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Abstract. This work is the first exploration of proof-theoretic seman-
tics for a substructural logic. It focuses on the base-extension semantics
(B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting
point is a review of Sandqvist’s B-eS for intuitionistic propositional logic
(IPL), for which we propose an alternative treatment of conjunction that
takes the form of the generalized elimination rule for the connective. The
resulting semantics is shown to be sound and complete. This motivates
our main contribution, a B-eS for IMLL, in which the definitions of the
logical constants all take the form of their elimination rule and for which
soundness and completeness are established.
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1 Introduction

In model-theoretic semantics (M-tS), logical consequence is defined in terms of
models; that is, abstract mathematical structures in which propositions are inter-
preted and their truth is judged. As Schroeder-Heister [33] explains, in the stan-
dard reading given by Tarski [38,39], a propositional formula ϕ follows model-
theoretically from a context Γ iff every model of Γ is a model of ϕ; that is,

Γ |= ϕ iff for all models M, if M |= ψ for all ψ ∈ Γ, then M |= ϕ

Therefore, consequence is understood as the transmission of truth. Importantly,
on this plan, meaning and validity are characterized is terms of truth.

Proof-theoretic semantics (P-tS) is an alternative approach to meaning and
validity in which they are characterized in terms of proofs — understood as
objects denoting collections of acceptable inferences from accepted premisses.
This is subtle. It is not that one desires a proof system that precisely characterizes
the consequences of the logic of interest, but rather that one desires to express
the meaning of the logical constants in terms of proofs and provability. Indeed, as
Schroeder-Heister [33] observes, since no formal system is fixed (only notions of
inference) the relationship between semantics and provability remains the same
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as it has always been — in particular, soundness and completeness are desirable
features of formal systems. Essentially, what differs is that proofs serve the role
of truth in model-theoretic semantics. The semantic paradigm supporting P-
tS is inferentialism — the view that meaning (or validity) arises from rules of
inference (see Brandom [5]).

To illustrate the paradigmatic shift from M-tS to P-tS, consider the propo-
sition ‘Tammy is a vixen’. What does it mean? Intuitively, it means, somehow,
‘Tammy is female’ and ‘Tammy is a fox’. On inferentialism, its meaning is given
by the rules,

Tammy is a fox Tammy is female

Tammy is a vixen

Tammy is a vixen

Tammy is female

Tammy is a vixen

Tammy is a fox

These merit comparison with the laws governing ∧ in IPL, which justify the
sense in which the above proposition is a conjunction:

ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ
ϕ

ϕ ∧ ψ

ψ

There are two major branches of P-tS: proof-theoretic validity (P-tV) in the
Dummett-Prawitz tradition (see, for example, Schroeder-Heister [32]) and base-
extension semantics (B-eS) in the sense of, for example, Sandqvist [30,28,29].
The former is a semantics of arguments, and the latter is a semantics of a logic,
but both are proof-theoretic semantics. This paper is concerned with the latter
as explained below.

Tennant [40] provides a general motivation for P-tV: reading a consequence
judgement Γ ⊢ϕ proof-theoretically — that is, that ϕ follows by some reasoning
from Γ — demands a notion of valid argument that encapsulates what the forms
of valid reasoning are. That is, we require explicating the semantic conditions
required for an argument that witnesses

ψ1, . . . , ψn; therefore, ϕ

to be valid. A particular motivation comes from the following programmatic
remarks by Gentzen [37]:

The introductions represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final analysis, than
the consequences of these definitions. This fact may be expressed as
follows: In eliminating a symbol, we may use the formula with whose
terminal symbol we are dealing only ‘in the sense afforded it by the
introduction of that symbol’.

Dummett [9] developed a philosophical understanding of the normalization re-
sults of Prawitz [25], which give a kind of priority to the introduction rules,
that yields a notion of valid arguments. The result is P-tV — see Schroeder-
Heister [32] for a succinct explanation.

More generally, P-tV is about defining a notion of validity of objects witness-
ing that a formula ϕ follows by some reasoning from a collection of formulae Γ.
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(At) 
B p iff ⊢B p

(→) 
B ϕ → ψ iff ϕ 
B ψ

(∧) 
B ϕ ∧ ψ iff 
B ϕ and 
B ψ

(∨) 
B ϕ ∨ ψ iff for any C such that B ⊆ C and any p ∈ A,

if ϕ 
C p and ψ 
C p, then 
C p

(⊥) 
B ⊥ iff 
B p for any p ∈ A

(Inf) Γ 
B ϕ iff for any C such that B ⊆ C ,

if 
C Γ for any Γ ∈ Γ, then 
C ϕ

Fig. 1. Sandqvist’s Support in a Base

This is quite different from simply giving an interpretation of proofs from some
formal system; for example, while the version of P-tV discussed above is closely
related to the BHK interpretation of IPL, it is important to distinguish the
semantic and computational aspects — see, for example, Schroeder-Heister [32].

Meanwhile, B-eS proceeds via a judgement called support defined inductively
according to the structure of formulas with the base case (i.e., the support of
atoms) given by proof in a base. A base is a set of inference rules over atomic
propositions, thought of as defining those atoms — an example is the set of rules
above that define ‘Tammy is a vixen’. Though this approach is closely related to
possible world semantics in the sense of Beth [2] and Kripke [17] — see, for ex-
ample, Goldfarb [13] and Makinson [18] — it remains subtle. For example, there
are several incompleteness results for intuitionistic logics — see, for example,
Piecha et al. [21,20,23], Goldfarb [13], Sandqvist [27,28,30,29], Stafford [36]. Sig-
nificantly, a sound and complete B-eS for IPL has been given by Sandqvist [29].
Gheorghiu and Pym [10] have shown that this B-eS captures the declarative
content of P-tV.

Sandqvist’s B-eS for IPL is the point of departure for this paper. Fix a set
of atomic propositions A. Given a base B, we write ⊢B p to denote that p ∈ A

can be derived in B. Support in a base B — denoted 
B — is defined by the
clauses of Figure 1 in which Γ 6= ∅. We desire to give an analogous semantics for
intuitionistic multiplicative linear logic (IMLL). We study this logic as it is the
minimal setting in which we can explore how to set-up B-eS (and P-tS in general)
for substructural logics, which enables extension to, for example, (intuitionistic)
Linear Logic [11] and the logic of Bunched Implications [19]. Again, the aim is
not simply to give a proof-theoretic interpretation of IMLL, which already exist,
but to define the logical constants in terms of proofs.

A compelling reading of IMLL is its resource interpretation, which is inher-
ently proof-theoretic — see Girard [11]. Accordingly, looking at (Inf), we expect
that ϕ being supported in a base B relative to some multiset of formulas Γ
means that the ‘resources’ garnered by Γ suffice to produce ϕ. We may express
this by enriching the notion of support with multisets of resources P and U

combined with multiset union — denoted , . Then, that the resources garnered
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by Γ are given to ϕ is captured by the following property:

Γ 

P
B ϕ iff for any X ⊇ B and any U , if 
U

X
Γ, then 


P,U
X

ϕ

Naively, we may define ⊗ as a resource-sensitive version of (∧); that is,



P
B ϕ⊗ ψ iff there are P1,P2 such that P = (P1 ,P2), 


P1

B
ϕ, and 


P2

B
ψ

While the semantics is sound, proving completeness is more subtle. We aim to
follow the method by Sandqvist [30], and this clause is not suitable because the
following is not the case for IMLL:

Γ ⊢ϕ⊗ ψ iff there are ∆1,∆2 such that Γ = (∆1 ,∆2), ∆1 ⊢ϕ, and ∆2 ⊢ψ

— a counter-example is the case where Γ is the (singleton) multiset consisting of
ϕ⊗ψ, which denies any non-trivial partition into smaller multisets. We therefore
take a more complex clause, which is inspired by the treatment of disjunction
in IPL, that enables us to prove completeness using the approach by Sandqvist
[29].

There is an obvious difference between the B-eS for IPL and its standard
possible world semantics by Kripke [17] — namely, the treatment of disjunction
(∨) and absurdity (⊥). The possible world semantics has the clause,

M, x 
 ϕ ∨ ψ iff M, x 
 ϕ or M, x 
 ϕ

If such a clause is taken in the definition of validity in a B-eS for IPL, it leads
to incompleteness — see, for example Piecha and Schroeder-Heister [21,20]. To
yield completeness, Sandqvist [30] uses a more complex form that is close to
the elimination rule for disjunction in natural deduction (see Gentzen [37] and
Prawitz [24]) — that is,


B ϕ ∨ ψ iff for any C such that B ⊆ C and any p ∈ A,

if ϕ 
C p and ψ 
C p, then 
C p

One justification for the clauses is the principle of definitional reflection (DR)
(see Hallnäs [14,15] and Schroeder-Heister [31]):

whatever follows from all the premisses of an assertion also follows from
the assertion itself

Taking the perspective that the introduction rules are definitions, DR provides
an answer for the way in which the elimination rules follow. Similarly, it justifies
that the clauses for the logical constants take the form of their elimination rules.

Why does the clause for conjunction (∧) not take the form given by DR?
What DR gives is the generalized elimination rule,

ϕ ∧ ψ
[ϕ, ψ]
χ

χ
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We may modify the B-eS for IPL by replacing (∧) with the following:

(∧∗) 
B ϕ ∧ ψ iff for any C ⊇ B and any p ∈ A, if ϕ, ψ 
C p, then 
C p

We show in Section 2.3 that the result does indeed characterize IPL. Indeed, it
is easy to see that the generalized elimination rule and usual elimination rule for
∧ have the same expressive power.

Note, we here take the definitional view of the introduction rules for the
logical constants of IPL, and not of bases themselves, thus do not contradict the
distinctions made by Piecha and Schroeder-Heister [34,22].

Taking this analysis into consideration, we take the following definition of
the multiplicative conjunction that corresponds to the definitional reflection of
its introduction rule:



P
B
ϕ⊗ ψ iff for any X ⊇ B, resources U, and p ∈ A,

if ϕ ,ψ 

U
X

p, then 

P ,U
X

p

We show in Section 4 that the result does indeed characterize IMLL.

The paper is structured as follows: in Section 2, we review the B-eS for IPL
given by Sandqvist [29]; in Section 3, we define IMLL and provide intuitions
about its B-eS; in Section 4, we formally define the B-eS for IMLL and explain
its soundness and completeness proofs. The paper ends in Section 5 with a
conclusion and summary of results.

2 Base-extension Semantics for IPL

In this section, we review the B-eS for IPL given by Sandqvist [29]. In Section 2.1,
we give a terse but complete definition of the B-eS for IPL. In Section 2.2, we
summarize the completeness proof. Finally, in Section 2.3, we discuss a modifi-
cation of the treatment of conjunction. While IPL is not the focus of this paper,
this review provides intuition and motivates the B-eS for IMLL in Section 3.
Specifically, the analysis of the treatment of conjunction in IPL motivates the
handling of the multiplicative conjunction in IMLL.

Throughout this section, we fix a denumerable set of atomic propositions A,
and the following conventions: p, q, . . . denote atoms; P,Q, . . . denote finite sets
of atoms; ϕ, ψ, θ, . . . denote formulas; Γ,∆, . . . denote finite sets of formulas.

We forego an introduction to IPL, which is doubtless familiar — see van
Dalen [7]. For clarity, note that we distinguish sequents Γ ⊲ ϕ from judgements
Γ ⊢ϕ that say that the sequent is valid in IPL.

2.1 Support in a Base

The B-eS for IPL begins by defining derivability in a base. A (properly) second-
level atomic rule — see Piecha and Schroeder-Heister [34,22] — is a natural
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deduction rule of the following form, in which q, q1, ..., qn are atoms and Q1,...,Qn

are (possibly empty) sets of atoms:

q

[Q1]
q1 ...

[Qn]
qn

q

Importantly, atomic rules are taken per se and not closed under substitution.
They may be expressed inline as (Q1 ⊲ q1, . . . ,Qn ⊲ qn) ⇒ q — note, the axiom
case is the special case when the left-hand side is empty, ⇒ q. They are read
as natural deduction rules in the sense of Gentzen [37]; thus, ⇒ q means that
the atom q may be concluded whenever, while (Q1 ⊲ q1, . . . ,Qn ⊲ qn) ⇒ q means
that one may derive q from a set of atoms S if one has derived qi from S assuming
Qi for i = 1, ..., n.

A base is a set of atomic rules. We write B,C , . . . to denote bases, and ∅ to
denote the empty base (i.e., the base with no rules). We say C is an extension
of B if C is a superset of B, denoted C ⊇ B.

Definition 1 (Derivability in a Base). Derivability in a base B is the least
relation ⊢B satisfying the following:

(Ref-IPL) S, q ⊢B q.
(App-IPL) If atomic rule (Q1 ⊲ q1, . . . ,Qn ⊲ qn) ⇒ q is in B, and S,Qi ⊢B qi

for all i = 1, . . . , n, then S ⊢B q.

This forms the base case of the B-eS for IPL:

Definition 2 (Sandqvist’s Support in a Base). Sandqvist’s support in a
base B is the least relation 
B defined by the clauses of Figure 1. A sequent
Γ ⊲ ϕ is valid — denoted Γ 
ϕ — iff it is supported in every base,

Γ 
ϕ iff Γ 
B ϕ holds for any B

Every base is an extension of the empty base (∅), therefore Γ 
ϕ iff Γ 
∅ ϕ.
Sandqvist [29] showed that this semantics characterizes IPL:

Theorem 1 (Sandqvist [29]). Γ ⊢ϕ iff Γ 
ϕ

Soundness — that is, Γ ⊢ϕ implies Γ 
ϕ — follows from showing that 


respects the rules of Gentzen’s [37] NJ; for example, Γ 
ϕ and ∆ 
ψ implies
Γ,∆ 
ϕ∧ψ. Completeness — that is, Γ 
ϕ implies Γ ⊢ϕ — is more subtle. We
present the argument in Section 2.2 as it motivates the work in Section 4.3.

2.2 Completeness of IPL

We require to show that Γ 
ϕ implies that there is an NJ-proof witnessing Γ ⊢ϕ.
To this end, we associate to each sub-formula ρ of Γ∪ {ϕ} a unique atom r, and
construct a base N such that r behaves in N as ρ behaves in NJ. Moreover,
formulas and their atomizations are semantically equivalent in any extension
of N so that support in N characterizes both validity and provability. When
ρ ∈ A, we take r := ρ, but for complex ρ we choose r to be alien to Γ and ϕ.
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ρ♭ σ♭

(ρ ∧ σ)♭
∧♭

I

(ρ ∧ σ)♭

ρ♭
∧♭

E

(ρ ∧ σ)♭

σ♭
∧♭

E

ρ♭ (ρ→ σ)♭

σ♭
→♭

E

ρ♭

(ρ ∨ σ)♭
∨♭

I

σ♭

(ρ ∨ σ)♭
∨♭

I

(ρ ∨ σ)♭
[ρ♭]
p

[σ♭]
p

p ∨♭
E

[ρ♭]

σ♭

(ρ→ σ)♭
→♭

I
⊥♭

p EFQ♭

Fig. 2. Atomic System N

Example 1. Suppose ρ := p ∧ q is a sub-formula of Γ ∪ {ϕ}. Associate to it a
fresh atom r. Since the principal connective of ρ is ∧, we require N to contain
the following rules:

p q
r

r
p

r
q

We may write (p ∧ q)♭ for r so that these rules may be expressed as follows:

p q

(p ∧ q)♭
(p ∧ q)♭

p
(p ∧ q)♭

q �

Formally, given a judgement Γ 
ϕ, to every sub-formula ρ associate a unique
atomic proposition ρ♭ as follows:

- if ρ 6∈ A, then ρ♭ is an atom that does not occur in any formula in Γ ∪ {ϕ};
- if ρ ∈ A, then ρ♭ = ρ.

By unique we mean that (·)♭ is injective — that is, if ρ 6= σ, then ρ♭ 6= σ♭. The
left-inverse of (·)♭ is (·)♮, and the domain may be extended to the entirety of
A by identity on atoms not in the codomain of (·)♭. Both functions act on sets
point-wise — that is, Σ♭ := {ϕ♭ | ϕ ∈ Σ} and P♮ := {p♮ | p ∈ P}. Relative to
(·)♭, let N be the base containing the rules of Figure 2 for any sub-formulas ρ
and σ of Γ and ϕ, and any p ∈ A.

Sandqvist [29] establishes three claims that deliver completeness:

(IPL-AtComp) Let S ⊆ A and p ∈ A and let B be a base: S 
B p iff S ⊢B p.
(IPL-Flat) For any sub-formula ξ of Γ ∪ {ϕ} and N ′ ⊇ N : 
N ′ ξ♭ iff 
N ′ ξ.
(IPL-Nat) Let S ⊆ A and p ∈ A: if S ⊢N p, then S♮ ⊢p♮.

The first claim is completeness in the atomic case. The second claim is that ξ♭

and ξ are equivalent in N — that is, ξ♭ 
N ξ and ξ 
N ξ♭. Consequently,

Γ♭

N ′ ϕ♭ iff Γ 
N ′ ϕ

The third claim is the simulation statement which allows us to make the final
move from derivability in N to derivability in NJ.

Proof (Theorem 1 — Completeness.). Assume Γ 
ϕ and let N be its bespoke
base. By (IPL-Flat), Γ♭


N ϕ♭. Hence, by (IPL-AtComp), Γ♭ ⊢N ϕ♭. Whence,
by (IPL-Nat), (Γ♭)♮ ⊢(ϕ♭)♮, i.e. Γ ⊢ϕ, as required. �
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2.3 Base-extension Semantics for IPL, revisited

Goldfarb [13,23] has also given a (complete) proof-theoretic semantics for IPL,
but it mimics Kripke’s [17] semantics. What is interesting about the B-eS in
Sandqvist [29] is the way in which it is not a representation of the possible
world semantics. This is most clearly seen in (∨), which takes the form of the
‘second-order’ definition of disjunction — that is,

U + V = ∀X ((U → X) → (U → X) → X)

(see Girard [12] and Negri [41]). This adumbrates the categorical perspective on
B-eS given by Pym et al. [26]. Proof-theoretically, the clause recalls the elimina-
tion rule for the connective restricted to atomic conclusions,

ϕ ∨ ψ
[ϕ]
p

[ψ]
p

p

Dummett [9] has shown that such restriction in NJ is without loss of expressive
power. Indeed, all of the clauses in Figure 1 may be regarded as taking the form
of the corresponding elimination rules.

The principle of definitional reflection, as described in Section 1 justifies this
phenomenon. According to this principle, an alternative candidate clause for
conjunction is as follows:

(∧∗) 

∗

B
ϕ ∧ ψ iff for any C ⊇ B and any p ∈ A, if ϕ, ψ 


∗

C
p, then 


∗

C
p

Definition 3. The relation 

∗

B
is defined by the clauses of Figure 1 with (∧∗)

in place of (∧). The judgement Γ 

∗ ϕ obtains iff Γ 


∗

B
ϕ for any B.

The resulting semantics is sound and complete for IPL:

Theorem 2. Γ 

∗ ϕ iff Γ ⊢ϕ.

Proof. We assume the following: for arbitrary base B, and formulas ϕ, ψ, χ,

(IPL∗-Monotone) If 
∗
B
ϕ, then 


∗

C
ϕ for any C ⊇ B.

(IPL∗-AndCut) If 
∗
B
ϕ ∧ ψ and ϕ, ψ 


∗

B
χ, then 


∗

B
χ.

The first claim follows easily from (Inf). The second is a generalization of (∧∗);
it follows by induction on the structure of χ — an analogous treatment of dis-
junction was given by Sandqvist [29].

By Theorem 1, it suffices to show that Γ 

∗ ϕ iff Γ 
ϕ. For this it suffices

to show 

∗

B
θ iff 
B θ for arbitrary B and θ. We proceed by induction on the

structure of θ. Since the two relations are defined identically except in the case
when the θ is a conjunction, we restrict attention to this case.

First, we show 
B θ1 ∧ θ2 implies 

∗

B
θ1 ∧ θ2. By (∧∗), the conclusion is

equivalent to the following: for any C ⊇ B and p ∈ A, if θ1, θ2 

∗

C
p, then 


∗

C
p.

Therefore, fix C ⊇ B and p ∈ A such that θ1, θ2 

∗

C
p. By (Inf), this entails

the following: if 
∗
C
θ1 and 


∗

C
θ2, then 


∗

C
p. By (∧) on the assumption (i.e.,
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B θ1∧θ2), we obtain 
B θ1 and 
B θ2. Hence, by the induction hypothesis (IH),


∗

B
θ1 and 


∗

B
θ2. Whence, by (IPL∗-Monotone), 
∗

C
θ1 and 


∗

C
θ2. Therefore,



∗

C
p. We have thus shown 


∗

B
θ1 ∧ θ2, as required.

Second, we show 

∗

B
θ1∧θ2 implies 
B θ1∧θ2. It is easy to see that θ1, θ2 


∗

B
θi

obtains for i = 1, 2. Applying (IPL∗-AndCut) (setting ϕ = θ1, ψ = θ2) once with
χ = θ1 and once with χ = θ2 yields 


∗

B
θ1 and 


∗

B
θ2. By the IH, 
B θ1 and


B θ2. Hence, 
B θ1 ∧ θ2, as required. �

A curious feature of the new semantics is that the meaning of the context-
former (i.e., the comma) is not interpreted as ∧; that is, defining the context-
former as



∗

B Γ,∆ iff 

∗

B Γ and 

∗

B ∆

we may express (Inf)

Γ 

∗

B ϕ iff for any C ⊇ B, if 
∗
C
Γ, then 


∗

C
ϕ

The clause for contexts is not the same as the clause for ∧ in the new semantics.
Nonetheless, as shown in the proof of Theorem 2, they are equivalent at every
base — that is, 
∗

B
ϕ, ψ iff 


∗

B
ϕ ∧ ψ for any B.

This equivalence of the two semantics yields the following:

Corollary 1. For arbitrary base B and formula ϕ, 
B ϕ iff, for any X ⊇ B

and every atom p, if ϕ 
X p, then 
X p.

The significance of this result is that we see that formulas in the B-eS are
precisely characterized by their support of atoms.

3 Intuitionistic Multiplicative Linear Logic

Having reviewed the B-eS for IPL, we turn now to intuitionistic multiplicative
linear logic (IMLL). We first define the logic and then consider the challenges of
giving a B-eS for it. This motivates the technical work in Section 4. Henceforth,
we abandon the notation of the previous section as we do not need it and may
recycle symbols and conventions.

Fix a countably infinite set A of atoms.

Definition 4 (Formula). The set of formulas (FormIMLL) is defined by the
following grammar:

ϕ, ψ ::= p ∈ A | ϕ⊗ ψ | I | ϕ⊸ ψ

We use p, q, . . . for atoms and ϕ, ψ, χ, . . . for formulas. In contrast to the
work on IPL, collections of formulas in IMLL are more typically multisets. We
use P,Q, . . . for finite multisets of atoms, and Γ,∆, . . . to denote finite multisets
of formulas.

We use [ · ] to specify a multiset; for example, [ϕ, ϕ, ψ] denotes the multiset
consisting of two occurrence of ϕ and one occurrences of ψ. The empty multiset
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ϕ ⊲ ϕ
ax

Γ ,ϕ ⊲ ψ

Γ ⊲ ϕ ⊸ ψ
⊸I

Γ ⊲ ϕ ⊸ ψ ∆ ⊲ ϕ

Γ ,∆ ⊲ ψ
⊸E

∅ ⊲ I
II

Γ ⊲ ϕ ∆ ⊲ I

Γ ,∆ ⊲ ϕ
IE

Γ ⊲ ϕ ∆ ⊲ ψ

Γ ,∆ ⊲ ϕ⊗ ψ
⊗I

Γ ⊲ ϕ⊗ ψ ∆ ,ϕ ,ψ ⊲ χ

Γ ,∆ ⊲ χ
⊗E

Fig. 3. The Sequential Natural Deduction System NIMLL for IMLL

(i.e., the multiset with no members) is denoted ∅. The union of two multisets Γ
and ∆ is denoted Γ ,∆. We may identify a multiset containing one element with
the element itself; thus, we may write ψ ,∆ instead of [ψ] ,∆ to denote the union
of multiset ∆ and the singleton multiset [ψ]. Thus, when no confusion arises, we
may write ϕ1 , . . . ,ϕn to denote [ϕ1, ..., ϕn].

Definition 5 (Sequent). A sequent is a pair Γ ⊲ ϕ in which Γ is a multiset of
formulas and ϕ is a formula.

We characterize IMLL by proof in a natural deduction system. Since it is a
substructural logic, we write the system in the format of a sequent calculus as
this represents the context management explicitly. We assume general familiarity
with sequent calculi — see, for example, Troelstra and Schwichtenberg [41].

Definition 6 (System NIMLL). The sequential natural deduction system for
IMLL, denoted NIMLL, is given by the rules in Figure 3.

A sequent Γ ⊲ ϕ is a consequence of IMLL — denoted Γ ⊢ ϕ — iff there is a
NIMLL-proof of it.

One may regard IMLL as IPL without the structural rules of weakening and
contraction — see Došen [8]. In other words, adding the following rules to NIMLL

recovers a sequent calculus for IPL:

Γ ⊲ ϕ

∆ ,Γ ⊲ ϕ
w

∆ ,∆ ,Γ ⊲ ϕ

∆ ,Γ ⊲ ϕ
c

To stay close to the work in Section 2 it is instructive to consider the nat-
ural deduction presentation, too. The rule figures may be the same, but their
application is not; for example,

ϕ ψ

ϕ⊗ ψ
means if Γ ⊢ ϕ and ∆ ⊢ ψ, then Γ ,∆ ⊢ ϕ⊗ ψ

(i.e., not ‘if Γ ⊢ ϕ and Γ ⊢ ψ, then Γ ⊢ ϕ⊗ ψ’)

Here, it is important that the context are multisets, not as sets.
The strict context management in IMLL yields the celebrated ‘resource inter-

pretations’ of Linear Logic — see Girard [11]. The leading example of which is,
perhaps, the number-of-uses reading in which a proof of a formula ϕ⊸ ψ deter-
mines a function that uses its arguments exactly once. This reading is, however,
entirely proof-theoretic and is not expressed in the truth-functional semantics
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of IMLL — see Girard [11], Allwein and Dunn [1], and Coumans et al. [6].
Though these semantics do have sense of ‘resource’ it is not via the number-of-
uses reading, but instead denotational in the sense of the treatment of resources
in the truth-functional semantics of the logic of Bunched Implications [19]. The
number-of-uses reading is, however, reflected in the categorical semantics — see
Seely [35] and Biermann [4,3].

How do we render support sensitive to the resource reading? The subtlety is
that for Γ 
ϕ (where Γ 6= ∅), we must somehow transmit the resources captured
by Γ to ϕ. From Corollary 1, we see that in B-eS the content of a formula is
captured by the atoms it supports. Therefore, we enrich the support relation
with an multiset of atoms P ,

Γ 

P
B
ϕ iff for any X ⊇ B and any U, if 
U

X
Γ, then 


P,U
X

ϕ

where



U
B

Γ1 ,Γ2 iff there are U1 and U2 such that U = (U1 ,U2), 

U1

X
Γ1, and 


U1

X
Γ2

This completes the background on IMLL.

4 Base-extension Semantics for IMLL

In this section, we give a B-eS for IMLL. It is structured as follows: first, we
define support in a base in Section 4.1; second, we prove soundness in Section 4.2;
finally, we prove completeness in Section 4.3.

4.1 Support in a Base

The definition of the B-eS proceeds in line with that for IPL (Section 2) while
taking substructurality into consideration.

Definition 7 (Atomic Sequent). An atomic sequent is a pair P ⊲ p in which
P is a multiset of atoms and q is an atom.

Definition 8 (Atomic Rule). An atomic rule is a pair P ⇒ p in which P is
a (possibly empty) finite set of atomic sequents and p in an atom.

Definition 9 (Base). A base B is a (possibly infinite) set of atomic rules.

Definition 10 (Derivability in a Base). The relation ⊢B of derivability in
B is the least relation satisfying the following:

(Ref) p ⊢B p

(App) If Si ,Pi ⊢B pi for i = 1, . . . , n and (P1 ⊲ p1, . . . ,Pn ⊲ pn) ⇒ p ∈ B, then
S1 , . . . ,Sn ⊢B p.
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(At) 

P

B p iff P ⊢B p

(⊗) 

P

B ϕ⊗ ψ iff for any X ⊇ B, multiset of atoms U, and atom p,

if ϕ ,ψ 

U

X p, then 

P,U

X
p

(I) 

P

B I iff for any X ⊇ B, multiset of atoms U, and atom p,

if 
U

X p, then 

P ,U

X
p

(⊸) 

P

B ϕ ⊸ ψ iff ϕ 

P

B ψ

( , ) 

P
B Γ ,∆ iff there are U and V such that P = (U ,V ), 
UB Γ, and 


V
B ∆

(Inf) Γ 

P
B ϕ iff for any X ⊇ B and any U, if 
UX Γ, then 


P ,U

X
ϕ

Fig. 4. Base-extension Semantics for IMLL

Note the differences between Definition 1 and Definition 10: first, in (Ref), no
redundant atoms are allowed to appear, while in (Ref-IPL) they may; second,
in (App), the multisets S1,...,Sn are collected together as a multiset, while in
(App-IPL), there is one set. These differences reflect the fact in the multiplicative
setting that ‘resources’ can neither be discharged nor shared.

Definition 11 (Support). That a sequent Γ ⊲ ϕ is supported in the base B

using resources S — denoted Γ 

S
B
ϕ — is defined by the clauses of Figure 4 in

which Γ and ∆ are non-empty finite multisets of formulas. The sequent Γ ⊲ ϕ is
supported using resources S — denoted Γ 


S ϕ — iff Γ 

S
B
ϕ for any base B.

The sequent Γ ⊲ ϕ is valid — denoted Γ 
 ϕ — iff Γ ⊲ ϕ is supported using the
emtpy multiset of resources (i.e., Γ 


∅ ϕ).

It is easy to see that Figure 4 is an inductive definition on a structure of
formulas that prioritizes conjunction (⊗) over implication (⊸) — an analogous
treatment in IPL with disjunction (∨) prioritized over implication (→) has been
given by Sandqvist [29]. As explained in Section 3, the purpose of the multisets
of atoms S in the support relation 


S
B

is to express the susbtructurality of the
logical constants. The naive ways of using multisets of formulas rather than
multisets of atoms — for example, Γ 


∆
B
ϕ iff 


Γ,∆
B

ϕ — results in impredicative
definitions of support.

We read (Inf) as saying that Γ 

S
B
ϕ (for Γ 6= ∅) means, for any extension

X of B, if Γ is supported in X with some resources U (i.e. 
U
X

Γ), then ϕ is

also supported by combining the resources U with the resources S (i.e., 
S ,U
X

ϕ).
The following observation on the monotonicity of the semantics with regard

to base extensions follows immediately by unfolding definitions:

Proposition 1. If Γ 

S
B
ϕ and C ⊇ B, then Γ 


S
C
ϕ.

From this proposition we see the following: Γ 

S ϕ iff Γ 


S
∅
ϕ, and Γ 
 ϕ

iff Γ 

∅

∅
ϕ. As expected, we do not have monotonicity on resources — that is,

Γ 

S ϕ does not, in general, imply Γ 


S ,T ϕ for arbitrary T. This exposes the
different parts played by bases and the resources in the semantics: bases are the
setting in which a formula is supported, resources are tokens used in that setting
to establish the support.
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A distinguishing aspect of support is the structure of (Inf). In one direction,
it is merely cut, but in the other it says something stronger. The completeness
argument will go through the atomic case (analogous to the treatment of IPL in
Section 2.2), and the following proposition suggests that the setup is correct:

Proposition 2. The following two propositions are equivalent for arbitrary base
B, multisets of atoms P, S, and atom q, where we assume P = [p1, . . . , pn]:

1. P ,S ⊢B q.
2. for any X ⊇ B and multisets of atoms T1, . . . ,Tn, if Ti ⊢X pi holds for all

i = 1, . . . , n, then T1 , . . . ,Tn ,S ⊢X q.

It remains to prove soundness and completeness.

4.2 Soundness

Theorem 3 (Soundness). If Γ ⊢ ϕ, then Γ 
 ϕ.

The argument follows a typical strategy of showing that the semantics re-
spects the rules of NIMLL — that is, for any Γ,∆, ϕ, ψ, and χ:

(Ax) ϕ 
 ϕ

(⊸I) If Γ, ϕ 
 ψ, then Γ 
 ϕ⊸ ψ

(⊸E) If Γ 
 ϕ⊸ ψ and ∆ 
 ϕ, then Γ,∆ 
 ψ

(⊗I) If Γ 
 ϕ and ∆ 
 ψ, then Γ,∆ 
 ϕ⊗ ψ

(⊗E) If Γ 
 ϕ⊗ ψ and ∆ ,ϕ ,ψ 
 χ, then Γ ,∆ 
 χ

(II) 
 I

(IE) If Γ 
 χ and ∆ 
 I, then Γ,∆ 
 χ

These follow quickly from the fact that the clauses of each connective in
Figure 4 takes the form of its elimination rules. The only subtle cases are (⊗E)
and (IE).

To show (IE), suppose Γ 
 χ and ∆ 
 I. We require to show Γ ,∆ 
 χ. By
(Inf), we fix some base B and multisets of atoms P and Q such that 
P

B
Γ and



Q
B

∆. It remains to verify 

P,Q
B

χ. When χ is atomic, this follows immediately

from 

P
B
χ and 


Q
B
I by (I). To handle non-atomic χ, we require the following:

Lemma 1. For arbitrary base B, multisets of atoms S,T, and formula χ, if
1. 
S

B
I, 2. 
T

B
χ, then 3. 
S,T

B
χ.

This lemma follows by induction on the structure of χ, with the base case
given by (I). One cannot use this general form to define I as it would result in
an impredicative definition of support.

Similarly, we require the following to prove (⊗E):

Lemma 2. For arbitrary base B, multisets of atoms S,T, and formulas ϕ, ψ, χ,
if 1. 
S

B
ϕ⊗ ψ, 2. ϕ ,ψ 


T
B
χ, then 3. 
S,T

B
χ.

With these results, we may prove soundness:
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⊸I
♭ : (σ♭ ⊲ τ ♭) ⇒ (σ ⊸ τ )♭ ⊸E

♭ :
(

⊲(σ ⊸ τ )♭, ⊲σ♭

)

⇒ τ ♭

⊗I
♭ :

(

⊲σ♭, ⊲τ ♭
)

⇒ (σ ⊗ τ )♭ ⊗E
♭ :

(

⊲(σ ⊗ τ )♭, σ♭ , τ ♭ ⊲ p
)

⇒ p

II
♭ : ⇒ I♭ IE

♭ :
(

⊲I♭, ⊲p
)

⇒ p

Fig. 5. Atomic System M

Proof (Theorem 3 — sketch). We demonstrate (⊗I) and (⊗E).
(⊗I). Assume Γ 
 ϕ and ∆ 
 ψ. We require to show Γ ,∆ 
 ϕ⊗ψ. By (Inf),

the conclusion is equivalent to the following: for any base B, for any multisets
of atoms T and S , if 
T

B
Γ and 


S
B

∆, then 

T ,S
B

ϕ ⊗ ψ. So we fix some B and

T, S such that 
T
B

Γ and 

S
B

∆, and show that 
T,S
B

ϕ⊗ ψ. By (⊗), it suffices to
show, for arbitrary C ⊇ B, multiset of atoms U, and atom p, if ϕ ,ψ 


U
C
p, then



T,S,U
C

p. So we fix some C ⊇ B, multiset of atoms U, and atom p such that

ϕ ,ψ 

U
C

p, and the goal is to show that 

T,S,U
C

p. From the assumptions Γ 
 ϕ

and ∆ 
 ψ, we see that 
S,T
B

ϕ , ψ obtains. Therefore, by monotonicity, 
S,T
C

ϕ ,ψ

obtains. By (Inf), this suffices for ϕ ,ψ 

U
C
p, to yield 


T ,S,U
C

p, as required.
(⊗E). Assume Γ 
 ϕ⊗ψ and ∆ ,ϕ ,ψ 
 χ. We require to show Γ ,∆ 
 χ. By

(Inf), it suffices to assume 
S
B

Γ and 

T
B

∆ and show that 
S,T
B

χ. First, Γ 
 ϕ⊗ψ
together with 


S
B

Γ entails that 

S
B
ϕ ⊗ ψ. Second, by (Inf), ∆ , ϕ , ψ 
 χ is

equivalent to the following:

for any X and P,Q, if 

P
X ∆ and 


Q
X
ϕ ,ψ, then 


P,Q
X

χ

Since 

T
B

∆, setting P := T and Q := S, yields,

for any X ⊇ B, if 

S
X ϕ ,ψ, then 


T,S
X

χ (1)

Now, given 

S
B
ϕ⊗ ψ and (1), we can apply Lemma 2 and conclude 


S,T
B

χ. �

4.3 Completeness

Theorem 4 (Completeness). If Γ 
 ϕ, then Γ ⊢ ϕ.

The argument follows the strategy used by Sanqvist [29] for IPL — see Sec-
tion 2.2. We explain the main steps.

Let Ξ be the set of all sub-formulas of Γ ∪ {ϕ}. Let (·)
♭
: Ξ → A be an

injection that is fixed on Ξ ∩ A — that is, p♭ = p for p ∈ Ξ ∩ A. Let (·)
♮
be the

left-inverse of (·)♭ — that is p♮ = χ if p = χ♭, and p♮ = p if p is not in the image

of (·)
♭
. Both act on multisets of formulas pointwise; that is, ∆♭ := [∆♭ | ∆ ∈ ∆]

and P♮ := [p♮ | p ∈ P].
We construct a base M such that ϕ♭ behaves in M as ϕ behaves in NIMLL.

The base M contains all instances of the rules of Figure 5 when σ and τ range
over Ξ, and p ranges over A. We illustrate how M works with an example.
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Example 2. Consider the sequent Γ ⊲ ϕ where Γ = [p1 ,p2 ,p1 ⊗ p2 ⊸ q, p1] and
ϕ = q ⊗ p1. By definition, Ξ := {p1, p2, p1 ⊗ p2 ⊸ q, p1 ⊗ p2, q, q ⊗ p1}, and,

therefore, the image of (·)♭ is {p1, p2, q, (p1 ⊗ p2 ⊸ q)♭, (p1 ⊗ p2)
♭
, (q⊗ p1)

♭}.

That Γ ⊢ ϕ obtains is witnessed by the following NIMLL-proof:

ax
p1 ⊲ p1

ax
p2 ⊲ p2

⊗I
p1 ,p2 ⊲ p1 ⊗ p2

ax
p1 ⊗ p2 ⊸ q ⊲ p1 ⊗ p2 ⊸ q

⊸E
p1 ,p2 ,p1 ⊗ p2 ⊸ q ⊲ q

ax
p1 ⊲ p1

⊗I
p1 ,p2 ,p1 ⊗ p2 ⊸ q ,p1 ⊲ q⊗ p1

The base M is designed so that we may simulate the rules of NIMLL; for
example, the ⊗E is simulated by using (App) on ⊗♭

E
,

(∅ ⊲ (σ ⊗ τ)
♭
, σ♭ ,τ ♭ ⊲ Γ♭) ⇒ Γ♭ means if ∆♭ ⊢M (σ ⊗ τ)

♭
and Σ♭ ,σ♭ ,τ ♭ ⊢M Γ♭

then ∆♭ ,Σ♭ ⊢M Γ♭

In this sense, the proof above is simulated by the following steps:

(i) By (Ref), (1) p1 ⊢M p1; (2) p2 ⊢M p2; (3) (p1 ⊗ p2 ⊸ q)
♭
⊢M (p1 ⊗ p2 ⊸ q)

♭

(ii) By (App), using (⊗I) on (1) and (2), we obtain (4) p1 ,p2 ⊢M (p1 ⊗ p2)
♭

(iii) By (App), using (⊸E)
♭ on (3) and (4), we obtain (5) (p1 ⊗ p2 ⊸ q)♭ , p1 ,

p2 ⊢M q

(iv) By (App), using (⊗I)
♭
on (1) and (5). we have (p1 ⊗ p2 ⊸ q)

♭
,p1 ,p2 ,p1 ⊢M

(q⊗ p1)
♭
.

Significantly, steps (i)–(iv) are analogues of the steps in the proof tree above. �

Theorem 4 (Completeness) follows from the following three observations,
which are counterparts to (IPL-AtComp), (IPL-Flat), and (IPL-Nat) from Sec-
tion 2.2:

(IMLL-AtComp) For any B, P, S, and q, P ,S ⊢B q iff P 

S
B

q.
(IMLL-Flat) For any ξ ∈ Ξ, X ⊇ M and U, 
U

X
ξ♭ iff 


U
X
ξ.

(IMLL-Nat) For any P and q, if P ⊢M q then P♮ ⊢ q♮.

(IMLL-AtComp) follows from Proposition 2 and is the base case of complete-
ness. (IMLL-Flat) formalizes the idea that every formula ξ appearing in Γ ⊲ ϕ
behaves the same as ξ♭ in any base extending M . Consequently, Γ♭


M ϕ♭ iff
Γ 
M ϕ. (IMLL-Nat) intuitively says that M is a faithful atomic encoding of

NIMLL, witnessed by (·)
♮
. This together with (IMLL-Flat) guarantee that every

ξ ∈ Ξ behaves in M as ξ♭ in M , thus as
(

ξ♭
)♮

= ξ in NIMLL.

Proof (Theorem 4 — Completeness). Assume Γ 
 ϕ and let M be the bespoke
base for Γ ⊲ ϕ. By (IMLL-Flat), Γ♭



∅

M
ϕ♭. Therefore, by (IMLL-AtComp), we

have Γ♭ ⊢M ϕ♭. Finally, by (IMLL-Nat),
(

Γ♭
)♮

⊢
(

ϕ♭
)♮
, namely Γ ⊢ϕ. �
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5 Conclusion

Proof-theoretic semantics (P-tS) is the paradigm of meaning in logic based on
proof, as opposed to truth. A particular form of P-tS is base-extension semantics
(B-eS) in which one defines the logical constants by means of a support relation
indexed by a base — a system of natural deduction for atomic propositions —
which grounds the meaning of atoms by proof in that base. This paper provides
a sound and complete base-extension semantics for intuitionistic multiplicative
linear logic (IMLL).

The B-eS for IPL given by Sandqvist [29] provides a strategy for the problem.
The paper begins with a brief but instructive analysis of this work that reveals
definitional reflection (DR) as an underlying principle delivering the semantics;
accordingly, in Section 2.3, the paper modifies the B-eS for IPL to strictly adhere
to DR and proves soundness and completeness of the result. Moreover, the anal-
ysis highlights that essential to B-eS is a transmission of proof-theoretic content:
a formula ϕ is supported in a base B relative to a context Γ iff, for any extension
C of B, the formula ϕ is supported in C whenever Γ is supported in C .

With this understanding of B-eS of IPL, the paper gives a ‘resource-sensitive’
adaptation by enriching the support relation to carry a multiset of atomic ‘re-
sources’ that enable the transmission of proof-theoretic content. This captures
the celebrated ‘resource reading’ of IMLL which is entirely proof-theoretic —
see Girard [11]. The clauses of the logical constants are then delivered by DR on
their introduction rules. Having set up the B-eS for IMLL in this principled way,
soundness and completeness follow symmetrically to the preceding treatment of
IPL.

To date, P-tS has largely been restricted to classical and intuitionistic propo-
sitional logics. This paper provides the first step toward a broader analysis. In
particular, the analysis in this paper suggests a general methodology for de-
livering B-eS for other substructural logics such as, inter alia, (intuitionistic)
Linear Logic [11] (LL) and the logic of Bunched Implications [19] (BI). While
it is straightforward to add the additive connectives of LL, with the evident se-
mantic clauses following IPL and with the evident additional cases in the proofs,
it is less apparent how to handle the exponentials. For BI, the primary challenge
is to appropriately account for the bunched structure of contexts, and to enable
and confine weakening and contraction to the additive context-former.

Developing the P-tS for substructural logics is valuable because of their de-
ployment in the verification and modelling of systems. Significantly, P-tS has
shown the be useful in simulation modelling — see, for example, Kuorikoski and
Reijula [16]. Of course, more generally, we may ask what conditions a logic must
satisfy in order to provide a B-eS for it.
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A Omitted proofs from Section 2.3

The following contains proofs for the claims IPL∗-Monotone and IPL∗-AndCut
in the proof of Theorem 2.

Lemma 3 (IPL∗-Monotone). If Γ 

∗

B
ϕ, then Γ 


∗

C
ϕ for any C ⊇ B.

Proof. By (Inf), the conclusion Γ 

∗

C
ϕmeans: for every D ⊇ C , if 
∗

D
γ for every

γ ∈ Γ , then 

∗

D
ϕ. Since D ⊇ C ⊇ B, this follows by (Inf) on the hypothesis

Γ 

∗

B
ϕ. �

Lemma 4 (IPL∗-AndCut). If 
∗
B
ϕ ∧ ψ and ϕ, ψ 


∗

B
χ, then 


∗

B
χ.

Proof. We proceed by induction on the structure of χ:

– χ = p ∈ A. This follows immediately by expanding the hypotheses with (∧)
and (Inf), choosing the atom to be χ.

– χ = χ1 → χ2. By (→), the conclusion is equivalent to σ 

∗

B
τ . By (Inf), this is

equivalent to the following: for any C ⊇ B, if 
∗
C
χ1, then 


∗

C
χ2. Therefore,

fix an arbitrary C ⊇ B such that 
∗
C
χ1. By the induction hypothesis (IH), it

suffices to show: (1) 
∗
C
ϕ∧ψ and (2) for any D ⊇ C , if 
∗

D
ϕ and 


∗

D
ψ, then



∗

D
χ2. By Lemma IPL∗-Monotone on the first hypothesis we immediately

get (1). For (2), fix an arbitrary base D ⊇ C such that 
∗
D
ϕ, and 


∗

D
ψ. By

the second hypothesis, we obtain 

∗

D
χ1 → χ2 — that is, χ1 


∗

D
χ2. Hence,

by (Inf) and IPL∗-Monotone (since D ⊇ B) we have 

∗

D
χ2, as required.

– χ = χ1 ∧ χ2. By (∧∗), the conclusion is equivalent to the following: for any
C ⊇ B and atomic p, if χ1, χ2 


∗

C
p, then 


∗

C
p. Therefore, fix arbitrary

C ⊇ B and p such that χ1, χ2 

∗

C
p. By (Inf), for any D ⊇ C , if 


∗

D

χ1 and 

∗

D
χ2, then 


∗

Y
p. We require to show 


∗

C
p. By the IH, it suffices to

show the following: (1) 
∗
C
ϕ ∧ ψ and (2), for any E ⊇ C , if 
∗

E
ϕ and 


∗

E
ψ,

then 

∗

E
p. Since B ⊆ C , By Lemma IPL∗-Monotone on the first hypothesis

we immediately get (1). For (2), fix an arbitrary base E ⊇ C such that 
∗
E
ϕ

and 

∗

E
ψ. By the second hypothesis, we obtain 


∗

D
p, as required.

– χ = χ1 ∨ χ2. By (∨), the conclusion is equivalent to the following: for any
C ⊇ B and atomic p, if χ1 


∗

C
p and χ2 


∗

C
p, then 


∗

C
p. Therefore, fix

an arbitrary base C ⊇ B and atomic p such that χ1 

∗

C
p and χ2 


∗

C
p.

By the IH, it suffices to prove the following: (1) 

∗

C
ϕ ∧ ψ and (2). for any

D ⊇ C , if 
∗
D
ϕ and 


∗

D
ψ, then 


∗

D
p. By Lemma IPL∗-Monotone on the

first hypothesis we immediately get (1). For (2), fix an arbitrary D ⊇ C

such that 
∗
D
ϕ and 


∗

D
ψ. Since D ⊇ B, we obtain 


∗

D
χ1 ∨χ2 by the second

hypothesis. By (∨), we obtain 

∗

D
p, as required.

– χ = ⊥. By (⊥), the conclusion is equivalent to the following: 
∗
B

r for all
atomic r. By the IH, it suffices to prove the following: (1) 
∗

B
ϕ ∧ ψ and (2),

for any C ⊇ B, if 
∗
C
ϕ and 


∗

C
ψ, then 


∗

C
r. By the first hypothesis we

have (1). For (2), fix an arbitrary C ⊇ B such that 
∗
C
ϕ and 


∗

C
ψ. By the

second hypothesis, 
∗
C
⊥ obtains. By (⊥), we obtain 


∗

C
r, as required.

This completes the induction. �
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Corollary 1. For arbitrary base B and formula ϕ, 
B ϕ iff, for any X ⊇ B

and every atom p, if ϕ 
X p, then 
X p.

Proof. Let ⊤ be any formula such that 
⊤— for example, ⊤ := p∧(p → q) → q.
We apply the two equivalent definitions of ∧ to the neutrality of ⊤.


B ϕ iff 
B ϕ and 
B ⊤ (def. of ⊤)

iff 
B ϕ ∧ ⊤ (∧)

iff for any X ⊇ B, for any p ∈ A, ϕ,⊤ 
X p implies 
B p (∧∗)

iff for any X ⊇ B, for any p ∈ A, ϕ 
X p implies 
B p (def. of ⊤)

This establishes the desired equivalence. �

B Omitted proofs from Section 4.1

Proposition 3. The supporting relation 

S
B

from Definition 11 is well-defined.

Proof. Basically we show that this is an inductive definition, by providing some
metric. We follow the idea of Sandqvist, and notice that the extra layer of com-
plexity given by the resource S in 


S
B

does not impact the argument for well-
definedness.

We define the degree of IMLL formulas as follows:

deg(p) := 1

deg(I) := 2

deg(ϕ • ψ) := deg(ϕ) + deg(ψ) + 1, where • ∈ {⊗,⊸}

Note that for each of (I), (⊗), and (⊸), the formulas appearing in the defini-
tional clauses all have strictly smaller degrees than the formula itself, and the
atomic case 


S
B

is defined by the derivability relation as S ⊢B p. Therefore this
is a valid inductive definition. �

Proposition 1. If Γ 

S
B
ϕ and C ⊇ B, then Γ 


S
C
ϕ.

Proof. Formally we prove by induction on 
 (see Definition 11).

– For the base case, Γ 

S
B
ϕ is of the form 


S
B

p where p is an atom. Then by
definition this means S ⊢B p. For arbitrary C that extends B, S ⊢C p also
holds simply because the derivability relation ⊢X is totally determined by
the atomic rules in the base X , and C ⊇ B means that every atomic ruls
in B is also in C . Then S ⊢C p says 
S

C
p.

– For the inductive cases (⊗), (I), (⊸) (expanded using (Inf) and ( , )), note
that each uses a universal quantification over bases extending B, namely
‘for every X ⊇ B, ...’. Now for an arbitrary base C that extends B, such
universal quantified statement also holds by replacing the quantification with
all bases extending C , namely ‘for every X ⊇ C , ...’. Therefore the inductive
steps also pass.
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This completes the inductive proof. �

Corollary 2. Γ 

S ϕ iff Γ 


S
∅
ϕ.

Proof. Recall that the definition that Γ 

S ϕ means the following: for any base

B, Γ 

S
B
ϕ holds.

For the ‘only if’ direction, note that Γ 

S ϕ implies that in particular, Γ 


S
∅
ϕ

holds.
For the ‘if’ direction, suppose Γ 


S ϕ holds. Then for arbitrary B, since
B ⊇ ∅ holds, we can apply Proposition 1 and conclude that Γ 


S
B
ϕ also holds.

Since this is true for arbitrary base B, we have Γ 

S ϕ. �

Proposition 2. The following two propositions are equivalent for arbitrary base
B, multisets of atoms P, S, and atom q, where we assume P = [p1, . . . , pn]:

1. P ,S ⊢B q.
2. for any X ⊇ B and multisets of atoms T1, . . . ,Tn, if Ti ⊢X pi holds for all

i = 1, . . . , n, then T1 , . . . ,Tn ,S ⊢X q.

Proof. It is straightforward to see that (2) entails (1): we take X to be B, and
Ti to be [pi] for each i = 1, . . . , n. Since p1 ⊢B p1, . . . , pn ⊢B pn all hold by (Ref),
it follows from (2) that p1 , . . . ,pn ,S ⊢B q, namely P ,S ⊢B q.

As for (1) entails (2), we prove by induction on how P ,S ⊢B q is derived (see
Definition 10).

– P , S ⊢B q holds by (Ref). That is, P , S = [q], and q ⊢B q follows by (Ref).
Here are two subcases, depending on which of P and S is [q].
- Suppose P = [q] and S = ∅. So (2) becomes: for every X ⊇ B and T,
if T ⊢X q, then T ⊢X q. This holds a fortiori.

- Suppose S = [q] and P = ∅. Since P = ∅, (2) becomes: for every
X ⊇ B, S ⊢X q. This holds by (Ref).

– P, S ⊢B q holds by (App). We assume that P = P1 , . . . ,Pk, S = S1 , . . . ,Sk,
and the following hold for some Q1, . . . ,Qk and r1, . . . , rk:

P1 ,S1 ,Q1 ⊢B r1, . . . ,Pk ,Sk ,Qk ⊢B rk (3)

(Q1 ⊲ r1, . . . ,Qk ⊲ rk) ⇒ q is in B (4)

In order to prove (2), we fix some arbitrary base C ⊇ B and atomic
multisets T1, . . . ,Tn such that T1 ⊢C p1, . . . ,Tn ⊢C pn, and show T1 , . . . ,

Tn ,S ⊢C q. Let us assume Pi = pi1 , . . . ,piℓi for each i = 1, . . . , k. We apply
IH to every Pi , Si , Qi ⊢B ri from (3), and get Ti1 , . . . , Tiℓi , Si , Qi ⊢C ri.
Moreover, the atomic rule from (4) is also in C , since C ⊇ B. Therefore we
can apply (App) and get

T11 , . . . ,T1ℓ1 ,S1 , . . . ,Tk1 , . . . ,Tkℓk ,Sk ⊢C q.

By the definition of Si and Tij , this is precisely T1 , . . . ,Tn ,S ⊢C q.

This completes the inductive proof. �
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C Proof of Soundness

This appendix is devoted to the detailed proof of the soundness (Theorem 3) of
the base-extension semantics for IMLL.

Theorem 3 (Soundness). If Γ ⊢ ϕ, then Γ 
 ϕ.

Proof. Recall that Γ 
 ϕ is abbreviation of Γ 

∅

∅
ϕ. By the inductive definition

of ⊢, it suffices to prove the following:

(Ax) ϕ 
 ϕ

(⊸I) If Γ ,ϕ 
 ψ, then Γ 
 ϕ⊸ ψ.
(⊸E) If Γ 
 ϕ⊸ ψ and ∆ 
 ϕ, then Γ ,∆ 
 ψ.
(⊗I) If Γ 
 ϕ and ∆ 
 ψ, then Γ ,∆ 
 ϕ⊗ ψ.
(⊗E) If Γ 
 ϕ⊗ ψ and ∆ ,ϕ ,ψ 
 χ, then Γ ,∆ 
 χ.
(II) 
 I

(IE) If Γ 
 χ and ∆ 
 I, then Γ ,∆ 
 χ.

Now we prove them one by one. We assume that Γ = γ1 , . . . ,γm and ∆ = δ1 ,

. . . ,δn in all the above equations to be checked.

- (Ax) holds a fortiori by definition of the validity relation 
: by (Inf), ϕ 
 ϕ

means that for every base X , if 

X
ϕ, then 


X
.

- (⊸I). Assume Γ, ϕ 
 ψ, we show Γ 
 ϕ ⊸ ψ. By (Inf), the assumption
Γ ,ϕ 
 ψ boils down to the following:

For all base X and multiset of atoms P, if there exists S1, . . . , Sm,T

satisfying P = S1 , . . . ,Sm ,T,

such that 

S1

X
γ1, . . . ,


Sm

X
γm,


T
X ϕ, then 


P
X ψ.

(2)

In order to show that Γ 

P
B
ψ, we fix an arbitrary base B and multiset of

atoms P satisfying that there exists P1, . . . ,Pm such that P = P1 , . . . ,Pm,
and 


P1

B
γ1, . . . ,


Pm

B
γm. The goal is show that 
P

B
ϕ⊸ ψ. By (⊸), 
P

B
ϕ⊸

ψ means ϕ 

P
B
ψ. To show ϕ 


P
B
ψ, we fix an arbitrary C ⊇ B and multiset

Q such that 
Q
C
ϕ, and prove that 
P,Q

C
ψ. By monotonicity of 
 with respect

to the base, 
Pi

B
γi implies 
Pi

C
γi, for i = 1, . . . ,m. Apply (2) to this together

with 

Q
C
ϕ, it follows that 
P,Q

C
ψ.

- (⊸E). Assume Γ 
 ϕ⊸ ψ and ∆ 
 ϕ, we show Γ ,∆ 
 ψ. Spelling out the
definition of Γ 
 ϕ⊸ ψ and ∆ 
 ϕ using (Inf), we have:

For every base X and atomic multisets P = P1 , . . . ,Pm,

if 

P1

X
γ1, . . . ,


Pm

X
γm, then 


P
X ϕ⊸ ψ.

(3)

For every base Y and atomic multisets Q = Q1 , . . . ,Qn,

if 

Q1

Y
δ1, . . . ,


Qn

Y
δn, then 


Q
Y
ϕ.

(4)

In order to show Γ ,∆ 
 ψ, we fix an arbitrary base B, atomic multisets
S = S1 , . . . , Sm and T = T1 , . . . , Tn, such that 


S1

B
γ1, . . . ,


Sm

B
γm and
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T1

B
δ1, . . . ,


Tn

B
δn, and go on to prove that 
S,T

B
ψ. Using (3), 
S1

B
γ1, . . . ,


Sm

B

γm implies that 
S
B
ϕ ⊸ ψ; using (4), 
T1

B
δ1, . . . ,


Tn

B
δn implies that 
T

B
ϕ.

Spelling out the definition of 
S
B
ϕ ⊸ ψ, we know that for arbitrary base

X ⊇ B and atomic multiste U, if 
U
X

ϕ, then 

S,U
X

ψ. In particular, since



T
B
ϕ, we have 


S,T
B

ψ.
- (⊗I). We assume Γ 
 ϕ and ∆ 
 ψ, and show that Γ ,∆ 
 ϕ ⊗ ψ holds.
Spelling out the definition of Γ ,∆ 
 ϕ ⊗ ψ, it suffices to fix some base B

and atomic multiset S1, . . . , Sm,T1, . . . ,Tn (denote S = S1 , . . . , Sm, and
T = T1 , . . . ,Tn) such that 
S1

B
γ1, . . . ,


Sm

B
γm,


T1

B
δ1, . . . ,


Tn

B
δn, and show

that 

S,T
B

ϕ ⊗ ψ follows. According to (⊗), we can simply fix some base

C ⊇ B, atomic multiset U, atom p satisfying ϕ ,ψ 

U
C
p, and show 


S,T,U
C

p.

Note that 

S,T
B

[ϕ, ψ] holds: 
S
B
Γ and Γ 
 ϕ implies 


S
B
ϕ; 
T

B
∆ implies



S
B
ψ. By monotonicity, 
S,T

C
[ϕ, ψ]. This together with ϕ ,ψ 


U
C
p entail that



S,T,U
C

p.
- (⊗E). We use Lemma 2. Suppose Γ 
 ϕ⊗ ψ and ∆ ,ϕ ,ψ 
 χ, and we show

that Γ ,∆ 
 χ. So let us suppose that 
S
B
Γ and 


T
B
∆ (thus 
S,T

B
Γ ,∆), and

show that 
S,T
B

χ. First, Γ 
 ϕ⊗ψ together with 

S
B
Γ entails that 
S

B
ϕ⊗ψ.

Second, spelling out the definition of ∆ ,ϕ ,ψ 
 χ, we have:

For every base X and atomic multisets P,Q,

if 

P
X ∆ and 


Q
X

[ϕ, ψ], then 

P,Q
X

χ.
(5)

Under the assumption 

T
B
∆, by fixing P and Q to be T and S respectively,

(5) implies the following:

For every base X ⊇ B, if 

S
X [ϕ, ψ], then 


T,S
X

χ. (6)

Now, given 

S
B
ϕ ⊗ ψ and (6), we can apply Lemma 2 and conclude that



S,T
B

χ.
- (II). By (I), 
 I is equivalent to that for every base X , atomic multiset U,
and atom q, if 
U

X
q, then 


U
X

q. This is true a fortiori.
- (IE). We assume Γ 
 χ and ∆ 
 I, and show that Γ ,∆ 
 χ. Towards this,
we fix some base B and atomic multisets S,T such that 
S

B
Γ and 


T
B
∆, and

show that 
S,T
B

χ. By ∆ 
 I and 

T
B
∆, we know that 
T

B
I. By Γ 
 χ and



S
B
Γ , we have 


S
B
χ. Now apply Lemma 1 to 


T
B
I and 


S
B
χ, we conclude

that 
S,T
B

χ.

This completes the verification of all items. �

Lemma 2. For arbitrary base B, multisets of atoms S,T, and formulas ϕ, ψ, χ,
if 1. 
S

B
ϕ⊗ ψ, 2. ϕ ,ψ 


T
B
χ, then 3. 
S,T

B
χ.

Proof. We prove by induction on the structure of χ. The condition (2) can be

spelled out as: for every X ⊇ B and U, if 
U
X

[ϕ, ψ], then 

U,T
X

χ.

- When χ is an atom, the statement of the lemma follows immediately from
(⊗).
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- χ = I. By (I), (3) amounts to that, for every X ⊇ B, atomic multiset U,

atom p, if 
U
X

p, then 

S,T,U
X

p. So we fix some base C ⊇ B, atomic multiset

Q, and atom q, such that 
Q
C

q. The goal is to show 

S,T,Q
C

q. According to
the atomic case, this follows from the following two facts:



S
C ϕ⊗ ψ (7)

ϕ ,ψ 

T,Q
C

q (8)

Here (7) follows immediately from (1) and C ⊇ B, so it suffices to prove (8).
For this, we fix some base D ⊇ C , atomic multiset R1,R2 such that 


R1

D
ϕ

and 

R2

D
ψ hold, and show that 


T,Q,R1,R2

D
q. Note that (2) now becomes

ϕ ,ψ 

T
B
I. So together with 


R1

D
ϕ and 


R2

D
ψ, it follows that 
T,R1 ,R2

D
I. This

according to (I) says that for every X ⊇ D , atomic multiset U, and atom

p, 
U
X

p implies 
T,R1 ,R2,U
X

p. In particular, since 
Q
D
q (which is immediately

consequence of 
Q
C
q and D ⊇ C ), it follows that 
T,R1 ,R2,Q

D
q.

- χ = σ ⊸ τ . The goal is to prove that, given (1) and (2), 
S,T
B

σ ⊸ τ holds;
spelling out the definition using (⊸) and (Inf), this amounts to showing that

for arbitrary X ⊇ B and atomic multiset U, if 
U
X
σ, then 


S,T,U
X

τ . So we
fix an arbitrary C ⊇ B and atomic multiset P such that 


P
C
σ holds, and

the goal is to show 

S,T,P
C

τ . By IH, it suffices to show the following:



S
C ϕ⊗ ψ (9)

ϕ ,ψ 

T,P
C

τ (10)

Since (9) is exactly (1), we focus on (10). So we fix an arbitrary D ⊇ C and

Q such that 

Q
D

[ϕ, ψ], and show 

Q,T,P
D

τ . Apply (2) to 

Q
D

[ϕ, ψ], we get



Q,T
D

σ ⊸ τ , or equivalently σ 

Q,T
D

τ . That is, for every Y ⊇ D and atomic

multiset U, 
U
Y
σ implies 


Q,T,U
Y

τ . Therefore, given 

P
C
σ, by monotonicity

we have 

P
D
σ, thus 
Q,T,P

D
τ .

- χ = σ⊗ τ . Given (1) and (2), we show 

S,T
B

σ⊗ τ . Spelling out the definition
using (⊗), we can simply fix an arbitrary C ⊇ B, atomic multiset P, and
atom p such that σ ,τ 


P
C
p; in other words,

for every X ⊇ C and U, if 

U
X σ ,τ, then 


U,P
X

p (11)

and then show 

S,T,P
C

p. By IH, it suffices to prove the following:



S
C ϕ⊗ ψ (12)

ϕ ,ψ 

T,P
C

p (13)

Now (12) follows immediately from (1) by monotonicity. Towards (13), let

us fix arbitrary D ⊇ C and Q such that 

Q
D
ϕ , ψ, and prove 


Q,T,P
D

p. By

(2), 
Q
D
ϕ ,ψ entails that 
Q,T

D
σ ⊗ τ . This by (⊗) means that,

for every Y ⊇ D ,V and q, if σ ,τ 

V
Y q, then 


Q,T,V
Y

q. (14)

In particular, since σ ,τ 

P
D
p, we can conclude from (14) that 
Q,T,P

D
p.



Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic 25

This completes all the cases of the proof by induction. �

Lemma 1. For arbitrary base B, multisets of atoms S,T, and formula χ, if
1. 
S

B
I, 2. 
T

B
χ, then 3. 
S,T

B
χ.

Proof. We prove by induction on the structure of χ.

- χ is some atom q. Spelling out the definition of (1) 

S
B
I, we have that for

arbitrary X ⊇ B, atomic multiset U, and atom p, if 
U
X

p, then 

S,U
X

p.

Apply this to (2) 
T
B

q, it follows that 
S,T
B

q.

- χ = I. In order to prove 

S,T
B

I, it suffices to fix some base C ⊇ B, atomic

multiset W, and atom q such that 
W
C

q, and prove that 
S,T,W
C

q. Since 
S
B
I,

C ⊇ B, and 

W
C

q, we have 

S,W
C

q. This together with 

T
B

q and C ⊇ B

imply that 
S,T,W
C

q.

- χ = σ ⊗ τ . Uses Lemma 2. The goal is to show that 
S,T
B

σ ⊗ τ ; using (⊗),

for every X ⊇ B, U, p, if σ , τ 

U
X

p, then 

S,T,U
X

p. So we fix some base
C ⊇ B, atomic multiset W, and atom q such that σ , τ 


W
C

q, and the goal

is now to show that 

S,T,W
C

q. Apply Lemma 2 to 

T
C
σ ⊗ τ (which follows

immediately from 

T
B
σ ⊗ τ and C ⊇ B) and σ , τ 


W
C

q, we have 

T,W
C

q.

Together with 

S
B
I, we can conclude that 
S,T,W

C
q.

- χ = σ ⊸ τ . Spelling out the definition (⊸), the goal
S,T
B

σ ⊸ τ is equivalent

to σ 

S,T
B

τ . So we fix some base C ⊇ B and atomic multiset W such that



W
C
σ, and then show that 


S,T,W
C

τ . By IH, from 

S
C
I and 


W
C
σ, we have



S,W
C

σ. This together with 

T
B
σ ⊸ τ implies that 
S,T,W

C
τ .

This completes all the inductive cases. �

D Proof of Completeness

Proposition 4 (IMLL-AtComp). For arbitrary base B, atomic multisets P, S,
and atom q,

P ,S ⊢B q iff P 

S
B q.

Proof. The equivalence follows immediately from Proposition 2. Let us assume
that P = [p1, . . . , pn]. Starting from P 


S
B

q, by (Inf), it means for every base

X ⊇ B and atomic multisets T1, . . . ,Tn, 

T1

X
p1, . . . ,


Tn

X
pn implies 


S,T
X

q.
Spelling out the definition of 


B
for atoms (At), P 


S
B

q is equivalent to that, for
every base X ⊇ B and atomic multisets T1, . . . ,Tn, T1 ⊢X p1, . . . ,Tn ⊢X pn
implies S ,T ⊢X q. This is precisely P ,S ⊢B q, given Proposition 2. �

Theorem 4 (Completeness). If Γ 
 ϕ, then Γ ⊢ ϕ.

Proof. We assume Γ 
 ϕ, and Γ = [γ1, . . . , γn]. Let Ξ be SubF(Γ ∪{ϕ}), namely
the set of all subformulas Γ and ϕ. Since Γ ∪ {ϕ} is finite, Ξ is also a finite set.

We define a ‘flattening’ function (·)♭ : Ξ → A: it assigns to each non-atomic
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ξ ∈ Ξ a unique atom which does not appear in Ξ, denoted as ξ♭ (uniqueness
means ξ♭ 6= ζ♭ if ξ 6= ζ); for each atomic p ∈ Ξ, we define p♭ to be p itself.

Conversely, we define the ‘deflattening’ function (·)
♮
: A → Ξ ∪A as an extension

of the inverse of (·)♭: for every atom in the image of (·)♭ say γ♭ (note that such

γ is unique if it exists), we define (γ♭)
♮
as γ; for the other atoms, (·)

♮
is simply

identity. We generalize both notations to multisets of formulas:∆♭ := [δ♭ | δ ∈ ∆]

and P♭ := [p♭ | p ∈ P]; likewise for (·)
♮
.

We still construct the base M that encodes the natural deduction for IMLL.
Base M contains the following atomic rules, where σ and τ range over Γ ∪ {ϕ},
and p ranges over all atoms:

(1) (σ♭ ⊲ τ ♭) ⇒ (σ ⊸ τ)♭

(2) (⊲(σ ⊸ τ)
♭
), (⊲σ♭) ⇒ τ ♭

(3) (⊲σ♭), (⊲τ ♭) ⇒ (σ ⊗ τ)
♭

(4) (⊲(σ ⊗ τ)♭), (σ♭ ,τ ♭ ⊲ p) ⇒ p

(5) ⇒ I♭

(6) (⊲I♭), (⊲τ ♭) ⇒ τ ♭

The following two statements are the key to completeness:

(†) For every ξ ∈ Ξ, every X ⊇ M and every U, 
U
X
ξ♭ iff 


U
X
ξ.

(‡) For every atomic multiset P and atom q, if P ⊢M q then P♮ ⊢ q♮.

Starting from our assumption Γ 
 ϕ, we can conclude Γ ♭


M

ϕ♭ as follows:
starting from arbitrary base B ⊇ M and atomic multisets U1, . . .Un satisfying


U1

B
γ1

♭, . . . ,
Un

B
γn

♭, by (the ‘only if’ direction of) (†) we have 
U1

B
γ1, . . . ,


Un

B
γn;

by the assumption Γ 
 ϕ, it follows that 
U
B
ϕ where U = U1 , . . . ,Un; applying

(†) again (but this time using the ‘if’ direction) we know 

U
B
ϕ♭. Then, according

to Proposition 4, Γ ♭


M

ϕ♭ implies Γ ♭ ⊢M ϕ♭. So, by (‡), (Γ ♭)
♮
⊢ (ϕ♭)

♮
, which

according to the definition of (·)
♭
and (·)

♮
says Γ ⊢ ϕ.

So it only remains to prove (†) and (‡).

We first look at (†). We fix an arbitrary base B ⊇ M and atomic multiset
S, and prove by induction on the structure of ξ.

- ξ is atomic. Then by definition, ξ♭ = ξ, so (†) is a tautology.

- ξ is I.



S
B I♭ iff S ⊢B I♭ (At)

iff for every X ⊇ B,U, p, if U ⊢X p, then S ,U ⊢X p (Lemma 5)

iff for every X ⊇ B,U, p, if 

U
X p, then 


S,U
X

p (At)

iff 

S
B I (I)
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- ξ is of the form σ ⊸ τ . By the construction of Ξ, σ and τ are both in Ξ as
well, so IH applies. Therefore,



S
B (σ ⊸ τ)

♭
iff σ♭



S
B τ ♭ (Lemma 5 and Proposition 4)

iff σ 

S
B τ (IH)

iff 

S
B σ ⊸ τ (⊸)

- ξ is of the form σ ⊗ τ . Again we can use IH on σ and τ as both are in Ξ as
well. Therefore,



S
B (σ ⊗ τ)

♭
iff for every X ⊇ X ,U, p, if σ♭ ,τ ♭ 
UX p, then 


S,U
X

p
(Lemma 5 and Proposition 4)

iff for every X ⊇ X ,U, p, if σ ,τ 

U
X , then 


S,U
X

p (IH)

iff 

S
B σ ⊗ τ. (⊗)

This completes the proof by induction on ξ for (†).
Next we turn to showing (‡). By the inductive definition of ⊢M (see Defini-

tion 10), it suffices to show the follows:

p♮ ⊢ p♮ (15)

If ((P1 ⊲ q1), . . . , (Pn ⊲ qn) ⇒ r) ∈ M ,

and S1
♮
,P1

♮ ⊢ q1
♮, . . . , Sn

♮
,Pn

♮ ⊢ qn
♮,

then S1
♮ , . . . ,Sn

♮ ⊢ r♮.

(16)

Now (15) follows imemdiately from (ax). As for (16), we simply need to prove
the statement for each atomic rule in base M , which according to the definition
of M amounts to proving the following facts:

- Suppose (σ♭ ⊲ τ ♭) ⇒ (σ ⊸ τ)
♭
is in M , and S♮ , (σ♭)

♮
⊢ (τ ♭)

♮
, we show

S♮ ⊢ ((σ ⊸ τ)
♭
)
♮
. By the definition of (·)

♮
, S♮ ,(σ♭)

♮
⊢ (τ ♭)

♮
is S♮ ,σ ⊢ τ , and

the goal S♮ ⊢ ((σ ⊸ τ)♭)
♮
is S♮ ⊢ σ ⊸ τ ., which follows immediately from

(⊸I).

- Suppose (⊲(σ ⊸ τ)
♭
), (⊲σ♭) ⇒ τ ♭ is in M . We show that S1

♮ ⊢ ((σ ⊸ τ)
♭
)
♮

and S2
♮ ⊢ (σ♭)

♮
implies S1

♮ ,S2
♮ ⊢ (τ ♭)

♮
. This is equivalent to that S1

♮ ⊢ σ ⊸

τ and S2
♮ ⊢ σ implies S1

♮ ,S2
♮ ⊢ τ , which follows immediately from (⊸E).

- Suppose (⊲σ♭), (⊲τ ♭) ⇒ (σ ⊗ τ)
♭
is in M . We show that S1

♮ ⊢ (σ♭)
♮
and

S2
♮ ⊢ (τ ♭)

♮
implies S1

♮ ,S2
♮ ⊢ ((σ ⊗ τ)

♭
)
♮
. According to the definition of (·)

♮
,

this is equivalent to that S1
♮ ⊢ σ and S2

♮ ⊢ τ implies S1
♮
,S2

♮ ⊢ σ⊗ τ , which
follows immediately from (⊗I).

- Suppose (⊲(σ ⊗ τ)
♭
), (σ♭ ,τ ♭ ⊲p) ⇒ p is in M . We show that S♮ ⊢ ((σ ⊗ τ)

♭
)
♮

together with T♮ , (σ♭)
♮
, (τ ♭)

♮
⊢ p♮ implies S♮ , T♮ ⊢ p♮. According to the

definition of (·)
♮
, this is equivalent to that S♮ ⊢ σ ⊗ τ and T♮ , σ , τ ⊢ p♮

implies S♮ ,T♮ ⊢ p♮, which follows immediately from (⊗E).
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- Suppose ⇒ I is in M , then we show ⊢ I♮, namely ⊢ I. And this is exactly
(II).

- Suppose (⊲I♭), (⊲τ ♭) ⇒ τ ♭ is in M , we show that S1
♮ ⊢ (I♭)

♮
together with

S2
♮ ⊢ (τ ♭)

♮
implies S1

♮ ,S2
♮ ⊢ (τ ♭)

♮
. By the definition of (·)♮, this is equivalent

to that S1
♮ ⊢ I and S2

♮ ⊢ τ implies S1
♮ ,S2

♮ ⊢ τ . This follows from (IE).

This completes the case analysis for establishing (‡). �

Lemma 5. The following holds for arbitrary base B ⊇ M and atomic multiset
S, when σ ⊸ τ , σ ⊗ τ , or I is in Ξ, respectively:

1. S ⊢B (σ ⊸ τ)
♭
iff S ,σ♭ ⊢B τ ♭.

2. S ⊢B (σ ⊗ τ)♭ iff for every Y ⊇ B, V, p, if V ,σ♭ ,τ ♭ ⊢Y p, then S ,V ⊢Y p.
3. S ⊢B I♭ iff for every Y ⊇ B, V, p, if V ⊢Y p, then S ,V ⊢Y p.

Proof. Let us fix arbitrary base B ⊇ M and atomic multiset S.

1. We prove the two directions separately.

– Left to right: We assume S ⊢B (σ ⊸ τ)
♭
. Note that σ♭ ⊢B σ♭ by (Ref).

Also, the atomic rule
(

⊲(σ ⊸ τ)
♭
, ⊲σ♭

)

⇒ τ ♭ is in M thus in B. There-

fore, by (App) we can conclude S ,σ♭ ⊢B τ ♭.
– Right to left: We assume S , σ♭ ⊢B τ ♭. Together with that (σ♭ ⊲ τ ♭) ⇒

(σ ⊸ τ)
♭
is in M thus in B, it follows from (App) that S ⊢B (σ ⊸ τ)

♭
.

2. Again we show the two directions separately.

– Left to right: We assume S ⊢B (σ ⊗ τ)
♭
. It suffices to fix some C ⊇ B, T

and q satisfying T ,σ♭ , τ ♭ ⊢C q, and then show S ,T ⊢C q. Note that the

atomic rule
(

⊲(σ ⊗ τ)
♭
, σ♭ ,τ ♭ ⊲ q

)

⇒ q is in B thus also in C , therefore

from the two assumptions we can derive S ,T ⊢C q.
– Right to left: We assume that for every Y ⊇ B, V, and p, if V , σ♭ ,

τ ♭ ⊢Y p, then S ,V ⊢Y p. The goal is to show S ⊢B (σ ⊗ τ)
♭
. In particular,

suppose we have σ♭ , τ ♭ ⊢B (σ ⊗ τ)
♭
, then S ⊢B (σ ⊗ τ)

♭
immediately

follows from the assumption. To show σ♭ , τ ♭ ⊢B (σ ⊗ τ)♭, it suffices to

apply (App) to the atomic rule
(

⊲σ♭, ⊲τ ♭
)

⇒ (σ ⊗ τ)
♭
in B as well as

the fact that both σ♭ ⊢B σ♭ and τ ♭ ⊢B τ ♭ hold (using (Ref)).
3. We prove the two directions separately.

– Left to right: We fix some C ⊇ B, T, and q such that T ⊢C q, and
the goal is to show that S , T ⊢C q holds. Notice that the atomic rule
(

⊲I♭, ⊲τ ♭
)

⇒ τ ♭ is in B thus in C , so apply (App) to this rule together

with S ⊢C I♭ (immediate consequence of S ⊢B I♭ and C ⊇ B) and T ⊢C q
entails that S ,T ⊢C q.

– Right to left: This is the simpler direction. Since the atomic rule ⇒ I♭

is in B, using (App) we have ⊢B I♭. The RHS of the statement entails
that S ⊢B I♭.

This completes the proof for all the three statements. �
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