Proofs for Two-Server Password Authentication

Michael Szydlo and Burton Kaliski

RSA Laboratories
Bedford, MA 01730, USA
E-mail: {mszydlo,bkaliski}@rsasecurity.com

Abstract. Traditional password-based authentication and key-exchange
protocols suffer from the simple fact that a single server stores the sen-
sitive user password. In practice, when such a server is compromised, a
large number of user passwords, (usually password hashes) are exposed
at once. A natural solution involves splitting password between two or
more servers. This work formally models the basic security requirement
for two-server password authentication protocols, and in this framework
provides concrete security proofs for two protocols. The first protocol
considered [7] appeared at USENIX’03, but contained no security proof.
For this protocol, we provide a concrete reduction to the computational
Diffie-Hellman problem in the random oracle model. Next we present a
second protocol, based on the same hard problem, but which is simpler,
and has an easier, tighter reduction proof.

Key words: password authentication, secret sharing, concrete security reduc-
tion

1 Introduction

Passwords remains the most widespread method of user authentication to date,
despite their inherent weaknesses. For example, user passwords, or password
hashes are often stored in a server database, and the user authenticates by send-
ing the password back using a server-side SSL authenticated channel. Of course,
all password systems permit an attacker to make some number of guesses before
the server locks the account down. However, a much more serious vulnerability
exists: in case of a server compromise, an attacker may obtain all user passwords,
or password hashes in the database at once.

Strengthening Passwords: The convenience of user-chosen password au-
thentication protocols has caused them to be widely deployed. Among the weaker
protocols one finds passwords sent in the clear, reusable low entropy PINs, and
hash based challenge response techniques. A commonly used, and better, ap-
proach is to send a password or password hash over a server-side SSL- authenti-
cated connection. Conceptually, these approaches still suffer from the fact that a
user may be tricked into revealing his password to a server who does not know it.
Starting with Encrypted Key Exchange[2] of Bellovin and Merritt, the benefits

of a zero-knowledge based approach were realized. The goal of such protocols is
to provide an authentication procedure which does not reveal a user password to
any party who does not already have it. This line of research continued in several
directions [8,14,4,12], and represent a significant improvement in client-server
protocols.

Multiple Server Use: Despite the improvements described above, single
server password based authentication protocols do not protect from server com-
promise in a satisfactory way. Typically, an attacker who breaches a server will
be able to obtain a very large number of user passwords, perhaps after running
a dictionary attack (salt merely slows this). The natural approach to addressing
this vulnerability is the use of multiple servers. In such schemes, the capability
of verifying a password is split among two or more machines, and more than
a certain threshold number of servers need to collude to recover the password.
Starting with the work of Ford and Kaliski[6], various zero-knowledge multi-
ple server password protocols have been proposed [9,13,7]. Multi-server pro-
tocols should provide basic username-password authentication to the collection
of servers, without using special hardware or long-term client side key storage.
Even for low-entropy passwords, an attacker should not be able to improve upon
the naive guessing strategy without corrupting a threshold number of servers.
On the other hand, these protocols do not pretend to have unrealistic goals of
preventing denial of service or protecting user passwords in the case of client
compromise.

Our focus, the two-server approach, is appealing for several reasons. With just
two servers, the largest risk of wholesale password theft is greatly diminished.
Also, deploying a large number of independently run servers appears logistically
challenging, whereas the addition of a second server may be feasible in practice.

Provable Security: Increasingly, it has been realized that the proposal of a
cryptographic scheme is only as valuable as its accompanying provable security
analysis. The security proof techniques based on complexity theoretic founda-
tions, including the copious general results on secure multi-party computation
and threshold cryptography, provide tools for analyzing the kinds of protocols
we are interested in. Typically, this framework is used to present asymptotic
security definitions and security proofs!. However, for a protocol which is to be
deployed, a concrete security analysis is required.

Our Contributions: In this work, we describe an appropriate framework
for analyzing the concrete security of two-server password based authentication
schemes. For a (random oracle) variant of [7], we provide a concrete reduction to
the computational Diffie-Hellman problem. We also present a second protocol,
based on the same hard problem, whose security proof is tighter, and simpler. All
of our the security proofs are presented as explicit reduction algorithms which
relate the difficulty of two computational problems. This approach allows for a
more transparent concrete security analysis. Given that difficult security proofs,
are sometimes left unread, we hope that our explicit approach is helpful.

! The somewhat misleading identification of the term “polynomial time” with “effi-
cient” is due to the notion’s stability among different models of computation.

1.1 Organization

The rest of this paper is organized as follows. In Section 2, we discuss the struc-
ture and desired security properties of a two-server password authentication
protocol. In Section 3, we describe a general framework for concrete security re-
ductions. In Section 4, we recall the protocol from [7], and present a new protocol.
In Section 5, we define the concrete adversarial experiments appropriate for our
two party authentication protocols. In Section 6 and 7 we provide the explicit
reduction algorithm and state the concrete security result for these schemes. We
summarize the results and conclude in Section 9. In the appendix, we discuss
the unmodified scheme of [7], and the use of a Decisional Diffe-Hellman oracle.

2 Communication Framework and Desired Security

A two server authentication protocol involves a Client and two servers. Following
[7], the two servers will be denoted Blue and Red. During an enrollment phase, the
user chooses a password, which is processed by the client to produce registration
messages for each server. Later, when a claimant enters a password, the client
prepares and sends authentication messages to each server. After the two servers
complete a verification protocol, the claimant is notified of the result by one or
both servers.

To model a scenario in which the identities of the Blue and Red servers are
easily ascertained, we assume that all parties employ a secure channel to Blue
and Red. In practice, this can be realized with SSL. Architecturally, it may be
desirable for the client to communicate with a single server, and this is easily
accomplished by treating one server (say Blue) as a router.

The reader will easily verify that the protocols we describe are complete; a
claimant with correct password will always authenticate correctly. More difficult
is to show the soundness property: that an adversary can not do much better
than password guessing.

Password Privacy: In this paper, we are interested in measuring if the two-
party password protocols optimally protects the sensitive password data in the
event that one server is compromised, and that compromising one server does
not help an adversary authenticate to the other server. An experiment to test
this should be designed so that an adversary

Tries to authenticate as a user who has previously enrolled.

May compromise one server, gaining the ability to impersonate messages.
May pose as the user and interact in some number of rounds, (denoted T').
May prompt the actual user to authenticate with the correct password.

Is allowed some bounded number of random oracle calls, (denoted Q)2.

Is compared with an ideal-world adversary, allowed T password guesses.

SN

2 Artificially counting random oracle calls this way is a feature of random oracle se-
curity proofs. When arguing that the security carries over to protocols using a hash
function, @ is usually set to be proportional to the adversary’s running time.

To simplify the formal experiments which follow, we make an additional as-
sumption on the protocol. Namely we assume the two servers employ a session
management technique which precludes simultaneous authentication attempts
for the same username, and also eliminate attacks which confuse messages cor-
responding to distinct usernames®. This means that the adversary will not gain
any advantage by interleaving messages among concurrent sessions.

Limitations of the Model: For concreteness, we set the adversarial goal
to be persuading the non-corrupted server to authenticate the adversary as user
username. It is straightforward to alter the exact experiments described below
for the goal of correctly guessing the password. This can be a more natural goal,
for instance, when one server (Blue) is granting access to some service, and an-
other (Red) is present to elliminate a single point of password compromise. Then,
the natural goal of an adversary compromising Blue is to learn user passwords.

The adversarial capabilities described above do not measure the potential
advantage an adversary might gain from keying error. Since the adversary is
only allowed to activate the client on the correct password, the model does not
capture the potential advantage for an adversary who observes a client launching
the authentication sequence with a incorrect but related password. Although it
is clumsy to model, it is conceivable that an adversary might benefit from this.

3 Formal Security Model

3.1 Adversarial Experiment Background

Parties and Experiments: All cryptographic parties are modeled as known
stateful, probabalistic algorithms, whose inputs and outputs are interpreted as
messages. The adversary, denoted Adv, is modeled by an arbitrary, unspecified
algorithm. Ezperiments, or hard problems are algorithms which call one or more
parties (black box) and output a bit {0,1}, and are used to describe joint prop-
erties of the parties. For each adversary Adv, we denote the running-time of
Adv in experiment Exp by Timeg,,(Adv), and the success by Succpyp(Adv) =
Prob[ExpAdv() = 1].

Adversarial Capabilities: A security property of a protocol is defined in
terms of an experiment which specifies both the adversarial capabilities (limiting
the number and order of messages sent), and the adversarial objective, or success
criteria. These experiments are designed to measure the ability of an attacker to
disrupt normal protocol flow, or to learn a secret.

Concrete Reduction: A concrete reduction from hard problem Expgr. to
Exppy is a black box conversion of adversary Advg, for the first to an adversary
Advgry, for the second. More specifically, it consists of:

1. An algorithm Reduce, defining Advg, = Reduce®re.
2. A formula for Succgap,, (Advyy) in terms of Succpqpy, (Advge).
3. A formula for T'imegap,, (Advgy) in terms of Timep,p,, (Advge).

3 The username is included as input to the each random oracle (hash function) call.

To be meaningful, Exzpg, should represent a well studied computational prob-
lem, such as factoring, or the computational Diffe-Hellman problem?*.

A comparative concrete reduction from hard problem Expgr. to Exp;q and
Exppyp, also includes an algorithm Reduceld, defining Advyq = Reducel dAdvre
and a formula for Succpgp,;, (Advyy) in terms of the real-ideal world advantage:

Ad = Succggpy, (Advge) — Succrzp,, (Advrqg). (1)

No Complexity Assumptions: In the concrete framework, no notion of
computational indistinguishability is required, and complexity assumptions play
a reduced role®. Although not required by this framework, a security parameter
k can be used to calibrate the scheme so that the underlying hard problem is
more difficult, and thus the attacker’s task more costly.

Random Oracle Disclaimer: Unfortunately, our protocols involve hash
functions, yet our security statements do not reduce to the associated hard prob-
lems of inverting a hash function on a random input or of finding a collision.
Instead, our analysis pretends that the hash functions are replaced with “truly
random” functions[1]. As with all random oracle proofs, the security statements
we prove, describe most directly properties of a related protocol in which all par-
ties must query a distinct cryptographic trusted third party to evaluate the
hash function. This party, easily implemented with a sorted table, chooses the
random function in stages by replying to queries randomly and consistently®.

4 Two Protocols

Secret Sharing Basis: We now describe a slightly modified version of the
protocol[7], and describe our new protocol. Before we begin, we provide the
basic intuition and notation common to each. During the registration phase
the client splits the password pass into shares by choosing a random pad R as
the first share, and setting the second share P = R & pass’. Later, during the
authentication phase, a claimant using password pass’, selects a distinct random
pad, R, and sets P’ = R’ @ pass’. The Blue server computes A = P @ P’, while
the Red server obtains B = R® R’. Clearly A = B <= pass = pass’.
Relationship with Password Key Exchange: The problem of comparing
two values in zero knowledge is known as the socialist millionaire’s problem [5,
10,11, 3]. Password based key exchange protocols must solve this problem. The
authentication protocols we consider are not key exchange protocols, per se,
as they already utilitize SSL session keys, but the interaction between the two
servers also follows a solution to the socialist millionaire’s problem. The reader

4 Reduction arguments relying on stronger assumptions such as the Decisional Diffe-
Hellman assumption, or oracle “gap-assumptions” are somewhat less compelling.

5 Common complexity-theoretic notions of “negligible function”, and “computational
indistinguishability” may distract from the focus of a concrete security analysis.

5 We prefer to explicitly describe the random oracle as a trusted third party so as not
to overstate the security implications of a random oracle proof.

is encouraged to compare messages exchanged between Blue and Red (especially
in the new scheme) with zero-knowledge key-exchange protocols such as PAK[4].

We also remark that the security of the three-party protocols we consider does
not follow automatically from a solution to the socialist millionaire’s problem. In
general, deducing security properties of composed protocol instances is difficult;
furthermore, in our particular case, the adversary can influence both A and B.

Notation: The first protocol is from [7] (modifications discussed below), and
the new protocol follows the same framework. For easy comparison, we use the
same notation and display the two side by side. Let k be an integer, G be a cyclic
group of order ¢ with generator G, and gp.gen(k) an algorithm which generates
(a description of) G 7. Let pass, pass’, R, P, R', P' € {0,1}*, e, f be integers in
[1,6]], A,B,Yo,YhZO, 7y € G; Hy, Hy € {0,].}k, and okg, ok € {0, 1} Let w be
a function {0,1}* — G, and let h be a function {0,1}* — {0,1}*, implemented

by random oracles W, and H. The symbol & denotes a random assignment.

Modified BJKS (k) New Scheme(k)
Parameters Parameters
(G,q,G) < gp-gen(k) (G.q,G) < gp.gen(k)
Registration Registration
pass «— passgen) pass — passgen|()
RE {0,1}* R {0,1}*
P «— R ® pass P «— R ® pass
Authentication Authentication
Client.authl(pass’,U): Client.authl(pass’,U):
R & {01} R & {0,1}*
P’ «— R @ pass’ P’ «— R @ pass’
Blue.authl(P',U): Blue.authl(P',U):

$ $

e & [1,q) e & (1,
A—w(P®P,U) A—wPa&P,U)
Yo — AGe YO — AGe
Red.authl(R', Yo, U): Red.authl(R', Yy, U):
Ry Y
* B—w(R®R',U) B—w(R® R ,U)
Y; — BGY * Y, — GY
Z — (Yo/B)! Zy — (Yo/B)’
* H1<—h(Y0,Y1,Z1,R€BRI,U) H1<—h()/0,Y1,Z1,R@R/,U)
Blue.auth2(Y1, Hi): Blue.auth2(Y1, Hi):
Zo — (Yl/A)e * Zo — lee
* Ho < h(H1,Zo, P& P',U) x oko — Hy = h(Ye, Y1, Zo, P&P',U)
Red.auth2(Ho): * if(oko), conf «— P @& P’ else ()
x ok1 — Ho = h(Hy, Z1,R® R',U) * Red.auth2(oko, conf):
Blue.auth3(): * oki — R® R = conf
x oko — Hy = h(Ye, Y1, Zo, P&P',U) + Blue.auth3():
Client.auth2(oko). Client.auth2(oko).

" This description includes an efficient test of membership for G. E.g., G = Z,.

Modifications: The first scheme described above differs from [7] in com-
putations marked with the symbol x. The main difference is that P & P’ and
R ® R’ have been added as hash function inputs. This allows for a less awkward
and more efficient security proof. Also, the G -membership check for Y, Y7 is
not depicted, but implicitly assumed to be part of the message parsing.

Although the new scheme resembles the first in form, it is related more
naturally to the Diffe-Hellman problem (and to PAK), and thus has a tighter
proof. In the new scheme, Y is set to Gf, instead of BGY, no Hy, is computed,
and instead the Blue server sends R® R’ back to the Red server as a confirmation
message. These further differences are also marked by the symbol *.

5 Adversarial and Computational Problems

Following the framework of Section 3, we now describe the adversarial experi-
ments corresponding to the actual adversary (Expge), the ideal-world adversary
(Exprq), and the underlying hard problem (Expgp). The concrete security state-
ments tie together the performance of adversaries for three such experiments,
quantifying the informal statement “the adversary can’t do significantly better
than guessing”.

ExpReal(k,T) ExplIdeal(T) CDH (k)
(9,9, G) < gp.gen(k) (ggq’ &) = gpgentk)
pass «— passgen|() z & [1,q, X —G®
pass < passgen()
guess «— Adv $
R & {0,1)" ko guess - y[lg, Y — G
P — R ® pass Ot g(uzk)ssfpass Z — Adv(G,q,G,X,Y)
return(o 2
AdvCorrupt(< sec >) return: ok — Z = G™Y
forg = 1};0 T)d Oracle Guess(s) CDH-Square(k)
1< ompRound() > (allowed T-1 queries) (G,q,G) — gp.gen(k)
0oop ? $ z
. k «— s = pass re[l,q, X <G
f (oko=1) return(1) el © p
lretgﬁnno(o)) veturn(1) else return(ok) Z — Adv(G,q,G, X)
return: ok — Z = G*°

The ideal world adversarial experiment is very simple. It effectively must guess
the password in T tries. Clearly, the success probability of any adversary in
Expldeal(T) is less than the sum of the most common T passwords produced
by passgen(). We denote this probability GuessProb(T).

The hard problem experiment above simply corresponds to the Diffe-Hellman
problem for group G. Experiment CDH-Square(k) corresponds to the problem
of computing DH (X, X) from X, where DH(G®, G*) denotes the element G.

The real-world experiment is more interesting, and depends on which server
is compromised. The secret < sec > revealed during compromise is either P
if Blue is compromised, or R if Red is compromised. The per-round interac-
tions (CompRound() above), are described in more detail below with ExpRe-
alBlue(k,T) and ExpRealRed(k,T), which reflect the adversary’s capabilities
listed in Section 2. Separate experiments are given for the new scheme.

5.1 Per Round Interactions

These experiments are designed to follow the framework of in Section 2, except
for an additional simplification. Namely, the possibility of the adversary “acti-
vating” a user to authenticate with the correct password is treated separately, so
that we can assume that the adversary must interact within a session. It is not
difficult to see why the adversary will not benefit from this activity. In such a
situation P& P’ = R® R’, and regardless of whether the adversary has compro-
mised Blue or Red, the messages of the other server may be perfectly simulated,

so the adversary can learn nothing. Further details are in Appendix D.

CompRedRound

CompRedRoundNew

Adversary:

P’ «— AdvClient1()
Blue.authl(P'):

e & [1,4]
A—wPeaP,U)

Yo — AG*

Adversary:

Y1, Hi «— AdvRed.authl(Yp)
Blue.auth2(Y7, H1):

Zo — (Yl/A)e

H() — h(Hl,Zo,P@Pl,U)
Adversary:
AdvRed.auth2(Hy)
Blue.auth3():

oko — Hy = h(Yo, Y1, Zo, P & P',U)

Adversary:

P’ — AdvClient1()
Blue.authl(P'):

e & [1,q)

A—w(P®P,U)

Yy — AG®

Adversary:

Y1, H1 — AdvRedl(Yo)
Blue.auth2(Y1, Hi):

Z() — ()/1/14)6

oko — Hy = h(Ye, Y1, Zo, P & P, U)
if(oko), conf «+— P @ P’ else)
Adversary:

AdvRed2(oko, conf)
Blue.auth3():

R’ «— AdvClient1()

Yo «— AdvBluel()
Red.authl(R',Y,,U):

F <1

B+—w(R& R,U)

Yi — BGY

Z) — (Yo/B)!

Hy, — h(Yo,Y1,Z1,R& R',U)
Adversary:

Hy «— AdvBlue2(Y1, Hy)
Red.auth2(Hy):

oki — Hy = h(H1,Z1,R® R)
Adversary:

AdvClient2()

Adversary: Adversary:

AdvClient2(oko) AdvClient2(oko)
CompBlueRound CompBlueRoundNew

Adversary: Adversary:

R’ «— AdvClientl()

Yo «— AdvBluel()
Red.authl(R',Y,,U):

f &4

B—wRae R, U)

Vi —GI

Zi — (Yo/B)!

Hy — h(Yo,Y1,Z1,R® R',U)
Adversary:

ok,conf — AdvBlue2(Y1, Hy)
Red.auth2(oko, conf):

oki — ROR = conf
Adversary:

AdvClient2()

These per round interactions have been naturally derived from the real proto-
cols by inserting the adversary’s where the compromised server would be active.

6 Concrete Reduction Algorithms

We now present the reduction algorithms, which will ultimately convert the real
world adversary into algorithm for solving CDH(k) or CDH-Square(k).

6.1 Strategy

We consider adversaries which compromise the Blue and Red servers separately,
and we prove each concrete reduction statement in two stages.
In Stage 1, we immediately present the reduction algorithm itself: Reduce,

which yields a CDH(k) adversary Advg, = Reducetke for each real-world

adversary Advg.. Viewing the transcript of a real-world experiment Empggvﬂf

as a sequence of random variables, we will define (separately for each experi-
ment) an event called an effective guess which can be loosely interpreted as a
password guess, and we say the event Eo,e,r occurs if there are more than T
effective guesses. In this stage we also relate the success Succpap,,, (Advy) to
the probability Prob[Eoyerr]-

The goal of Stage 2, is to compare Prob[Eoyerr] with the success of the
real and ideal-world adversaries. To this end we study the interaction of a real
world adversary with a perfect simulator that calls a password guessing ora-
cle. By limiting the number of password guessing oracle calls to T, we obtain
an auxiliary reduction algorithm Reduceld, which yields an ideal-world Adver-
sary Advrg = ReduceldA%=e for each real-world adversary Advg.. As an ideal
world adversary, its success must be bounded by GuessProb(T). The simulation
is also constructed such that if all effective guesses are incorrect, the success
probability is only 727*. Taken together, this implies that Succpyp,, (Advg.) <
Prob[Eoyerr) + GuessProb(T) + T27%. Rewriting this relation as

Prob[Eoyerr| > Succrgpy. (Advge) — GuessProb(T) — T27F, (2)

and combining it with the bound of stage 1, we finally relate Succpapy, (Advmy),
to the adversarial advantage (Eq. 1).

6.2 Compromise-Red Reduction (Modified BJKS)

For this experiment, we define an effective guess on pass in round ¢ to be the
event that for the Yy, Yy, H1, P’ sent in round ¢, oracle H was called on input
(Yo, Y1, Z,P,U) or on input (Hy, Z, P,U), where P = P'@® R&®pdss, A = W(P),
and Z = DH(%, %) We also let Q4 = @ + 27" denote the maximal number of
H oracle queries in the entire experiment.

For the BJKS-modified scheme, our aim is reduce to CDH-Square(k). Thus
Reduce accepts X as input and attempts to compute DH (X, X). Reduce calls
Advge black box, and employs code from the actual protocol, as well as custom
versions, simulations, of certain functions, generally following the flow of Fxpge.
For this reduction, a custom W-oracle embeds X by responding to each new
query with X" for a random r € [1,q|. Next, for one randomly chosen round

to € [1,T], the usual adversarial round interaction will be replaced with one in
which Blue’s normal operation is simulated so that (1) Yo = G* has a random
known discrete log a, (2) Hp is set to be equal to a value coinciding with a
random H oracle response in the range of indices [1,Q,], and (3) oko is chosen
randomly from {0, 1}.

Such a simulation is not perfect, but its transcript distribution follows that
of an actual real world adversary with probability at least 1/(2Q;). Since to is
random, with probability at least Prob|Eoyerr]/ (QQTT), two effective guesses
will be made on round ¢g. In the final stage, two indices in [1, QT] are chosen
at random. If these indices correspond to H queries of the two effective guesses,
these H oracle queries will include the distinct pairs (P, Z) and (P’, Z'), such
that Z = DH(*2,3) for A = W(P), and 2’ = DH(%2, %) for A’ = W(P").
Searching through the maximum of Q) 4+742 calls to the W oracle, we locate the
two integers 7, and 7’ such that A = X" and A’ = X"'. Provided r,7’,r — 7' # 0,
the assignment

D {2/ A~ [12/ (i /Aoy e (3)
yields DH (X, X). The final chance of success is Prob[Eoye,rr]R/(2{Q3T), where
R=1-(Q+T+2+2)(Q+T+2+1)/2 ()

lower bounds the chance that all the W-oracle results are distinct and nonzero.

ReduceRed(Adv, T,Q)(X,5,q9,G) W,H Oracle Simulation

Oracle W (s) -Adv gets @ queries.
On ¢'th new query: w(s) = W;.

fori=1toQ+T+2:

T & [1,q], W; — X"
to & [1,T), indy < [1,Q4]
hrand & {0,1}*

Oracle H(s) -Adv gets Q queries.
indy’th new query: h(s) = hrand.

Other new queries: h(s) & {0,1}*

pass — passgen|()
rRE {0,1}*, P — R @ pass
AdvCorrupt(R)
for(t =1to T):
if(t = to) SimulatedRound()
else CompRedRound()

Simulated Round

inda, inds < [1, Q4]

(Zo, P) «— Hin(inds)

(2§, P') — Hin(inds)

A — W(P),r — Wseek(A)

A" — W(P),r — Wseek(A")
—aql/r ’

D «— {_Z%((}Zl//j))_a]]l/w }1/(T*T)

output(D)

Passing to stage 2, our goal is to find a bound on Prob[Eoye,r|. This is
accomplished with another reduction, Advyq = Reduceld*®%e creating an ideal

Adversary:

P’ «— AdvClientl()
Blue.sim1(P’):
as[l,q], Y~ G
Adversary:

Y1, Hi «— AdvRed.authl1(Yp)
Blue.sim2(Y1, Hi):
Hy <+ hrand
Adversary:
AdvRed.auth2(Hy)
Blue.sim3():

oko < {0,1}
Adversary:

AdvClient2(oko)

world adversary which makes guesses to a password guessing oracle. Algorithm
Reduceld is constructed from ExpRealRed(k,T), but replaces the algorithms
of Blue, H, and W with simulated algorithms, which do not directly make use
of the password.

ReduceRedId(Adv, T,Q)

Simulated Round W,H Oracle Simulation
Blue.sim1(P’): Oracle W (s)
ad [1,q], Yo « G* On$i/th new query:
Adversary: rs «— [1,q] w(s) = G.

Y1, Hi «— AdvRed.authl1(Yp)
Blue.sim2(Y1, H1):
for each hin
(valid, pass) — Valid(hin, t)
if(valid AND IdealGuess(pdss))
Hy, H; «+ Correct(h;y,)
return(Ho)

Hy < hrand; & {0, 1}’C

H{ < hrand, & {0,1}*
Blue.sim3(): Oracle IdealGuess(pdss))
oko «— Hj Zm return (pass = pass)

Oracle H(hin)
for each completed round ¢,
(valid, pass) < Valid(hin, t)
if(valid AND IdealGuess(pdss))
h(hin) < hrand;
h(h%,) <« hrand;
Other new queries:
h(hin) < {0,1}"

In contrast with Stage 1, Blue’s messages will be simulated for every round. The
challenge is to simulate Blue’s second and third interactions: Blue.sim2(Y7, Hy),
and Blue.sim3(). Both Hy and oko must be consistent with the unknown pass-
word. This is accomplished by examining all queries made to H so far, to deter-
mine if they corresponds to effective guesses. This is done with a test

(valid, pass) — Valid(Z, P, t)

which returns valid = 1, if Z = DH(%, %) for A = W(P), and 0 otherwise,

and also returns the guessed password pass = P @ P’ @ R, when the guess is
valid. In fact, this test can be efficiently performed if the discrete log of A, and
Yy are known.® The test is used three ways, (1) to ensure each Hy is consistent
with previous H-queries, (2) to ensure each ok is consistent with previous H-
queries, (3) to ensure future H-queries are consistent with Hy,oky values of
previous rounds.

A slight complication arrises from the fact that an effective guess can cor-
respond to two types of hash calls. To deal with this, the simulator uses the
function Correct(h;,) which looks up the hash query values Z, and P, and
returns both hash values H} = h(Yy, Y1, Z, P,U) and Hy = h(Hy, Z, P,U), once
the password is discovered. If the H-oracle has not been called on the inputs cor-
responding to the correct password, the simulator will choose random responses
hrand; and hrand; for the two types of hashes. Later H queries are always

8 Actually, the efficiency of Advrq is not important for our argument.

checked, and if one is found to correspond to an effective guesses for a previous
round, both types of hash are answered consistently, with hrand; and hrand;.

This simulation is perfect if the number of IdealGuess() queries is not
limited, and the number of queries is distributed exactly as the number of ef-
fective guesses made by Advge in Fxpge. Thus by the argument above in Sec-
tion 6.1, we obtain bound (Eq. 2), on Prob[Eoyerr], s0 we can can relate
SuCCpap,, (Reduce™re) to the advantage Ad defined in (Eq. 1). Letting R be
the constant of (Eq. 4), and Ad’ = Ad — T27%, we obtain

Ad'R
> . (5)
2T Q7

SUCCEzpy, (Reducet®Vre)

Furthermore, Timepzp,, (Reduce?®re) = Ty 4+ Ty + Tr, where T is the
time of the experiment Expp. itself, Ty = Timegypy,, (Advg.), and Tg is the
additional time incurred by the reducer itself, which includes a cost proportional
to Qlog(Q) to manage the random oracle tables, the Q + T + 2 exponentiations
for the W = X" embedding, and the exponentiations required for the final
extraction of the candidate DH (X, X) value.

6.3 Compromise-Blue Reduction (BJKS)

This reduction is quite similar to the compromise Red one, except the definition
of effective guess is somewhat simpler as only one type of H query need be
considered. The success of the derived adversary Reduce A% satisfies the same
inequality (Eq. 5). Further details on the simulation are given in Appendix A.

6.4 Completing the Reduction to CDH

The reductions, as presented, reduce to the hard problem CDH — Square(k).
In order to further reduce to CDH(k), we use a well known trick. The equation

DH(X,Y)? =+/DH(XY,XY)/\/DH(X]Y,X/Y) (6)

defines a reduction Reduce, such that for all CDH — Square(k) solvers S, with
success € completing in time 7, T' = Reduce® is a CDH(k) solver with success
€2 which completes in time 27. Using this approach, a significant loss of success
probability results in our reductions. However, when the decisional Diffe-Hellman
problem is feasible, the situation improves. In this case, we focus on measuring
expected time, and a CDH — Square(k) solver S, with expected time 7 can be
converted to a CDH(k) solver T with expected time 27.

7 Reductions for the New Protocol

The reductions for the new protocol are significantly simpler. First, the appar-
ently small change of setting Y7 = G¥ (instead of Y; = BGY), enables a direct

CDH (k) reduction in the compromise Blue experiment, rather than indirect
approach via the CDH — Square(k) problem. Secondly, using the confirmation
message conf, allows a direct comparison of the real-world adversary to the
password guessing adversary, without even mentioning the CHD problem. The
difference can easily be seen to be related to the chance of an H-oracle collision.

7.1 Compromise-Red (New Scheme)

For this experiment an effective guess on pass in round ¢ denotes the event that
for the Yy, Y1, Hy, P’ sent in round t, oracle H was called on input (Y, Y7, Z, P, U)
resulting in H, where P = P' & R & pass,A = W(P), and Z = DH(%,Yl).
Note the different requirement for Z, and the additional H; requirement.

For this experiment we do not need the two stage proof, and instead con-
struct an ideal world adversary directly. The construction of Reducel D, follows
the same strategy described above in Section 6.2. Specifically, the W oracle is
programmed with values of known discrete log, a random Yy = G* is sent with
known discrete log a, and consistent values of Hy are produced by the simulator.
All of Blue server messages may be perfectly simulated provided that the oracle
IdealGuess() is called for each effective guess. As above, this simulation implies
Inequality (Eq. 2). However, two effective guesses on a single round would imply

WYo, Y1, 2, P,U) = Hy = h(Yo, 1, Z, P, U),
which is a hash collision. Thus Prob[Eoyerr] < S, where
S=1-Q@Q-1)/2 (7)

is a lower bound on the probability that none of the) H-oracle results coin-
cide. The resulting bound on the adversarial advantage has nothing to do with
CDH (k).

Succprpy, (Advg.) — GuessProb(T) < S + T2 (8)

7.2 Compromise-Blue (New Scheme)

For this experiment an effective guess on pass round t denotes the event that
for the Yy, Y1, Hy, P’ sent in round ¢, oracle H was called on input (Y, Y7, Z,]5, U),
where P = P'® R®pass, A = W(P), and Z = DH(%7 Y7). In this experiment,
the maximal number of H-queries is Q1 = Q + T

The reduction Reduceld, creating the ideal world adversary, follows the strat-
egy of Section 6.2, yielding the usual Inequality (Eq. 2). However, in contrast
with the scheme of [7], the main Reduce algorithm, is able to solve CDH(k)
directly. To define Reduce, we let X,Y be the CDH(k) problem instance. Fol-
lowing Section 6.2, the W oracle is programmed with values B = X, and for
a randomly chosen round tg € [1,T7], Y7 is set equal to Y, and H; is set to be
equal to the a’th H-oracle response, for a random index a in the interval [1, QT]'

In the final stage, two indices in [1, Q4] are chosen at random. If these indices
correspond to the H queries of two effective guesses, these H oracle queries will

include two pairs (P, Z) and (P', Z'), such that Z = DH(%7 Y1) for A = W (P),
and Z' = DH(%, Y;) for A’ = W(P’). Searching through the (up to Q + T +2)
W oracle queries, we find the two integers r, and r’ such that A = X" and
A’ = X" Provided r — 1’ # 0, the formula

D« [z/z]~" (9)

yields DH(X,Y). The success is at least Prob[Eoyerr)R/ (Q:T”T), where R is as
in (Eq. 4), (a slightly smaller R suffices), so combining with (Eq. 2), yields

Ad'R
>

Succpapy, (Reduce ™) > Q8
T

(10)

8 Protocol and Proof Variants

Unmodified BJKS: We were still able to find security proofs for the unmodified
scheme of [7] without the modifications described in Section 4. This analysis is
described in Appendix B. The resulting success bound obtained was %@".

Using a Decision Oracle: If there is an efficient Diffe-Hellman decisioTn algo-
rithm for G, it makes sense to exploit this in the reduction proofs. For certain
elliptic curves, the Weil pairing provides such an efficient procedure. In addition
to the technique described in Section 6.4, a decision oracle can be used to improve
the simulations in Reduce. These techniques are discussed in Appendix C, and
we include the expected running time of the CDH adversaries in the summary.
Red Server Notification: In the protocols we have studied, the Red server
does not relay the result ok; back to the client. The proof for the protocol variant
which includes this message requires some small modifications to the simulations.

9 Conclusions

We summarize the success of the derived CDH(k) Adversaries in this table.
This allows a comparison of the reduction efficiency. The final columns show
how an adversary can make Qppy DDH queries to obtain a success rate of
Ad'H/T, and thus can solve CDH (k) by with probability near one, by repeating
the algorithm Reps times. Notice that the difference in reduction “tightness” is
significantly more pronounced when a decisional oracle is not available.

Scheme Corrupted Time Success Qppu Reps

BJKS Blue/Red 2(Tg +Ta+Tr) (Ad' R/2T)? /Qi0 Q* 2T/Ad'R

BJKS-M Blue/Red 2(Tr +Ta+Tr) (AdR/2T)*/Q% |Q 2T/Ad'R

New Blue Te+Ta+Tr AdR/2TQ} Q T/Ad'R
Red - -

The revised scheme presented in this paper is also preferable from several
other viewpoints: its security proof is more transparent, the message flows are

more directly related to the usual Diffe-Hellman problem, and the server portion
of the three party protocol (except the confirmation message) closely relates
to the well studied PAK key exchange protocol. The second protocol was also
designed to have a security proof, whereas the security proof for scheme [7] was
found after its introduction. The preferred approach is to design the protocols
concurrently with the proofs.

This work has presented a framework which may be useful for proving con-
crete security statements concerning two-party password-based authentication
protocols. More generally, we hope that the approach of presenting explicit re-
duction algorithms instead of reduction proofs will be perceived as adding higher
level of transparency to security proofs. Additionally, we hope our approach also
illustrates that meaningful concrete security statements can be stated and proved
independently of any traditional complexity-theory based foundations®. While
very useful for feasibility results, complexity theory certainly does not encompass
all of cryptography!

10 Acknowledgments

The authors would like to thank Phil MacKenzie for useful discussions, and the
anonymous reviewers for comments and corrections.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62—-73. ACM Press, 1993.

2. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In IEEE Computer Society Symposium on
Research in Security and Privacy, pages 72-84. IEEE Press, 1992.

3. F. Boudot, B. Schoenmakers, and J. Traoré. A fair and efficient solution to the so-
cialist millionaires’ problem. Discrete Applied Mathematics, 111(1-2):23-36, 2001.

4. V. Boyko, P. MacKenzie, and S.Patel. Provably secure password-authenticated
key exchange using diffie-hellman. In B. Preneel, editor, Advances in Cryptology -
Eurocrypt ’00, pages 156—, Berlin, 2000. Springer-Verlag. LNCS No. 1807.

5. R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
CACM, 39(5):77-85, May 1996.

6. W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from
a password. In Proceedings of the IEEE 9th International Workshop on Enabling
Technologies (WETICE). IEEE Press, 2000.

7. B. Kaliski and M. Szydlo J. Brainard, A. Juels. Nightingale: A new two-server
approach for authentication with short secrets. In Proceedings of the 12th USENIX
Workshop on Security, pages 1-2. IEEE Computer Society, 2003.

8. D. P. Jablon. Research papers on strong password authentication, 2002. URL:
www.integritysciences.com/links.html.

9 Corollary: Assuming computational Diffe-Hellman, we have Limy .o Ad(T, k) = 0.

9. D.P. Jablon. Password authentication using multiple servers. In David Naccache,
editor, Topics in Cryptology - CT-RSA 2001, pages 344-360. Springer-Verlag, 2001.
LNCS no. 2020.

10. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. In T. Okamoto, editor, ASTACRYPT 2000, pages 162-177. Springer-Verlag,
2000. LNCS no. 1976.

11. M. Jakobsson and M. Yung. Proving without knowing: On oblivious, agnostic, and
blindfolded provers. In CRYPTO ’96, pages 186—200, 1996. LNCS no. 1109.

12. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key ex-
change based on rsa. In T. Okamoto, editor, Advances in Cryptology - Asiacrypt
’00, pages 599—, Berlin, 2000. Springer-Verlag. LNCS No. 1976.

13. P. Mackenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated
key exchange. In M. Yung, editor, CRYPTO 2002, pages 385-400. Springer-Verlag,
2002. LNCS no. 2442.

14. M.Bellare, D.Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology - Euro-
crypt ’00, pages 139—, Berlin, 2000. Springer-Verlag. LNCS No. 1807.

A Compromise Blue Details (BJKS)

This reduction algorithm takes the same form as that of Section 6.2, and we just
include it for completeness. For this experiment an effective guess on pass
in round ¢ denotes the event that for the Yy, Y;, R’ sent in round ¢, oracle H
was called on input (Y, Y1, Z, R,U) where R = R' & P & pass, B = W (R), and
Z = DH(Yy/B,Y1/B). The problem instance X is embedded via the W oracle,
and the Red server messages are simulated for a randomly chosen round tgy. In
this one round, the simulation sets Y7 = G® to be a random group element with
known discrete log a, and imperfectly simulates H; setting it to equal one of
the H oracle responses. This round’s the Red server simulation is shown below.
Once all T rounds complete, the reducer chooses two indices at random from
[1,Q+] and obtains the pairs (Z, B) and (Z’, B') where B = X", and B’ = X"'.

With probability Prob[Eoyerr]/ Q4T there are two effective guesses in round
to. If additionally, the two chosen indices correctly correspond to the effective
guesses, the desired DH (X, X) may be algebraically derived from Z,, Z|, B, B,
r, 7', a, (see Eq. 3)), provided r,r’,r —r’ are all non-zero. We conclude that the
success is at least Prob[EOverT]/({Q‘?TR).

Simulated Round - ReduceBlue Simulated Round - ReduceBluelD
Red.sim1(R',Y)):
ad1,q, Vi —G°

Red.sim1(R’,Yp): for each H = H(hin)

a[1,q, Y1 — G° (valid, pass) — Valid(hin, t)

Hi — hrand if(valid AND IdealGuess(pdss))
Red.sim2(Hy): H, «— H, return

(nothing) Hy — hrand; & {0,1}*

Red.sim2(Hy):
(nothing)

The Reduceld algorithm uses the same strategy as Section 6.2, although the
simpler definition of effective guess makes the simulation easier (details be-
low). By the same argument above in Section 6.1, we obtain bound (Eq. 2),
on Prob[Eoyerr], 50 we can can relate Succpep,, (Reduce?®r<) to the advan-
tage Ad (Eq. 1), obtaining for R of (Eq. 4),

v Ad'R
SucCEepy, (ReduceA®re) > TQ? .

(11)

B Unmodified BJKS Scheme

Our modification of the scheme from [7] simply added the values P & P’ and
R @ R’ into the hash function inputs. Since the reducer was able to examine the
list of H queries, to obtain the P® P’ as well as Z, the candidate A = W (P®P’)
values could be computed.

We were still able to find security proofs for the original scheme, without
this modification. In this case, the strategy employed by the reducer is to guess
the correct W oracle values at random from the entire list of oracle calls, thus
obtaining the required A = G" and A’ = G'", albeit with reduced probability.

The second stage, the comparison with the ideal strategy, was also somewhat
more difficult. Following the approach of Section 6.2, the simulator was not
able to directly connect the H queries to the password. Instead, the simulation
can be made by searching through the list of W oracle queries, and for each
image A compute an associated Z. Each Z is compared with the H oracle query
list to determine for which passwords “an effective guess” has been made. The
resulting simulation is not perfect, since at a later point in the execution, the W
oracle may coincidentally produce a random A which corresponds to an effective
guess. In such a case, the simulated Hy or oky may have been inconsistent with
the {Hy, ok} corresponding to the correct password. This imperfect simulation
results in a small error term in the inequality comparing the Prob[Eoyerr],
Succge, and Expldeal(T).

An alternate approach to the proof, which enumerates every possible pass-
word, may be more efficient for small password dictionaries.

C Using a Decisional Diffe Hellman Oracle

In our proofs, a DDH oracle can be used to check whether a call to the H-oracle
is an effective guess. This is useful in two ways. First, a perfect simulation in
Reduce can be achieved at a cost of Q+ DD H-queries. One query is made for
each call to the H-oracle with respect to the chosen round t¢y. (Optionally, all T'
rounds can be used), then the approach of setting Hy or Hy randomly is replaced
with a strategy which checks all previous H calls for effective guesses.

The second place where the DDH oracle is useful is in the final stage of
Reduce, where the two Z values are selected. By knowing which H queries are
effective guesses, the correct pair can be found when it exists.

Having implemented these changes to Reduce, the success can be improved to
Ad'R/T. Thus, the expected number of repeats of the whole experiment required
to solve the hard problem with high probability is approximately T//Ad’ H times.

This approaches works for the modified BJKS scheme as well as the new
scheme, and for the modified BJKS scheme, passing from CDH — Square(k)
to CDH(k) incurs a mere doubling of expected time. However, for the unmodified
BJKS scheme, it is more difficult to determine an effective guess. By checking
each W and each H call, effective guesses may still be determined, but the
required number of DD H-queries is now Q?. In this case, we also note that the
simulation required for Reduceld has an extra, small error term.

D Partially Passive Adversaries

To simplify the argument in Section 5.1, we had deferred consideration of adver-
saries which are active at the time that the valid client authenticates. In some
models, the adversary is allowed to “trigger” the client some number of times.
We now provide further justification for the claim that this activity will not help
the adversary. For convenience, we note the details of the per-round interactions
in the cases that Blue or Red is compromised.

CompRedRoundPassive CompBlueRoundPassive
C/ll(;nt.autill(pass, U): Client.authl(pass,U):
R, & {0/71} / R E 0,13k
P — R @ pass P’ R @ pass’
Blue.authl(P'): b

3 Adversary:
e—[lqg Yo «— AdvBluel(P')
A—w(PoP,U) Red.auth1(R', Yy, U):
Yy — AG® $
Adversary: J;:[i(%}%@ R,U)
Y1, Hi «— AdvRed.authl(Ys, R') v — BG! ’
Bluc.auth2(¥i, Hy): NS
Continues as in Section 5. Continues as in Section 5.

Unlike in Section 5.1, the adversary who corrupts Red is presented with an
R’ generated by the honest client. As a result, the adversary knows R ® R’ =
P @ P’, and both the client and Blue server can be perfectly simulated, for
example, Client.sim1:R’ & {0,1}*, Blue.siml: e & [1,q]; A —w(R® R ,U);
Yy < AG*€. This simulation applies to the both the BJKS and new protocols.

Similarly, the adversary who corrupts Blue is presented with an P’ gen-
erated by the honest client, so this adversary also knows P & P’ = R® R/,
and both the client and Blue server can be perfectly simulated, for exam-
ple, Client.sim1:P’ & {0,1}*, Blue.sim1: f & 1,q]; B — w(P @ P,U);
Y1 «— BG®. Thus, the adversary who prompts the client to enter the correct
password, will not learn anything from this round of interaction.

