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Abstract. In this paper I introduce a sequent system for the propositional modal logic S5. 

Derivations of valid sequcnts in the system are shown to correspond to proofs in a novel natural 

deduction system of circuit proof, (reminiscient of proofnets in linear logic [9, 15], or multiple

conclusion calculi for classical logic [22, 23, 24]), 

The sequent derivations and proofnets are both simple extensions of scqucnts and proofnets 

for classical propositional logic, in which the new machinery-to take account of the modal 

vocabulary-is directly motivated in terms of the simple, universal Kripke semantics for S5, The 

sequent system is cut-free (the proof of cut-elimination is a simple generalisation of the systematic 

cut-elimination proof in Belnap's Display Logic [5, 21, 26]) and the circuit proofs are normalising, 

This paper arises out of the lectures on philosophical logic l presented at 
Logic Colloquium2005. Instead ofpresenting a quicksummary ofthe material 
in the course, I have decided to write up in a more extended fashion the results 
on proofnets for S5. I think that this is the most original material covered in 
the lectures, and the techniques and ideas presented here gives a flavour of the 
approach to proof theory I took in the rest of the material in those lectures. 

The modal logic S5 is the most straightforward propositional modal logic
at least when you consider its models. The Kripke semantics for S5 is just 

· about the smallest modification to classical propositional logic that you can
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make once you add the idea that propositions may vary in truth value from 
context to context. We add just one new operator, D, with the proviso that 
DA is true in a context when and only when A is true in every context. (The 
dual operator O is definable in terms of o in the usual way. We could start 
with Oas primitive, and then D is the defiable connective. Nothing hangs here 
on the choice of D as primitive.) 

The modal logic S5 has very simple models. A (universal) S5 frame is a 
non-empty set P of points. An evaluation relation II- is an arbitrary relation 
between points and atomic formulas. A (universal) S5 model (P, 11-) is a 
frame together with an evaluation relation on that frame. Given a model, the 
evaluation relation may be extended to the entire modal language as follows: 

• x II- A /\ B iff x II- A and x II- B.
• x II- ,A iff x If A.
• x II- DA ifffor every y E P, y II- A.

A formula DA is true at a point just when A is true at all points. In this 
case, A is not merely contingently true, but is unavoidably, or necessarily true. 
(We utilise the primitive vocabulary {/\, ,, D}, leaving V and -+ as defined 
connectives in the usual manner. In addition, the modal operator O for 
possibility is definable as ,D,.) A formula A is SS-valid if and only if for 
every model ( P, 11-), for every point x E P, we have x II- A. An argument from 
premises X to a conclusion A is SS-valid if and only if for each model (P, 11-), 
for every x E P, if x II- B for each B E X, then x II- A also. Clearly every 
classical tautology, and every classically valid argument is SS-valid. Here are 
some examples of distinctively modal SS validities. 

D(A -+ B) I- DA -+ DB DA/\ DB I- D(A /\ B) I- D(A V ,A) 

DA I- A DA I- DOA A I- D,D,A 

When it comes to models, S5 is simple. Models for other modal logics com
plicate things by relativising possibility. (A point y is possible from the point 
of view of the point x, and to evaluate DA at point x, we consider merely the 
points that are possible relative to x.) You can then find interesting modal 
logics by constraining the behaviour of relative possibility in some way or 
other (is it reflexive, transitive, etc.) The logic S5 can be seen as a system 
in which relative possibility has disappeared (possibility is unrelativised) or 
equivalently, as one in which relative possibility has a number of conditions 
governing it: typically, reflexivity, transitivity and symmetry. Once relative 
possibility is an equivalence relation, from the perspective of a point inside 
some equivalence class you can ignore the points outside that class with no 
effect on the satisfaction on formulas, and the model may as well he universal. 
In other words, you can consider S5 as a logic in which there is not much 
machinery at all ( there is no relation of relative possibility) or it is one in 

--· 
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which there is quite a bit of machinery ( we have a notion of relative possibility 
with a number conditions governing it). This difference in perspectives plays 
a role when it comes to the proof theory for SS. 

Despite the simplicity of the formal semantics, providing a natural account 
of proof in SS has proved to be a difficult task. We have little idea of what a 
natural account of proofs in SS might look like. There are sequent systems for 
SS, but the most natural and straightforward of these are not cut-free [20]. The 
cut-free sequent systems in the literature tend to be quite complicated [10, 19], 
partly because they treat SS as a logic with many rules (that is, the systems 
cover many modal logics and SS is treated as a logic in which relative possibility 
has a number of features- so we have many different rules governing the be
haviour of relative possibility), or they are quite some distance from Gentzen's 
straightforward sequent system for classical propositional logic [5, 26].1 On 
the other hand, sequent systems can be modified by multiplying the kind or 
number of sequents that are considered [3, 16], or by keeping a closer eye on 
how formulas are used in a deduction [7]. These approaches are closest to 
the one that I shall follow here, but the present approach brings something 
new to the discussion. In this paper I introduce and defend a simple sequent 
system for SS, with the following innovations: the main novelty of this result 
is that the generalisation of sequents in this system (superficially similar, at 

__ least, to hypersequents [3]) 4ave a straightforward interpretation both in terms 
of the models for SS, and in terms of natural deduction proofs for this modal 
logic. Sequent derivations are, in a clear and principled manner, descriptions 
of underlying proofs.

§1. Motivations. Our aim is to defend a simple, cut-free sequent calculus
for the modal logic SS, in which derivations correspond in some meaning
ful way to constructions of proofs. The guiding idea for this quest looks 
back to the original motivation of the sequent system for intuitionistic propo
sitional logic [13]. For Gentzen, a derivation of an intuitionistic sequent 
of the form X f- A is not merely a justification of the inference from X
to A, and the sequent system is not merely a collection of rules with some 
pleasing formal properties ( each connective having a left rule and a right 
rule, the subformula property, etc.) Instead, the derivation can be seen as a 
recipe for the construction of a natural deduction proof of the conclusion A
from the premises X. For example consider, the derivation of the sequent 

1 Display logic is a fruitful way of constructing sequent systems for a vast range of logical

systems, but it comes at the cost a significant distance from traditional sequent systems. We do 

not extend the sequent system for classical logic with new machinery to govern modality. We 

must strike at the heart of the sequent system to replace the rules for negation, at the cost of a 

proliferation of the number of sequent derivations. 
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A ___, BI- (C-, A)___, (C ___, B): 
Al-A BI-B 
A ___, B, A I-B C I- C
A ___, B, C ___, A, C I- B

A___, B, C -,A I-C ___, B
A ___, BI- (C---+ A)___, (C ___, B)

may be seen to guide the construction of the following natural deduction 
proof. 

[C ___, A]s [C]* 
A-,B A 

B 
C ___, B (*

)

-

----

($)
(C-, A)___, (C ___, B) 

However, a proof may be constructed in more than .one way. The first three 
lines of the proof (from A ___, B, C ___, A, C to B) may be analysed by the 
different derivation 

Al-A CI-C 
C ___, A, C I-C B I-B
A ___, B, C ___, A, C I-B 

In this case, the natural deduction proof constructed is no different, but the 
analysis varies. Instead of thinking of the tree as starting with a proof of from 
A ___, B and A to B (that is, A ___, B, A I-B) and then justifying the premise A
by means of the addition of the two extra premises C ___, A and C, we think 
of the proof as starting with the proof from ·C ___, A and C to A, and then we 
add the premise A ___, B to deduce B. So, the sequent rules 

XI-A Y,BI-C ------[-,L] 
X,Y,A-,BI-C 

X,A I-B
XI-A ___, B 

[-R]

can be seen as being motivated and justified by considerations of natural 
deduction inferences. The rule [-L] can be motivated by the thought that if 
we have a proof n1 of A from X and another proof n2 from B to C ( with extra 
pr�mises Y) then we may use n 1 to deduce A from X, and use the new premise 
A ___, B to deduce ( using an implication elimination in the natural deduction 
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system) B. Now using Y and the newly justified B, we may add the proof n2
to dedce the desired conclusion C. In other words, X, Y, A __, B f- C. The 
rule [-R] is motivated similarly. If we have a proof n from X, A to B, then 
we may discharge A to deduce X f- A __, B. 2

These two derivations of the sequent A __, B, C -'-+ A, C f- B differ in the 
order of the application of the [----, L] rules. In some sense, this difference is 
merely "bureaucratic": The sequent system imposes a difference (you must 
apply either this rule or that rule first) when the natural deduction proof does 
not ( the rules are applied-the order is only imposed when we decide to read 
the proof from top to bottom, or from bottom to top, or from the inside out or 
in some other way). There is an important sense in which the sequent system, 
as a theory of proof, is parasitic on a prior notion of proof found in natural 
deduction. Some of the merely bureaucratic differences in the sequent calculus 
are absent from the natural deduction system. This increase in bureaucracy is 
not without its virtues, of course. The sequent system makes explicit what is 
implicit in natural deduction proofs. The sequent A __, B, C --, A, C f- B tells 
us quite explicitly that at the stage of the proof at which B is the conclusion, 
the premises A __, B, C --, A and C are all undischarged. This can only be 
"read off'' the natural deduction proof with some skill. You must look down 
from B to notice that the two discharges(*) and($) occur below, and hence 

- that at the point of the proof where B is deduced, C __, A and C are still active.
In the rest of this paper, I aim to do the same thing for the modal logic

SS. Instead of taking the sequent calculus for classical propositional logic
and modifying it, we will first endeavour to construct a natural deduction
proof theory for SS, and from this, reconstruct a sequent calculus that makes
explicit the kinds of implicit inferential relationships between premises and
conclusions that are found in our proofs.

§2. Classical circuits. The sequent calculus for classical logic uses sequents
with multiple formulas on each side of the turnstile: it has the form X f- Y 
where both X and Y may involve more than one (or less than one) formula. 
If a derivation of the sequent X f- A constructs· a proof from premises X to 
conclusion A, then it is natural to think of a derivation ending in X f- Y as 
constructing a proof n with the formulas in X as premises or inputs and the 
formulas in Y as conclusions, or outputs. We could think of a proof as having 
a shape like this: 

2There are niceties here about how many instances of A are discharged, and whether sequents

have of lists, multisets, or sets of formulas on the left-hand side. Most likely the structural rule of 

contraction will play a role at this point. 
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This is a very natural idea. It goes back at the least ot William Kneale who 
introduced his tables of development in the 1950s [17]. The simple natural 
deduction rules for conjunction and negation are these: 

A B 
A/\ B 

A/\ B 
A 

. A/\ B 
B 

A ,A 
A ,A 

Tables of development are found by chaining basic inferences together 
formula-to-formula. Here is a proof of the conclusion .(A/\ ,A). 

,(A /\ ,A) A /\ ,A 

A 
A/\ ,A ,(A /\ ,A) 

,A 

Notice that it has two instances of the one conclusion ,(A /\ ,A). (This 
phenomenon is just like the case of the simple Gentzen-style natural deduction 
proof of A /\ ,A f- J_, which has two instances of the premise A /\ ,A - one 
to justify A and the other to justify ,A, which are then combined to infer the 
falsum J_,) In what follows, we will call this proof of ,(A /\ ,A), 'n'. The 
proofn corresponds to a derivation c5 of the sequent f- ,(A/\ ,A), ,(A/\ ,A). 
In the sequent calculus we may chain two instances of o together with an 
application of a [/\R] rule, to derive .(A/\ ,A)/\ .(A/\ ,A). 

f- -,(A/\ ,A), ,(A/\ ,A) f- ,(A/\ ,A), ,(A/\ ,A)
[WR] --------- [WR] 

f- ,(A/\ ,A) f- ,(A/\ ,A)

f- ,(A /\ ,A) /\ ,(A /\ ,A)
(/\R] 

This (essentially) utilises the rule of contraction on the right of the turnstile. 
(The steps labelled "WR".) There is no corresponding move in the natural 
deduction system. If we want to introduce a conjunction, we are free to paste 
together two instances of n 

n n 

,(A/\ ,A) ,(A/\ ,A) ,(A/\ �A) ,(A /\ ,A) 

,(A/\ ,A) /\ ,(A /\ ,A) 

but as you can see, we have leftover conclusions ,(A /\ ,A). Each time we 
add another proof n to provide another conjunct for one conclusion, we add 
another unconjoined instance ,(A/\ ,A). This would not matter if there were 

, a proof which concluded in merely one instance of ,(A/\ ,A), but it is easy 
to see that with these rules there is no such proof. (Proceed· by way of an 
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induction on the construction of a proof: every proof has at least either two 
conclusions, or two premises or one premise and once conclusion. So, each 
proof with no premises has at least two conclusions.) Tables of development, 
as defined here, are incomplete for classical logic. 3 

Tables of development face a more prosaic problem: they are difficult to 
typeset. It t1irns out that we can solve both of our problems: the nota
tional problem and the contraction problem in one go. It is much more 
flexible to change our notation completely. Instead of taking proofs as con
necting formulas in inference steps, in which formulas are represented as 
characters on a page, ordered in a tree, think of proofs as taking inputs 
and outputs, where we represent the inputs and outputs as wires. Wires 
can be rearranged willy-nilly-we are all familiar with the tangle of cables 
_behind the stereo or under the computer desk-so we can exploit this to 
represent cut straightforwardly. In our pictures, then, formulas label wires. 
This change of representation will afford another insight: instead of think
ing of the rules as labelling transitions between formulas in a proof, we will 
think of inference steps (instances of our rules) as nodes with wires com
ing in and wires going out. Proofs are then circuits composed of wirings of 
nodes. 

The nodes for the connectives are then: 

-�
�

The proof n for I- ,(A/\ ,A), ,(A/\ ,A) is now represented as follows: 

A A ,A AA,A 
,(A A ,A) 

A 

(The arrow notation for wires allows us to lay proofs out in a way that inference 

3Patching the system is not a simple matter. The canonical references here are Shoesmith
and Smiley's Multiple Conclusion Logic [23] and Ungar's Normalisation, Cut-Elimination, and the 
Theo,y of Proofs [24). 
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need not go from the top of the page to the bottom of the page.) We can 
construct a circuit with one conclusion wire by contracting the two original 
conclusions like this: 

�(A/\ �A) 

The new I WI I node corresponds to the contraction of the two conclusions
into one in the sequent proof. We can then combine these proofs to obtain 
the proof of the desired conclusion: ,(A!\ ,A)!\ ,(A!\ ,A). 

�(A/\ �A) 

There is much more that one can say about classical circuits. The first detailed 
presentation of classical proofnets is found in Robinson's 2003 paper [22]. Our 
style of presentation here follows Blute, Cockett, Seely and Trimble's work on 
weakly ( or linearly) distribtutive categories [6]. I will leave the detail for the 
next section in which we introduce modal operators. 
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§3. SS circuits. We hope to find rules for introducing a D-formula, and
for eliminating a D-formula. If these rules are to be anything like the rules 
in a natural deduction system, they should step from DA to A, and vice 
versa: 

� - -�- � 
� 

From DA, we can infer A. Similarly, from A (at least, sometimes) we can 
infer DA. The analogy with rules for the universal quantifier should be clear. 
From VxFx we infer Fa, and if we have derived Fa in a special way (the 
a is arbitrary) we may infer VxFx. In the modal setting, we do not have· 
something playing the role of names. So, we need some other way to ensure 
that [DE] is stronger than it appears (in the quantifier case, we may infer 
Fa for any object a) and that [DI] is weaker than it appears (what is the 
restriction on its application, corresponding to the condition on names for 
Vx?) Consider models for the modal operators: If DA is true at a point, 
what can we infer about A? It follows that A is true at every point: not 
just the point at which we derived (or assumed) DA. So, if we infer A from 
DA, we are free to infer A not only here (in this context) but also there 

_ ( whatever other context "there" might be). So, we can think of the output A
wire in the [DE] node as freely 'applying to' a context other than the one in 
which we have evaluated A. This is the sense in which [DE] is stronger than 
the inference that merely steps from DA to A without allowing a change of 
context. 

Consider [DI]. Under what conditions can our inference of A justify the step 
to DA? We can infer DA when our inference to A is general - that is, when 
we have inferred A at an arbitrary context. What does it mean for a context to 
be arbitrary? Here we take our cue from the proof theory for predicate logic. 
We can infer VxFx from some proof of Fa just when the conclusion Fa is the 
only part of the proof (premises or conclusion) to contain information about 
a ( that is, to be formulas containing the name a). We can do the same thing 
here. If we have all of the premises and conclusions in our proof applying to a 
collection of contexts, and only the conclusion A applies to context, then we 
can infer DA, since that context was arbitrary. We have the conclusion of A
generally, in a manner which is appropriate for any context. 

But contexts are not like names in predicate logic, they do not explicitly 
show up in the syntax of the logic SS. All that this talk of contexts requires 
is that we pay attention to whether or not a formula in a proof occurs in the 
same context as another formula. 

We can make suggestive ideas more precise in the following way. We start by 
defining the class of inductively generated circuits, and the equivalence relation 
of nearness ( v) on wires in a circuit. 
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DEFINITION (inductively generated circuits, nearness). Inductively gener
ated circuits are defined in the following manner. 

• An identity wire: __::._, for any formula A is an inductively generated
circuit. The sole input type for this circuit is A and its output type is also
(the very same instance) A. As there is only one wire in this circuit, it is
near to itself.

• Each boolean connective node presented below is an inductively gener
ated circuit.

• � . ,A GI) A 
A 

/\I B i\E1 /\E2 .

� � A0PB A$B 
� AAB A B 

The inputs of a node are those wires pointing into the node, and the 
outputs of a node are those wires pointing out. The input and output 
wires of a each of these nodes are in the same nearness equivalence 
class. 

• Given an inductively generated circuit n with an output wire labelled A,
and an inductively generated circuit n' with an input wire labelled A,
we obtain a new inductively generated circuit in which the output wire
of n is plugged in to the input wire of n'. The output wires of the new
circuit are the output wires of n ( except for the indicated A wire) and the
output wires of n', and the input wires of the new circuit are the input
wires of n together with the input wires of n' ( except for the indicated A
wire).·

A wire in the new circuit near another wire if and only if either those
two wires are near in n or close in n', or one wire is near to the ouput A
in n and the other wire is close to the input A inn'. (In other words, the
equivalence classes for v on the new circuit are those classes in the old
circuit, except for the classes for the wire at the point of composition.
The two classes for this wire are merged.)

• Given an inductively generated circuit n with two input wires A, a new
inductively generated circuit is formed by plugging both of those input
wires into the input contraction node I WE I · In the new circuit, the
relation v is the same as the original relation, except that the classes for
the two contracted input wires are merged, and the new single input A is
in the same class. Similarly, two output wires with the same label may
be extended with a contraction node I WI I . The two outp11t wires are
now nearin the new circuit, as before.

• Given an inductively generated circuit n, we may form a new circuit with
the addition of a new output, or output wire (with an arbitrary label)
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using a weakening node I KI I or I KE I .4
x 

y 

T.he new wires are not near any other wires in the proo£ (They are
arbitrary extra conclusions or premises, and they could well be in any
context.)

• A DE node is also an inductively generated circuit. In this node, the
input wire DA is not nearby the output wire A.

���-
� 

• Given an inductively generated circuit n in which a conclusion wire A
is not nearby any other conclusion wire, and is not nearby any premise
wire, then the result of plugging in DI to the conclusion wire A is a new
inductively generated circuit. The new conclusion DA is not nearby any
other wire of the circuit.

��-
� 

This completes our definition of the proofs for S5. 

Inductively generated circuits represent valid reasoning in S5. Here is an 
example, showing how one can derive D,D,A from A. The circuit below has 
A as its only input, an D,D,A as its only output. 

A 

It is a useful exercise to show that this circuit may be inductively generated 
from left-to-right. The sub-circuit 

A 

4Using an unlinked weakening node like this makes some circuits disconnected. It also forces a
great number of different sequent derivations to' be represented by the same circuit. Any derivation 
of a sequent of the form X I- Y, B in which B is weakened in at the last step will construct the 
same circuit as a derivation in which B is weakened in at an earlier step. If this identification is 
not desired, then a more complicated presentation of weakening, using the 'supporting wire' of 
Blute, Cockett, Seely and Trimble [6] is possible. Here, I opt for a simple presentation of circuits 
rather than a comprehensive account of "proof identity." 



162 GREG RESTALL 

is inductively generated, because each of the nodes are themselves circuts. In 
this circuit, the equivalence relation v relates the A and ,A wires, and it relates 
the D-.A and -.0-.A wires. But the nearness relation does not relate the wires 
on the left to the wires on the right. As a result, we may apply (DI], since 
the output wire ,D,A is not near to any other wire on the periphery of the 
circuit. The result is the complete circuit with input A and output o-.o-.A. 

This proof tells us more than· simply that in any model in any world where 
A is true, D,D,A is true (though it does tell us this too). Since the output 
wire D,D,A is not close to the input wire A, it tells us that there is no model 
at all where there is a world where A is true and a world where D,D,A is 
not true. Those worlds need not be the same. To speak in terms of contexts, 
it is incoherent to assert A in one context and to deny D-.D-.A in another 
context. This is an example of the following general result, on the soundness 
of inductively generated circuits. 

THEOREM (soundness). Given an inductively generated circuit with input wires 
X1, . . . , Xn and output wires Y1, ... , Yn , where each Xi U Y; is an equivalence 
class for the nearness relation, then for any S 5 model, there is no set w1, ... , w11 
of worlds where each X; is true at w; and each Y; is false at w;. 

PROOF. The proof is a trivial induction on theconstruction of the proof. 
Identity, boolean nodes, contraction, weakening are all immediate. The cut 
rule is a simple consequence of the transitivity of consequence in SS-models. 
For (DE] we note that there is no model in which there is no pair of worlds, 
where DA is true in one and A is false in the other. For [DI], we note that if 
there is no model satisfying some condition ( concerning the rest of the wires 
in the proof n except for the one output A which is near no other wire in the 
periphery) where there is a world in which A is false, then in these models 
there is no world in which A is false, and hence, there no world in which DA 
is false either. But this is the condition for [DI]. --l 

So, circuits encode valid reasoning in our models. To show that they encode 
all of the validities of our models, we need a completeness proof. To discuss 
the completeness proof, we will examine another way of representing the 
behaviour of circuits. 

§4. SS sequents. We may represent the periphery of a circuit as a general
sequent, in which the input wires are formulas in antecedent position, and 
the output wires are formulas in consequent position. However, this leaves 
out the nearness relation, which we need to model the behaviour of modal 
operators. So, in a sequent, we will keep track of the nearness of formulas. 
One way to do this is by segregating formulas into equivalence classes, and in 
those classes, into antecedent and consequent position. The picture, then, is 
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of a hypersequent5 

X1 f-- Y1 j · · · j Xn f--Yn 

a multiset of sequents, in which each Xi and Yi is a multiset of formulas. 6 We
think of the sequent Xi f--Yi as forming one of the zones of the hypersequent. 

The hypersequent calculus for SS has the following connective rules: 7

x f-- A, y I A X, A f-- y I A 
------ [�L] [�R] 
X, -,A f-- y I A x f---,A, y I A 

X,Af--YjA X,Bf--YjA 
[/\Li] [I\L2] 

XAABf--YjA XAABf--YjA 

x f--A, y I A X' f-- B, Y' I A' 

X, X' f--A A B, Y, Y' A I A' 
[I\R

] 

X,Af--YjA f--AjA 
[DL] [DR] 

DA f--I x f-- Y .1 A f--DA I A 

which are motivated by way of the rules for constructing circuits. For [-iL], 
ifwe have a circuit in which A is an output formula, then we may expand the 
circuit by adding a [-il] node, plugged in at the A wire, which will give us a 
circuit in which -,A is an input wire. It is nearby all and only the formulas that 
are nearby to the A, and so, in the hypersequent, it is a part of the same zone. 
Similarly, for [DR], ifwe have a circuit in which A is an output wire, adjacent 
to no other wires on the periphery of the circut (so, we have a sequent in which 
f--A in a zone of its own), then we may add a [DI] node at this point, and the 
new output A is nearby no other point in the circut-that is, f-- DA is in a zone 
of its own. The appropriate rules for identity and cut are straightforward 

Af--A 
Xf--A,Y I A X', A f-- Y' A'
-------------- [Cut] 

X, X' f-- Y, Y' I A I A' 

5These are hypersequents due to Amon Avron [l, 2, 3, 27]. · However, the account here differs in
two ways from Avron's presentation. First, hypersequents are motivated in terms of an underlying 
deductive machinery. Second, the behaviour of the modal operators is captured by a single pair 
of left and right rules. There is no special "modal splitting rule" connecting hypersequents and 
the modal operators, 

6In other words, the one hypersequent may be presented asp I- q, r I s, t I- u or as t, s I- u I 
p I- r, q, but this is not the same as the hypersequent p, p I- q, r I s, t I- u I s, t I- u. The order 
of formulas or zones in a hypersequent does not matter (in just the same way that the order of 
wires does not matter in a circuit) but the number of instances of formulas does (just as it does 
in a circuit). 

7To save space, I present the rules for conjunction, but not disjunction. You can think of
disjunction as a define connective, or you can use the obvious rules for disjunction, dual to these 
rules for conjunction. 
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With the system as it stands, we may make a number of derivations. 
Al-A 

---[�L] 
,A,Al-

------[DLJ 
A I- I D,A 1-

------[�R] 
A I- I I- ,D,A 

[DR] 
A I- I I- D,D,A 

Al-A BI--B 
----- [DL] [DL] 
DA I- I I- A DB I- I I- B

�� �� DA /\ DB I- I I- A DA /\ DB I- I I- B
[AR] 

DA /\ DB I- I DA /\ DB I- I I- A /\ B
-----------------[DR( 

DA/\ DB I- I DA/\ DB I- I I- D(A /\ B)
Clearly, to be able to derive all of the valid sequents, we must add a few struc
tural rules. To mimic the behaviour of circuits closely, we allow contraction 
inside zones in a circut, and weakening into a new zone. 

X,A,AI--Y I A. 
------- [WL] 

X,AI--Y I A. 
XI--A,A,Y I A. 
------- [WR] x 1--A, y I A. 

A. 
----[KL] 
A I- I A.

----[KR] 

1--A I A. 

Finally, to ensure that we can derive all of the valid hypersequents, we need 
to be able to throw away information by merging zones in sequents. 

x I- y I X' I- Y' I A.
--------- [merge] 

X, X' I- Y, Y' I A.

This rule in a sequent proof has no parallel node in the structure of a circuit. 8
It corresponds to taking a circuit and merging two zones, or taking two 
equivalence classes to coalesce. One simple example is taking the circuit 
consisting of a [DE] node alone, with input DA and output A to prove for us 
DA I- A ( that there's no model with a world w in which DA is true and A is 
false). This is throwing away information, as the circuit can also be read as 
telling us that DA I- [ I- A ( that there's no model with a world w at which 
DA is true and w' where A is false). This is a more general fact. There is 
no harm in throwing away information, and it is helpful to have a rule such 
as this for when it comes to proving completeness, to the effect that any valid 
hypersequent is provable.9 Before moving on to consider completeness, we will
state, without proof, the fact that motivated the construction of this sequent 
system. 

8 Actually, the effect of a merge can be found by contracting two instances of A in diff�rent
zones in the proof. Then X, A I- Y I X', A I- Y' merge to be come X, X', A I- Y, Y'. It 
seemed too confusing to introduce contraction in this more general form. It can be modelled 
straightforwardly as an application of merge and then [WLJ. 

9The situation is somewhat analagous with the role of weakening in the sequent system for
intuitionistic propositional logic and the natural deduction system. There is no normal natural 
deduction proof from premises p, q to conclusion p, but there is a sequent derivation of p, q I- p. 
We take the identity proof from p to p ( consisting of the formula itself) to tell us not only that 
p I- p, but also that p, XI- p for any collection of formulas X. 
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DEFINITION (decoration). A hypersequent X1 I- Y1 I · · · I Xn I- Y,, dec
orates a circuit if and only if the input wires for the circuit are X1, ... , Xn , 
the output wires are Y1 , ... , Yn , and if two wires are close in the circuit, they 
appear in the same zone in the hypersequent.10 

THEORE� (translation). For each inductively generated circuit, and for any 
hypersequent decorating that circuit, there is a derivation of that hypersequent. 
Conversely,for any derivation of a hypersequent, there is an inductively generated 
circuit decorated by that hypersequent. 

§5. Completeness and cut elimination. In the next section, I will cover quite
quickly some properties of the sequent system. The discussion is necessarily 
(for reasons of space), compressed. The aim is to explore the behaviour of 
this presentation of SS. 

DEFINITION (validity). A hypersequent Xi I- Y1 I · · · I Xn I- Yn is valid 
in a model if and only if there are no worlds w1, ... , Wn in that model in which 
each formula in X; is true at w; and each formula in Y; is false at w;. 

The soundness theorem, proved in the section before last, then, may be re
stated as saying that the hypersequent corresponding to a inductively generated 
circuit (that is, a derivable hypersequent) is valid. The completeness theorem 
is the converse. 

THEOREM (completeness). A valid hypersequent is derivable. 
This result may be proved in a number of ways. One is simple, but it relies 

upon a prior completeness result. 
PROOF (INTERNALISATION). (i) Convert each hypersequent into a formula 

which is derivable if and only if the hypersequent is derivable, and valid if 
and only if the formula is valid, and then show that (ii) every axiom in some 
axiomatisation of SS is derivable, and the rules in that axiomatisation preserve 
derivability. 

Stage (i) is simple. Convert each sequent X I- Y inside a hypersequent 
to I- -.(/\ X /\ --, V Y). The resulting hypersequent is derivable if and oniy 
if the original hypersequent is derivable, and valid if and only if the original 
hypersequent is valid. Then, encode a hypersequent of the form I- A1 I · · · I
I- An as a particular formula in the form I- A1 V DA2 V · · · V DAn and this,
too, is co-derivable and co-valid with the original hypersequent.1 1

For the second part, show that every axiom in your favourite axiomatisation 
ofS5 is derivable in the sequent system. The verification of this part is routine. 
To show that modus ponens (say in the form of the inference from --, (A /\ -.B) 

10This allows DA I- A to decorate the single [DE] node, as well as DA I- I I- A.
ll Why the boxes on all formulas other than one? First, to make the translation of a hyperse

quent with a single zone the identity translation. Second, the valid hypersequent I- �DA I I- A
may be translated as I- �DAV DA, which is also valid. 
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and A to B) preserved derivability, we must use the rule cut, to extend the
derivations as follows: 

f-A 
f- ,(A/\ ,B)

Bf- B 
---[�R] 

A f-A f- ,B,B 
------ [/\R] 
A f-A /\ ,B, B 

------- [�L] 
,(A/\ ,B), A f- B 

------------- [Cut] 
A f- B 

---------- [Cut] 
f- B

--! 
That proof is simple, but it does not tell us much about the proof system. It is 
more interesting to prove completeness directly. 

PROOF (MODEL CONSTRUCTION). Given an underivable hypersequent, we 
construct a model in which that hypersequent is invalid. One way to do this 
is to show that any underivable sequent must have an unsuccessful derivation 
search, from which a model can be constructed. This technique can succeed
withoutthe use of the cut rule. Firstly, notice that the following rules can be
derived on the basis of the connective rules (and contractions, merges and 
weakenings). 

X, ,A f- A, y I � . X, A f- ,A, y I � 
------- [�L'] [�R'] 

X, ,A f- y I � x f- ,A, y I �
X, A, B, A /\ B f- y I � 
--------- [/\L'] 

X,A/\B f- y I� 
x f- A, A/\ B, y I � x f- B, A/\ B, y I �.
----------------- [AR'] 

x f- A /\ B, y I � 
X, DA f- y I X', A f- Y' I �
----�------ [DL'] 

X, DA f- y I X' f- Y' I ·� 
x f- DA, y I f- A I � 
--------- [DR'] x f-DA, y I � 

Now consider what happens with an underivable hypersequent. If a hyperse
quent is underivable, and it has the form of one of the lower hypersequents in
that table above, then oneof the hypersequents above that line must also be
underivable. In particular, that means that we do not get a hypersequent in 
which the same formula finds itself on both sides of a turnstile in the one zone. 
(Any hypersequent containing a zone of the form X, A f- A, Y is derivable,
using weakenings and merges.) So, we can think of an underivable hyper
sequent as a partial description of a model. Each zone partially describes 
world. Antecedent formulas are true, and consequent formulas are false. The 
search rules above tell us that if we have a negation true, its negand is false, 
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if a negation is false, its negand is true. Similarly for conjunction, and for 
necessity, if DA is true, then A is true in each zone, and if DA is false, then 
there is some zone in which A is false. 

So, search for a derivation, by taking a hypersequent and whenever we have 
a formula in a zone that is 'unprocessed' (a negation whose negand is not in 
the opposite zone, DA true in a zone, but A not appearing in some zone), 
process it by means of the rules we have seen. (This might require branching . 
in the case of a conjunction in consequent position.) Continue this process. 
If the original sequent is underivable, the result will be a partial description 
of a model in which each zone describes a world. The model will falsify the 
orrginal hypersequent. -I 

This technique ( which is, in effect, constructing a tableaux system from this 
sequent calculus) has the advantage of not requiring the cut rule. A corollary 
of soundness and completeness proved in this way is that cut is admissible. 
That is, since we know that the cut rule preserves validity in models, and since 
we know that validity in models is captured exactly by the hypersequents with 
cut-free derivations, we know that if the premise hypersequents of a cut rule 
are derivable, so is the endsequent. 

This proof tells us nothing about how to convert a proof involving cuts 
into one that does not use cut. We can adopt the standard cut-elimination 
technique [13]. My presentation follows from Belnap's systematic account in 
his Display Logic [5, 21], which in turn follows Curry's formulation of the 
proof [8, page 250]. First, we check that the rules of the hypersequent calculus 
satisfy a number of conditions. 

Cut/Identity. That is, the Cut on an identity sequent is redundant: 
A I-A X',A I- Y' ti' 

X',A I- Y' I ti' 
[Cut] 

Clearly, a cut on an identity sequent may be left out completely. 
Parameter conditions. Next we have conditions on parameters in rules. In · 

our case, a parameter in an inference falling under a rule is every formula except 
for the major formulas in a connective rule ( the formula with the connective 
introduced below the line and its ancestor formulas above the line), and the 
cut formulas in a cut rule. Every other formula is a parameter. Parameters 
may appear both above and below the line. A parametric class is a collection 
of instances of a formula in a proof. Two formulas are a part of the same 

· parametric class if they are represented by the same letter in a presentation
.of the rule (the instances of A in an inference of contraction, for example) or
if they occur in the same place in a structure (such as an antecedent X or a
hypersequent term ti).

Regularity. The regularity condition is that if a cut formula is parametric in 
an inference immediately before the cut, the cut may be permuted above that 
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inference. For example the segment 

x I--A,A, y I L.\ 
[WR] 

XI--A,Y\L.\ X',AI--Y' Li' 
--------------- (Cut] 

X, X' I-- Y, Y' I L.\ I Li' 

can be replaced by this segment, in which cuts take place on the top sequents, 
at the cost of duplicating material in the derivation. 

x 1--A,A, y I L.\ X',A I-- Y' I Li' 
--------------[Cut] x, X' I--A, Y, Y' I L.\ I L.\1 X'' A I--Y' I Li' 

And similarly, 

becomes 

X, X1
, X' I-- Y, Y' \ L.\ I L.\1 I L.\1 [Cut] 

------------- [Wand merge] x, X' I-- Y, Y' I L.\ I Li' 

X'' A, B I--Y' I Li' 
---------- (DL] 

x I--A, y I L.\ DB I-- I X', A I--Y' Li' 
DB I-- I x, X' I-- Y, Y' I L.\ I Li' 

x 1--A, y I L.\ X',A,B I--Y' Li' 
X, X'' B I-- Y, Y' I L.\ I Li' 

[Cut] 

----------�-- (DR] 
DB I-- I x, X' I-- Y, Y' I L.\ I Li' 

[Cut] 

Position-alikeness of parameters. Two formulas in the same parameter class 
are in the same position (either antecedent position or consequent position). 
This is straightforward to check. 12

Non-proliferation of parameters. Parametric classes have only one member 
below the line of an inference. This is straightforward to check. 

The previous conditions all concern permuting cuts over inferences when 
one side or other is parametric. 

Single principal constituents. A formula is principal in a rule if it is not 
parametric. The single principal constituent condition is that each inference 
has only one principal formula below the line. This is immediate. 

12This condition rules out inferences such as "matched weakening", leading from X f-- Y to 
X, A f-- A, Yin which the parameteric class for A would appear in both antecedent and consequent 
position. 
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Eliminability of matching principal consituents. An instance of cut in which 
the cut formula is principal in both inferences immediately before the cut 
may be traded in for a cut ( or cuts) on subformulas of the cut formula. The 
interesting case in our system is for DA. We have: 

I- A I A X, A I- y I A' �� . �w I- DA I A DA I- I x I- y A' 
-------------- [Cut] x I- y I A I A' 

Clearly we could have made the cut before the introduction: 
I-A I A X,AI-Y A'
----------- [Cut] x I- y I A I A' 

Given that our system satisfies these conditions, we may eliminate cuts from 
derivations. 

THEOREM (elimination-of cuts). Given a derivation in which the rule [Cut] is 
applied, we may effectively transform this derivation into one in which cut is not 
used. 

PROOF. We perform an induction on the complexity of the cut formula. The 
hypothesis is that for every subformula of A ( and for every, X, X', Y, Y', A, A') 
if X I- A, Y I A and X', A I- Y' I A' are derivable, so is X, X' I- Y, Y' I 
A I A', and we wish to show that this is the case for the formula A also. So, 
suppose we have derivations o and c5' of X I- A, Y I A and X', A I- Y' I A' 
respectively. If the cut-formula A indicated in the concluding inferences ofo 
and o' is principal, then we may apply the eliminability of matching principal 
constituents condition and our induction hypothesis to eliminate the cut. If, 
on the other hand, A is parametric in either o or o', we proceed as follows. 
Without loss of generality, suppose A is parametric in o. Consider the class 
A of occurrences of A in o found by tracing up the derivation and selecting 
each parametric instance of A congruent with the A in the conclusion of o. 
We commute the cut on A ( with the other premise X', A I- Y I A') past 
each inference in which an instance in A features, using regularity. The result 
is a derivation in which there may be many more cuts, but for each cut on 
A introduced, there are no parametric instances of A in consequent position. 
For each copy of o' introduced, we may form the set A' of instances of A 
congruent with the A in antecedent position in the cut inference. We commute 
the cut with each inference crossing the set A' to construct a derivation in 
which the cut on A occurs only on prinicpal instances of A, and this case has 
already been covered. � 

§6. Looking ahead. We will end by looking at a number of ways to extend
this approach. 
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Normalisation. Elimination of cuts corresponds quite directly to the nor
malisation of circuits, by way of the translation between derivations and cir
cuits. The circuit presentation of this system gives us scope for examining 
other ways in which proofs may be normalised. 

Correctness. Not every plugging of a wires in nodes produces a circuit. 
( Consider the putative "inference" in which the output wires of [VE] are 
plugged into the input wires of [/\I]. This does not tell us that we may infer· 
A /\ B from A V B.) The literature on pfoofnets has introduced the notion of 
a correctness criterion [9, 15]. It is an open question as to what might be an 
appropriate correctness criterion for these circuits. 

Terms. Natural deduction systems lend themselves to a representation in a 
term calculus, according to which proofs correspond to terms, where formulas 
are types. An appropriate term calculus for these circuits is, also, an open 
question. It seems that Philip Wadler's recent work on term calculi for classical 
linear logic will provide a useful starting point [25]. 

Identity of proofs. We have not said when two circuits represent the same 
proof Clearly, these circuits are not the last word for proof identity. Even in 
the classical case, proof identity is a complicated business. There are many 
prposals in the literature [4, 11, 12, 18]. The key idea in this literature that 
a theory of proofs has the structure of a category. A proof from A to B 
is, essentially, an arrow in that category. It is less clear that this is what we 
want in the case of modal reasoning. In the category-centred approach, we 
take a proof for X I- Y to be an arrow f : /\ X - V Y. In the case of 
hypersequents, we do not have an obvious translation in terms of formulas. 
Take the hypersequent A I- I I- B. It can be thought of from the perspective 
of A (so it tells us that A I- DB) or from B (it tells us that (>A I- B). The 
proof from A to DB cannot be the same as the proof from (>A to B, as the 
source formulas differ, and the target formulas differ. 13 So, which arrow in the 
category is the proof? Could a more natural model for these deductions be a 
different generalisation of a category? If we quotient our proofnets with some 
congruence relation (respecting the kind of identities we might expect, given 
our preferences about the way to go here) then what kind of "category-like" 
structure do we find? This is an open question. 

Other systems. Finally, it is clear that we need to generalise this account to 
cover modal logics other than S5. To do this, we need to step from a simple 
relation of which ignores anything other than the identity and difference of 
contexts for wires in a proof, to something more subtle. In an inference [DE] 
from DA, we step not to an arbitrary context, but to a successor context. 
The rule [DI] must similarly be modified. The aim, of course, is an account 

13They are not only different, they will not be isomorphic is the categories, as they have different 
inferential roles. 



PROOFNETS FOR S5 171 

of proof in which the rules for the modal operators are untouched, and the 
structural rules (in this case, the behaviour of nearness and the relations of 
ancestor/ descendant) play the role of determining which modal logic is found. 
Exploring these matters must be left for another time. 
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