
Proofs and reconstructions

Nik Sultana1, Christoph Benzmüller2, and Lawrence C. Paulson1

1 Computer Lab, Cambridge University
2 Dept of Mathematics and Computer Science, Freie Universität Berlin

Abstract. Implementing proof reconstruction is difficult because it in-
volves symbolic manipulations of formal objects whose representation
varies between different systems. It requires significant knowledge of the
source and target systems. One cannot simply re-target to another logic.
We present a modular proof reconstruction system with separate compo-
nents, specifying their behaviour and describing how they interact. This
system is demonstrated and evaluated through an implementation to re-
construct proofs generated by Leo-II and Satallax in Isabelle/HOL, and
is shown to work better than the current method of rediscovering proofs
using a select set of provers.

Keywords: proof reconstruction, higher-order logic, abstract machines

1 Introduction

The case for interfacing logic tools together has been made countless times in the
literature, but it is still an important research question. There are various logics
and tools for carrying out formal developments, but practitioners still lament
the difficulty of reliably exchanging mathematical data between tools.

Writing proof-translation tools is hard. The problem has both a theoretical
side (to ensure that the translation is adequate) and a practical side (to ensure
that the translation is feasible and usable). Moreover, the source and target
proof formats might be less documented than desired (or even necessary), and
this adds a dash of reverse-engineering to what should be a system integration
task.

We suggest that writing such tools can be made easier by relying on a suitable
modular framework. Modularity can be used to isolate the translation of different
kinds of formulas, inferences, and logics from one another. This has significant
practical benefits. First, the translations can be developed separately. Second,
if the reconstruction of an inference fails, it does not affect the reconstruction
of other inferences in the proof. This makes it easier to localise debugging ef-
forts. Third, it improves usability. The diversity between proof systems means
that inference-specific code can hardly ever be reused to reconstruct proofs from
other theorem provers. Thus, proof reconstruction is difficult to scale to recon-
struct proofs from different systems. The framework carves out the functionality
that can be reused between systems. This code is often fairly general, and used
to store and query formulas, inferences, and their metadata. We believe that



2 Sultana, Benzmüller and Paulson

this divide-and-conquer approach is crucial to ease the implementation of proof
reconstruction for different systems.

In this paper we propose a framework structured as a compiler. The com-
piler’s target is specified as an abstract proof-building machine, which captures
essential features of the target logic. This framework is designed to be efficient
and extensible. Both compiler and abstract machine are implemented as an ex-
tension of the Isabelle/HOL proof assistant [14], to import proofs produced by
the Leo-II [4] and Satallax [7] theorem provers.

Paper structure. The series of functions applied to a proof in our framework is
outlined in §2. Our abstract model of a proof translator is described in §3, before
returning to describe our framework in more detail in §4. Our implementation
is described and evaluated in §5, before contrasting with related work in §6. We
conclude in §7 with a description of what we learned from this project.

2 Reconstruction workflow

Proof reconstruction consists of a series of steps, or workflow, applied to some
representation of a proof. As a result of this workflow, a proof in a source logic
is transformed into a proof (of the same theorem) in the target logic.

Before giving a detailed description of the workflow in later sections, we
summarise our framework by outlining what needs to be implemented at each
step of the translation. If an implementation of the framework already exists,
then this description summarises what needs to be added or changed to translate
proofs between different theorem provers.

1. Parse the proof.
2. Interpret the logical signature. We use a mapping from types and con-

stants of the source logic, into types and constants of the target logic. This
mapping might not be total if the source language cannot be fully interpreted
in the target language. This mapping is lifted to map terms and formulas
from the source to target. If one of the logics is not typed, then suitable
encodings could be used [5].

3. Analyse and transform the proof. We often want to change the represen-
tation of the proof before translating it, to remove redundant information,
or restore information that was not included when the proof’s representation
was produced.

4. Generate a trace. We linearise the proof into a series of inferences. These
inferences are changed into instructions to an abstract proof-building ma-
chine, which we describe in the next section.

5. Emulate inferences. There are two kinds of interpretations at play when
translating proofs. The first kind was encountered in step 2, when we inter-
preted expressions, mapping them from the source to the target language.
The second kind of interpretation, which we call emulation, involves inter-
preting inferences of formulas, from the source to the target logic. As a result
of emulation, we generate a finite set of admissible rules in the target logic.



Proofs and reconstructions 3

This set forms a calculus that will be complete for the purpose of translating
the source proof into the target logic.

6. Play the trace. This is done on the abstract machine, and supported by
the emulated rules, to yield a proof in the target logic.

To use our framework, one must implement each of these steps. To handle a
new source language we must change steps 1-5. Step 6 provides an interface to
the target logic, in the form of an abstract proof-building machine. This machine
is an intermediate target in our framework, between the source and target logics.
We describe this machine next before describing the rest of the workflow in detail.

3 Cut machines

The key observation of our approach is that while proof search abhors the cut
rule [2], proof translation benefits from it. We describe a simple abstract machine
for mapping proofs from one logic into another. It serves as an abstract model
of proof translation. A similar method was used by de Nivelle [10] to describe
the generation of proof terms that validate clausifications. It is also inspired by
how generic proof checking is done in Isabelle [15].

The purpose of using such a machine in our framework is to isolate the source
and target logics. We believe that this will make it easier to modify or repurpose
the front-end and back-end of implementations of the framework, to reconstruct
proofs from, or to, different logics. Such modifications would not affect other
parts of the framework; this is inspired by how compilers are structured.

A cut machine is defined in terms of two features:

1. The machine’s state consists of a tuple (ρ, σ, F ), where ρ is a finite set of
ground assumption sequents (that can include axioms of a particular theory).
Symbol σ represents a stack of proof subgoal sequents, and F is the goal
formula. Proving all the subgoals is sufficient for proving the goal. The proofs
presented to the cut machine are translated to the target system. Translating
the proofs of all the subgoals is sufficient for translating the proof of the goal.

2. Instructions given to the machine may consist of the following:
– ‘Prove F ’ states that F is the goal formula. A goal formula may only

be set once per proof.
– ‘Cut r’ applies the sequent r ∈ ρ to the stack of subgoals in the machine’s

state. This will be described in more detail below.
– ‘End’ asserts that a machine is in a terminal state. A terminal state is

one where the subgoal stack σ is empty. The goal formula F in that state
has been shown to follow from ρ using the instructions presented to the
machine, which result in a proof in the target logic.

We call them ‘cut machines’ because they mainly rely on applying instances
of the Cut rule to splice together inferences. These are inferences in the target
logic that emulate the inferences made in the source logic proof. Splicing together



4 Sultana, Benzmüller and Paulson

the emulated inferences produces a proof in the target logic. Specifically, consider
the instruction ‘Cut r’, where r ∈ ρ is a sequent, such that r = A1,...,An

B . (We
overload the rule notation to express sequents, since the resulting notation is
more pleasant to read. We use the symbol `ρ to denote the finite proof system
contained in ρ.) Then ‘Cut r’ can be interpreted as the following rule:

`ρ A1,...,An

B `ρ A1 . . . `ρ An
`ρ B

Let the symbol B represent the single-step transition relation between states.
We will use ‘−’ to describe an empty stack, and right-associative ‘:’ to describe
the push operation. The formal semantics of the machine’s instructions are as
follows:

Prove F : (ρ, −, True) B (ρ, F, F )

Cut r : (ρ, B : σ, F ) B (ρ, A1 : . . . :An :σ, F )

where r ∈ ρ and r = A1,...,An

B

End : (ρ, −, F ) B (ρ, −, F ).

A cut program consists of a finite sequence of instructions. A well-formed
cut program consists of a single Prove instruction, zero or more Cut instruc-
tions, and finally a single End. An initial state consists of any state of the form
(ρ, −, True). A terminal state consists of any state of the form (ρ, −, F ).

A cut program describes the proof of some statement `ρ F in the source
logic, and the cut machine uses this description to build a proof in the target
logic. Note that a cut program without a Prove instruction only describes the
tautology `ρ True. A cut machine running a well-formed cut program can get
stuck in two ways: (i) when executing ‘Cut r’ if r 6∈ ρ or if the conclusion of r
does not match the top element in σ, or (ii) when executing End if the machine
is not in a terminal state.

3.1 Validating the model

Use of the model relies on the assumption that ρ contains all the rules needed
by the cut program. The finite set ρ contains a restricted inference system,
consisting of inference rules in the target logic. This set is a parameter to the
model, and the generation of these rules takes place externally—this will involve
emulating the inference rules of the source logic in terms of the target logic, as
described in §4.4.

A cut program that does not get stuck is called well-going. Provided that
a suitable ρ exists, the model has the following properties. Provided it is given
a well-going cut program, the cut machine has the following invariant: if the
subgoals are valid, then the goal is valid too. We can also show that if a cut
program reaches a terminal state then its proof goal is valid. Thus a well-going
cut program always produces a theorem in the target logic. Moreover, this can
be verified by inspecting a proof in the target logic.



Proofs and reconstructions 5

3.2 Using the model

This section will describe how this model interacts with the workflow described
in §2. Let L1 represent a source logic, and L2 represent a target logic. ‘Logic’
here is used to describe essentially the syntactical features of a logic: the syntax
of its formulas, and the formation rules of its proofs. To use the model we require
three functions:

1. A mapping from formulas of L1 into formulas of L2, such that semantics is
preserved. We rely on the interpretation of formulas for this, mentioned in
point 2 in §2, and described further in §4.3.

2. A mapping from inferences in the source proof to inferences in the target
logic. We call this mapping an emulation. This was mentioned in point 5 in
§2, and will be described further in §4.4.
The resulting inferences are not necessarily primitive inferences—they could
be admissible rules. These rules make up the contents of ρ, one of the pa-
rameters of the machine described in this section.

3. A compiler that takes proofs encoded in L1 and produces a cut program.
This was mentioned in point 4 in §2, and will be described further in §4.5,
which includes example output of such a compiler.

If the functions above are total and preserve semantic properties, then any
proof in the source logic can be translated into a proof in the target logic. The
translation can be carried out by running the cut program on an implementation
of the cut machine.

3.3 Extending the model

Reliance on the cut rule gives this framework its generality. A cut machine can
be specialised by lifting features of the source logic to the level of the machine.
This involves extending the definition of the machine and its instruction set.
The lifted feature would then be simulated at the machine level, like the Cut
instruction, rather than relying on opaque derivations in ρ.

This can be useful for features such as splitting [21]. Recall that splitting is
a rule scheme used in clausal calculi to make clauses smaller. We will base the
description of splitting on the implementation of this concept in Leo-II. Without
loss of generality, we will look at an example starting with a binary clause {A,B}
such that A and B do not share free variables. We can split this clause into
singleton clauses {A} and {B}, but separate refutations must be obtained for
each element of the split—that is, {A} cannot be used in a refutation derived
from {B}, and vice-versa.

Using the current definition of the machine, such a rule could be used outside
the machine to populate ρ (remember that ρ is a parameter to the model) with
the rule A∨B

False . We would then use this rule via Cut as before.
Instead, we could modify the machine’s definition to lift the rule to the

machine level, to specialise the machine to support splitting.



6 Sultana, Benzmüller and Paulson

Logically, this is the following rule:

`ρ A
False `ρ B

False `ρ A ∨B
`ρ False

The semantics of the new instruction Split(A ∨B) is:(
ρ,

C

False
: σ, F

)
B

(
ρ,

C ∧A
False

:
C ∧B
False

:
C

A ∨B : σ, F

)
Such a machine has been implemented for interpreting Leo-II proofs in Is-
abelle/HOL. Interpreting Satallax proofs only relies on the basic machine, with-
out splitting.

4 Framework

Our approach to proof reconstruction is made up of two phases: the shunting
and emulation of inferences. The first phase (steps 1-4 in §2) transforms a proof
and generates a cut program, while the second phase (step 5 in §2) assists in the
execution of this program. The second phase populates the set ρ that will be
used when executing the cut program (step 6 in §2). Executing the cut program
will yield a proof in the target logic.

The two phases are related, but have different purposes:

– The shunting of inferences involves (globally) meaning-preserving transfor-
mations being applied to a proof, to facilitate its reconstruction.

– Emulation maps inferences of one calculus to chains of inferences in another
calculus. In our implementation, the inferences made by Leo-II and Satallax
are emulated as Isabelle/HOL-admissible rules.

It is advantageous to separate the two phases since some details of one can
be encapsulated from the other. Furthermore, the emulation of each inference
rule takes place independently of the others. Failure to reconstruct an inference
will mean that we cannot reconstruct the entire proof, but would not affect the
reconstruction of other inferences in the proof. This isolation in emulation is
advantageous since it localises debugging, and could allow humans to assist in
reconstructing inference rules that currently cannot be emulated by the imple-
mentation.

We will concretise our description of the framework to a specific proof be-
ing translated between two specific logics: from the classical higher-order logic
clausal calculus of Leo-II to the classical higher-order logic of Isabelle/HOL. De-
spite their conceptual similarity, non-trivial manipulation is required to have the
proofs of Leo-II checked by Isabelle/HOL: some information needs to be pruned
away, and other information reconstructed, as will be explained below. Despite
the specificity of this explanation, this method is applicable to other varieties of
formal logic, such as the higher-order tableau calculus used by Satallax.



Proofs and reconstructions 7

For a running example, let us take the TPTP problem SEU553ˆ2. In this
problem, we use individuals, whom we represent by the type symbol ι, to model
sets of elements. The powerset function therefore has the type ι→ ι. The problem
conjectures that if two arbitrary sets, A and B, containing individuals, are equal,
then their powersets are equal too. This is formalised as follows:

∀A : ι, B : ι. A = B −→ powersetA = powersetB

Leo-II proves this to be a theorem. Its proof output is shown in Figure 1, and
rendered as a graph in Figure 2.

4.1 Proof generation

Böhme and Weber [6] recommend that proofs intended for reconstruction should
be sufficiently detailed to facilitate this task. We came to appreciate the validity
of their advice based on our experience with different versions of Leo-II’s proof
output. By default, Leo-II proofs may contain instances of compound rules, such
as those for clausification and unification. Using compound rules often results in
shorter proofs since the details of member inferences are elided. Unfortunately,
this loses information that can be very expensive to recompute. This is described
in more detail and quantified in the first author’s dissertation [19]. Fortunately
Leo-II can be instructed to expand compound rules into primitive inferences in
its proof output. We found this to be essential. Satallax does not use compound
rules in its proofs.

4.2 Formula interpretation

After the proof is parsed, its logical signature—consisting of a set of types, and a
set of constants—is extracted. The signature is interpreted in the target logic—in
this case, it consists of the types ι and ι→ ι, and the constants powerset, sK1A,
and sK2SY2, following the signature described on lines 1-3 in the proof shown
in Figure 1. The constants sK1A and sK2SY2 do not appear in the problem’s
formulation, because they are Skolem constants [11], and they are scoped in the
proof, not in the original problem.

After interpreting the signature, the formulas contained in inferences (lines
4-29) are interpreted in the target logic relative to this signature. This leaves us
with a skeleton of the proof consisting of the inferred formulas, but so far does
not include the inferences themselves, other than metadata—such as the names
of inference rules, and their parameters (e.g., which inferences they derive from).

This step is identical for both Satallax and Leo-II proofs encoded in TPTP.
The approach will differ significantly for the two provers in the next steps, be-
fore converging again when the cut programs (resulting from their proofs) are
executed.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU553^2.p


8 Sultana, Benzmüller and Paulson
1

t
h
f
(
t
p
_
p
o
w
e
r
s
e
t
,
t
y
p
e
,
(
p
o
w
e
r
s
e
t
:
(
$
i
>
$
i
)
)
)
.

2
t
h
f
(
t
p
_
s
K
1
_
A
,
t
y
p
e
,
(
s
K
1
_
A
:
$
i
)
)
.

3
t
h
f
(
t
p
_
s
K
2
_
S
Y
2
,
t
y
p
e
,
(
s
K
2
_
S
Y
2
:
$
i
)
)
.

4
t
h
f
(
1
,
c
o
n
j
e
c
t
u
r
e
,
(
!
[
A
:
$
i
,
B
:
$
i
]
:
(
(
A
=
B
)
=
>
(
(
p
o
w
e
r
s
e
t
@
A
)
=
(
p
o
w
e
r
s
e
t
@
B
)
)
)
)
,

5
F

f
i
l
e
(
’
S
E
U
5
5
3
^
2
.
p
’
,
p
o
w
e
r
s
e
t
_
_
C
o
g
)
)
.

6
t
h
f
(
2
,
n
e
g
a
t
e
d
_
c
o
n
j
e
c
t
u
r
e
,
(
(
(
!
[
A
:
$
i
,
B
:
$
i
]
:
(
(
A
=
B
)
=
>
(
(
p
o
w
e
r
s
e
t
@
A
)
=
(
p
o
w
e
r
s
e
t
@
B
)
)
)
)
=
$
f
a
l
s
e
)
)
,

7
F

i
n
f
e
r
e
n
c
e
(
n
e
g
a
t
e
_
c
o
n
j
e
c
t
u
r
e
,
[
s
t
a
t
u
s
(
c
t
h
)
]
,
[
1
]
)
)
.

8
t
h
f
(
3
,
p
l
a
i
n
,
(
(
(
!
[
A
:
$
i
,
B
:
$
i
]
:
(
(
A
=
B
)
=
>
(
(
p
o
w
e
r
s
e
t
@
A
)
=
(
p
o
w
e
r
s
e
t
@
B
)
)
)
)
=
$
f
a
l
s
e
)
)
,

9
F

i
n
f
e
r
e
n
c
e
(
u
n
f
o
l
d
_
d
e
f
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
2
]
)
)
.

1
0

t
h
f
(
4
,
p
l
a
i
n
,
(
(
(
!
[
S
Y
2
:
$
i
]
:
(
(
s
K
1
_
A

=
S
Y
2
)
=
>
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)
=
(
p
o
w
e
r
s
e
t
@
S
Y
2
)
)
)
)
=
$
f
a
l
s
e
)
)
,

1
1

F
i
n
f
e
r
e
n
c
e
(
e
x
t
c
n
f
_
f
o
r
a
l
l
_
n
e
g
,
[
s
t
a
t
u
s
(
e
s
a
)
]
,
[
3
]
)
)
.

1
2

t
h
f
(
5
,
p
l
a
i
n
,
(
(
(
(
s
K
1
_
A

=
s
K
2
_
S
Y
2
)
=
>
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)
=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
)
=
$
f
a
l
s
e
)
)
,

1
3

F
i
n
f
e
r
e
n
c
e
(
e
x
t
c
n
f
_
f
o
r
a
l
l
_
n
e
g
,
[
s
t
a
t
u
s
(
e
s
a
)
]
,
[
4
]
)
)
.

1
4

t
h
f
(
6
,
p
l
a
i
n
,
(
(
(
s
K
1
_
A

=
s
K
2
_
S
Y
2
)
=
$
t
r
u
e
)
)
,

1
5

F
i
n
f
e
r
e
n
c
e
(
s
t
a
n
d
a
r
d
_
c
n
f
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
5
]
)
)
.

1
6

t
h
f
(
7
,
p
l
a
i
n
,
(
(
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)
=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
=
$
f
a
l
s
e
)
)
,

1
7

F
i
n
f
e
r
e
n
c
e
(
s
t
a
n
d
a
r
d
_
c
n
f
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
5
]
)
)
.

1
8

t
h
f
(
8
,
p
l
a
i
n
,
(
(
(
~
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)
=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
)
=
$
t
r
u
e
)
)
,

1
9

F
i
n
f
e
r
e
n
c
e
(
p
o
l
a
r
i
t
y
_
s
w
i
t
c
h
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
7
]
)
)
.

2
0

t
h
f
(
9
,
p
l
a
i
n
,
(
(
(
s
K
1
_
A

=
s
K
2
_
S
Y
2
)
=
$
t
r
u
e
)
)
,

2
1

F
i
n
f
e
r
e
n
c
e
(
c
l
a
u
s
e
_
c
o
p
y
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
6
]
)
)
.

2
2

t
h
f
(
1
0
,
p
l
a
i
n
,
(
(
(
~
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)
=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
)
=
$
t
r
u
e
)
)
,

2
3

F
i
n
f
e
r
e
n
c
e
(
c
l
a
u
s
e
_
c
o
p
y
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
8
]
)
)
.

2
4

t
h
f
(
1
1
,
p
l
a
i
n
,
(
(
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)
=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
=
$
f
a
l
s
e
)
)
,

2
5

F
i
n
f
e
r
e
n
c
e
(
e
x
t
c
n
f
_
n
o
t
_
p
o
s
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
1
0
]
)
)
.

2
6

t
h
f
(
1
2
,
p
l
a
i
n
,
(
(
(
$
f
a
l
s
e
)
=
$
t
r
u
e
)
)
,

2
7

F
i
n
f
e
r
e
n
c
e
(
f
o
_
a
t
p
_
e
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
9
,
1
1
]
)
)
.

2
8

t
h
f
(
1
3
,
p
l
a
i
n
,
(
$
f
a
l
s
e
)
,

2
9

F
i
n
f
e
r
e
n
c
e
(
s
o
l
v
e
d
_
a
l
l
_
s
p
l
i
t
s
,
[
s
o
l
v
e
d
_
a
l
l
_
s
p
l
i
t
s
(
j
o
i
n
,
[
]
)
]
,
[
1
2
]
)
)
.

F
ig
.
1
.

L
eo

-I
I’

s
p
ro

o
f

o
f

S
E

U
5
5
3
ˆ
2
.
L

eo
-I

I
en

co
d
es

it
s

p
ro

o
fs

in
T

P
T

P
fo

rm
a
t

[2
0
],

w
h
er

e
ea

ch
li
n
e

is
st

ru
ct

u
re

d
a
s

fo
ll
ow

s:
l
a
n
g
u
a
g
e
(
i
d
,

r
o
l
e
,
f
m
l
a
,
a
n
n
o
t
a
t
i
o
n
)
,

w
h
er

e
th

e
a
n
n
o
ta

ti
o
n

is
o
p
ti

o
n
a
l.

H
er

e
th

e
la

n
g
u
a
g
e

is
‘T

H
F

’
[3

],
u
se

d
to

en
co

d
e

fo
rm

u
la

s
in

h
ig

h
er

-o
rd

er
lo

g
ic

.
S
o
m

e
in

fo
rm

a
ti

o
n

in
th

e
p
ro

o
f

h
a
s

b
ee

n
m

a
rk

ed
u
p
:

th
e

g
re

y
-b

ox
ed

te
x
t,

su
ch

a
s

t
p
p
o
w
e
r
s
e
t

a
n
d

1
,

a
re

u
n
iq

u
e

id
en

ti
fi
er

s
fo

r

in
fe

re
n
ce

st
ep

s;
a
n
d

th
e

b
ox

ed
te

x
t,

co
n
si

st
in

g
o
f
s
K
1
A

a
n
d

s
K
2
S
Y
2

a
re

S
k
o
le

m
co

n
st

a
n
ts

.
L

in
es

p
re

fi
x
ed

b
y

a
st

a
r
F

a
re

a
n
n
o
ta

ti
o
n

li
n
es

,
a
n
d

th
e

u
n
d
er

li
n
ed

w
o
rd

s
in

th
o
se

li
n
es

a
re

n
a
m

es
o
f

in
fe

re
n
ce

ru
le

s
u
se

d
b
y

L
eo

-I
I.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU553^2.p


Proofs and reconstructions 9

1 ∀A : ι, B : ι. (A = B) −→ (powerset A = powerset B)

2 (∀A : ι, B : ι. (A = B) −→ (powerset A = powerset B)) = False

3 (∀A : ι, B : ι. (A = B) −→ (powerset A = powerset B)) = False

4 (∀SY2 : ι. (sKA = SY2) −→ (powerset sKA = powerset SY2)) = False

5 ((sKA = sKSY2) −→ (powerset sKA = powerset sKSY2)) = False

6 (sKA = sKSY2) = True 7 (powerset sKA = powerset sKSY2) = False

8 (¬(powerset sKA = powerset sKSY2)) = True

9 (sKA = sKSY2) = True

10 (¬(powerset sKA = powerset sKSY2)) = True

11 (powerset sKA = powerset sKSY2) = False

12 False = True

13 False

negate conjecture

unfold def

extcnf forall neg

extcnf forall neg

standard cnf

standard cnf

clause copy

polarity switch

clause copy

extcnf not pos

fo atp e

solved all splits

Fig. 2. Graph for Leo-II’s proof of SEU553ˆ2. Vertices consist of formulas derived
during the proof, except for the topmost formula, labelled 1 , which is obtain from the

problem’s formulation. The numeric labels adjacent to formulas, such as 1 , are used
by Leo-II to uniquely identify clauses it generates. We use these labels to index clauses
during proof reconstruction. These labels correspond to the labels in Figure 1. Note
that this proof contains inferences that do not materially advance the proof. We can
see this between formulas 6 and 9, and between formulas 7-11. A simple static analysis
could erase formulas 9 and 8-11, and adjust the edges from 6 and 7 to point to 12.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU553^2.p


10 Sultana, Benzmüller and Paulson

4.3 Proof analysis and transformation

Some preprocessing and transformation of inferences is carried out on the proof
skeleton. The inferences form a directed acyclic graph where the vertices are for-
mulas, and the edges are labelled with inference names. The proof from Figure 1
is shown as such a graph in Figure 2.

The analysis and transformation of the inferences might be done to simplify
the proof, or to facilitate further analyses or transformations. There are three
proof transformations that we found to be useful for processing Leo-II proofs:

1. Eliminating redundant parts of the proof. Occasionally Leo-II includes re-
dundant chains of inferences that do not materially contribute to the proof.
We can see two examples of this in Figure 2, as explained in its caption.

2. Extracting subproofs related to splitting. Recall from §3.3 that each subproof
of a split yields a refutation, and the set of inferences made during a subproof
of a split is kept apart from the inferences made in other splits. Each subproof
is used to construct a lemma that produces a premise to the disjunction-
elimination rule.

3. Separating instantiation from other inferences. Leo-II sometimes overloads
inferences with instantiation of variables. This makes it harder to emulate
an inference. Rather than emulating this complex behaviour, we transform
the proof to extract instantiations into separate inferences. This allows us to
handle instantiations and other inferences separately.

A useful transformation in Satallax consisted of inlining assumption formulas
to produce the actual inferences made at each step. Satallax does not explicitly
encode an inference formula. Instead, each proof line produced by Satallax refers
to formulas involved in that inference, and the formulas are stored separately.
Combining these to give the actual inference is straightforward.

A useful analysis to carry out on both Leo-II and Satallax proofs involves
discovering the definitions of Skolem constants. These definitions are necessary
to emulate their ∃-elimination inferences. Both provers’ proofs generally contain
the declarations of Skolem constants (as can be seen for Leo-II on lines 2 and 3
of Figure 1), but not their definitions. These definitions are implicit in the proof,
and can be extracted by analysing the syntax. Skolemisation occurs on lines 4
and 5 in Figure 1, and the equations extracted by our analysis are:

sK1A = (εA : ι. (∀B : ι. (A = B) −→ (powerset A = powerset B)) = False)

sK2B = (εB : ι. (sK1A = B) −→ (powerset sK1A = powerset B) = False)

These are then added as axioms to the theory. One might feel justifiably squeamish
about adding axioms to a theory, but the axioms concerned here are definitional
axioms for Skolem constants.

Note that here we assume that the target theory validates the Axiom of
Choice (and can interpret Hilbert’s ε operator). This arises from the specific
features of our implementation targetting Isabelle/HOL (which is a classical
logic) and it is not a feature or requirement of the cut-machine model.



Proofs and reconstructions 11

4.4 Emulation of inference rules

We now turn to the inferences themselves. Inferences are emulated to yield ad-
missible rules in the target calculus. Emulation might be implemented using rule
schemes or proof-building functions, which could consist of calls to provers whose
output we can already reconstruct. This was done previously between Leo-II, Sa-
tallax and Isabelle/HOL [18]. For instance, the Leo-II inference described in line
26 of Figure 1 can be emulated by the Isabelle/HOL-admissible rule

(sK1A = sK2SY2) = True ∧ (powerset sK1A = powerset sK2SY2) = False

False = True

where, as specified in Figure 1, the first premise is contributed from the conclu-
sion of the inference labelled 9 (occurring in line 20), and the second premise
from the inference labelled 11 (line 24). The proof text also indicates that this
inference was made using the E theorem prover [17], with which Leo-II coop-
erates. The resulting rule in Isabelle/HOL is labelled “12”, consistent with the
name used in the TPTP encoding of the proof. Once all inference rules have
been emulated, then the proof skeleton has been extended to include all the
information necessary to produce a proof in the target logic.

4.5 Generating a cut program

So far we have imported all of the proof information—consisting of signature,
formulas, and inferences—from the source logic into the target logic. We now
need to combine the inferences to reconstruct the theorem in the target logic.
The proof graph is traversed depth-first, to produce a trace, or cut program, of
the proof. Running this on an implementation of a cut machine (described in §3)
should produce the reconstructed proof.

For the example proof above, the program consists of 18 instructions, essen-
tially a traversal of Figure 2:

1 [Cut "13", Cut "12", Unconjoin,

2 Cut "11", Cut "10", Cut "8", Cut "7",

3 Cut "5", Cut "4", Cut "3", Assumed,

4 Cut "9", Cut "6",

5 Cut "5", Cut "4", Cut "3", Assumed,

6 End]

4.6 Executing a cut program

The cut program is interpreted according to the semantics given in §3. We use
some additional instructions in our implementation. We describe them next; they
can both be seen in the example code snippet given above.

The Unconjoin instruction eliminates a conjunction, and behaves like the
right-conjunction rule in the sequent calculus. This is needed since the proof
graph is not a tree in general—it recombines. For example, this command is



12 Sultana, Benzmüller and Paulson

applied to step 12, formalised in Isabelle/HOL in §4.4, to break up the conjoined
premises into two premises. This step consumes one subgoal, and produces two
subgoals. Each subgoal relates to a path to the root of the graph. The root of
the graph consists of the conjecture formula. Finally, the Assumed instruction
discharges a subgoal using an identical element of ρ.

Note that in the program shown earlier, lines 3 and 5 are duplicates. We
could extract a lemma that fuses together the contents of line 3 into another
admissible rule, then replace line 5 with an application of this lemma. There are
different ways of implementing this. One way is a proof analysis that produces
commands to create and use a lemma (in which case the machine needs to be
extended to interpret these commands). Another is a proof transformation that
adds the lemmas to ρ and simply produces a ‘Cut’ command to use the lemma.

For both Leo-II and Satallax we execute this program on the double-negated
conjecture, since they both work by refutation. If all emulation steps are suc-
cessful, then the execution should yield an Isabelle/HOL theorem corresponding
to that proved by Leo-II or Satallax.

5 Implementation

We implemented this system as an extension to Isabelle, and it consists of around
8600 lines (including comments) of Standard ML and Isabelle definitions—such
as the formalisation of Leo-II and Satallax inference rules as Isabelle rules.3 The
cut machine described in this paper is implemented as an interface to Isabelle’s
kernel; ultimately all the reconstructed proofs are validated by Isabelle’s kernel.

The preceding sections described the design of the framework and its com-
ponents, and how it was implemented to import Leo-II and Satallax proofs into
Isabelle/HOL. These are the limitations of the implemented prototype:

1. Currently we do not handle the rules for the Axiom of Choice in both Leo-II
and Satallax. Emulating those rules is a natural extension to this work.

2. Recall that Leo-II collaborates with E to find a refutation. In our implemen-
tation, E’s proofs are re-found by using Metis [12], whose proofs can already
be reconstructed in Isabelle/HOL. Reconstructing E’s proofs separately, and
reconstructing hybrid Leo-II+E proofs, are discussed elsewhere [19].

3. Our Satallax reconstruction code currently does not support the use of ax-
ioms in proofs. Supporting axioms is logically straightforward: using an ax-
iom involves drawing it from ρ and adding a Cut step for that axiom.

5.1 Evaluation

A set of test proofs was first obtained by running Leo-II 1.6 for 30 seconds on
all THF problems in the TPTP 5.4.0 problem set. In these experiments, Leo-
II cooperated with version 1.8 of the E theorem prover. Leo-II produced 1537

3 All the code can be downloaded from http://www.cl.cam.ac.uk/~ns441/files/

frocos_2015_code.tgz

http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_code.tgz
http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_code.tgz


Proofs and reconstructions 13

proofs. We used a repository version of Isabelle2013, the versions of Metis and
Z3 packaged for Isabelle2013, and the experiments were done on a 1.6GHz Intel
Core 2 Duo box, with 2GB RAM, and running Linux.

The translator was then run with a timeout of 10 seconds. By using Metis to
emulate E, 1262 (82.1%) proofs were reconstructed entirely. If we treat E as an
oracle (i.e., assuming E is sound, and that we have a perfect reconstruction for
its proofs), then the number of reconstructed proofs increases to 1442 (93.8%).
Currently, in Sledgehammer [16]—Isabelle’s interface for external provers—Leo-
II proofs are reconstructed by refinding using Metis and Z3 [9]. On the same
problem set, Metis and Z3 were able to reconstruct 57.3% and 68.9% of the
proofs respectively. Our scripts and data for this evaluation are available online.4

To evaluate the reconstruction of Satallax proofs we ran Satallax 2.8 in proof-
generating mode on all THF problems in the TPTP 6.1.0 problem set, with
a 30-second timeout for each problem. This set contains 3036 THF problems,
2458 of which are classified as theorems. Satallax provided proofs for 1860 THF
problems. After removing proofs that involve axioms (because of the limitation
described in §5 point 3) we are left with 1383 proofs.

Our reconstruction code was then run on each of these proofs, with a time-
out of 10 seconds, and succeeded in reconstructing 1149 proofs (82%). On the
same problem set, Metis and Z3 were able to reconstruct 51% and 67% of the
proofs respectively. We used a repository version of Isabelle2014, and ran these
experiments on a 2GHz Intel Core i7 machine, with 16GB RAM, and running
OSX. Our scripts and data for this evaluation are available online.5

6 Related work

There is a fairly large literature on proof translation and reconstruction. We
focus on two recent projects that are similar in spirit and setup to ours. A more
detailed survey is given in the first author’s dissertation [19].

Keller [13] uses an extension of the Calculus of Constructions (as implemented
in Coq) as the host logic for theorems proved by SAT and SMT solvers. She
develops a trusted SMT proof checker and uses it to check proofs produced by
other SMT solvers, or to interpret those proofs in Coq’s logic. Keller’s checker
follows the design of an SMT solver: it mediates between theory-specific solvers to
refute a conjecture. The theory-specific solvers in Keller’s work consist of theory-
specific decision-procedures implemented using Coq. In order to use Keller’s
system, a proof from an SMT solver must first be translated into a form that
can be processed by the trusted checker. (We think that this is not unlike the
generation of cut programs, at least in spirit.) This is done as a preprocessing
step, and this realises an embedding of the source calculus in the target calculus.
The pure logic component of SMT is identical to that of SAT: proofs consist of
refutations expressed using resolution. This means that the pure logic component
of Keller’s system is much simpler than the systems developed in our work: for

4 http://www.cl.cam.ac.uk/~ns441/files/recon_framework_results.tgz
5 http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_eval.tgz

http://www.cl.cam.ac.uk/~ns441/files/recon_framework_results.tgz
http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_eval.tgz


14 Sultana, Benzmüller and Paulson

one thing, SMT lacks quantification. In a related respect, Keller’s system is
more complex than the systems developed in our work, since Keller’s system
supports a range of theories—as is expected in SMT. Currently, the state of the
art in higher-order theorem proving does not interpret any theories other than
equality [1].

Chihani et al. [8] describe an architecture based on higher-order logic pro-
gramming for checking proof certificates. These certificates can take different
forms, depending on the proof calculus of the source logic they relate to. Check-
ing these certificates involves interpreting them into a form that can be checked
as a proof in LKU, a linear logic they devised.

The system designed by Chihani et al. consists of three components: The
kernel is an implementation of LKU’s proof system; the client is the proof-
producing theorem prover, which encodes its proofs in some format chosen by
the authors of the theorem prover; and clerks and experts are two types of agent-
like functions that carry out proof construction in LKU. They correspond to the
two phases of proof-construction in a focussed proof system. This component
serves to interpret the proof certificate into an LKU proof, that can then be
checked by the kernel.

Together, clerks and experts seem to constitute an embedding of the source
logic into a fragment of LKU. The clerks and experts seem to carry out a similar
role to that of Keller’s preprocessor, described above. (Recall that a different
preprocessor might be needed for each theorem prover whose proofs we want to
import.) In our work, this role is carried out by the emulations of inference rules,
described in §4.4.

Using Keller’s approach does not require the embedding to be described in
the host system (i.e., Coq in that case). In contrast, the approach taken by
Chihani et al., and us, do require this: emulation takes inferences in the source
logic and produces inferences in the target logic.

7 Conclusions

A modular framework for translating proofs between two logics, based on cut
machines, can accomplish efficient and robust proof reconstruction. However,
detailed proofs are essential; otherwise, reconstructing proofs requires excessive
search, which can be very expensive. Our implementation of the framework out-
performs the existing method for reconstructing Leo-II and Satallax proofs in
Isabelle/HOL.

Modularity is achieved partly by breaking up the translation process into
steps (such as interpreting formulas, and emulating inferences) but also by using
an abstract proof-building machine to mediate between the source and target
logics. Our modular design is intended to facilitate reuse and modification. The
extent to which this is the case remains to be seen, but we are encouraged that
similar concepts were used by Keller and Chihani et al.



Proofs and reconstructions 15

Acknowledgments. We thank Trinity College, Cambridge University Com-
puter Lab, Cambridge Philosophical Society, and DAAD (the German Academic
Exchange Service) for funding support. The anonymous reviewers and Chad
Brown provided feedback, for which we are grateful.

References

1. Christoph Benzmüller. Equality and Extensionality in Higher-Order Theorem Prov-
ing. PhD thesis, Naturwissenschaftlich-Technische Fakultät I, Saarland University,
1999.

2. Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase. Cut-Simulation
and Impredicativity. Logical Methods in Computer Science, 5(1:6):1–21, 2009.

3. Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. THF0 – The Core TPTP
Language for Classical Higher-Order Logic. In P. Baumgartner, A. Armando, and
D. Gilles, editors, International Joint Conference on Automated Reasoning, number
5195 in Lecture Notes in Artificial Intelligence, pages 491–506. Springer, 2008.

4. Christoph Benzmüller, Frank Theiss, Lawrence C. Paulson, and Arnaud Fietzke.
LEO-II – A Cooperative Automatic Theorem Prover for Higher-Order Logic. In
Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, International
Joint Conference on Automated Reasoning, volume 5195 of Lecture Notes in Com-
puter Science, pages 162–170. Springer, 2008.

5. Jasmin C. Blanchette. Automatic Proofs and Refutations for Higher-Order Logic.
PhD thesis, Institut für Informatik, Technische Universität München, 2012.

6. Sascha Böhme and Tjark Weber. Designing Proof Formats: A User’s Perspective.
In Pascal Fontaine and Aaron Stump, editors, International Workshop on Proof
Exchange for Theorem Proving, pages 27–32, 2011.

7. Chad E. Brown. Satallax: An Automated Higher-Order Prover. In Bernhard
Gramlich, Dale Miller, and Uli Sattler, editors, International Joint Conference on
Automated Reasoning, volume 7364 of Lecture Notes in Computer Science, pages
111–117. Springer, 2012.

8. Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational Proof Certificates
in First-Order Logic. In Maria Paola Bonacina, editor, Conference on Automated
Deduction, volume 7898 of Lecture Notes in Computer Science, pages 162–177.
Springer, 2013.

9. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

10. Hans de Nivelle. Extraction of Proofs from Clausal Normal Form Transformation.
In Computer Science Logic, volume 2471 of Lecture Notes in Computer Science,
pages 584–598. Springer, 2002.

11. Gilles Dowek. Skolemization in Simple Type Theory: the Logical and the Theoret-
ical Points of View. In C. Benzmüller, C. E. Brown, J. Siekmann, and R.Statman,
editors, Festschrift in Honour of Peter B. Andrews on his 70th Birthday, Studies
in Logic and the Foundations of Mathematics. College Publications, 2009.

12. Joe Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers.
In Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application
of Strategies/Tactics in Higher Order Logics, number CP-2003-212448 in NASA
Technical Reports, pages 56–68, September 2003.



16 Sultana, Benzmüller and Paulson

13. Chantal Keller. A Matter of Trust: Skeptical Communication Between Coq and
External Provers. PhD thesis, École Polytechnique, June 2013.

14. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

15. Lawrence C. Paulson. Isabelle – A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

16. Lawrence C. Paulson and Jasmin C. Blanchette. Three years of experience with
Sledgehammer, a practical link between automatic and interactive theorem provers.
In International Workshop on the Implementation of Logics. EasyChair, 2010.

17. Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

18. Nik Sultana, Jasmin C. Blanchette, and Lawrence C. Paulson. LEO-II and Satallax
on the Sledgehammer test bench. Journal of Applied Logic, 2012.

19. Nikolai Sultana. Higher-order proof translation. PhD thesis, Computer Laboratory,
University of Cambridge, 2015. Available as Tech Report UCAM-CL-TR-867.

20. Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362,
2009.

21. Christoph Weidenbach. Combining superposition, sorts and splitting. In John A.
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 2, pages 1965–2013. MIT Press, 2001.


	Proofs and reconstructions
	Introduction
	Reconstruction workflow
	Cut machines
	Validating the model
	Using the model
	Extending the model

	Framework
	Proof generation
	Formula interpretation
	Proof analysis and transformation
	Emulation of inference rules
	Generating a cut program
	Executing a cut program

	Implementation
	Evaluation

	Related work
	Conclusions


