or ��j � The �rst point to note

is that �o only depends upon the two immediately preceding instructions in the pipeline� not

three as in the case of �l� Note� moreover� the di	erence between the alu and ld instruc�

tions� The result of the alu is available at the end of the EX stage� while that of the ld

is available only after the MEM stage� Thus� a dependency with an instruction two cycles

ahead of the current one is signaled only when the instruction two cycle ahead is a ld�

Thus the cost of data hazard with alu instructions is reduced to one cycle and with ld

instructions to two cycles at most� Other than this� �� is same as ���

Using the de�nition of ��� I de�ne below �o� the hazard detection function� for Eo� the new

speci�cation of pipeline incorporating call�forwarding and early branch resolution�

De
nition ���� ��o � Hazard detection function for Eo�

���

C C� C� D� D� �o
noop Y Y X X �
A Y Y ��j ��j �
A ld Y �j X ��
A Y ld ��j �j ��
A alu Y �j X ��
br Y Y ��j ��j ��
ht Y Y X X �

Figure ���� �� � new table for hazard detection in DLX pipeline

��oS� S� �Di
�CiC� � minf���S� �Di

�CiC� ���S� �Di
�CiC�g C � falu stg

� ���S� �Di
�Ci C� otherwise

Where� �� is the function in �gure ���� C is the instruction type� and S� and S� are the

two source registers of the current instruction� Ci is the instruction type� and Di is the

destination register of the ith preceding instruction� for i � f� �g�

To make the pipeline work with call�forwarding and early branch resolution� I need to

rede�ne the state transition functions for the clock� The main point is that fewer stall

signals are generated when either data or control hazards are detected� ��� ��� �	� �
 and

��� speci�ed in �gure ����� are the new transition functions for IF� ID� EX� MEM and WB

stages� respectively� The states of the �ve signals in the clock are arguments to each of

the transition functions� and the output is the state of the clock signal for its stage� In

�gure ����� ni � f�� � �g i � �� � � � ��� and for any input not exhibited the functions ���

��� �	� �
 and �� return �� For the ID clock signal� i � f����g are the states for a data

hazard where the stalled instruction has to wait for�i cycles� i � f����g are the states for

a control hazard� and i � � is the state when the pipeline will stop within the next �ve cycles�

For example� from �gure ����� ���������� � �� thus IF will remain idle in the next cycle�

I sometimes use �crb ���n�� as an abbreviation for �crb ����n� ����n� �	��n� �
��n� ����n��� and

similarly for crd� cwb and cwd�

Other than changing the de�nitions of the transition functions and hazard detection� I need

to know from which unit a value has to be forwarded to which unit� In the case of the DLX

���

IF ID EX MEM WB �� �� �	 �
 ��
� � � � � � � � � �
� �� � n
 n� � �� � � n

� �� � n
 n� � � � � n

� � � n
 n� � � � � n

� � � � n� � � � � �
� � � � � � � � � �
� �� n	 � n� � � � n	 �
� �� n	 n
 n� � �� � n	 n

� �� � n
 n� � �� � � n

� �� � n
 n� � � �� � n

� � �� � n� � � � �� �
� � � �� � � � � � �
� � n	 n
 n� �� � � n	 n

�� � � n
 n� � � � � n

� � � � n� � � � � ��

Figure ����� DLX pipeline state transition functions in the presence of call�forwarding and
early branch resolution

architecture that I am studying� all data is read in the ID stage� and thus the destination

of the forwarded data will be one of the input latches to the ALU� �� and ��� de�ned

in �gure ����� are the two call�forwarding functions for the two source registers of a given

instruction� The result of a ld is forwarded only when C	 has ld� because by this time

the instruction has completed its MEM stage� In the case of alu instructions� results are

available after the ID stage� and the result is forwarded when alu result is either C� or C	�

Note that just as �� does not need it�� the call�forwarding functions do not need it�� It

is interesting to note that the two tables for �� and call�forwarding functions put together

cover all the cases in the table for ��� The notation in �gure ���� is the same as that in

�gure ���� The numeric return values signal the register from where the data will come �

� stands for the register �le� � stands for lmdr� � stands for aout and � stands for aout��

The speci�cation for the pipeline� Eo� is the set of universal closures of clauses in �g�

ures ����� ���� and ����� The signature for the speci�cation �o is the union of �p and

fbta � int� og� Note that the branch is resolved at the end of ID stage� and hence the EX

���

C C� C	 D� D	 �� ���br ld�
A Y ��j ��j � �
A Y ld ��j �j � ����
A alu Y �j X � ����
A Y alu ��j �j � ����

Figure ����� � � Call forwarding functions

and MEM stages treat the branch instruction as if it were a noop� Other than this change�

the clauses for EX and MEM are identical to the clauses for these stages in Ep� The clause

for the clock� bg instruction� eq� ne� WB stage and for matching classes remain unchanged�

but I have rewritten them here for the sake of completeness� The critical di	erence is in

the clauses for IF and ID�

The read phase of ID has to take into account call�forwarding and calculation of the jump

address for the branch in bta� Note that the calculation of the jump address is done for all

instructions� because at this point the class of the instruction has not been decoded� If ID

is not idle then �rst hazards are checked� If there is a data hazard the instruction stalls�

Otherwise� if there is either no hazard or a control hazard then the current instruction will

continue� The call forwarding functions are used to obtain the arguments of the instruction

from the appropriate registers� Note that the call forwarding functions are used only when

there are no data hazards� Furthermore� if a control hazard is detected then the state of

idrd will be ���

If there were no hazards in the ID stage� the state of idwb is �� bta is consumed away and

appropriate registers are loaded� Note that the register pc� is no longer needed because this

was used only by br in the EX stage� The case remaining is when the state of idwb is ���

i �e� the instruction in ID is a branch instruction� If the condition of the branch instruction

is true� then bta is left in the environment and the state of the idwd is ��� If� however� the

condition of the branch instruction is false then bta is consumed and the state of idwd is

set to ��

The write phase of IF stage must synchronize with idwd � this ensures that ID has already

���

�nished its write phase� If the state of idwd is not ��� then the instruction in ID did not

alter the pc� and the actions of IF are identical to the write phase of IF in Ep� In case state

of idwd is ��� bta is used to set the value of pc� The read phase of IF is unchanged from Ep�

The idea behind evaluation remains the same as for Ep� The de�nition of data and program

state are from de�nition��� and ���� The de�nition of latch state is di	erent in that the

latch state for Eo does not have the registers cond and pc�� Having said this� I will use the

same notation for the latch state for Eo also�

De
nition ���� �Pipelined evaluation in DLX� Eo� Given data states S� and S�� and

�P l �Pl�� a program state� Pl evaluates in S� to S� written as S� � �P l �Pl� ��o S�� �P l �Pl��

if

�o � Eo # S� � �P l �Pl� �� S� � �P l �Pl�

is provable in FORUM�

I have Es and Eo� two operational semantics for DLX� I will prove the equivalence of these

two speci�cations along the lines of the proof for theorem ���

Theorem ���� �Correspondence between Es and Eo For any DLX program Pl� and

data states S� and S��

S�� �P l �Pl� ��s S�� �P l �Pl� i	 S� � �P l �Pl� ��o S� � �P l �Pl�

Before proving the theorem� the following properties of the Eo will be proved� These lem�

mas prove that Eo maintains the consistency of it� and resolves data and control hazards

correctly� Analogous facts were proved for Ep in lemma ����

Lemma ���� �Eo � it consistency� data hazards� and control hazards If

���

�ifrbN�� �pLV �� �pcL� �� �pcL�� �pLV ��
���eq �N � ��� � ��lir V �� �lpc �L(���� �ifrdN����
��eq �N � ���� � ��lir �ix noop � � � �(��� �lpc �L� ���� �ifrdN����
��eq �N � ��� � �ifrdN���

�ifwbN�� �idwdM� �� �idwdM��
����eq �N � ��� � �ne �M � ����� � �ifwdN���
���eq �N � ��� � �eq �M � ����� ��
��btaL���� �pcL�� �� �pcL���� �ifwdN��� ���
���eq �N � ��� � �eq �M � ����� ��
��ir V ��� �pcL��� �lirV �� �lpcL�� �btaL��� ��

�ir V �� �pcL���� �ifwdN��� ���
��eq �N � ����� ��eq �N � ��� � �ne �M � ����� ��
��ir V ��� �pcL��� �lirV �� �lpcL� �� �ir V �� �pcL�� �ifwdN��� ���

�idrbN�� �� i�f����	g�itiCiDi IiOi��� �pcL�� �ir �ix CDS� S� I O�� ��
�� i�f����	g�itiCiDi IiOi��� �pcL�� �ir �ix C DS� S� I O���
���ne �N � ��� � �idrdN���
��eq �N � ����
����eq �u � ���� ��eq �u � ���� � �bta �L(I���� � �lit�CD I O� ��
��argr f� S� laV�� � �argr f� S� lbV�� � �S �S �� �idrdu�����
��ne �u � ��� � �ne �u � ���� � �idrdu�����

u �def ��o S� S�D�D�C�C�C� fi �def ��� SiD�D	C�C	C� i � �� ��

argr �def 	 u s l v����eq�� � u��� �r s v� �� �r s v�� �lv�� �

��eq �� � u��� �lmdrv� �� �lmdr v�� �l v�� �
��eq �� � u��� �aout v� �� �aout v�� �l v�� �
��eq �� � u��� �aout� v� �� �aout� v�� �l v���

�idwbN�� �it�CD I O� ��
��ne �N � ��� � �ne �N � ���� � ��it� noopD I O�� �idwdN����
��eq �N � ��� � �btaL� ��
��aW��� �laV��� �bW��� �lbV��� �lit�C�D� I �O�� ��
�aV��� �bV��� �it�C

�D� I �O��� �idwdN����
��eq �N � ���� � �btaL� ��
��aW��� �laV��� �bW��� �lbV��� �lit�C

�D� I �O�� ��
�aV��� �bV��� �it�C�D� I �O���
���eq �V�O� ��� � ��btaL�� �idwdN���� ��ne �V�O� ��� � �idwd ������

Figure ����� Speci�cation for the DLX pipeline � IF and ID�

���

�crd �N� �� �cwb �N�

�cwd �N� ��

��ne �N� � ���� � �crb �� �N���� ��eq �N� � ���� �� ��� ��L �C �D �I �S �V � �� ����

�pL �ix bgDS� S� I O��� �pcL� ��

�pL �ix bgDS� S� I O��� �pc �L(���� �crb����L�

�alu$ alu� �� � �ld$ ld� �� �

�st$ st� �� � �br$ br� �� �

�noop$ noop� �� �

�exrbN�� �it�CD I O� �� �it�CD I O�� �lit�CD I O�
��ne �N � ��� � �exrdN���
��eq �N � ����
��alu$C� ��
��aV��� �bV�� �� �aV��� �bV��� �laout �V� O V���� �exrdN��� ���
��ld$C� ��
��aV�� �� �aV��� �lmar�V� (I��� �exrdN��� ���
��st$C� ��
��aV��� �bV�� ��
�aV��� �bV��� �lmar�V� (I��� �lsmdrV��� �exrdN��� ���

���noop$C�� �br$C�� � �exrdN���

�exwbN�� �it�C
�D� I �O��� �lit�CDI O� �� �it�CDI O�

��ne �N � ��� � �exwdN����
��eq �N � ����
��alu$C� ��
��aout V��� �laoutV�� �� �aout V��� �exwdN��� ���
��ld$C� ��
��marL��� �lmarL�� �� �marL��� �exwdN��� ���
��st$C� ��
��marL��� �lmarL��� �smdrW��� �lsmdrW�� ��

�marL��� �smdrW��� �exwdN��� ���
���noop$C�� �br$C�� � �exwdN���

Figure ����� Speci�cation for the DLX pipeline � clock� bg� EX�

���

�merbN�� �it�C DI O� �� �it�C DI O�� �lit�CDI O��
��ne �N � ��� � �merdN���
��eq �N � ����
��alu$C� �� ��aout V�� �� �aout V��� �laout�V��� �merdN��� ���
��ld$C� ��
��marL�� �mLV � �� �marL�� �mLV �� �llmdrV �� �merdN��� ���
��st$C� ��
��marL�� �mLV �� �smdrV�� ��

�marL�� �mLV��� �smdrV��� �merdN��� ���
���noop$C�� �br$C�� � �merdN���

�mewbN�� �it�C
�D� I �O��� �lit�CD I O� �� �it�CD I O��

��ne �N � ��� � �mewdN���
��eq �N � ����
��alu$C� �� ��aout�V��� �laout�V�� �� �aout� V��� �mewdN��� ���
��ld$C� �� ��lmdrW��� �llmdrW�� �� �lmdrW��� �mewdN��� ���
���st$C�� �noop$C�� �br$C�� � �mewdN���

�wbrbN�� �it�C DI O�� �numM� �� �it�CD I O��
��eq �N � ��� � ��wbrdN�� �numM����
��eq �N � ���� � ��wbrdN�� �num�M (������
��eq �N � ����
��alu$C� ��
��aout�V�� �� �aout� V��� �lr� d V��� �wbrdN�� �num�M (����� ���
��ld$C� ��
��lmdrV�� �� �lmdrV��� �lr� d V��� �wbrdN�� �num�M (����� ���
���st$C�� �br$C�� � ��lr � d V��� �wbrdN�� �num�M (������
��noop$C� � ��lr� d V��� �wbrdN�� �numM����

�wbwbN� ��
��ne �N � ��� � �wbwdN���
��eq �N � ��� ��
���lr� d V��� �r d V�� �� �r d V��� �wbwdN�� �
��lr� d V�� �� �wbwdN��� ���

Figure ����� Speci�cation for the DLX pipeline � MEM and WB�

���

� L� and L� are two latch states� and it is consistent in L��

� S� and S� are two data states� such that the pc in S� does not address a bg or ht

instruction in P�

� P is a program state� and

� �o � Eo # S� �L� � �cwd �N��P � S� �L� � �crb �N��P�

then

�� it is consistent in L��

�� if the instruction in the ID stage depends upon a preceding instruction in the pipeline

for data� then the data hazard is resolved� and

�� if the instruction in the ID stage is a br then the control hazard is resolved�

Proof� Identical to proof of lemma ��� using the de�nitions of �o and call forwarding

functions�

The following lemma is proved by mutual induction on the number of instructions which

have completed execution� Since the proof of lemma ���� is identical to the proof of

lemma ���� I state the lemma without proof� The proof of theorem ���� is a corollary

of this lemma�

Lemma ���� �Lemmas for Correspondence between Es and Eo Given

� m � � and m � nat�

� S� and S� two data states minus the pc� num has � and m in S� and S�� respectively�

� Pl is a DLX program� P� �def �P l �Pl� is a program state�

� L� �def �
�C �D �I �O �S �V � �L �C �D �I �O �S�V �� and

���

� C �def �
�N� �cwd �N��

�� if the mth instruction is not ht then

�s � Es # S� � cont� �pcL��P� � S� � �pcM��P� i	

�o � Eo # S� � �pcK��L�� C �P� � S� � �pcM��P�

�� if the mth instruction is ht then

�s � Es # S� � �pcL��P� � S�� �pcM��P� i	

�o � Eo # S� � �pcL��P� � S� � �pcM��P�

The technique of using external functions for state transition functions� and using the logic

to manage the synchronizations has provided a powerful and �exible tool� The speci�cation

for the optimizations did not change the global structure of the speci�cation� The key

rede�nitions were in the external functions� and the clauses for IF and ID stages� The change

from Ep to Eo is not modular� in fact� I believe it cannot be modular because we are changing

the interpreter for DLX programs� not adding new constructs to the programming language�

In spite of the non�modular changes the structure of the speci�cation is maintained� and

the proof strategies for the Ep su
ce for Eo�

��� Program equivalence for DLX � Correctness of code

scheduling

In this section I study the observational equivalence for DLX programs� Two programs

are deemed to be observationally equivalent if the observable behavior of the two programs

is identical with respect to a given set of environments� The problem of deciding when

two code fragments are observationally equivalent is of great importance to compiler opti�

mizations� For example� code rescheduling �HP���� i �e� reordering the instructions in the

program� is one of the most important techniques to reduce penalties due to data and con�

trol hazards� However� code can be reordered only if the reordered code is observationally

��

equivalent to the original code sequence� Similarly� other optimizations done by back end

compilers need to be justi�ed by proving appropriate observational equivalence�

The two key words in the informal de�nition of observational equivalence are environment

and observable behavior� The evaluator for DLX programs translates a given data state into

another one� Thus� the observable entity at the end of the computation is the data state�

Note� however� that if I observe the entire data state then I will be able to count the number

of instructions executed by a program� Although the number of instructions executed to

compute a result is useful information� this notion of equivalence would be too �ne� I am

primarily interested in making sure that the results computed by two programs are identical

in all environments � how many steps are taken to achieve the results is a question that I am

not investigating here� The result of the computation is to alter the contents of the register

�le and the memory � the observable entities� Hence� two programs will be equivalent if�

when placed in identical environment� the contents of the register �le and memory at the

end of the computations is identical� The observable state of a computation is de�ned to

be the registers� the number of memory cells and the contents of the memory�

De
nition ���� �Observable State� �r � � � � ��r �� � are the DLX registers� and n � nat is

the number of memory cells� Let O be an abbreviation for

	n �V �U� �r �V��� � � � � �r ��V	��� �m �U��� � � � �mnUn��

The lengths of �V and �U � �� and n respectively � if implicit� are assumed to be of appropriate

length�

For any n � �� V� � � � V	� U� � � � Un � int� �O n �V �U� is an observable state�

The next problem is to de�ne the notion of environment� An environment� written as

E��l�m� is de�ned to be a DLX program� Pl�m� in which at most one of the lists parsed by

the non�terminal Hm�m is missing� A block is a list of DLX instructions which can be parsed

by Hm�m� Note that given a block Q of length q� replacing the hole in the environment

E��l�m by Q� written as E�Q�l�q� results in a DLX program Pl�q � Thus� blocks of di	erent

���

lengths may be substituted for the hole in any given environment� I will drop the subscripts

on the environments whenever this will not create any confusion� Note that I will use DLX

programs themselves to test equivalence of DLX blocks� Using these two concepts� the

de�nition of observational equivalence is made below�

De
nition ���� �Observational Equivalence� ��dlx� Let Qi i � �� �� be blocks� Q� is

observationally equivalent to Q�� written as Q�
��dlx Q�� if for any DLX environment E and

observable states O� and O�� the following is provable�

�pcL��� �num�N� (M����O�� �P l� �E�Q��� ��s O� � �pc ��� �P l� �E�Q���� �numN��

if and only if

�pcL��� �num�N� (M����O�� �P l� �E�Q��� ��s O� � �pc ��� �P l� �E�Q���� �numN��

for some Ni Mi Li and li is the length of E�Qi� i � �� ���

Note that the de�nition is with respect to Es� This is enough due to the theorems ����

and ��� which establish that all three� Ep� Eo and Es� are equivalent� This fact is very helpful

because Es is the simplest to work with� The de�nition may appear rather weak because it

is only regarding observational equivalence of blocks� This is only apparent because blocks

are a basic entity for which it makes sense to formalize the notion of equivalence� The key

property of a block as de�ned is that it can only be entered at the beginning and exited at

the end� If either of these two conditions are violated� then it would be next to impossible to

�nd interesting equivalences� Suppose that the de�nition of a block was such that it allowed

one to enter it at some intermediate point� In this case� the standard code rescheduling

would be incorrect� To make this point concrete� lets look at the following example� Let

their be two instructions �ix alu � � � I(� and �ix alu � � � I(�� The �rst one writes the

sum of registers � and � in register �� and the second one writes the sum of registers � and

� in register �� It is clear that interchanging the order of these two instructions is harmless�

only if both the instructions are executed� Suppose I was allowed to place the instructions

in an environment which can jump to the second instruction avoiding the execution of

���

�ix alu � � � I(�� then the reordering of the instructions will produce di	erent results�

i �e� code rescheduling in this case would be unsound� The de�nition of environments and

blocks disallows this possibility because the environment cannot jump to an intermediate

point in a block� I now prove the observational equivalence for the general statement of

code rescheduling�

Lemma ���� �Observational Equivalence of Code rescheduling Let

Q� �def Ix�# Ix�� Q� �def Ix�# Ix�� where Ixi �def �ix CiDi SiRi IiOi�� Ci �

falu ldstg� and all of Di Si Ri are pair wise distinct for i � �� ���

Q�
��dlx Q�

Proof� Note that both Q� and Q� are blocks by de�nition� let E be any environment� and

O� and O� be two observable states such that

�pcL��� �num �N� (M����O�� �P l� �E�Q��� ��s O� � �pc ��� �P l� �E�Q���� �numN���

If the computation does not reach Q�� it will also not reach Q�� and thus the proof for

�pcL��� �num�N� (M����O�� �P l� �E�Q��� ��s O� � �pc ��� �P l� �E�Q���� �numN��

is the proof that I assumed�

So suppose that

�pcL	�� �num�N	 (M	���O
�
�� �P l� �E�Q��� ��s O� � �pc ��� �P l� �E�Q���� �numN��

such that Ix� is at the address L	 in the program memory� As the block Q� has not been

executed as yet� I must have�

�pcL
�� �num�N
 (M
���O
�
�� �P l� �E�Q��� ��s O� � �pc ��� �P l� �E�Q���� �numN��

���

such that Ix� is at the address L
 in the program memory�

Computing the instruction Ix� and Ix� in both the proofs will yield

�pcL	 (��� �num�N	 (M	 (����O��
� � �P l� �E�Q��� ��s

O� � �pc ��� �P l� �E�Q���� �numN��

and

�pcL
 (��� �num�N
 (M
 (����O
��
� � �P l� �E�Q��� ��s

O� � �pc ��� �P l� �E�Q���� �numN���

Since there is no dependence between the two instructions� I can permute the order in

which the instructions are computed without e	ecting the observable state at the end of

the execution of the two instructions�

The rest of the proof is obtained by inducting on the number of times the blocks Q� and

Q� are computed� The other side of the transformation can be completed similarly�

I have provided a formal de�nition of observational equivalence for DLX programs which can

be tackled using program transformations� As an example� I showed how to justify code�

rescheduling from the de�nitions developed� This points out a subtle assumption in the code

rescheduling� that the instructions in the two sequences are computed atomically � either

one executes the entire sequence� or none of it� Without this assumption� code rescheduling

cannot be justi�ed in general� This opens up an interesting line of investigation into back

end optimization using this meta�theoretic tool�

���

Chapter �

Conclusion and Future Work

	�� Conclusion

My goal has been to analyze a meta�theory in which various issues regarding programming

languages can be discussed� The �rst� and key requirement of a framework would be that

it can specify the operational semantics of the programming language� However� I want

the meta�theory to play a much more signi�cant role than the speci�cation of operational

semantics alone� In particular� I want to use the meta�theory to study various interest�

ing and challenging properties of programs� One key feature of a meta�theory should be

to facilitate discussion of the programming language at various levels of detail � from

high�level speci�cations down to abstract machines� The meta�theory should provide a uni�

form framework in which diverse properties � subject reduction� compiler optimizations�

observational equivalence� and equivalence of di	erent speci�cations � can be analyzed�

In this thesis I used FORUM as a meta�theory to study programming languages� FORUM

provides a rich structure to proofs which was used to specify concurrency� higher�order func�

tions� exceptions� state� and �rst�class continuations� I speci�ed a fragment ofHO��calculus

in FORUM to show how concurrent computations may be represented in FORUM� Next�

I de�ned an untyped higher�order functional language� UML� which provides an exception

���

mechanism and state and �rst�class continuations� UML� without �rst�class continuations�

is untyped SML without data�types� UML encapsulates essential programming constructs

which have been challenging to understand in more than one way� For example� modular

speci�cations of UML have not been possible� The semantic analysis of the observational

equivalence for �vs� the functional core of UML augmented with state� has been very chal�

lenging� Next� I analyze the DLX architecture in FORUM� The executable speci�cation

of DLX architecture� to the best of my knowledge� has not been attempted� Formaliz�

ing low�level optimizations and observational equivalence for DLX programs has been very

challenging�

Specifying UML modularly and declaratively has been challenging for formal systems be�

cause of the presence the various imperative features� I have provided modular and declar�

ative speci�cations of the imperative features in UML� The claim that the speci�cations

are modular is justi�ed by the fact that I obtain the speci�cation for UML by literally

putting together my speci�cations for its di	erent parts� The claim that the speci�cations

are declarative is justi�ed by the fact that my proofs regarding the evaluations in FORUM

work by composing proofs using cut rules of FORUM�

As a result of my speci�cation� evaluations become proofs in FORUM � formal objects

which can be analyzed using the meta�theory of FORUM� I use this fact to study obser�

vational equivalence for �vs� Using the proof structure of evaluations in FORUM� I have

proved some of the challenging observational equivalences in the literature for �vs�like lan�

guages� The nature of these proofs is very interesting� They seem to fall into two main

categories� One kind of proofs essentially permute a given evaluation proof� typically using

information regarding variable occurrences� The other kind of proofs are based on abstract�

ing away details of function parameter from computations� The structure of proofs� richer

logic� and cut rules play a key role in this analysis� However� the story is far from complete�

Proofs of observational equivalence exhibit the need for a richer meta�theory for FORUM�

The declarative speci�cation of the DLX pipeline� with its complex synchronizations� hazard

resolution� call�forwarding� branch prediction and early�branch resolution� provides ample

���

evidence of the �exibility of FORUM as a speci�cation language for concurrent and imper�

ative processes� The speci�cations allow me to prove the correctness of the pipeline with

respect to the simple sequential evaluator for DLX programs� Further� I provide a de�ni�

tion of observational equivalence for DLX programs� and justify code rescheduling using the

de�nitions� This e	ort highlights the key concept of blocks when discussing equivalence of

DLX programs�

FORUM seems to provide an appropriate starting point as a meta�theory for present day

programming languages� My results regarding the speci�cation of HO��calculus� UML and

DLX prove that the proofs in FORUM are rich enough to represent a variety of computa�

tional paradigms� The analyses of the observational equivalence for �vs� and DLX programs

justi�es the claim that FORUM can be used to study meta�theoretic properties also�

	�� Future Work

The future work that I want to do in this area has three principal directions� First� I want

to develop proof theory required to better specify imperative features and analyze proofs

in FORUM� Second� I wish to study the derivation of abstract machines from high�level

speci�cations in FORUM� Finally� I wish to consider other speci�cation tasks� I describe

each of these topics below�

Proof�theoretic challenges

Quanti
ers for location names

Although FORUM is able to specify imperative features declaratively� there is one aspect

which is not captured entirely by the speci�cation� In the speci�cation for �ve� I used

natural numbers to generate unique names for exceptions� The reason for using the sigctr

was that I had to do inequality checks on the exception names when I searched the exception

stack for an appropriate handler� The same problem would come up in the speci�cation of

���

�vs if the language permitted us to check for the equality of location names� The problem of

the mismatch between restriction in HO��calculus and universal quanti�er is also related�

The usage of � to represent creation of new location names is not entirely appropriate�

This may be an overkill� because I instantiate the universal quanti�er with location names

only� not arbitrary values� In some sense� I need a quanti�er for pointers� When the � is

introduced� it discharges a constant from the signature� Along with the discharging of the

constant� it might be possible to manage inequality clauses between all the location names�

In this sense� the new quanti�er then may handle both the %newness& and %uniqueness&

of the location names� A solution along these lines would allow for a completely logical

speci�cation of the exception mechanism� Further� a proper proof�theoretic understanding

might help in the search for semantics for such languages�

Proof transformations

In chapter � we saw how proofs were manipulated to yield observational equivalences�

There were two basic �avors to the proofs� First� the proof would essentially permute

a given evaluation proof typically based on information regarding variable occurrences�

Second� the proof would attempt to abstract the details of a function parameter from the

computation of a program�

Some of the proofs were by induction on the height of proofs in FORUM� This might lead

one to believe that there was not much uniformity to the transformations� Fortunately� just

the contrary is true� For example� in lemma ����� I transform evaluations of �app M � Add��

to evaluations of �app M � c� by induction on the height of the evaluation of �app M � Add���

The shape of the evaluation of �app M � Add�� will be as shown below� � is the evaluation

of �app Add� V ��

���

���
Evaluation of �app Add� V �

���
Evaluation of �app Add� V �

���
Sequent for start state of �app M � Add��

The transformation replaces the proof fragment � with the constant c� The structure of

the rest of the proof does not matter to the transformation� The question is� how to study

these transformations proof theoretically so that the above transformations can be speci�ed

compositionally instead of having to induct every time�

Deriving abstract machines from high�level speci�cations

One of the problems in language development is to show the link between the actual ab�

stract machine that is implemented and the high�level semantics that one starts with� The

traditional speci�cation techniques are not able to present these di	erent levels of abstrac�

tions� Hence� one has to mediate between dissimilar formalisms using some hairy induction

arguments� I would like to logically transform the evaluator I have to a CEK style abstract

machine for UML� A similar transformation was done for �v like language in �HM���� My

work would extend it to the richer language UML� The transformation in �HM��� was not

carried out entirely within the logic� I want to investigate whether the mixture of FORUM

and continuation�passing�style speci�cation will overcome some of the problem encountered

in �HM����

Speci�cation of other aspects of programming languages

One of the natural questions that comes after having speci�ed UML� is whether it can

be typed in FORUM� i �e�� can I specify the static semantics of UML in FORUM$ I have

some preliminary ideas on this problem� The Subject Reduction theorem would then be

a statement about the compositionality between the typing derivation and the evaluation�

���

The general setting of FORUM would also allow us to analyze other static information

about the programs� such as e	ects� The proof theory may provide us insight into the

logical nature of e	ects� if any�

Implementation of FORUM and interpreters for DLX

An implementation of a fragment of FORUM with �rst�order uni�cation would su
ce to

play with interpreters for DLX pipelines� This could be a big step forward in understanding

the role of FORUM as a prototyping language for such applications� The critical use of

prototypes to experiment with new ideas and negotiate contracts is gaining much recognition

recently� As such� this direction might result in some tangible applications of FORUM�

��

Appendix A

Proofs from chapter �

In �gure A�� the constants from �ml used for the translation of UML into FORUM is

presented� In �gure A�� the translation from UML to FORUM is presented� in �gure A��

the translation for Answers to FORUM is presented� and in �gure A�� the translation from

FORUM terms of type vl and tm to UML is presented� I prove lemmas A�� and A�� which

implies lemmas ���� ���� ��� and ����� I use the notation from chapter � regarding freely in

the appendix�

Lemma A�� Let M and N be UML terms� V and U be values in UML�

�� ��U �x �� V �� � ��U��x �� ��V ���

�� H�M �x �� V �� � H�M��x �� ��V ���

Proof� The proof of the lemma works by mutual induction on the two claims� The induc�

tion is done on the structure of the term�

Proof for claim �� The claim is vacuously proved in the cases where U is an exception

name� or a constant in the language�

Case U � z� z �
 x � LHS � z � RHS

���

abs � �vl� tm�� vl

c � vl c � B 	 Z 	 f�g

h�i � vl� tm

f � tm� tm� tm f � O
app � tm� tm� tm

cond � tm� tm� tm� tm

ifbr � vl� tm� tm� tm

letval � �vl� tm�� tm� tm

letfun � �vl� tm�� �vl� vl� tm�� tm

cell � tm� tm

read � tm� tm

write � tm� tm� tm

ex � ext� vl

exn � �ext� tm�� tm

install � tm� tm� tm� tm

signal � tm� tm� tm

catch � tm� tm

jump � tm� tm� tm

get � vl� �vl� o�� o
set � vl� vl� �vl� o�� o

apply � tm� tm� o
uncaught � ext� vl� o
resume � vl� vl� o

cont � vl� �vl� o�� o
eval � tm� �vl� o�� o

Figure A��� Constants in �ml used in translating UML to FORUM

���

��x� � x

��	x�M� � abs 	x � vl�H�M�
��c� � c c � Z 	 B 	 f�g
��l� � �ex l� l � ExnNames

H�V � � h��V �i
H�f M N� � f H�M� H�N�
H�M N� � app H�M� H�N�

H�if M N P � � cond H�M� H�N� H�P �
H�let val x � M in N� � letval �	x�H�N�� H�M�

H�let fun f x � M in N� � letfun �	f�H�N�� �	f x�H�M��
H�ref M� � cell H�M�

H�deref M� � read H�M�
H�asg M N� � write H�M� H�N�

H�exception l M� � exn 	l�H�M�
H�handle M N P � � install H�M� H�N� H�P �

H�raise M N� � signal H�M� H�N�
H�callcc M� � catch H�M�

H�throw M N� � jump H�M� H�N�

Figure A��� Translating UML to FORUM

A�VK� � �K ��V ��
A��pk l V �K� � �uncaught l �ve�V ��

Figure A��� Translating answers in UML to FORUM

���

��x� � x
��abs 	x�M� � 	x� L�M�

��c� � c c � Z 	 B 	 f�g
��ex l� � l

L�hV i� � ��V �
L�f M N� � f L�M� L�N� f � O

L�app M N� � L�M� L�N�
L��ifbr V N P �� � if ��V � L�N� L�P � b � B
L�cond M N P � � if L�M� L�N� L�P �
L�letval R N� � let val x � L�N� in L�Rx� x fresh

L�letfun R� R�� � let fun f x � L�R� f x� in L�R� f� f x fresh
L�cell M� � ref L�M�
L�read M� � deref L�M�

L�write M N� � asg L�M� L�N�
L�exn R� � exception l L�Rl� l � ExnNames l is fresh

L�install M N P � � handle L�M� L�N� L�P �
L�signal M N� � raise L�M� L�N�
L�catch M� � callcc L�M�

L�jump M N� � throw L�M�L�N�

Figure A��� Translating FORUM terms to UML

���

Case U � z� z
 x � LHS � ��V � � RHS

Case U � 	z�M z �
 x �

If z
 x then the equality is immediate� I write the case when z �
 x�

LHS � ���	z�M��x �� V �� � ��	z� �M �x �� V ��� � abs 	z�H�M �x �� V ��

� abs 	z� �H�M��x �� ��V ���� by induction on claim ��

� �abs 	z�H�M���x �� ��V �� � RHS

This completes the proof of claim ��

Proof for claim ��

Case M � U � U � Values � By claim ��

Case M � �f N P �� f � O �

LHS � f H�N �x �� V ��H�P �x �� V ��� by induction on claim�

� f H�N��x �� ��V ��H�P ��x �� ��V �� � RHS

Case M � �N P � �

LHS � app H�N �x �� V �� H�P �x �� V ��� by induction on claim�

� app H�N��x �� ��V �� H�P ��x �� ��V �� � RHS

Case M � �if N P L� �

LHS � cond H�N �x �� V �� H�P �x �� V �� H�L�x �� V ��� by induction on claim�

� cond H�N��x �� ��V �� H�P ��x �� ��V �� H�L��x �� ��V �� � RHS

���

Case M � �let val z � N in P � �

When z
 x the result is immediate� I write the proof for z �
 x�

LHS � letval �	z�H�P �x �� V ��� H�N �x �� V ��� by induction on claim�

� letval ��	z�H�P ���x �� ��V ��� H�N��x �� V � � RHS

Case M � �let fun f z � N in P � �

When z
 x or z
 f the result is immediate� I write the proof for z �
 x and z �
 f �

LHS � letfun �	f�H�P �x �� V ��� �	f z�H�N �x �� V ��� by induction on claim�

� letfun ��	f�H�P ���x �� ��V ��� ��	f z�H�N���x �� ��V ��� � RHS

Case M � �ref N� �

LHS � cell H�N �x �� V ��� by induction on claim�

� cell H�N��x �� ��V �� � RHS

Case M � �deref N� �

LHS � read H�N �x �� V ��� by induction on claim�

� read H�N��x �� ��V �� � RHS

Case M � �asg N P � �

LHS � write H�N �x �� V �� H�P �x �� V ��� by induction on claim�

� write H�N��x �� ��V �� H�P ��x �� ��V �� � RHS

Case M � �exception l N� �

Note x �
 l�

LHS � exn lH�N �x �� V ��� by induction on claim�

� exn lH�N��x �� ��V �� � RHS

���

Case M � �raise N P � �

LHS � raise H�N �x �� V �� H�P �x �� V ��� by induction on claim�

� raise H�N��x �� ��V �� H�P ��x �� ��V �� � RHS

Case M � �handle N P L� �

LHS � signal H�N �x �� V �� H�P �x �� V ��H�L�x �� V ��� by induction on claim�

� signal H�N��x �� ��V �� H�P ��x �� ��V ��H�L��x �� ��V �� � RHS

Case M � �callcc N� �

LHS � catch H�N �x �� V ��� by induction on claim�

� catch H�N��x �� ��V �� � RHS

Case M � �throw N P � �

LHS � jump H�N �x �� V �� H�P �x �� V ��� by induction on claim�

� jump H�N��x �� ��V �� H�P ��x �� ��V �� � RHS

The proof for lemma A�� is a mutual induction exactly along the lines of lemma A��� As

the details do not reveal anything new I have not written down the proof�

Lemma A�� Let N � tm� U � vl� and V � vl be FORUM terms�

�� ��U �x �� V �� � ��U��x �� ��V ���

�� L�N �x �� V �� � L�N��x �� ��V ���

I now want to prove theorem ����� This theorem states that the natural semantics spec�

i�cation of �vse and Eves� and the FORUM speci�cation of �vse are equivalent� I begin

with the de�nition of a con�guration and the translation of the con�guration to FORUM�

Con�gurations are the initial environments in which �vse terms need to be evaluated� The

���

� � +CLS # Q�!C �� Q�!C
Id

��� �L� L

� � +CLS # �C
oQ� �� Q�!

���Associativity and commutativity of �

� � +CLS # �C
oQ� �� Q�"

c

Figure A��� C is a con�guration

translation of a con�guration to FORUM returns a 	 which places its arguments in an

environment in which all the cells and exceptions have been declared� and approporaitely

quanti�ed�

De
nition A�� �Con�gurations in �vse� A conifguration� C is a pair of state� S� and set

of exception names� Ex� such that forall l � dom�S�� FV�S�l��� dom�S�	 Ex�

De
nition A�� �Translating Con�gurations to FORUM� C �def hSExi� be a con�gura�

tion� The translation of C into FORUM is a term of type o� o� written as Co�

Co �def

	u � o�� PS lS� getC�P� l��� setC�P� l��� � � �� getC�Pn ln�� setC�Pn ln��

�u�"S � �sigctr lEx�� �exnst nil��

The domain of a con�guration� C �def hSExi� written as dom�C�� is the union of dom�S�

and Ex� In �gure A�� I show a proof �gure� Compl� which I will use to end the computations

in �vse� Let C � hSExi�

CoQ � � PS lS� getC�P� l��� setC�P� l��� � � �� getC�Pn ln�� setC�Pn ln��

�Q�"S � �sigctr lEx�� �exnst nil��

���

lC �def lEx� "C �def "S � !C �def "C � �sigctr lC�� �exnst nil�� and ! is some permutation

of !C � I restate Theorem �����

Theorem A�� �Correspondence theorem for �vse Let M � �vse� A � Answersvse �

C� be a con�guration and C� be a con�guration such that FV�M� � dom�C��

hMC�i � hAC�i if and only if eval�H�M� C�A�AK� C��

Proof� AssumeM � �vse� A � Answersvse � C� is a con�guration and C� is a con�guration

such that FV�M� � dom�C��

Left to right direction � Proof is by induction on the height of the evaluation tree in the

natural semantics� I do a case analysis on the structure ofM � There are in total thirty�nine

rules in natural semantics that I have to analyze� Since many of the cases are repetetive�

I will prove the ones which have di	erent features and leave out the proofs of the rest� In

the proofs I show� I will not show parts of the signature and intuitionistic context� For

example� I do not write �ves in the signature� and Eves in the intuitionistic context� since

they are present in all the exhibited sequents�

Case M � V � There is only one possible evaluation tree� The proof in FORUM follows

trivially from Identity�

Case M � �N P � � There are four possible evaluation trees� Suppose the evaluation is

hNC�i � h	x�QC�i hPC�i � hUC	i hQ�x �� U � C	i � hV C
i

h�N P � C�i � hV C
i

The proof is essentially the one given in section ��� after theorem ���� There are three more

natural semantics trees� each for the fact that we have an uncaught exception� The proof

for these cases is completed as shown in section ��� after theorem �����

���

Case M � �f N P �� f � O � In this case� there are three possible natural semantics which

are applicable� The proof is along the lines of the case M � �N P ��

Case M � �if N P Q� � In this case� there are six possible natural semantics which are

applicable� I show one of the cases� the others may be completed similary� Suppose the last

natural semantics rule used is �

hNC�i � htrue C�i hPC�i � hV C	i

h�if N P Q� C�i � hV C	i

The evaluation trees for hNC�i � htrue C�i and hPC�i � hV C	i are smaller than the

evaluation of M � Let N� �def H�N�� P� �def H�P �� Q� �def H�Q�� and V� �def ��V ��

Thus� by using induciton hypothesis I get proofs ��� and �� of

� K� � Eves # Co
��K� true� �� Co

��eval N� K��� and

� K� � Eves # C
o
	�K� V�� �� Co

��eval P� K��� respectively�

The required proof is constructed below� In the proof�

L� �def 	v� �eval ��ifbr v P� Q��� K�� and �L� true� �� �eval ��ifbr true P� Q��� K��

��
Co
	�K V�� �� Co

��eval P� K�

Co
	�K V�� �� �eval ��ifbr true P� Q��� K��!C�

��� �R� R

Co
	�K V�� �� Co

��L� true�
��

Co
��L� true� �� �eval N� L���!C�

�C�
 K � CLS� # C

o
	�K V�� �� �eval N� L���!C�

�C�
 K � CLS� # C

o
	�K V�� �� �eval �if N� P� Q�� K��!C�

In the above proof� �� is obtained by �� by a CutS rule K� with L�� similarly �� is obtained

from �� by a CutS rule on K� with K�

Suppose the last natural semantics rule used is �

��

hNC�i � h�pk l V � C�i

h�if N P Q� C�i � hV C�i

The evaluation tree for hNC�i � h�pk l V � C�i is smaller than the evaluation of M � Let

N� �def H�N�� P� �def H�P �� Q� �def H�Q�� and V� �def ��V �� Thus� by using

induciton hypothesis I get proof �� of

� K� � Eves # C
o
��uncaught l V�� �� Co

��eval N� K���

The required proof is constructed below�

��
�C�

 K � CLS� # C
o
��uncaught l V�� �� �eval N� L���!C�

�C�
 K � CLS� # C

o
��uncaught l V�� �� �eval �if N� P� Q�� K��!C�

backchain

Where �� is obtained from �� using CutS� The proof� for the other natural semantics rules

for if are completed in a similar manner�

Case M � �let val x � N in P � � This case is handled exactly like �	x� P � N �

Case M � �let fun f x � N in P � � The last evaluation rule for letfun will be �

hP �f �� 	x� let fun f x � N in N � C�i � hAC�i

hlet fun f x � N in PC�i � hAC�i

The evaluation tree for hP �f �� 	x� let fun f x � N in N � C�i � hAC�i is smaller than the

evaluation of M � Let N� �def H�N�� P� �def H�P �� and V� �def ��V �� Thus� by using

induciton hypothesis I get the proof �� of

� K� � Eves # C
o
�A�AK�� �� Co

��eval P��f �� �abs 	x� let fun f x � N� in N��� K���

The required proof is constructed below� Let Q �def �abs 	x� let fun f x � N� in N���

���

��
�C�

 K � CLS� # C
o
��uncaught l V�� �� �eval P��f �� Q� L���!C�

�C�
 K � CLS� # C

o
�A�AK� �� �eval H�let fun f x � N in P � K��!C�

backchain

Where �� is obtained from �� using CutS�

Case M � �ref N� � I consider the case when the last evaluation rule for ref is �

hNC�i � hV C�i

href NC�i � hl C��l �� V �i
l �� State in C�

The evaluation tree for hNC�i � hV C�i is smaller than the evaluation ofM � Let N� �def

H�N�� and V� �def ��V �� Thus by using induction hypothesis I get proof �� of

� K� � Eves # C
o
��K V � �� Co

��eval N� K���

The required proof is constructed below� Let C	 �def hS��l �� V � Ex�i� where C� �def

hS� Ex�i� and L� �def 	v� �P l� getC�P l�� setC�P l�� ��K l�� �P v���

Compl
�C�

 P l � CLS� # C
o
	�K l� �� �K l�� �P V���!C�

��� �R� R

Co
	�K l� �� Co

��L� V��
��

Co
��L� V�� �� �eval N� L���!C�

�C�
 K � CLS� # C

o
	�K l� �� �eval N� L���!C�

�C�
 K � CLS� # C

o
	�K l� �� �eval �cell N�� K��!C�

backchain

Where �� is obtained from �� using CutS� The other case when the evaluation of N returns

an uncaught exception is treated similarly�

Case M � �deref N� � I consider the case when the last evaluation rule for deref is �

hNC�i � h�pk l V � C�i

hderef NC�i � h�pk l V � C�i

���

The evaluation tree for hNC�i � h�pk l V � C�i is smaller than the evaluation of M � Let

N� �def H�N�� and V� �def ��V �� Thus� by using induction hypothesis I get proof �� of

� K� � Eves # Co
��uncaught l V�� �� Co

��eval N� K���

The required proof is constructed below� Let L� �def 	v� �get v K��

��
�C�

 K � CLS� # C
o
��uncaught l V�� �� �eval N� L���!C�

�C�
 K � CLS� # C

o
��uncaught l V�� �� �eval �read N�� K��!C�

backchain

Where �� is obtained from �� using CutS� The other case when evaluation of N returns a

value is treated similarly� Essentially� the computation continues with �get l K�� where l

would be the value returned by N �

Case M � �asg N P � � There are three natural semantics rules for asg� The proofs for all

of these is completed along the lines of the proof after theorem ����

Case M � �exception l N� � This case is rather straightforward given the examples

above� It is handled along the lines of ref�

Case M � �raise N P � � This case is rather straightforward given the examples above� It

is handled along the lines of app�

Case M � �handle N P Q� � Suppose the last rule in the evalution was

hPC�i � hl C�i hQC�i � hWC	i hNC	i � h�pk l U � C
i h�W U� C
i � hV C�i

hhandle N P QC�i � hV C�i

The evaluation trees for hPC�i � hl C�i� hQC�i � hWC	i� hNC	i � h�pk l U � C
i�

and h�W U� C
i � hV C�i are smaller than the evaluation of M � Let N� �def H�N��

���

P� �def H�P �� Q� �def H�Q�� V� �def ��V �� U� �def ��U�� and W� �def ��W �� Thus�

by using induciton hypothesis I get proofs ��� ��� �	� and �
 of

� K� � Eves # Co
��K� �ex l�� �� Co

��eval P� K���

� K� � Eves # C
o
	�K�W�� �� Co

��eval Q� K���

� K	 � Eves # Co

�uncaught l U�� �� Co

	�eval N� K	�� and

� K
 � Eves # C
o
��K
 V � �� Co

�eval �app W� U�� K
�� respectively�

The required proof is constructed below�

Let L� �def 	v� �isexn v 	w� �eval Q� 	u� �push w u K N�����

L� �def 	w� �eval Q� 	u� �push w u K N���� and L	 �def 	u� �push l u K N���

Note �L� �ex l�� �def �isexn �ex l� 	w� �eval Q� 	u� �push w u K N�����

�L� l� �def �eval Q� 	u� �push l u K N���� and �L	W�� �def �push l W� K N��

��
�C�

� CLC�
Co

��K V�� �� �L� �ex l���!C�

��� �R� R

Co
��K V�� �� Co

��L� �ex l��
��

Co
��L� �ex l�� �� Co

��eval N� L��

�C�
� CLC�

Co
��K V�� �� Co

��eval N� L��

�C�
� CLC�

Co
��K V�� �� Co

��eval �install N� P� Q�� K�

To complete the proof I am left with constructing ���

��
�C�

� CLC�
Co

��K V�� �� �L� l��!C�

��� �R� R

�C�
� CLC�

Co
��K V�� �� Co

	�L� l�

�C�
� CLC�

Co
��L� l� �� �L� l��!C�

�C�
� CLC�

Co
��L� l� �� �L� �ex l���!C�

�C�
� CLC�

Co
��K V�� �� �L� �ex l���!C�

�� is constructed below�

���

�	
Co
��K V�� �� �push l W� K N���!C�

��� �R� R

Co
��K V�� �� Co

�L	W��
��

Co

�L	W�� �� �eval Q� L	��!C�

Co
��K V�� �� �eval Q� L	��!C�

�	 is constructed below�

�	
Co
��K V�� �� �eval N� 	v� �pop �K v����"C�

� �sigctr lC�
�� �exnst �pkt l W� K� �� nil�

Co
��K V�� �� �push l W� K N���"C�

� �sigctr lC�
�� �exnst nil�

The proof �i is constructed from �i� i � �� ��� �	 is obtained from �	� �	 results in

�uncaught l U��� under the assumption that the initial exception stack is empty� However�

the excetion stack is �exnst �pkt l W� K� �� nil�� I change �	 to re�ect the intial exception

stack� which will catch the exception and evaluate �apply W� U� K�� The evaluation of

�apply W� U� K� is completed using �
� The other cases for handle are handled similarly�

Right to left direction � In this direction� I induct on height of the sequent proof in

FORUM� I then do a case analyses based on the outermost term constructor for the term

being evaluate� The proof in this direction is very similar in nature to the one for the

other direction� I illustrate the basic strategy using �asg N P � as an example� and do

not write down the other cases� The computation for �asg N P � in FORUM is as shown

below� P� �def H�P �� N� �def H�N�� A � Answersvse� V� �def ��V �� L� �def

	v� �eval P� 	u� �set v u K��� and L� �def 	u� �set l u K��

��
��� Computation of P� Pt�

Co

A�AK� �� �eval P� L���!C�

Co

A�AK� �� �eval l L���!C�

��� Computation of N� Pt�

Co

A�AK� �� �eval N� L���!C�

�C�
� CLC�

Co

A�AK� �� �eval �asg N� P�� K��!C�

Where �� is shown below�

���

Compl
Co

A�AK� �� �K ���"� �P V��� �sigctr lC�

�� �exnst nil�

Co

A�AK� �� �set l V� K��"� �P U��� �sigctr lC�

�� �exnst nil�

Co

A�AK� �� �eval P� L���!C�

From this proof the computations for hNC�i � hl C�i and hPC�i � hl C	i can be extracted

easily� Next� the variable conditions in the proof imply that the state can be updated suit�

able so that the �nal answer is h� C	�l �� V �i� However� if the evaluation of N� raised an

uncaught exception� �uncaught l V��� then the proof would have ended with the Compl con�

struction at the point Pt�� In this case� I can get a computation of hNC�i � h�pk l V � C�i�

The case whenN� evaluates to a value� and P� raises an uncaught exception� �uncaught l V���

is handled similarly�

���

Bibliography

�Abr�� Samson Abramsky� Observation equivalence as a testing equivalence� Theoret�

ical Computer Science� ����������� ����

�Abr��� S� Abramsky� The lazy 	�calculus� In D� A� Turner� editor� Research Topics in

Functional Programming� pages ������� Addison�Wesley� �����

�AC�� T� Agarwal and J� Cocke� High performance reduced instruction set processors�

Technical report� IBM� ����

�AJ��� Andrew Appel and Trevor Jim� Continuation�passing� closure�passing style� In

��th Symp� Principles of Programming Languages� pages �������� ACM� �����

�AL��� M� Aagaard and M� Leeser� A framework for specifying and designing pipelines�

In IEEE International Conference on Computer Design� pages �������� �����

�AO��� S� Abramsky and L� Ong� Full abstraction in the lazy 	�calculus� Technical

report� Imperial College� ����� To appear in Information and Computation�

�AP��� J��M� Andreoli and R� Pareschi� Linear objects� Logical processes with built�in

inheritance� In Proceeding of the Seventh International Conference on Logic

Programming� Jerusalem� May �����

�App��� Andrew W� Appel� Compiling with Continuations� Cambridge University Press�

�����

���

�AST��� D�W� Anderson� F�J� Sparacio� and R�M� Tomasulo� The IBM ��� model ���

Machine philosophy and instruction handling� In IBM J� of Research and De�

velopement� pages ����� �����

�Bar��� Hank Barendregt� The Lambda Calculus� Its Syntax and Semantics� volume

��� of Studies in Logic and the Foundations of Mathematics� Elsevier� revised

edition� �����

�Blo��� E� Bloch� The engineering design of the stretch computer� In Proc� Fall Joint

Computer Conference� pages ������ �����

�BR��� Egon B,orger and Dean Rosenzweig� From prolog algebras towards wam � a

mathematical study of implementations� In Computer Science Logic� volume

���� pages ������ Springer�Verlag� �����

�Buc��� W� Bucholtz� Planning a computer system � Project Stretch� McGraw Hill�

�����

�CF��� R� Cartwright and M� Felleisen� Extensible denotational language speci�cations�

In Symposium on Theoretical Aspects of Computer Software� �����

�Chi��� Jawahar Chirimar� What can continuations observe in the lazy 	�calculus$

Technical report� University of Pennsylvania� April �����

�Chu��� Alonzo Church� A formulation of the simple theory of types� Journal of Symbolic

Logic� �������� �����

�DH��� R�K� Dybvig and R� Heib� Engines from continuations� In Computing Lan�

guages� volume ������ pages �������� �����

�FF��� M� Felleisen and D�P� Friedman� Control operators� the SECD machine and

the 	�calculus� In M� Wirsing� editor� Formal Descriptions of Programming

Concepts�III� pages ������� North�Holland� �����

�FH��� M� Felleisen and R� Heib� The revised report on the syntactic theories of se�

quential control and state� Theoretical Computer Science� ����������� �����

���

�Fri��� D�P� Friedman� Applications of continuations� In Proceedings of the ACM

Conference on Principles of Programming Languages� �����

�Gir�� Jean�Yves Girard� Linear logic� Theoretical Computer Science� ��������� ����

�Gir��� Jean�Yves Girard� A �xpoint theorem in linear logic� A message posted on the

linear-cs�stanford�edu mailing listing� February �����

�Gor�� M� C� Gordon� The Denotational Description of Programming Languages�

Springer�Verlag� ����

�Han��� John J� Hannan� Investigating a Proof�Theoretic Meta�Language for Functional

Programs� PhD thesis� University of Pennsylvania� August �����

�HM��� Joshua Hodas and Dale Miller� Logic programming in a fragment of intuition�

istic linear logic� Extended abstract� In G� Kahn� editor� Sixth Annual Sympo�

sium on Logic in Computer Science� pages ������ Amsterdam� July �����

�HM��� John Hannan and Dale Miller� From operational semantics to abstract ma�

chines� Mathematical Structures in Computer Science� ������������� ����� In�

vited to a special issue of papers selected from the ���� Lisp and Functional

Programming Conference�

�HMT��� Robert Harper� Robin Milner� and Mads Tofte� The De�nition of Standard ML�

Version �� Technical Report ECS�LFCS������� Laboratory for the Foundations

of Computer Science� University of Edinburgh� May �����

�Hoa��� C�A�R� Hoare� An axiomatic basis for computer programming� CACM� ������

���� October �����

�HP��� J� Hennesy and D� Patterson� Computer Architecture A Quantitative Approach�

Morgan Kaufman Publishers� Inc�� �����

�HSH��� Lars Halln,as and Peter Schroeder�Heister� A proof�theoretic approach to logic

programming� �� Clauses as rules� Journal of Logic and Computation� pages

�������� December �����

���

�Kah�� Gilles Kahn� Natural semantics� In Proceedings of STACS ����� volume �� of

Lecture Notes in Computer Science� pages ������ Springer�Verlag� March ����

�Kle��� Stephen Cole Kleene� Introduction to Metamathematics� North�Holland� Ams�

terdam� �����

�Lan��� P� J� Landin� The mechanical evaluation of expressions� Computer Journal�

������������� �����

�Mil��� Robin Milner� Communication and Concurrency� Prentice�Hall International�

�����

�Mil��� Robin Milner� Functions as processes� Research Report ����� INRIA� �����

�Mil��� Dale Miller� The ��calculus as a theory in linear logic� Preliminary results� In

E� Lamma and P� Mello� editors� Proceedings of the ���� Workshop on Exten�

sions to Logic Programming� number ��� in Lecture Notes in Computer Science�

pages �������� Springer�Verlag� �����

�Mil��� Dale Miller� A multiple�conclusion meta�logic� Extended abstract� In S� Abram�

sky� editor� Ninth Annual Symposium on Logic in Computer Science� Paris� July

����� To Appear�

�MNPS��� Dale Miller� Gopalan Nadathur� Frank Pfenning� and Andre Scedrov� Uniform

proofs as a foundation for logic programming� Annals of Pure and Applied

Logic� ���������� �����

�Mor��� J�H� Morris� Lambda Calculus Models of Programming Languages� PhD thesis�

Massachusets Institute of Technology� �����

�MP��� Spiro Michaylov and Frank Pfenning� Natural semantics and some of its meta�

theory in Elf� In Lars Halln,as� editor� Extensions of Logic Programming�

Springer�Verlag LNCS� ����� To appear� A preliminary version is available as

Technical Report MPI�I�������� Max�Planck�Institute for Computer Science�

Saarbr,ucken� Germany� August �����

��

�MPW��a� Robin Milner� Joachim Parrow� and David Walker� A calculus of mobile pro�

cesses� Part I� Information and Computation� pages ����� September �����

�MPW��b� Robin Milner� Joachim Parrow� and David Walker� A calculus of mobile pro�

cesses� Part II� Information and Computation� pages ���� September �����

�MS��� Albert R� Meyer and Kurt Sieber� Towards fully abstract semantics for local

variables� Preliminary report� In Proc� ��th Annual ACM Symp� on Principles

of Programming Languages� pages �������� San Diego� �����

�MT��� Ian A� Mason and Carolyn L� Talcott� References� local variables and opera�

tional reasoning� In A� Scedrov� editor� Proceedings of LICS���� pages �������

�����

�OT��� Peter W� O�Hearn and Robert D� Tennent� Semantics of local variables� Tech�

nical Report ECS�LFCS�������� Laboratory for the Foundations of Computer

Science� University of Edinburgh� January �����

�OT��� Peter W� O�Hearn and Robert D� Tennent� Relational parametricity and local

variables� In Proc� ��th Annual ACM Symposium on Principles of Programming

Languages� pages ������� �����

�Plo�� G� Plotkin� Call�by�name� call�by�value and the 	�calculus� Theoretical Com�

puter Science� ������������� ����

�PS��� A�M� Pitts and I� Stark� On the observable properties of higher order func�

tions that dynamically create local names� In Proc� ACM SIGPLAN Workshop

on State in Programming Languages �Technical Report YALEU�DCS�RR�����

Yale University�� �����

�RC��� Jonathan Ress and William Clinger� The revised	 report on the algorithmic

language Scheme� ACM SIGPLAN Notices� ������� �����

�Rep��� John H� Reppy� CML� A higher�order concurrent language� In ACM SIGPLAN

Conference on Programming Language Design and Implementation� pages ����

���� June �����

���

�Rey�� J�C� Reynolds� De�nitional interpreters for higher�order programming lan�

guages� In Proceedings of the ACM Annual Conference� pages ����� ����

�Rey��a� J� C� Reynolds� The Craft of Programming� Series in Computer Science�

Prentice�Hall� �����

�Rey��b� J� C� Reynolds� The essence of algol� In J� W� de Bakker and J� C� van Vliet�

editors� Algorithmic Languages� pages ������� North�Holland� �����

�San��a� D� Sangiorgi� Expressing Mobility in Process Algebras � First Order and Higher

Order Paradigms� PhD thesis� University of Edinburgh� �����

�San��b� D� Sangiorgi� The lazy 	 calculus in a concurrency scenario� In �th LICS Conf�

IEEE Computer Society Press� �����

�Set��� Ravi Sethi� Programming Languages� Concepts and Constructs� Addison�

Wesley Pub� Co�� �����

�SF��� A� Sabry and M� Felleisen� Reasoning about programs in continuation�passing

style� In Proceedings of the ACM Conference on Lisp and Functional Program�

ming� pages �������� �����

�SH��� Peter Schroeder�Heister� Rules of de�nitional re�ection� In M� Vardi� editor�

Eighth Annual Symposium on Logic in Computer Science� pages �������� IEEE�

June �����

�Sie��� Kurt Sieber� New steps towards full abstraction for local variables� In Proc�

ACM SIGPLANWorkshop on State in Programming Languages �Technical Re�

port YALEU�DCS�RR����� Yale University�� pages ������� Copenhagen� Den�

mark� �����

�Ste�� Guy L� Steele� Rabbit� A compiler for Scheme� Technical report� MIT Arti�cial

Intelligence Laboratory� ����

�Sto� Joseph E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Pro�

gramming Language Theory� MIT Press� Cambridge� MA� ���

���

�SW�� C� Strachey and C�P� Wadsworth� Continuations� A mathematical semantics

for handling full jump� Technical Report PRG���� Oxford university Computing

Laboratory� ����

�Tho�� J�E� Thornton� Design of a computer� the Control Data ����� Foresman� ����

�TK��� S� Tahar and R� Kumar� A formalization of a hierarchical model for risc pro�

cessors� In Proceedings of EuroARCH���� Springer Verlag� �����

�Wan��� M� Wand� Continuation based multiprocessing� In Conference Record of the

���� Lisp Conference� pages ������ �����

�WF��� A� Wright and M� Felleisen� A syntactic approach to type soundness� Technical

Report COMP TR������� Rice University� �����

���

	Proof Theoretic Approach to Specification Languages
	

	Proof Theoretic Approach to Specification Languages
	Abstract
	Comments

	untitled

