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PROOFS OF CONJECTURES OF SANDON AND ZANELLO

ON COLORED PARTITION IDENTITIES

Bruce C. Berndt and Roberta R. Zhou

Abstract. In a recent systematic study, C. Sandon and F. Zanello of-
fered 30 conjectured identities for partitions. As a consequence of their
study of partition identities arising from Ramanujan’s formulas for mul-
tipliers in the theory of modular equations, the present authors in an
earlier paper proved three of these conjectures. In this paper, we provide
proofs for the remaining 27 conjectures of Sandon and Zanello. Most of
our proofs depend upon known modular equations and formulas of Ra-
manujan for theta functions, while for the remainder of our proofs it was

necessary to derive new modular equations and to employ the process of
duplication to extend Ramanujan’s catalogue of theta function formulas.

1. Introduction

Early in this century, H. M. Farkas and I. Kra [12] began a fruitful study of
partition identities arising from theta function identities and modular equations
with the following elegant theorem about colored partitions.

Theorem 1.1. Let S denote the set consisting of one copy of the positive

integers and one additional copy of those positive integers that are multiples of

7. Then for each positive integer k, the number of partitions of 2k into even

elements of S is equal to the number of partitions of 2k + 1 into odd elements

of S.

Shortly thereafter, it was realized that many of Ramanujan’s modular equa-
tions yielded further interesting partition identities for colored partitions. For
example, see papers by the first author [9], N. D. Baruah and the first author
[4], [5], and a paper by the present authors [10]. It is natural to ask for com-
binatorial proofs of these identities, and readers should consult the papers by
S. O. Warnaar [17] and S. Kim [13] for beautiful arguments giving combinato-
rial approaches to classes of these partition identities. The work of Warnaar
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and Kim motivated further proofs in the combinatorial direction by Sandon
and Zanello [15]. Then in a subsequent paper [16], Sandon and Zanello of-
fered 30 conjectures about colored partitions. As indicated in our abstract, we
proved three of their conjectures in our paper [10]. Baruah and B. Boruah [6]
have also established the conjectures of Sandon and Zanello.

In this paper, we establish the remaining 27 conjectures of Sandon and
Zanello. We have divided our proofs into three sections. For the first nine of our
proofs, we rely on known modular equations; these proofs are in Section 3. For
the next six proofs, we need to develop new modular equations. In particular,
we use certain “evaluations” of theta functions outside Ramanujan’s catalogue
of evaluations in [7, pp. 122–124]. These new formulas for theta functions are
derived with the help of the classical process of duplication, which can be found
in Ramanujan’s notebooks [14], [7, pp. 125–126]. It is remarkable that “nice”
identities exist when we go outside Ramanujan’s catalogue of theta functions;
usually, venturing outside the catalogue produces inelegant identities. Proofs
of six identities relying on new modular equations and new formulas for theta
functions are given in Section 4. Finally, in Section 5, we construct new modular
equations of degree 3 to prove 12 further conjectures of Sandon and Zanello.

2. Preliminary results

For any complex numbers a and |q| < 1, define

(a; q)∞ :=

∞
∏

n=0

(1− aqn).

Recall that Ramanujan’s theta functions ϕ(−q) and f(−q), and his function
χ(q) are defined by

ϕ(−q) :=

∞
∑

n=−∞
(−1)nqn

2

=
(q; q)∞
(−q; q)∞

,(2.1)

f(−q) := (q; q)∞,(2.2)

χ(q) := (−q; q2)∞.(2.3)

The latter equality in (2.1) is a consequence of Jacobi’s triple product identity.
The complete elliptic integral of the first kind is defined for |k| < 1 by

K := K(k) :=

∫ π/2

0

dφ
√

1− k2 sin2 φ
.

The number k is called the modulus. The complementary modulus k′ is defined
by k′ =

√
1− k2. SetK ′ = K(k′). Expanding the integrand in a binomial series

and integrating termwise, we find that

K =
π

2
2F1

(1

2
,
1

2
; 1; k2

)

,
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where 2F1

(

1
2 ,

1
2 ; 1; k

2
)

denotes the ordinary hypergeometric function. Let K,
K ′, L, and L′, denote the complete elliptic integrals of the first kind associated
with the moduli k, k′, ℓ, and ℓ′ :=

√
1− ℓ2, respectively. Suppose that the

equality

(2.4) n
K ′

K
=

L′

L

holds for some positive integer n. A relation between k and ℓ induced by (2.4)
is called a modular equation of degree n. Ramanujan recorded his modular
equations in terms of α and β, where α = k2 and β = ℓ2. We often say that β
has degree n over α.

If

(2.5) q := exp

(

−π
2F1(

1
2 ,

1
2 ; 1; 1− α)

2F1(
1
2 ,

1
2 ; 1;α)

)

= exp

(

−π
K ′

K

)

,

then one of the primary theorems in the theory of elliptic functions [7, p. 101,
Entry 6] asserts that

(2.6) ϕ2(q) = 2F1

(1

2
,
1

2
; 1;α

)

=: z,

where ϕ(q) is defined by (2.1). If we further set zn := ϕ2(qn), then the multi-
plier m of degree n is defined by

(2.7) m :=
z1
zn

.

We need certain evaluations of Ramanujan for theta functions given in the
following lemma [8, p. 123], [7, p. 124, Entry 12].

Lemma 2.1. If α, q, and z are related by (2.5) and (2.6), then

f(−q) = 2−1/6
√
z(1− α)1/6(α/q)1/24,(2.8)

f(−q2) = 2−1/3
√
z{α(1− α)/q}1/12,(2.9)

χ(q) = 21/6{α(1 − α)/q}−1/24,(2.10)

χ(−q) = 21/6(1 − α)1/12(α/q)−1/24,(2.11)

χ(−q2) = 21/3(1 − α)1/24(α/q)−1/12.(2.12)

Suppose that β has degree n over α. If we replace q by qn above, then the
same evaluations hold with α replaced by β and with z = z1 replaced by zn.

In the following proofs, we also make use of Euler’s famous identity (see [1,
3, 11])

(2.13)
1

(q; q2)∞
= (−q; q)∞,

i.e., the number of partitions of the positive integer n into odd parts is identical
to the number of partitions of n into distinct parts.
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3. Proofs of nine conjectures using known modular equations

Theorem 3.1. Let S denote the set of partitions into 6 distinct colors, with

the orange, blue and red parts appearing at most once, and the parts in the

remaining three colors appearing at most once and only in multiples of 7. Let

A(N) be the number of partitions of 2N − 2 into even parts in S. Let B(N) be
the number of partitions of 2N + 1 into odd parts in S. Then, for N ≥ 1,

4A(N) = B(N).

Proof. Recall the modular equation for degree 7 given by [7, p. 314, Entry 19
(i)]

(3.1) (αβ)1/8 + {(1− α)(1 − β)}1/8 = 1,

where m is the multiplier of degree 7 defined by (2.7). Taking the third power
of this identity, we deduce that

(3.2) (αβ)3/8 + 3{α(1− α)β(1 − β)}1/8 + {(1− α)(1 − β)}3/8 = 1.

Multiplying both sides of the identity (3.2) by 2q
{

α(1 − α)β(1 − β)
}−1/8

, we
find that

8q3

2(1− α)1/8(α/q)−1/42(1− β)1/8(β/q7)−1/4

+ 6q + 21/2(1− α)1/4(α/q)−1/821/2(1− β)1/4(β/q7)−1/8

= 21/2{α(1 − α)/q}−1/821/2{β(1− β)/q7}−1/8,

which can be transformed into

8q3

χ3(−q2)χ3(−q14)
+ 6q + χ3(−q)χ3(−q7) = χ3(q)χ3(q7),

by (2.10), (2.11), and (2.12) in Lemma 2.1. Applying the definition of χ in (2.3)
and Euler’s identity (2.13), we obtain

8q3(−q2; q2)3∞(−q14; q14)3∞ + 6q = (−q; q2)3∞(−q7; q14)3∞ − (q; q2)3∞(q7; q14)3∞.

Extracting the coefficients of q2N+1 on both sides of the identity, we complete
the proof. �

Remark. Theorem 3.1 is equivalent to Conjecture 3.26 in Sandon and Zanello’s
paper [16].

Example 3.2. Let N = 3 in Theorem 3.1. Then 4A(3) = B(3) = 6 + 3
(

3
2

)

+

3
(

3
2

)

= 24. The relevant partitions are given by

4o = 4b = 4r = 2o + 2b = 2o + 2r = 2b + 2r;

7o = 7b = 7r = 7g = 7y = 7p = 5o + 1o + 1b = · · · = 3o + 3b + 1o = · · · .
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Theorem 3.3. Let S denote the set of partitions into 3 distinct colors, with

the orange, blue, and red parts appearing at most once, and without parts in

multiples of 9. Let A(N) be the number of partitions of 2N + 2 into an odd

number of even parts in S. Let B(N) be the number of partitions of 2N − 1
into odd parts in S. Then, for N ≥ 1,

A(N) = B(N).

Proof. Recall the modular equation for degree 9 and its reciprocal given by [2,
p. 391, Entry 17.3.24]

√
m =

(β

α

)1/8

+
(1− β

1− α

)1/8

−
{β(1 − β)

α(1 − α)

}1/8

,(3.3)

3√
m

=
(α

β

)1/8

+
(1− α

1− β

)1/8

−
{α(1 − α)

β(1 − β)

}1/8

,(3.4)

where m is defined by (2.7) and n = 9. First, taking the third power of the
identity (3.3), we find that

√
m3 =

(β

α

)3/8

+
(1− β

1− α

)3/8

−
{β(1− β)

α(1− α)

}3/8

+ 3
{β(1 − β)

α(1 − α)

}1/8
{√

m+
{β(1 − β)

α(1 − α)

}1/8
}

(1 −
√
m)

=
(β

α

)3/8

+
(1− β

1− α

)3/8

−
{β(1− β)

α(1− α)

}3/8

+ 3
{β(1 − β)

α(1 − α)

}1/8
{√

m
{

1−
(β

α

)1/8

−
(1−β

1−α

)1/8}

+
{β(1−β)

α(1−α)

}1/8
}

.

Applying the identity (3.4), we arrive at

(3.5)
√
m3 =

(β

α

)3/8

+
(1− β

1− α

)3/8

−
{β(1 − β)

α(1 − α)

}3/8

− 6
{β(1− β)

α(1− α)

}1/4

.

Multiplying both sides of the identity (3.5) by q2
{α(1−α)
β(1−β)

}1/4
, we have

2−1
√

z31{α(1− α)/q}1/4

2−1
√

z39{β(1− β)/q9}1/4

= q3
21/2(1 − α)1/4(α/q)−1/8

21/2(1− β)1/4(β/q9)−1/8
+

2(1−β)1/8(β/q9)−1/4

2(1−α)1/8(α/q)−1/4

− q3
21/2{α(1−α)/q}−1/8

21/2{β(1−β)/q9}−1/8
−6q2,

which is equivalent to

f3(−q2)

f3(−q18)
= q3

χ3(−q)

χ3(−q9)
+

χ3(−q18)

χ3(−q2)
− q3

χ3(q)

χ3(q9)
− 6q2,
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by (2.9)–(2.12) in Lemma 2.1. Using the definitions of f and χ in (2.2) and
(2.3), respectively, and Euler’s identity (2.13), we deduce that

(−q2; q2)3∞
(−q18; q18)3∞

− (q2; q2)3∞
(q18; q18)3∞

= q3
{ (−q; q2)3∞
(−q9; q18)3∞

− (q; q2)3∞
(q9; q18)3∞

}

+ 6q2.

Equating the coefficients of q2N+2 on both sides of the equation, we finish the
proof. �

Remark. Theorem 3.3 is equivalent to Conjecture 3.28 in Sandon and Zanello’s
paper [16].

Example 3.4. Set N = 5 in Theorem 3.3. Then A(5) = B(5) = 3 + 3
(

3
2

)

+

33 + 1 = 40, and the derived partitions are

12o = 12b = 12r = 8o + 2o + 2b = · · · = 6o + 4o + 2o = · · · = 4o + 4b + 4r;

7o+1o+1b= · · ·=5o+3o+1o= · · ·=3o+3b+3r=3o+3b+1o+1b+1r= · · · .

Theorem 3.5. Let S (T ) denote the set of partitions into two distinct colors,

with the red and blue parts appearing at most once, and without parts in mul-

tiples of 9, and with the red parts being only even (odd). Let DS(N) (DT (N))
be the number of partitions of N into an odd number of distinct elements of S
(T ). Then, for all N ≥ 2,

DS(N) = DT (N − 1).

Proof. For brevity, let a =
(

β
α

)1/8
and b =

(

1−β
1−α

)1/8
. Multiply the identi-

ties (3.3) and (3.4) and simplify to find that

0 = a2 + b2 − a− b − (a+ b)ab, or b2 −
√
m+ a

√
m = ab2 + 2ab,

by (3.3). Multiply both sides of this last equation by b and then subtract a
√
m

from both sides. Thus, we see that

b3 − (a+ b− ab)
√
m = b3a− a

√
m+ 2ab2.

Applying (3.3) and dividing both sides of the last identity by ab2, we obtain
the equation
(3.6)
(α

β

)1/8(1− β

1− α

)1/8

−m
(α

β

)1/8(1− α

1− β

)1/4

=
(1− β

1− α

)1/8

−
√
m
(1− α

1− β

)1/4

+2.

Multiply both sides of the identity (3.6) by q to deduce that

21/6(1− β)1/12(β/q9)−1/24

21/6(1− α)1/12(α/q)−1/24

21/3(1 − β)1/24(β/q9)−1/12

21/3(1− α)1/24(α/q)−1/12

− 2−1/6√z1(1− α)1/6(α/q)1/24

2−1/6
√
z9(1− β)1/6(β/q9)1/24

2−1/3√z1{α(1− α)/q}1/12
2−1/3

√
z9{β(1− β)/q9}1/12

= q
21/6(1 − β)1/12(β/q9)−1/24

21/6(1− α)1/12(α/q)−1/24

21/6{α(1− α)/q}−1/24

21/6{β(1 − β)/q9}−1/24
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− q
2−1/6√z1(1− α)1/6(α/q)1/24

2−1/6√z9(1− β)1/6(β/q9)1/24
21/6(1 − α)1/12(α/q)−1/24

21/6(1− β)1/12(β/q9)−1/24
+ 2q,

which is equivalent to

χ(−q9)

χ(−q)

χ(−q18)

χ(−q2)
− f(−q)

f(−q9)

f(−q2)

f(−q18)
= q

χ(−q9)

χ(−q)

χ(q)

χ(q9)
− q

f(−q)

f(−q9)

χ(−q)

χ(−q9)
+ 2q,

by (2.8)–(2.12) in Lemma 2.1. We now employ the definitions of f in (2.2) and
χ in (2.3), and use Euler’s identity (2.13) to deduce that

(−q; q)∞(−q2; q2)∞
(−q9; q9)∞(−q18; q18)∞

− (q; q)∞(q2; q2)∞
(q9; q9)∞(q18; q18)∞

= q
{ (−q; q)∞(−q; q2)∞
(−q9; q9)∞(−q9; q18)∞

− (q; q)∞(q; q2)∞
(q9; q9)∞(q9; q18)∞

}

+ 2q.

Equating the coefficients of qN on both sides of the last equation, we can
complete the proof. �

Remark. Theorem 3.5 is equivalent to Conjecture 3.30 in Sandon and Zanello’s
paper [16].

Example 3.6. Set N = 9 in Theorem 3.5. Then DS(9) = DT (8) = 22 + 1 +
1 + 1 + 22 = 11. The corresponding partitions are

6r+2b+1b= · · ·=5b+3b+1b=5b+2b+2r=4r+4b+1b=4b+3b+2r = · · · ;
8b = 6b +1r+1b=5r+2b+1r= · · ·=4b+3b+1r = · · ·=3r+3b+2b.

Theorem 3.7. Let S denote the set of partitions into six distinct colors, with

the red, blue, green, and pink parts appearing at most once if they are odd or

congruent to 4 modulo 8 if they are even, and the remaining two colors, orange

and yellow, appearing at most once with their parts congruent to 2 modulo 4.
Let T denote the set of partitions into six distinct colors, with the red, blue,

green, and pink parts appearing at most once with odd parts or in multiples of

8, and the remaining two colors, orange and yellow, appearing at most once

with parts congruent to 2 modulo 4. Let DS(N) be the number of partitions of

N into an odd number of distinct elements of S. Let DT (N) denote the number

of partitions of N into distinct elements of T . Then, for all N ≥ 2,

DS(N) = 2DT (N − 2).

Proof. Consider the modular equations of degree 4 [2, p. 386, Entry 17.3.8 (c),
(d)]

m(1− α)1/4 + β1/2 = 1,(3.7)

4

m
β1/4 + (1− α)1/2 = 1,(3.8)

where m is the multiplier of degree 4 defined by (2.7). Divide both sides of the
identity (3.7) by m(1 − α)3/4, and subtract 1 from both sides of the resulting
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identity to see that

(1− α)−1/2 − 1 +
β1/2

m(1 − α)3/4
=

1

m(1− α)3/4
− 1.(3.9)

Using (3.8) in (3.9) and then multiplying the resulting equation by

mβ−1/4(1 − α)1/2,

we find that

(3.10) 4 + β1/4(1− α)−1/4 = (1− α)−1/4β−1/4 −m(1− α)1/2β−1/4.

Multiplying both sides of (3.10) by 2q, we rewrite (3.10) in the form

8q+4q2
21/3{α(1 − α)/q}−1/12

21/3(1−α)1/6(α/q)−1/1221/3{β(1−β)/q4}−1/1222/3(1−β)1/12(β/q4)−1/6

=
21/3{α(1−α)/q}−1/1221/3{β(1−β)/q4}−1/1222/3(1−β)1/12(β/q4)−1/6

21/3(1− α)1/6(α/q)−1/12

− 2−2/3z1{α(1−α)/q}1/622/3(1−α)1/3(α/q)−1/621/3(1−β)1/6(β/q4)−1/12

2−2/3z4{β(1−β)/q4}1/6 ,

which is equivalent to

8q + 4q2
χ2(q)

χ2(−q)χ2(q4)χ2(−q8)
=

χ2(q)χ2(q4)χ2(−q8)

χ2(−q)
− f2(−q2)χ4(−q)χ2(−q4)

f2(−q8)
,

by (2.9)–(2.12) in Lemma 2.1. We apply (2.2), (2.3), and Euler’s identity (2.13)
to obtain

8q + 4q2
(−q; q)2∞(−q; q2)2∞(−q8; q8)2∞

(−q4; q8)2∞

=
(−q; q)2∞(−q; q2)2∞(−q4; q8)2∞

(−q8; q8)2∞
− (q; q)2∞(q; q2)2∞(q4; q8)2∞

(q8; q8)2∞
.

Equate the coefficients of qN on both sides of the equation to finish the proof.
�

Remark. Theorem 3.7 is equivalent to Conjecture 3.31 in Sandon and Zanello’s
paper [16].

Example 3.8. Let N = 6 in Theorem 3.7. Then DS(6) = 2+4
(

4
2

)

+2 ·42+2 =

60 and DT (4) = 42+1+2
(

4
2

)

+1 = 30. The corresponding partitions are given
by

6o = 6y = 4r+1r+1b= · · ·=3r+2o+1r = · · ·=2o+1r+1b+1g+1p = · · · ;
3r + 1r = · · · =2o+2y=2o+1r+1b= · · ·=1r+1b+1g+1p.

Theorem 3.9. Let S denote the set of partitions into eight distinct colors, with

the red, blue, and green parts appearing at most once without parts in multiples

of 3, with the pink parts appearing at most once with parts in multiples of 3 but

not multiples of 9, and with the last four colors appearing at most once with
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parts in multiples of 9. Let A(N) denote the number of partitions of 2N + 1
into odd parts in S, and let B(N) denote the number of partitions of 2N − 2
into even parts in S. Then, for all N ≥ 1,

A(N) = 2B(N).

Proof. If α, β, and γ are of the first, third, and ninth degrees, respectively,
then [7, p. 232, (5.1)]

(α3

β

)1/8

=
3 +m

2m
,

{ (1− α)3

1− β

}1/8

=
3−m

2m
,

(γ3

β

)1/8

=
m′ − 1

2
,

{ (1 − γ)3

1− β

}1/8

=
m′ + 1

2
,

where m = z1/z3, and m′ = z3/z9. Multiplying the corresponding identities
and adding the resulting equations, we can check that

3
m′

m
= 1 + 2

(α3γ3

β2

)1/8

+ 2
{ (1− α)3(1− γ)3

(1− β)2

}1/8

.

Using the identity [7, p. 352, Entry 3 (iii)]

1− 24/3
{α3γ3(1 − α)3(1− γ)3

β2(1− β)2

}1/24

=
m′

m
,(3.11)

we obtain a new modular equation
(3.12)

1−
{ (1− α)3(1− γ)3

(1− β)2

}1/8

=
(α3γ3

β2

)1/8

+3 · 21/3
{α3γ3(1− α)3(1 − γ)3

β2(1− β)2

}1/24

.

Multiplying both sides of the identity (3.12) by 22/3q
{

α3γ3(1−α)3(1−γ)3

β2(1−β)2

}−1/24

,

we have

{21/6{α(1− α)/q}−1/24}3{21/6{γ(1− γ)/q9}−1/24}3
{21/6{β(1− β)/q3}−1/24}2

− {21/6(1− α)1/12(α/q)−1/24}3{21/6(1− γ)1/12(γ/q9)−1/24}3
{21/6(1− β)1/12(β/q3)−1/24}2

= 4q3
{21/3(1− β)1/24(β/q3)−1/12}2

{21/3(1− α)1/24(α/q)−1/12}3{21/3(1 − γ)1/24(γ/q9)−1/12}3 + 6q,

which is equivalent to

χ3(q)χ3(q9)

χ2(q3)
− χ3(−q)χ3(−q9)

χ2(−q3)
= 4q3

χ2(−q6)

χ3(−q2)χ3(−q18)
+ 6q,

by (2.9)–(2.12) in Lemma 2.1. We finally use (2.2), (2.3), and Euler’s iden-
tity (2.13) to find that

(−q; q2)3∞(−q9; q18)3∞
(−q3; q6)2∞

− (q; q2)3∞(q9; q18)3∞
(q3; q6)2∞

= 4q3
(−q2; q2)3∞(−q18; q18)3∞

(−q6; q6)2∞
+ 6q.
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Equating the coefficients of q2N+1 on both sides of the equation, we finish the
proof. �

Remark. Theorem 3.9 is equivalent to Conjecture 3.38 in Sandon and Zanello’s
paper [16].

Example 3.10. Set N = 4 in Theorem 3.9. Then A(4) = 2B(4) = 4 + 3
(

3
2

)

+

32 = 22 = 2× (1 + 32 + 1). The relevant partitions are given by

9o = 9y = · · · = 7r+1r+1b= · · ·=5r+3p+1r = · · · ;
6p = 4r + 2r = · · · =2r+2b+2g.

Theorem 3.11. Let S denote the set of partitions into four distinct colors,

with the red and blue parts appearing at most once without multiples of 10,
the green parts appearing at most once with odd parts, and the orange parts

appearing at most once in only odd multiples of 5. Let T denote the set of

partitions into four distinct colors, with the red and blue parts appearing at

most once without odd multiples of 5, the green parts appearing at most once

with even parts, and the orange parts appearing at most once in only multiples

of 10. Let DS(N) denote the number of partitions of N into an odd number of

distinct elements of S, and let DT (N) be the number of partitions of N into

distinct elements of T . Then, for all N ≥ 2,

DS(N) = 2DT (N − 2).

Proof. Consider the modular equations for degree 5 [7, p. 280, Entry 13 (iv),
(v), (vii)]

m = 1 + 24/3
{β5(1− β)5

α(1 − α)

}1/24

,(3.13)

m =
1 +

{ (1−β)5

1−α

}1/8

1 + {(1− α)3(1 − β)}1/8 ,(3.14)

(αβ3)1/8 + {(1− α)(1 − β)3}1/8 = 1− 21/3
{

β5(1 − α)5

α(1 − β)

}1/24

,(3.15)

where m is defined by (2.7). First rewrite (3.14) in the form

(3.16) −m{(1− α)3(1− β)}1/8 = −
{(1 − β)5

1− α

}1/8

+m− 1.

Using (3.13) in (3.16), multiplying both sides of the resulting equation by (1−
α)1/4(1 − β)−1/4, and then adding 1 on both sides of that identity, we deduce
that

(3.17) 1−m
{(1−α)5

1−β

}1/8

=1−{(1−α)(1−β)3}1/8+2 · 21/3
{β5(1−α)5

α(1−β)

}1/24

.

Utilizing equation (3.15), we find from (3.17) that

(3.18) 1−m
{ (1− α)5

1− β

}1/8

= (αβ3)1/8 + 3 · 21/3
{β5(1− α)5

α(1− β)

}1/24

.
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Multiply both sides of the identity (3.18) by 22/3q
{ α(1−β)
β5(1−α)5

}1/24
to deduce that

{21/3(1 − β)1/24(β/q5)−1/12}2{21/6{α(1− α)/q}−1/24}321/6{β(1− β)/q5}−1/24

{21/3(1− α)1/24(α/q)−1/12}2

−{2−1/3√z1{α(1− α)/q}1/12}2{21/6(1 − α)1/12(α/q)−1/24}321/6(1 − β)1/12(β/q5)−1/24

{2−1/3
√
z5{β(1− β)/q5}1/12}2

=
4q2{21/6{α(1− α)/q}−1/24}2

{21/3(1 − α)1/24(α/q)−1/12}3{21/6{β(1− β)/q5}−1/24}221/3(1− β)1/24(β/q5)−1/12
+ 6q,

which is equivalent to

χ2(−q10)χ3(q)χ(q5)

χ2(−q2)
−f2(−q2)χ3(−q)χ(−q5)

f2(−q10)
=4q2

χ2(q)

χ3(−q2)χ2(q5)χ(−q10)
+6q,

by (2.9)–(2.12) in Lemma 2.1. Applying the definitions of f in (2.2) and χ
in (2.3), and Euler’s identity (2.13), we then obtain

(−q; q)2∞(−q; q2)∞(−q5; q10)∞
(−q10; q10)2∞

− (q; q)2∞(q; q2)∞(q5; q10)∞
(q10; q10)2∞

= 4q2
(−q; q)2∞(−q2; q2)∞(−q10; q10)∞

(−q5; q10)2∞
+ 6q.

Equating the coefficients of qN on both sides of the equation, we complete the
proof. �

Remark. Theorem 3.11 is equivalent to Conjecture 3.39 in Sandon and Zanello’s
paper [16].

Example 3.12. Let N = 7 in Theorem 3.11. Then DS(7) = 3+4
(

3
2

)

+22 ·3+
3
(

3
2

)

+ 3 + 1 = 40 and DT (5) = 3 · 2 + 2 · 3 + 2 + 2
(

3
2

)

= 20, with the relevant
partitions given by

7r=7b=7g=5o+1r+1b= · · ·=4r+2r+1g= · · ·=3r+3b+1g= · · ·
=3g+2r+2b= · · ·=2r+2b+1r+1b+1g;

4g+1r= · · ·=3r+2g= · · ·=3r+1r+1b= · · ·=2r+2b+1r= · · · .
Theorem 3.13. Let S denote the set of partitions into six distinct colors, with

the red and blue parts appearing at most once with odd parts, the green parts

appearing at most once with even parts, the orange and pink parts appearing

at most once and only in odd multiples of 7, and the yellow parts appearing at

most once and only in multiples of 14. Let T denote the set of partitions into

six distinct colors, with the red and blue parts appearing at most once with even

parts, the green parts appearing at most once with odd parts, the orange and

pink parts appearing at most once and only in multiples of 14, and the yellow

parts appearing at most once and only in odd multiples of 7. Let DS(N) be

the number of partitions of N into distinct elements of S. Let DT (N) be the

number of partitions of N into distinct elements of T . Then, for all N ≥ 1,

DS(N) = 2DT (N − 1).
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Proof. We begin with the modular equation of degree 7 given in (3.1). Divide
both sides of (3.1) by (1−α)1/8(1− β)1/8 and rewrite the resulting identity as

21/6{α(1−α)/q}−1/2421/6{β(1−β)/q7}−1/24
21/6(1−α)1/12(α/q)−1/2421/6(1−β)1/12(β/q7)−1/24

=
q

(1−α)1/12(α/q)−1/24(1−α)1/24(α/q)−1/12(1−β)1/12(β/q7)−1/24(1−β)1/24(β/q7)−1/12
+1,

which is equivalent to

χ(q)χ(q7)

χ(−q)χ(−q7)
=

2q

χ(−q)χ(−q2)χ(−q7)χ(−q14)
+ 1,

by (2.10)–(2.12) in Lemma 2.1. Employing (2.3), and invoking Euler’s identity
(2.13), we then can check that

(−q; q)∞(−q; q2)∞(−q7; q7)∞(−q7; q14)∞

= 2q(−q; q)∞(−q2; q2)∞(−q7; q7)∞(−q14; q14)∞ + 1.

Equate the coefficients of qN on both sides of the equation to complete the
proof. �

Remark. Theorem 3.13 is equivalent to Conjecture 3.51 in Sandon and Zanello’s
paper [16].

Example 3.14. Set N = 7 in Theorem 3.13. Then DS(7) = 18 and DT (6) =
2 + 1 + 22 + 2 = 9, and the relevant partitions are

7r = 7b=7o=7p=6g+1r=6b+1r=5r+2g=5b+2g=5r+1r+1b=5b+1r+1b

= 4g+3r = 4g+3b=4g+2g+1r=4g+2g+1b=3r+3b+1r= · · ·
= 3r+2g+1r+1b= · · · ;

6r = 6b=5g+1g=4r+2b= · · ·=3g+2r+1g=3g+2b+1g.

Theorem 3.15. Let S denote the set of partitions into four distinct colors,

with the red and blue parts appearing at most once with odd parts, the green

parts appearing at most once with even parts but not multiples of 16, and the

orange parts appearing at most once and only with odd multiples of 8. Let T
denote the set of partitions into four distinct colors, with the red and blue parts

appearing at most once with odd parts, the green parts appearing at most once

with even parts but not odd multiples of 8, and the orange parts appearing at

most once in only multiples of 16. Let DS(N) be the number of partitions of

N into an odd number of distinct elements of S. Let DT (N) be the number of

partitions of N into distinct elements of T . Then, for all N ≥ 2,

DS(N) = DT (N − 2).

Proof. Recall the modular equations for degree 8 [2, p. 386, Entry 17.3.9]
√
m(1− α)1/8 + β1/4 = 1,(3.19)
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23/2√
m

β1/8 + (1 − α)1/4 = 1,(3.20)

where m is defined by (2.7) and n = 8. Divide both sides of the identity (3.19)
by

√
m(1−α)3/8 and subtract 1 from both sides of the resulting identity. Then

we can check that

(1− α)−1/4 − 1 +
β1/4

√
m(1− α)3/8

=
1√

m(1− α)3/8
− 1.(3.21)

Using equation (3.20) in (3.21) and multiplying the resulting identity by
√
mβ−1/8(1− α)1/4,

we find that

(3.22) 23/2 + β1/8(1− α)−1/8 = (1− α)−1/8β−1/8 −
√
m(1− α)1/4β−1/8.

Multiplying both sides of the identity (3.22) by 21/2q, we arrive at

4q+2q2
21/3{α(1− α)/q}−1/12

21/3(1−α)1/24(α/q)−1/1221/6{β(1−β)/q8}−1/2421/3(1−β)1/24(β/q8)−1/12

=
21/3{α(1−α)/q}−1/1221/6{β(1−β)/q8}−1/2421/3(1−β)1/24(β/q8)−1/12

21/3(1− α)1/24(α/q)−1/12

− 2−1/3√z1{α(1−α)/q}1/1221/3(1−α)1/6(α/q)−1/1221/6(1−β)1/12(β/q8)−1/24

2−1/3√z8{β(1−β)/q8}1/12 ,

which is equivalent to

4q+2q2
χ2(q)

χ(−q2)χ(q8)χ(−q16)
=
χ2(q)χ(q8)χ(−q16)

χ(−q2)
− f(−q2)χ2(−q)χ(−q8)

f(−q16)
,

by (2.9)–(2.12) in Lemma 2.1. Employing (2.2) and (2.3), and invoking Euler’s
identity (2.13), we then can check that

4q + 2q2
(−q; q2)2∞(−q2; q2)∞(−q16; q16)∞

(−q8; q16)∞

=
(−q; q2)2∞(−q2; q2)∞(−q8; q16)∞

(−q16; q16)∞
− (q; q2)2∞(q2; q2)∞(q8; q16)∞

(q16; q16)∞
.

Equate the coefficients of qN on both sides of the equation to finish the proof.
�

Remark. Theorem 3.15 is equivalent to Conjecture 3.52 in Sandon and Zanello’s
paper [16].

Example 3.16. Set N = 8 in Theorem 3.15. Then DS(8) = DT (6) = 4+22+
22 = 12, and the corresponding partitions are

8o=8g=6g+ 1r + 1b =5r+2g+1r= · · ·=4g+3r+1r= · · ·=3r+3b+2g;

6o = 5r+1b= · · ·=4o+2o=4o+1r+1b=3r+3b=3r+2o+1r= · · · .
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Theorem 3.17. Let S denote the set of partitions into four distinct colors, with

the red parts appearing at most once with odd parts, the blue parts appearing at

most once with odd multiples of 3, the green parts appearing at most once with

odd multiples of 5, and the orange parts appearing at most once in only odd

multiples of 15. Let T denote the set of partitions into four distinct colors, with

the red parts appearing at most once with even parts, the blue parts appearing

at most once with multiples of 6, the green parts appearing at most once with

multiples of 10, and the orange parts appearing at most once in only multiples

of 30. Let DS(N) be the number of partitions of N into an odd number of

distinct elements of S. Let DT (N) be the number of partitions of N into distinct

elements of T . Then, for all N ≥ 3,

DS(N) = 2DT (N − 3).

Proof. Let α, β, γ, and δ be of the first, third, fifth, and fifteenth degrees,
respectively. Then [7, p. 385, Entry 11 (xiv)]

(αβγδ)1/8 + {(1− α)(1 − β)(1 − γ)(1− δ)}1/8(3.23)

+ 21/3{αβγδ(1− α)(1 − β)(1 − γ)(1− δ)}1/24 = 1.

Multiply both sides of the identity (3.23) by {αβγδ(1 − α)(1 − β)(1 − γ)(1 −
δ)}−1/24q and rearrange the resulting identity to arrive at

q

{αβγδ(1− α)(1 − β)(1 − γ)(1− δ)}1/24 − {(1− α)(1− β)(1 − γ)(1 − δ)}1/12q
(αβγδ)1/24

=
(αβγδ)1/12q

{(1− α)(1 − β)(1− γ)(1− δ)}1/24 + 21/3q,

which is equivalent to

21/6{α(1−α)/q}−1/2421/6{β(1−β)/q3}−1/2421/6{γ(1−γ)/q5}−1/2421/6{δ(1−δ)/q15}−1/24

−22/3(1−α)1/12(α/q)−1/24(1−β)1/12(β/q3)−1/24(1−γ)1/12(γ/q5)−1/24(1−δ)1/12(δ/q15)−1/24

=
4q3

24/3(1−α)1/24(α/q)−1/12(1−β)1/24(β/q3)−1/12(1−γ)1/24(γ/q5)−1/12(1−δ)1/24(δ/q15)−1/12
+2q.

Employing (2.10)–(2.12), we arrive at

χ(q)χ(q3)χ(q5)χ(q15)− χ(−q)χ(−q3)χ(−q5)χ(−q15)

=
4q3

χ(−q2)χ(−q6)χ(−q10)χ(−q30)
+ 2q.

Applying (2.3) and invoking Euler’s identity (2.13), we then can find that

(−q; q2)∞(−q3; q6)∞(−q5; q10)∞(−q15; q30)∞

− (q; q2)∞(q3; q6)∞(q5; q10)∞(q15; q30)∞

= 4q3(−q2; q2)∞(−q6; q6)∞(−q10; q10)∞(−q30; q30)∞ + 2q.
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Equate the coefficients of qN on both sides of the equation to complete the
proof. �

Remark. Theorem 3.17 is equivalent to Conjecture 3.53 in Sandon and Zanello’s
paper [16].

Example 3.18. Set N = 9 in Theorem 3.17. Then DS(9) = 2DT (6) = 6, and
the corresponding partitions are

9r=9b=5r+ 3r + 1r =5g+3r+1r=5r+3b+1r=5g+3b+1r;

6r=6b=4r+2r.

4. Proofs of six conjectures using new modular equations, I

Before giving proofs of the next six theorems, we record and derive some
useful formulas. First [7, p. 122, Entry 10 (ii), (iii)],

ϕ(−q) =
√
z(1 − α)1/4,(4.1)

ϕ(−q2) =
√
z(1 − α)1/8,(4.2)

and using (4.2), we employ the process of duplication [7, p. 125] to find that

(4.3) ϕ(−q4) =
√
z2−1/4(1− α)1/16(1 +

√
1− α)1/4.

Employing the principle of duplication to (4.3), we find that

(4.4) ϕ(−q8) =
√
z2−5/8(1− α)1/32(1 +

√
1− α)1/8(1 + (1− α)1/4)1/2.

Second, recall that [7, p. 122, Entry 10 (iv), (v)]

(4.5) ϕ(q2) =
√
z
(

1
2 (1 +

√
1− α)

)1/2
,

(4.6) ϕ(q4) = 1
2

√
z
(

1 + (1− α)1/4
)

.

Applying the duplication process to the last formula, we derive that

(4.7) ϕ(q8) =
√
z2−3/2

(

(1 +
√
1− α)1/2 +

√
2(1− α)1/8

)

.

Turning our attention now to f(−qn), when n is a power of 2, recall that [7,
p. 124, Entry 12 (iv)]

(4.8) f(−q4) =
√
z2−2/3(1− α)1/24(α/q)1/6.

Applying the process of duplication to (4.8), we see that

(4.9) f(−q8) =
√
z2−13/12(1− α)1/48(1 +

√
1− α)1/12(1−

√
1− α)1/3q−1/3.

Lastly, we consider χ(qn), when n is a power of 2. Applying the process of
duplication to (2.12), we find that

(4.10) χ(−q4) = 25/12(1 − α)1/48(1 +
√
1− α)1/12(1 −

√
1− α)−1/6q1/6.
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Invoking the duplication principle once again, but this time to (4.10), we find
that
(4.11)

χ(−q8)=211/24(1−α)1/96(1+
√
1−α)1/24(1+(1−α)1/4)1/6(1−(1−α)1/4)−1/3q1/3.

Theorem 4.1. Let S denote the set of partitions into nine distinct colors, with

the red and blue parts appearing at most once with odd parts or parts in multiples

of 8. The remaining 7 colored parts appear at most once with parts congruent

to 2 modulo 4. Let T denote the set of partitions into six distinct colors, with

the red, blue, green, and orange parts appearing at most once with odd parts or

parts in multiples of 8, and with the yellow and pink parts appearing at most

once with parts congruent to 2 modulo 4. Let DS(N) denote the number of

partitions of N into distinct elements of S, and let DT (N) denote the number

of partitions of N into distinct elements of T . Then, for all N ≥ 1,

DS(N) = 2DT (N − 1).

Proof. Utilizing elementary algebra, we can easily check that

1 +
√
1− α = 1− (1− α)1/4 + (1− α)1/4{1 + (1− α)1/4}.(4.12)

Dividing both sides of the identity (4.12) by (1−α)1/4{1+(1−α)1/4}, we find
that

(1 +
√
1− α)4/3(1 −

√
1− α)1/3

(1− α)1/4α1/3{1 + (1− α)1/4} =
(1 −

√
1− α)1/3{1− (1 − α)1/4}2/3

(1− α)1/4{1 + (1 − α)1/4}4/3 + 1.

The last identity can be expressed in the form

(1−α)5/24(α/q)−5/12(1+
√
1−α)5/4(1−α)1/16(1+

√
1−α)1/4

(1−α)1/6(α/q)−1/12(1−α)1/24(1+
√
1−α)1/6(1−

√
1−α)−1/3q1/3(1−α)5/16{1 + (1−α)1/4}

(4.13)

= q
{α(1 − α)/q}−1/12(1− α)1/16(1+

√
1−α)1/4

(1−α)1/6(α/q)−1/12(1−α)1/24(1+
√
1−α)1/6(1−

√
1−α)−1/3q1/3(1+(1−α)1/4)

× 1

(1−α)1/48(1+
√
1−α)1/12(1+(1−α)1/4)1/3(1−(1−α)1/4)−2/3q2/3

+1.

Examining both side of (4.13), we apply (2.10), (2.11), (2.12), (4.2), (4.3),
(4.5), (4.6), (4.10), and (4.11) to find that

(4.14)
χ5(−q2)ϕ5/2(q2)ϕ(−q4)

χ2(−q)χ2(−q4)ϕ5/2(−q2)ϕ(q4)
= 2q

χ2(q)ϕ(−q4)

χ2(−q)χ2(−q4)ϕ(q4)χ2(−q8)
+1.

Employing the identity

(4.15) χ(q2) = χ(−q2)

√

ϕ(q2)

ϕ(−q2)
,
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which is easily established from the product representations in (2.1) and (2.3),
we find that (4.14) can be written in the form

χ5(q2)

χ2(−q)χ2(q4)
= 2q

χ2(q)

χ2(−q)χ2(q4)χ2(−q8)
+ 1.

Using the aforementioned representations of χ and ϕ, and Euler’s identity
(2.13), we obtain

(−q; q)2∞(−q2; q4)5∞
(−q4; q8)2∞

= 2q
(−q; q)2∞(−q; q2)2∞(−q8; q8)2∞

(−q4; q8)2∞
+ 1.

Equating the coefficients of qN on both sides of this equation, we complete the
proof. �

Remark. Theorem 4.1 is equivalent to Conjecture 3.32 in Sandon and Zanello’s
paper [16].

Example 4.2. Let N = 4 in Theorem 4.1. Then DS(4) = 22 +
(

7
2

)

+
(

7
1

)

= 32

and DT (3) = 4 + 2 · 4 +
(

4
3

)

= 16. The relevant partitions are given by

3r+1r= · · ·=21+27= · · ·=21+1r+1b= · · · ;
3r= · · ·=3o=2y+1r= · · ·=1r+1b+1g= · · · .

Theorem 4.3. Let S denote the set of partitions into six distinct colors, with

the red, blue, green, and pink parts appearing at most once with odd parts or

with parts congruent to 4 modulo 8, and the remaining two colors appearing

at most once with the parts congruent to 2 modulo 4. Let T denote the set

of partitions into nine distinct colors, with the red and blue parts appearing at

most once with odd parts or in multiples of 8, and the remaining seven colors

appearing at most once with parts congruent to 2 modulo 4. Let DS(N) denote
the number of partitions of N into an odd number of distinct elements of S.
Let DT (N) be the number of partitions of N into distinct elements of T . Then,
for all N ≥ 1,

DS(N) = DT (N − 1).

Proof. By elementary algebra, we can establish the identity
{

(1 + (1− α)1/4)2 − 4(1− α)3/4
}

(1 + (1− α)1/4)

=
{

(1 +
√
1− α) + 3(1− α)1/4(1 + (1− α)1/4)

}

(1 −
√
1− α).(4.16)

Multiplying both sides of the identity (4.16) by

2qz
3/2
1 (1− α)3/8

(1 + (1− α)1/4)(1 −
√
1− α)

,

we obtain

2qz
3/2
1 (1 − α)3/8

1−
√
1− α

{

(1 + (1− α)1/4)2 − 4(1− α)3/4
}

(4.17)
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=
2qz

3/2
1 (1 − α)3/8(1 +

√
1− α)

1 + (1 − α)1/4
+ 6qz

3/2
1 (1 − α)5/8.

Examining first the left-hand side of (4.17), we call upon (2.6), (2.11), (2.12),
(4.1), (4.2), (4.3), (4.5), (4.6), and (4.10) to find that, after considerable sim-
plification,

2qz
3/2
1 (1− α)3/8

1−
√
1− α

{

(1 + (1 − α)1/4)2 − 4(1− α)3/4
}

=
χ4(−q)χ4(−q4)χ2(−q2)

ϕ2(−q4)

{

ϕ2(q)ϕ2(q4)ϕ(q2)− ϕ2(−q)ϕ2(−q4)ϕ(−q2)
}

.

To evaluate the right-hand side of (4.17), we turn again to (2.10), (2.12), (4.1),
(4.2), (4.4), (4.5), and (4.9) to deduce that

2qz
3/2
1 (1− α)3/8(1 +

√
1− α)

1 + (1− α)1/4
+ 6qz

3/2
1 (1− α)5/8

=
2qχ2(q)χ7(−q2)f2(−q8)ϕ2(−q)ϕ7/2(q2)

ϕ2(−q8)ϕ5/2(−q2)
+ 6qϕ2(−q)ϕ(−q2).

Using the last two equalities in (4.17), we find that

χ4(−q)χ4(−q4)χ2(−q2)

ϕ2(−q4)

{

ϕ2(q)ϕ2(q4)ϕ(q2)− ϕ2(−q)ϕ2(−q4)ϕ(−q2)
}

(4.18)

=
2qχ2(q)χ7(−q2)f2(−q8)ϕ2(−q)ϕ7/2(q2)

ϕ2(−q8)ϕ5/2(−q2)
+ 6qϕ2(−q)ϕ(−q2).

Dividing both sides of (4.18) by ϕ2(−q)ϕ(−q2) and using (4.15), we can simplify
the last identity and write it in the shape

χ4(q)χ4(q4)χ2(q2)− χ4(−q)χ4(−q4)χ2(−q2) = 2q
χ2(q)χ7(q2)f2(−q8)

ϕ2(−q8)
+ 6q.

Applying the definitions of χ, f , and ϕ, in (2.3), (2.2), and (2.1), respectively,
we find that

(−q; q2)4∞(−q4; q8)4∞(−q2; q4)2∞ − (q; q2)4∞(q4; q8)4∞(q2; q4)2∞

= 2q(−q; q2)2∞(−q8; q8)2∞(−q2; q4)7∞ + 6q.

Equating the coefficients of qN on both sides of the equation above, we finish
the proof. �

Remark. Theorem 4.3 is equivalent to Conjecture 3.33 in Sandon and Zanello’s
paper [16].

Example 4.4. Let N = 5 in Theorem 4.3. Then DS(5) = 4 + 4
(

4
2

)

+ 4 = 32

and DT (4) = 22 +
(

7
2

)

+ 7 = 32, with the associated partitions being given by

5r=5b=5g=5p=3r+1r+1b= · · ·=2w+2o+1r= · · · ;
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3r+1r= · · ·=21+22= · · ·=21+1r+1b= · · · .
Theorem 4.5. Let S denote the set of partitions into fifteen distinct colors,

with the red and blue parts appearing at most once with odd parts, with the

green, orange, and pink parts appearing at most once with parts congruent to 2
modulo 4, with six further colors appearing at most once with parts congruent

to 4 modulo 8, and with the remaining six colors appearing at most once with

parts that are multiples of 8. Let T denote the set of partitions into fifteen

distinct colors, with the red and blue parts appearing at most once with odd

parts, with the green, orange, and pink parts appearing at most once with parts

congruent to 2 modulo 4, with four additional colors appearing at most once

with parts congruent to 4 modulo 8, and with the remaining six colors appearing

at most once with parts that are multiples of 8. Let DS(N) denote the number

of partitions of N into distinct elements of S, and let DT (N) denote the number

of partitions of N into distinct elements of T . Then, for all N ≥ 1,

DS(N) = 2DT (N − 1).

Proof. Utilizing elementary algebra, we can easily check that

1 + (1− α)1/4 =
α1/6(1− (1− α)1/4)(1 −

√
1− α)1/6

(1 +
√
1− α)1/6(1−

√
1− α)1/3

+ 2(1− α)1/4.(4.19)

Dividing both sides of the identity (4.19) by 2(1−α)1/4 and performing exten-
sive manipulation, we deduce that

(4.20)
(1−α)1/48(1+

√
1−α)1/12(1−

√
1−α)−1/6q1/6

√
z1(1 + (1 − α)1/4)

2(1−α)1/6(α/q)−1/12(1−α)1/24(α/q)−1/12
√
z1(1−α)1/16(1+

√
1−α)1/4

= 1+
q

2(1−α)1/6(α/q)−1/12(1−α)1/24(α/q)−1/12(1−α)1/48(1+
√
1−α)1/12(1−

√
1−α)−1/6q1/6

× 1

(1− α)1/48(1 +
√
1− α)1/12(1 + (1− α)1/4)1/3(1− (1 − α)1/4)−2/3q2/3

.

Examining (4.20), we invoke (2.11), (2.12), (4.3), (4.6), (4.10), and (4.11) to
find that

χ(−q4)ϕ(q4)

χ2(−q)χ(−q2)ϕ(−q4)
= 1 +

2q

χ2(−q)χ(−q2)χ(−q4)χ2(−q8)
.

Applying (4.15) with q replaced by q2, we can rewrite the foregoing equation
in the form

χ2(q4)

χ2(−q)χ(−q2)χ(−q4)
= 1 +

2q

χ2(−q)χ(−q2)χ(−q4)χ2(−q8)
.

Using the definition of χ from (2.3), and Euler’s identity (2.13), we finally
arrive at

(−q; q)2∞(−q2; q2)∞(−q4; q4)∞(−q4; q8)2∞

= 1 + 2q(−q; q)2∞(−q2; q2)∞(−q4; q4)∞(−q8; q8)2∞.
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Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 4.5 is equivalent to Conjecture 3.35 in Sandon and Zanello’s
paper [16].

Example 4.6. Let N = 4 in Theorem 4.5. Then DS(4) = 6+22+
(

3
2

)

+3 = 16
and DT (3) = 2 + 3 · 2 = 8, with the relevant partitions being given by

41= · · ·=46=3r+1r= · · ·=2g+2o= · · ·=2g+1r+1b= · · · ;
3r=3b=2g+1r= · · · .

Theorem 4.7. Let S denote the set of partitions into four distinct colors, with

the red and blue parts appearing at most once, and with the green and pink parts

appearing at most once with only odd parts. Let T denote the set of partitions

into fifteen distinct colors, with the red and blue parts appearing at most once

with odd parts, with the green, orange, and pink parts appearing at most once

with parts congruent to 2 modulo 4, with four further colors appearing at most

once with parts congruent to 4 modulo 8, and with the remaining six colors

appearing at most once with parts that are multiples of 8. Let DS(N) denote

the number of partitions of N into distinct elements of S, and let DT (N) denote
the number of partitions of N into distinct elements of T . Then, for all N ≥ 1,

DS(N) = 4DT (N − 1).

Proof. Applying elementary algebra, we can easily check that

1− (1− α)1/4 =
(1− (1 − α)1/4)(1−

√
1− α)1/6

α−1/6(1−
√
1− α)1/3(1 +

√
1− α)1/6

.(4.21)

Dividing both sides of the identity (4.21) by (1 − α)1/4 and rearranging the
resulting identity, we arrive at

(4.22)
{α(1− α)/q}−1/12

(1− α)1/6(α/q)−1/12

= 1 +
q

(1−α)1/6(α/q)−1/12(1−α)1/24(α/q)−1/12(1−α)1/48(1+
√
1−α)1/12(1−

√
1−α)−1/6q1/6

× 1

(1− α)1/48(1 +
√
1− α)1/12(1 + (1− α)1/4)1/3(1− (1 − α)1/4)−2/3q2/3

.

Examining both side of (4.22), we call upon (2.10)–(2.12), (4.10), and (4.11)
to find that,

χ2(q)

χ2(−q)
= 1 +

4q

χ2(−q)χ(−q2)χ(−q4)χ2(−q8)
.

Using the definition of χ in (2.3), and Euler’s identity (2.13), we deduce that

(−q; q)2∞(−q; q2)2∞ = 1 + 4q(−q; q)2∞(−q2; q2)∞(−q4; q4)∞(−q8; q8)2∞.
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Equating the coefficients of qN on both sides of the last equation, we complete
the proof. �

Remark. Theorem 4.7 is equivalent to Conjecture 3.36 in Sandon and Zanello’s
paper [16].

Example 4.8. LetN = 4 in Theorem 4.7. Then DS(4) = 2+42+1+2
(

4
2

)

+1 =
32 and DT (3) = 2 + 3 · 2 = 8, with the desired partitions being given by

4r=4b=3r+1g= · · ·=2r+2b=2r+1g+1p= · · ·=1r+1b+1g+1p;

3r=3b=2g+1r= · · · .

Theorem 4.9. Let S denote the set of partitions into fifteen distinct colors,

with the red and blue parts appearing at most once with odd parts, with the

green, orange, and pink parts appearing at most once with parts congruent to 2
modulo 4, with six further colors appearing at most once with parts congruent

to 4 modulo 8, and with the remaining four colors appearing at most once with

parts in multiples of 8. Let T denote the set of partitions into four distinct

colors, with the red and blue parts appearing at most once, and with the green

and pink parts appearing at most once with only odd parts. If DS(N) denotes

the number of partitions of N into distinct elements of S, and if DT (N) denotes
the number of partitions of N into distinct elements of T , then, for all N ≥ 1,

DS(N) =
1

2
DT (N).

Proof. Utilizing elementary algebra, we can obtain the equation

1 + (1− α)1/4

α−1/6(1 +
√
1− α)1/6(1−

√
1− α)1/6

= 1 + (1 − α)1/4.(4.23)

Dividing both sides of the identity (4.23) by (1− α)1/4, we see that

(1 + (1− α)1/4)(1 − α)1/48(1 +
√
1− α)1/12(1 −

√
1− α)−1/6q1/6

(1− α)1/16(1 +
√
1− α)1/4(1− α)1/6(α/q)−1/12(1− α)1/24(α/q)−1/12

(4.24)

=
(α(1 − α)/q)−1/12

(1− α)1/6(α/q)−1/12
+ 1.

To identify both sides of (4.24) in terms of theta functions, we turn again to
(2.10)–(2.12), (4.3), (4.6), and (4.10) to deduce that

2ϕ(q4)χ(−q4)

ϕ(−q4)χ2(−q)χ(−q2)
=

χ2(q)

χ2(−q)
+ 1.

Using (4.15) with q replaced by q2, we can simplify the last identity and find
that

2χ2(q4)

χ2(−q)χ(−q2)χ(−q4)
=

χ2(q)

χ2(−q)
+ 1.
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Applying the definition (2.3) of χ and invoking Euler’s identity (2.13), we find
that

2(−q; q)2∞(−q2; q2)∞(−q4; q4)∞(−q4; q8)2∞ = (−q; q)2∞(−q; q2)2∞ + 1.

Equating the coefficients of qN on both sides of this equation, we finish the
proof. �

Remark. Theorem 4.9 is equivalent to Conjecture 3.37 in Sandon and Zanello’s
paper [16].

Example 4.10. LetN = 4 in Theorem 4.9. ThenDS(4) = 6+22+
(

3
2

)

+3 = 16

and DT (4) = 2 + 42 + 1 + 2
(

4
2

)

+ 1 = 32; the desired partitions are given by

41= · · ·=46=3r+1r= · · ·=2g+2o= · · ·=2g+1r+1b;

4r=4b=3r+1g= · · ·=2r+2b=2r+1g+1p= · · ·=1r+1b+1g+1p.

Theorem 4.11. Let S denote the set of partitions into eight distinct colors,

with the red, blue, and yellow parts appearing at most once with even parts,

with the green parts appearing at most once with odd parts, with three additional

colors appearing at most once with odd parts in multiples of 5, and with one last

color appearing at most once with parts in multiples of 10. Let T denote the

set of partitions into eight distinct colors, with the red, blue, and yellow parts

appearing at most once with odd parts, with the green parts appearing at most

once with even parts, with one further color appearing at most once with odd

parts in multiples of 5, and with parts in 3 additional colors parts appearing

at most once with parts in multiples of 10. If DS(N) denotes the number of

partitions of N into distinct elements of S, and if DT (N) denotes the number

of partitions of N into distinct elements of T , then, for all N ≥ 1,

DS(N) = DT (N − 1).

Proof. First we recall the parameterizations [7, p. 284, equations (13.4), (13.5)],
[7, p. 285, equations (13.10), (13.11)], and [7, p. 286, equations (13.11)]

(

α5

β

)1/8

=
5ρ+m2 + 5m

4m2
,

(

β5

α

)1/8

=
ρ−m− 1

4
,

(

(1− β)5

1− α

)1/8

=
ρ+m+ 1

4
,

(

(1 − α)5

1− β

)1/8

=
5ρ−m2 − 5m

4m2
,

(α3β)1/8 =
ρ+ 3m− 5

4m
, (αβ3)1/8 =

ρ+m2 − 3m

4m
,

where β has degree 5 over α and ρ = (m3 − 2m2 + 5m)1/2. Indeed, by simple
elementary algebra, we can find that

(

α5

β

)1/8

− 3(α3β)1/8 + 3(αβ3)1/8 −
(

β5

α

)1/8

= 4(1− α)1/2(1− β)1/2.

(4.25)
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Next, extract the real cube root on each side of (4.25) to obtain the equation
(

α5

β

)1/24

−
(

β5

α

)1/24

= 22/3(1− α)1/6(1− β)1/6.(4.26)

Divide both sides of (4.26) by 22/3(1−α)1/6(1− β)1/6 to achieve the resulting
identity

(1− β)1/12(β/q5)−1/6

22/3(1− α)1/12(α/q)−1/24(1−α)1/12(α/q)−1/6(1− β)1/4(β/q5)−1/8

= q
{α(1− α)/q}−1/12

22/3(1− α)1/12(α/q)−1/24(1− β)1/4(β/q5)−1/8{β(1− β)/q5}−1/12
+ 1.

Applying (2.10)–(2.12) from Lemma 2.1 in the last identity, we deduce that

χ2(−q10)

χ(−q)χ2(−q2)χ3(−q5)
= q

χ2(q)

χ(−q)χ3(−q5)χ2(q5)
+ 1.

Applying the definition of χ in (2.3), and Euler’s identity (2.13), we obtain the
q-product version of the foregoing equation, namely,

(−q; q)∞(−q2; q2)2∞(−q5; q5)3∞
(−q10; q10)2∞

= q
(−q; q)∞(−q; q2)2∞(−q5; q5)3∞

(−q5; q10)2∞
+ 1.

Equate the coefficients of qN on both sides of this equation to complete the
proof. �

Remark. Theorem 4.11 is equivalent to Conjecture 3.40 in Sandon and Zanello’s
paper [16].

Example 4.12. Let N = 5 in Theorem 4.11. Then DS(5) = 4+3+3+3 = 13
and DT (4) = 1 + 32 + 3 = 13, with the desired partitions being given by

5g = · · · = 53 = 4r + 1g = · · · = 3g + 2b = · · · = 2r + 2y + 1g = · · · ;
4g = 3r + 1b = · · · = 2g + 1r + 1y = · · · .

5. Proofs of twelve conjectures using modular equations of degree 3

Theorem 5.1. Let S denote the set of partitions into twelve distinct colors,

with the red parts appearing at most once with parts congruent to ±1 modulo

6, with five colors appearing at most once with parts congruent to ±2 modulo

6, and with six colors appearing at most once with parts in multiples of 3. Let

T denote the set of partitions into twelve distinct colors, with the red parts

appearing at most once with parts congruent to ±2 modulo 6, with five colors

appearing at most once with parts congruent to ±1 modulo 6, and with six

colors appearing at most once with parts in multiples of 3. If DS(N) denotes

the number of partitions of N into distinct elements of S and if DT (N) denotes
the number of partitions of N into distinct elements of T , then, for all N ≥ 1,

DS(N) = DT (N − 1).
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Proof. First we recall the parameterizations [7, p. 232, equations (5.1)]
(

β3

α

)1/8

=
m− 1

2
,

(

(1 − β)3

1− α

)1/8

=
m+ 1

2
,

(

α3

β

)1/8

=
3 +m

2m
,

(

(1 − α)3

1− β

)1/8

=
3−m

2m
,

where β has degree 3 over α. Indeed, by simple elementary algebra, we can
find that

(

α3

β

)1/8

−
(

β3

α

)1/8

= 2(1− α)1/4(1− β)1/4.(5.1)

Next, divide both sides of (5.1) by 2(1−α)1/4(1−β)1/4 to obtain the equation

(1− β)1/6(β/q3)−1/3

2(1− α)1/12(α/q)−1/24(1 − α)1/6(α/q)−1/3(1− β)5/12(β/q3)−5/24

= q
{α(1− α)/q}−1/6

2(1− α)1/12(α/q)−1/24(1 − β)1/12(β/q3)−1/24(1− β)1/6(β/q3)−1/3
+ 1.

From (2.10)–(2.12) in Lemma 2.1, we find that the foregoing identity can be
written as

χ4(−q6)

χ(−q)χ4(−q2)χ5(−q3)
= q

χ4(q)

χ(−q)χ(−q3)χ4(−q6)
+ 1.

Hence, applying the definition of χ in (2.3), we obtain the q-product form of
the last identity, namely,

(−q; q)∞(−q2; q2)4∞(−q3; q3)5∞
(−q6; q6)4∞

= q(−q; q)∞(−q; q2)4∞(−q3; q3)∞(−q6; q6)4∞ + 1.

Equating the coefficients of qN on both sides of this equation, we finish the
proof. �

Remark. Theorem 5.1 is equivalent to Conjecture 3.34 in Sandon and Zanello’s
paper [16].

Example 5.2. Let N = 4 in Theorem 5.1. Then DS(4) = 5 + 6 +
(

5
2

)

= 21

and DT (3) = 6 + 5 +
(

5
3

)

= 21, with the relevant partitions being given by

41=42= · · ·=45=36+1r= · · ·=21+25= · · · ;
31= · · ·=36=2r+15= · · ·=11+12+13= · · · .

Theorem 5.3. Let S denote the set of partitions into four distinct colors, with

the red and blue parts appearing at most once without multiples of 4, and the

green and pink parts appearing at most once with parts in multiples of 3, but
not multiples of 4. Let T denote the set of partitions into four distinct colors,

with the red and blue parts appearing at most once without parts congruent to

2 modulo 4, and the green and pink colors appearing at most once with parts in

multiples of 3, but not congruent to 2 modulo 4. Let DS(N) denote the number
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of partitions of N into an odd number of distinct elements of S, and let DT (N)
denote the number of partitions of N into distinct elements of T . Then, for all
N ≥ 2,

DS(N) = 2DT (N − 2).

Proof. First we recall the parameterizations [7, p. 233, equations (5.2), (5.5)]

α =
(m− 1)(3 +m)3

16m3
, β =

(m− 1)3(3 +m)

16m
,(5.2)

1− α =
(m+ 1)(3−m)3

16m3
, 1− β =

(m+ 1)3(3−m)

16m
,(5.3)

where β has degree 3 over α. By simple elementary algebra, we can check that
(5.4)

1+
√

(1−α)(1−β)−
√

αβ=2{(1−α)(1−β)}1/4
{

{(1−α)(1−β)}1/4+(αβ)1/4
}2

.

Next, multiply both sides of (5.4) by 2 and extract the square root on both
sides of the resulting identity to obtain the equation

(1 +
√
1− α)1/2(1 +

√

1− β)1/2 − (1−
√
1− α)1/2(1−

√

1− β)1/2(5.5)

= 2{(1− α)(1 − β)}1/8
{

{(1− α)(1 − β)}1/4 + (αβ)1/4
}

.

Rearranging terms and multiplying both sides of (5.5) by (αβ)1/4, we arrive at

(αβ)1/4(1 +
√
1− α)1/2(1 +

√

1− β)1/2 − 2(αβ)1/4{(1− α)(1− β)}3/8
(5.6)

= (αβ)1/4(1 −
√
1− α)1/2(1−

√

1− β)1/2 + 2(αβ)1/2{(1− α)(1− β)}1/8.

Multiply both side of (5.6) by 2q
(αβ)1/2{(1−α)(1−β)}1/8 . Hence,

2q(αβ)1/4

{(1− α)(1 − β)}1/8(1−
√
1− α)1/2(1−

√
1− β)1/2

− 4q

(

(1 − α)(1 − β)

αβ

)1/4

(5.7)

= 2q
(αβ)1/4

{(1− α)(1 − β)}1/8(1 +
√
1− α)1/2(1 +

√
1− β)1/2

+ 4q.

First, from (2.8) and (4.8),

(5.8)
f2(−q)f2(−q3)

f2(−q4)f2(−q12)
= 4q

(

(1 − α)(1 − β)

αβ

)1/4

.

Second, from (2.8), (4.1), (4.3), and (4.8),

f2(−q)f2(−q3)

f2(−q4)f2(−q12)

ϕ2(−q4)ϕ2(−q12)

ϕ2(−q)ϕ2(−q3)
(5.9)

=
2q(αβ)1/4

{(1− α)(1− β)}1/8(1−
√
1− α)1/2(1 −

√
1− β)1/2

.
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Third, from (2.8), (2.12), (4.1), (4.2), (4.5), and (4.15),

4q2
f2(−q)f2(−q3)

ϕ2(−q)ϕ2(−q3)χ2(q2)χ2(q6)
(5.10)

= 4q2
f2(−q)f2(−q3)ϕ(−q2)ϕ(−q6)

ϕ2(−q)ϕ2(−q3)χ2(−q2)χ2(−q6)ϕ(q2)ϕ(q6)

= 2q
(αβ)1/4

{(1− α)(1 − β)}1/8(1 +
√
1− α)1/2(1 +

√
1− β)1/2

.

Hence, from (5.7) and (5.8)–(5.10), it suffices to prove that
(5.11)
f2(−q)f2(−q3)

f2(−q4)f2(−q12)

(

ϕ2(−q4)ϕ2(−q12)

ϕ2(−q)ϕ2(−q3)
− 1

)

= 4q2
f2(−q)f2(−q3)

ϕ2(−q)ϕ2(−q3)χ2(q2)χ2(q6)
+ 4q.

Applying the definitions of ϕ, f , and χ from (2.1), (2.2), and (2.3), respectively,
we can convert (5.11) into q-products, namely,

(−q; q)2∞(−q3; q3)2∞
(−q4; q4)2∞(−q12; q12)2∞

− (q; q)2∞(q3; q3)2∞
(q4; q4)2∞(q12; q12)2∞

= 4q2
(−q; q)2∞(−q3; q3)2∞

(−q2; q4)2∞(−q6; q12)2∞
+ 4q.

Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 5.3 is equivalent to Conjecture 3.42 in Sandon and Zanello’s
paper [16].

Example 5.4. Let N = 5 in Theorem 5.3. Then DS(5) = 2 + 4 + 2 = 8 and
DT (3) = 4. The partitions that we want are given by

5r=5b=3r+1r+1b=3g+1r+1b= · · ·=2r+2b+1r=2r+2b+1b;

3r=3b=3g=3p.

Theorem 5.5. Let S denote the set of partitions into five distinct colors, with

the red and blue parts appearing at most once without odd multiples of 3, the
green color appearing at most once with parts congruent to ±2 modulo 12, and
the pink and orange colors appearing at most once with odd multiples of 6. Let

T denote the set of partitions into five distinct colors, with the red and blue

parts appearing at most once but not in odd multiples of 3, the green color

appearing at most once with parts congruent to ±4 modulo 12, and the pink

and orange colors appearing at most once with parts in multiples of 12. Let

DS(N) denote the number of partitions of N into distinct elements of S, and
let DT (N) denote the number of partitions of N into distinct elements of T .
Then, for all N ≥ 1,

DS(N) = 2DT (N − 1).
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Proof. Recall the parameterizations for α and β of degree 3 given in (5.2) and
(5.3). By simple elementary algebra, we can check that

(1+
√
1−α)(1+

√

1−β) + (1−
√
1−α)(1−

√

1−β) + 2α1/2β1/2

=

(

m2 + 3

2m

)2

=

{

2α1/4β1/4 + 2
{ (1− α)3

1− β

}1/8
}2

.

Next, extract the square root on both sides of the last identity and rearrange
the resulting identity to obtain the equation

(1 +
√
1− α)1/2(1 +

√

1− β)1/2 + (1−
√
1− α)1/2(1 −

√

1− β)1/2(5.12)

− 2α1/4β1/4

= 2
{ (1− α)3

1− β

}1/8

.

Extracting the square root on both sides of (5.12) and rearranging the resulting
identity, we find that

(1+
√
1−α)1/4(1+

√

1−β)1/4=(1−
√
1−α)1/4(1−

√

1−β)1/4+21/2
{(1−α)3

1−β

}1/16

.

(5.13)

Dividing both sides of (5.13) by 21/2
{(1−α)3

1−β
}1/16

, and rewriting the resulting

identity, we arrive at

(1−α)1/24(α/q)−1/12z
1/4
1 (1 +

√
1− α)1/4(1−β)1/24(β/q3)−1/12z

1/4
3 (1+

√
1−β)1/4

21/2(1− α)1/6(α/q)−1/12z
1/4
1 (1 − α)1/16{β(1− β)/q3}−1/12z

1/4
3 (1− β)1/16

=
q

21/2(1−α)1/6(α/q)−1/12(1−α)1/48(1+
√
1−α)1/12(1−

√
1−α)−1/6q1/6

× 1

(1−β)1/48(1+
√
1−β)1/12(1−

√
1−β)−1/6q1/2{β(1−β)/q3}−1/12 + 1.

Hence, from (2.10), (2.11), (2.12), (4.2), (4.5), and (4.10), it suffices to prove
that

χ(−q2)
√

ϕ(q2)χ(−q6)
√

ϕ(q6)

χ2(−q)
√

ϕ(−q2)χ2(q3)
√

ϕ(−q6)
=

2q

χ2(−q)χ(−q4)χ(−q12)χ2(q3)
+ 1.

Using the formula (4.15), we find that

χ(q2)χ(q6)

χ2(−q)χ2(q3)
=

2q

χ2(−q)χ(−q4)χ(−q12)χ2(q3)
+ 1.

Applying the definitions of χ from (2.3), we can convert the last equation into
q-products, namely,

(−q; q)2∞(−q2; q4)∞(−q6; q12)∞
(−q3; q6)2∞

= 2q
(−q; q)2∞(−q4; q4)∞(−q12; q12)∞

(−q3; q6)2∞
+ 1.
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Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 5.5 is equivalent to Conjecture 3.46 in Sandon and Zanello’s
paper [16].

Example 5.6. Let N = 5 in Theorem 5.5. Then DS(5) = 2+ 22+
(

3
2

)

· 2 = 12
and DT (4) = 6. The partitions that we want are given by

5r=5b=4r+1b= · · ·=2r+2g+1r= · · · ;
4r=4b=4g=2r+2b=2r+1r+1b=2b+1r+1b.

Theorem 5.7. Let S denote the set of partitions into nine distinct colors, with

the red and blue parts appearing at most once with multiples of 6, the green and

pink colors appearing at most once with parts congruent to ±1 modulo 6, the
orange color appearing at most once with parts congruent to ±2 modulo 6,
and the remaining four colors appearing at most once with parts that are odd

multiples of 3. Let T denote the set of partitions into ten distinct colors, with

the red, blue, green, and pink parts appearing at most once in multiples of 6,
the orange color appearing at most once with parts congruent to ±1 modulo 6,
the yellow color appearing at most once with parts congruent to ±2 modulo 6,
another two colors appearing at most once with parts congruent to ±2 modulo

12, and the remaining two colors appearing at most once with parts that are odd

multiples of 3. Let DS(N) denote the number of partitions of N into distinct

elements of S, and let DT (N) denote the number of partitions of N into distinct

elements of T . Then, for all N ≥ 1,

DS(N) = 2DT (N − 1).

Proof. We again recall the parameterizations for α and β given in (5.2) and
(5.3). By simple elementary algebra, we can find that

(1 +
√
1− α)(1−

√

1− β)

=
−m4 + 4m3 + 18m2 − 12m− 9

16m2
− (m+ 3)(m− 1)

√

(m+ 1)(3−m)

4m
√
m

= α1/4β1/4 + {αβ(1− α)(1 − β)}1/4 − 2α1/4β1/4{(1− α)(1 − β)}1/8.
Extract the square root on both sides of the resulting identity and rearrange
terms to obtain the equation

(5.14) α1/8β1/8 = (1+
√
1−α)1/2(1−

√

1− β)1/2+{αβ(1−α)(1−β)}1/8.
Dividing both sides of (5.14) by {αβ(1−α)(1−β)}1/8 and rearranging terms,
we arrive at

{α(1−α)/q}−1/24{β(1−β)/q3}−1/24
(1−α)1/12(α/q)−1/24(1−β)1/12(β/q3)−1/24

= q
(1− α)1/12(α/q)−1/6√z1(1 +

√
1− α)1/2

(1−α)1/12(α/q)−1/24(1−β)1/12(β/q3)−1/24
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× 1

(1 − β)1/24(1 +
√
1− β)1/6(1−

√
1− β)−1/3q

√
z1(1 − α)1/8

+ 1,

which can be transformed into

χ(q)χ(q3)

χ(−q)χ(−q3)
= 2q

χ2(−q2)ϕ(q2)

χ(−q)χ(−q3)χ2(−q12)ϕ(−q2)
+ 1,

by (2.10), (2.11), (2.12), (4.2), (4.5), and (4.10). Applying (4.15), we check
that

χ(q)χ(q3)

χ(−q)χ(−q3)
= 2q

χ2(q2)

χ(−q)χ(−q3)χ2(−q12)
+ 1.

Applying the definitions of χ from (2.3), we can reformulate the last equation
and deduce that

(−q; q2)2∞(−q2; q2)∞(−q3; q6)2∞(−q6; q6)∞

=2q(−q; q)∞(−q3; q3)∞(−q2; q4)2∞(−q12; q12)2∞ + 1.

Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 5.7 is equivalent to Conjecture 3.49 in Sandon and Zanello’s
paper [16].

Example 5.8. Let N = 4 in Theorem 5.7. Then DS(4) = 1 + 4 · 2 + 1 = 10
and DT (3) = 5. The partitions for this example are given by

4o=31+1g=31+1p= · · ·=34+1p= · · ·=2o+1g+1p;

33=34=2y+1o=21+1o=22+1o.

Theorem 5.9. Let S denote the set of partitions into ten distinct colors, with

the red, blue, green, and pink parts appearing at most once in multiples of 6,
the orange color appearing at most once with parts congruent to ±1 modulo 6,
the yellow color appearing at most once with parts congruent to ±2 modulo 6,
another two colors appearing at most once with parts congruent to ±4 modulo

12, and the remaining two colors appearing at most once with parts that are

odd multiples of 3. Let T denote the set of partitions into nine distinct colors,

with the red and blue parts appearing at most once in multiples of 6, the green

and pink colors appearing at most once with parts congruent to ±1 modulo 6,
the orange color appearing at most once with parts congruent to ±2 modulo 6,
and the remaining four colors appearing at most once with parts that are odd

multiples of 3. Let DS(N) denote the number of partitions of N into distinct

elements of S, and let DT (N) denote the number of partitions of N into distinct

elements of T . Then, for all N ≥ 1,

DS(N) =
1

2
DT (N).
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Proof. Consider once again the parameterizations given in (5.2) and (5.3). By
simple elementary algebra, we can check that

(1−
√
1− α)(1 +

√

1− β)

=
−m4 + 4m3 + 18m2 − 12m− 9

16m2
+

(m+ 3)(m− 1)
√

(m+ 1)(3−m)

4m
√
m

= α1/4β1/4 + {αβ(1− α)(1 − β)}1/4 + 2α1/4β1/4{(1− α)(1 − β)}1/8.
Extract the square root on both sides of the resulting identity to obtain the
equation

(5.15) (1−
√
1−α)1/2(1+

√

1− β)1/2 = α1/8β1/8+{αβ(1−α)(1−β)}1/8.
Dividing both sides of (5.15) by {αβ(1−α)(1−β)}1/8 and rearranging terms,
we arrive at

(1−β)1/12(β/q3)−1/6z1/23 (1 +
√
1− β)1/2

(1−α)1/12(α/q)−1/24(1−β)1/12(β/q3)−1/24

× 1

z
1/2
3 (1−β)1/8(1−α)1/24(1+

√
1−α)1/6(1−

√
1−α)−1/3q1/3

=
{α(1−α)/q}−1/12{β(1−β)/q3}−1/12

(1−α)1/24(α/q)−1/12(1−β)1/24(β/q3)−1/12
+ 1,

which is equivalent to

2χ2(−q6)ϕ(q6)

χ(−q)χ(−q3)ϕ(−q6)χ2(−q4)
=

χ2(q)χ2(q3)

χ(−q2)χ(−q6)
+ 1,

by (2.10), (2.11), (2.12), (4.2), (4.5), and (4.10). Applying (4.15), we arrive at

2χ2(q6)

χ(−q)χ(−q3)χ2(−q4)
=

χ2(q)χ2(q3)

χ(−q2)χ(−q6)
+ 1.

Employing the definition of χ from (2.3), we can derive a reformulation of the
last equation into q-products, namely,

2(−q; q)∞(−q3; q3)∞(−q4; q4)2∞(−q6; q12)2∞

= (−q; q2)2∞(−q2; q2)∞(−q3; q6)2∞(−q6; q6)∞ + 1.

Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 5.9 is equivalent to Conjecture 3.50 in Sandon and Zanello’s
paper [16].

Example 5.10. Let N = 4 in Theorem 5.9. Then DS(4) = 5 and DT (4) =
1 + 4 · 2 + 1 = 10. The partitions that we seek are given by

4y=41=42=33+1o=34+1o;

4o=31+1g=31+1p= · · ·=34+1p= · · ·=2o+1g+1p.
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Theorem 5.11. Let S denote the set of partitions into ten distinct colors, with

the red, blue, green, and pink parts appearing at most once in multiples of 6,
the orange color appearing at most once with parts congruent to ±1 modulo 6,
the yellow color appearing at most once with parts congruent to ±2 modulo 6,
another two colors appearing at most once with parts congruent to ±4 modulo

12, and the remaining two colors appearing at most once with parts that are odd

multiples of 3. Let T denote the set of partitions into eleven distinct colors, with

the red, blue, green, and pink parts appearing at most once in multiples of 6,
the orange color appearing at most once with parts congruent to ±1 modulo 6,
the yellow color appearing at most once with parts congruent to ±4 modulo 12,
another two colors appearing at most once with parts that are odd multiples of

3, and the remaining three colors appearing at most once with parts congruent

to ±2 modulo 12. Let DS(N) denote the number of partitions of N into distinct

elements of S, and let DT (N) denote the number of partitions of N into distinct

elements of T . Then, for all N ≥ 1,

DS(N) = DT (N − 1).

Proof. Referring to the formulas (5.14) and (5.15), we can check that

(1−
√
1− α)1/2(1 +

√

1− β)1/2(5.16)

= (1 +
√
1− α)1/2(1 −

√

1− β)1/2 + 2{αβ(1− α)(1 − β)}1/8,
where β has degree 3 over α. Next, divide both sides of (5.16) by 2{αβ(1−
α)(1−β)}1/8 and rearrange terms to obtain the equation

(1− β)1/12(β/q3)−1/6z
1/2
3 (1 +

√
1− β)1/2

2(1− α)1/12(α/q)−1/24(1− β)1/12(β/q3)−1/24

× 1

(1− α)1/24(1 +
√
1− α)1/6(1 −

√
1− α)−1/3q1/3z

1/2
3 (1− β)1/8

= q
(1− α)1/12(α/q)−1/6z

1/2
1 (1 +

√
1− α)1/2

2(1− α)1/12(α/q)−1/24(1− β)1/12(β/q3)−1/24

× 1

(1− β)1/24(1 +
√
1− β)1/6(1 −

√
1− β)−1/3qz

1/2
1 (1 − α)1/8

+ 1.

Utilizing (2.10)–(2.12), (4.2), (4.5), and (4.10), we arrive at

χ2(−q6)ϕ(q6)

χ(−q)χ(−q3)χ2(−q4)ϕ(−q6)
= q

χ2(−q2)ϕ(q2)

χ(−q)χ(−q3)χ2(−q12)ϕ(−q2)
+ 1,

which can be transformed into

χ2(q6)

χ(−q)χ(−q3)χ2(−q4)
= q

χ2(q2)

χ(−q)χ(−q3)χ2(−q12)
+ 1,

by (4.15). Applying the definition of χ from (2.3), we can convert the last
identity into q-products, namely,

(−q; q)∞(−q3; q3)∞(−q4; q4)2∞(−q6; q12)2∞
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= q(−q; q)∞(−q3; q3)∞(−q2; q4)2∞(−q12; q12)2∞ + 1.

Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 5.11 is equivalent to Conjecture 3.48 in Sandon and Zanello’s
paper [16].

Example 5.12. Let N = 4 in Theorem 5.11. Then DS(4) = 5 and DT (3) = 5.
The illustrative partitions are then given by

4y=41=42=33+1o=34+1o;

31=32=23+1o=24+1o=25+1o.

Theorem 5.13. Let S denote the set of partitions into eight distinct colors,

with the red and blue parts appearing at most once with even parts, the green

and pink parts appearing at most once with parts congruent to ±2 modulo 12,
and the remaining four colors in parts appearing at most once with odd multiples

of 3. Let T denote the set of partitions into eight distinct colors, with the red

parts appearing at most once with odd parts, the blue and green parts appearing

at most once with even parts, the orange parts appearing at most once with

odd multiples of 3, and the remaining four colors appearing at most once with

parts in multiples of 12. If DS(N) denotes the number of partitions of N into

distinct elements of S, and if DT (N) denotes the number of partitions of N
into distinct elements of T , then, for all N ≥ 2,

DS(N) = 4DT (N − 2).

Proof. Return to (5.2) and (5.3), and use simple elementary algebra to deduce
that

(5.17) −α1/8(1− α)1/8 = −α1/8(1− β)3/8 + β3/8(1− α)1/8.

Next, multiply both sides of (5.17) by β1/8(1−β)1/8 and add α1/8β1/8 on both
sides of the resulting equation to obtain the equation

α1/8β1/8 − {αβ(1− α)(1− β)}1/8

= α1/8β1/8 − (αβ)1/8(1− β)1/2 + β1/2(1− α)1/8(1 − β)1/8.

Using (5.14) on the left-hand side of the last identity, we arrive at
(5.18)

(1+
√
1− α)1/2(1−

√

1− β)1/2=α1/8β1/8(1−
√

1− β)+β1/2(1−α)1/8(1−β)1/8.

Divide both sides of (5.18) by β1/2(1− α)1/8(1 − β)1/8 to deduce that

(1 +
√
1− α)1/2

(1− α)1/8(1 − β)1/8(1 +
√
1− β)1/2

=
α1/8(1−

√
1− β)2/3

(1− α)1/8(1 − β)1/8(1 +
√
1− β)1/3β1/24

+ 1.
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Rearranging terms in the last identity, we find that
√
z1(1 +

√
1− α)1/2

√
z3(1 − β)1/8{β(1− β)/q3}−1/6

√
z1(1 − α)1/8

√
z3(1 +

√
1− β)1/2(1− β)1/12(β/q3)−1/6

= q2
{α(1− α)/q}−1/24{β(1 − β)/q3}−1/24

(1− α)1/12(α/q)−1/6(1− β)1/12(1 +
√
1− β)1/3(1−

√
1− β)−2/3q2

+ 1.

Hence, from (2.10), (2.12), (4.2), (4.5), and (4.10), it suffices to prove that

ϕ(q2)ϕ(−q6)χ4(q3)

ϕ(−q2)ϕ(q6)χ2(−q6)
= 4q2

χ(q)χ(q3)

χ2(−q2)χ4(−q12)
+ 1,

which can be transformed into

χ2(q2)χ4(q3)

χ2(−q2)χ2(q6)
= 4q2

χ(q)χ(q3)

χ2(−q2)χ4(−q12)
+ 1,

by (4.15). Employing above the definition of χ from (2.3) and Euler’s identity
(2.13), we can find that

(−q2; q2)2∞(−q2; q4)2∞(−q3; q6)4∞
(−q6; q12)2∞

= 4q2(−q; q2)∞(−q2; q2)2∞(−q3; q6)∞(−q12; q12)4∞ + 1.

Equate the coefficients of qN on both sides of the last equation to finish the
proof. �

Remark. Theorem 5.13 is equivalent to Conjecture 3.41 in Sandon and Zanello’s
paper [16].

Example 5.14. Let N = 5 in Theorem 5.13. Then DS(5) = 4 · 4 = 16 and
DT (3) = 4. The partitions that we need are given by

31+2r= · · ·=34+2r=31+2g= · · · ;
3r=3o=2b+1r=2g + 1r.

Theorem 5.15. Let S denote the set of partitions into four distinct colors,

with the red, blue, green, and orange parts appearing at most once with parts

either congruent to ±1 modulo 6 or congruent to ±4 modulo 12. Let T denote

the set of partitions into four distinct colors, with the red, blue, green, and

orange parts appearing at most once with parts either congruent to ±1 modulo

6 or congruent to ±2 modulo 12. Let DS(N) denote the number of partitions

of N into an odd number of distinct elements of S, and let DT (N) denote the

number of partitions of N into an odd number of distinct elements of T . Then,
for all N ≥ 3,

DS(N) = DT (N − 2).

Proof. Recall the parameterizations for α and β of degree 3 given in (5.2) and
(5.3). By simple elementary algebra, we can check that

(1−
√
1− α)(1 +

√

1− β)− (1 +
√
1− α)(1−

√

1− β)
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=
(m− 1)(3 +m)

√

(m+ 1)(3−m)

2m
√
m

= m2α
(1− α)3/4

(1− β)3/4
− β

(1− α)3/4

(1− β)3/4
+ 8α1/2β1/2 (1− α)1/4

(1− β)1/4
.

Next, multiply both sides of the last identity by q (1−β)1/4

(1−α)1/4(αβ)1/2
, apply the

identity 1 −
√
1− α = α

1+
√
1−α

, and rearrange the resulting identity to obtain

the equation

q(1− β)1/4α1/2(1 +
√
1− β)

(1− α)1/4β1/2(1 +
√
1− α)

−m2q
α1/2(1− α)1/2

β1/2(1− β)1/2

=
q(1− β)1/4α1/6(1 +

√
1− α)1/3(1−√

1− β)2/3

(1− α)1/4β1/6(1−
√
1− α)2/3(1 +

√
1− β)1/3

− q(1 − α)1/2β1/2

(1 − β)1/2α1/2
+ 8q,

which can be rewritten as

(1−β)1/3(β/q3)−1/6(1−β)1/6(β/q3)−1/3z3(1+
√
1−β)z1(1 − α)1/4

(1−α)1/3(α/q)−1/6(1−α)1/6(α/q)−1/3z1(1+
√
1−α)z3(1−β)1/4

− z21(1− α)2/3(α/q)1/6(1−β)1/6(β/q3)−1/3

z23(1− β)2/3(β/q3)1/6(1−α)1/6(α/q)−1/3

= q2
(1−β)1/3(β/q3)−1/6(1−α)1/12(1+

√
1−α)1/3(1−

√
1−α)−2/3q2/3

(1−α)1/3(α/q)−1/6(1−β)1/12(1+
√
1−β)1/3(1−

√
1−β)−2/3q2

− q2
z21(1 − α)2/3(α/q)1/6z23(1− β)1/6(β/q3)2/3

z23(1 − β)2/3(β/q3)1/6z21(1− α)1/6(α/q)2/3
+ 8q.

Hence, from (2.8), (2.11), (2.12), (4.2), (4.5), (4.8), and (4.10), it suffices to
prove that

χ4(−q3)χ4(−q6)ϕ2(q6)ϕ2(−q2)

χ4(−q)χ4(−q2)ϕ2(−q6)ϕ2(q2)
− f4(−q)χ4(−q6)

f4(−q3)χ4(−q2)

= q2
{

χ4(−q3)χ4(−q4)

χ4(−q)χ4(−q12)
− f4(−q)f4(−q12)

f4(−q3)f4(−q4)

}

+ 8q.

Using (4.15), we arrive at

χ4(−q3)χ4(q6)

χ4(−q)χ4(q2)
− f4(−q)χ4(−q6)

f4(−q3)χ4(−q2)

= q2
{

χ4(−q3)χ4(−q4)

χ4(−q)χ4(−q12)
− f4(−q)f4(−q12)

f4(−q3)f4(−q4)

}

+ 8q.

Applying the definitions of f and χ from (2.2) and (2.3), respectively, we can
convert the last equation into q-products, namely,

(−q; q)4∞(−q6; q12)4∞
(−q3; q3)4∞(−q2; q4)4∞

− (q; q)4∞(q6; q12)4∞
(q3; q3)4∞(q2; q4)4∞
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= q2
{ (−q; q)4∞(−q12; q12)4∞
(−q3; q3)4∞(−q4; q4)4∞

− (q; q)4∞(q12; q12)4∞
(q3; q3)4∞(q4; q4)4∞

}

+ 8q.

Equating the coefficients of qN on both sides of the last equation, we finish the
proof. �

Remark. Theorem 5.15 is equivalent to Conjecture 3.29 in Sandon and Zanello’s
paper [16].

Example 5.16. Let N = 5 in Theorem 5.15. Then DS(5) = DT (3) = 4. The
partitions that we want are given by

5r=5b=5g=5o;

1r+1b+1g=1b + 1g+1o=1g+1o+1r=1r+1b+1o.

Theorem 5.17. Let S denote the set of partitions into four distinct colors, with

the red and blue parts appearing at most once with parts not congruent to 0 or

±2 modulo 12, the green parts appearing at most once with parts congruent to

±2 modulo 12, and the orange parts appearing at most once with parts congruent

to ±1 modulo 6. Let T denote the set of partitions into four distinct colors, with

the red and blue parts appearing at most once with parts not congruent to 6 or

±4 modulo 12, the green parts appearing at most once with parts congruent to

±4 modulo 12, and the orange parts appearing at most once with parts congruent

to ±1 modulo 6. Let DS(N) denote the number of partitions of N into an

odd number of distinct elements of S, and let DT (N) denote the number of

partitions of N into distinct elements of T . Then, for all N ≥ 2,

DS(N) = DT (N − 2).

Proof. Recall the parameterizations for α and β of degree 3 given in (5.2) and
(5.3). By simple elementary algebra and the equation (5.12), we can find that
(5.19)

(1+
√
1−α)1/4(1+

√

1−β)1/4+(1−
√
1−α)1/4(1−

√

1−β)1/4=21/2
{(1−β)3

1−α

}1/16

.

Next, applying (5.13) and (5.19), we can also check that

(1−
√
1−α)1/4(1−

√

1−β)1/4−(1+
√
1−α)1/4(1+

√

1−β)1/4(5.20)

+
√

1−β{(1+
√
1−α)1/4(1+

√

1−β)1/4+(1−
√
1−α)1/4(1−

√

1−β)1/4}

= m21/2
(1− α)9/16(αβ)1/4

(1− β)3/16
+ 3 · 21/2β

3/8(1− α)3/16(αβ)1/4

α1/8(1− β)1/16
.

Multiplying both sides of (5.20) by 21/2qα1/8(1−β)1/16

β3/8(1−α)3/16(αβ)1/4
and rearranging the

resulting identity, we obtain

21/2q
1 +

√
1− β

(1+
√
1−α)1/4(1+

√
1−β)1/4

α1/8(1 − β)1/16

β3/8(1 − α)3/16
−m2q

α1/8(1 − α)3/8

β3/8(1 − β)1/8
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= 21/2q
1−√

1− β

(1−
√
1−α)1/4(1−√

1−β)1/4
α1/8(1− β)1/16

β3/8(1− α)3/16
+ 6q,

which is equivalent to

21/2{α(1−α)/q}−1/8(1−β)1/24(β/q3)−1/12z
1/4
3 (1+

√
1−β)1/4z

1/4
1 (1− α)1/16

(1−α)1/8(α/q)−1/4{β(1−β)/q3}−1/24z1/41 (1 +
√
1− α)1/4z

1/4
3 (1 − β)1/16

× (1−β)1/24(1+
√

1−β)1/6(1−
√

1−β)−1/3q

− z12
−2/3{α(1−α)/q}1/621/2(1− α)1/4(α/q)−1/821/3(1−β)1/24(β/q3)−1/12

z32−4/3(1−β)1/12(β/q3)1/321/3(1−α)1/24(α/q)−1/1221/6(1−β)1/12(β/q3)−1/24

= 2q2
21/2{α(1−α)/q}−1/8z1/41 2−1/4(1 +

√
1− α)1/4z

1/2
3 (1− β)1/8

25/12(1−β)1/48(1+
√
1−β)1/12(1−√

1−β)−1/6q1/221/6{β(1−β)/q3}−1/24

× 1

22/3(1−β)1/12(β/q3)−1/6z
1/4
1 (1− α)1/16z

1/2
3 2−1/2(1+

√
1−β)1/2

+ 6q.

Hence, from (2.9), (2.10), (2.11), (2.12), (4.2), (4.5), (4.8), and (4.10), it
suffices to prove that

χ3(q)χ(−q6)
√

ϕ(q6)
√

ϕ(−q2)χ2(−q12)

χ3(−q2)χ(q3)
√

ϕ(−q6)
√

ϕ(q2)
− f2(−q2)χ3(−q)χ(−q6)

f2(−q12)χ(−q2)χ(−q3)

= 2q2
χ3(q)

√

ϕ(q2)ϕ(−q6)

χ(q3)χ2(−q6)
√

ϕ(−q2)ϕ(q6)χ(−q12)
+ 6q.

Using the formula (4.15), we find that

χ3(q)χ(q6)χ2(−q12)

χ2(−q2)χ(q2)χ(q3)
− f2(−q2)χ3(−q)χ(−q6)

f2(−q12)χ(−q2)χ(−q3)

= 2q2
χ3(q)χ(q2)

χ(q3)χ(−q2)χ2(q6)χ(−q12)
+ 6q.

Applying the definitions of f and χ from (2.2) and (2.3), we can rewrite the
last equation in the form

(−q2; q2)2∞(−q; q2)3∞(−q6; q12)∞
(−q12; q12)2∞(−q2; q4)∞(−q3; q6)∞

− (q2; q2)2∞(q; q2)3∞(q6; q12)∞
(q12; q12)2∞(q2; q4)∞(q3; q6)∞

= 2q2
(−q; q2)3∞(−q2; q2)∞(−q2; q4)∞(−q12; q12)∞

(−q3; q6)∞(−q6; q12)2∞
+ 6q.

Equate the coefficients of qN on both sides of the last equation to complete the
proof. �

Remark. Theorem 5.17 is equivalent to Conjecture 3.43 in Sandon and Zanello’s
paper [16].
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Example 5.18. Let N = 5 in Theorem 5.17. Then DS(5) = 3 + 2 ·
(

3
2

)

= 9
and DT (3) = 2 + 2 · 3 + 1 = 9. The partitions that we want are given by

5r=5b=5o=3r+1r+1g= · · · ;
3r=3b=2r+1o=2r+1b= · · ·=1r+1b+1o.

Theorem 5.19. Let S denote the set of partitions into four distinct colors, with

the red and blue parts appearing at most once with parts not congruent to 0 or

±2 modulo 12, the green parts appearing at most once with parts congruent to

±2 modulo 12, and the orange parts appearing at most once with parts congruent

to ±1 modulo 6. Let T denote the set of partitions into seven distinct colors,

with the red parts appearing at most once with parts that are not odd multiples

of 6, the blue parts appearing at most once with parts in multiples of 3 but not

odd multiples of 6, the green and orange parts appearing at most once with parts

congruent to ±2 modulo 12, and the remaining three colors appearing at most

once with parts congruent to ±4 modulo 12. Let DS(N) denote the number of

partitions of N into an odd number of distinct elements of S, and let DT (N)
denote the number of partitions of N into distinct elements of T . Then, for all
N ≥ 2,

DS(N) = DT (N − 1).

Proof. Recall the parameterizations for α and β of degree 3 given in (5.2) and
(5.3). By simple elementary algebra, (5.13), and (5.19), we know that

(1+
√
1−α)1/4(1+

√

1−β)1/4 =
1

21/2

{{ (1 − β)3

1− α

}1/16

+
{ (1− α)3

1− β

}1/16}

.

Next, we can also check that

1− (αβ)1/4 + (1 − β)1/2 =
(m+ 1)(3−m)

4m
+

(m+ 1)
√

(m+ 1)(3−m)

4
√
m

(5.21)

=
{

m21/2
{(1−α)3

1−β

}3/16

+23/2
(β3

α

)1/8{(1−α)3

1−β

}1/16}

(1+
√
1−α)1/4(1+

√

1−β)1/4.

Dividing both sides of (5.21) by (1+
√
1−α)1/4(1+

√
1−β)1/4 and rearranging

the resulting identity, we obtain

(1+
√
1−β)3/4

(1+
√
1−α)1/4

−m21/2
{(1−α)3

1−β

}3/16

=
(αβ)1/4

(1+
√
1−α)1/4(1+

√
1−β)1/4

+ 23/2
(β3

α

)1/8{(1−α)3

1−β

}1/16

.

Divide both sides of the last identity by 2−1/2q−1
(

β3

α

)1/8{
(1−α)3
1−β

}1/16

to find

that

21/2{α(1−α)/q}−1/8(1−β)1/24(β/q3)−1/12z
1/4
3 (1+

√
1−β)1/4z

1/4
1 (1− α)1/16

(1−α)1/8(α/q)−1/4{β(1−β)/q3}−1/24z1/41 (1 +
√
1− α)1/4z

1/4
3 (1− β)1/16
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× (1−β)1/24(1+
√

1−β)1/6(1−
√

1−β)−1/3q

− z12
−2/3{α(1−α)/q}1/621/2(1 − α)1/4(α/q)−1/821/3(1−β)1/24(β/q3)−1/12

z32−4/3(1−β)1/12(β/q3)1/321/3(1−α)1/24(α/q)−1/1221/6(1−β)1/12(β/q3)−1/24

=
2q{21/3(1−β)1/24(β/q3)−1/12}321/6{β(1−β)/q3}−1/24

21/6(1−α)1/12(α/q)−1/2425/12(1−α)1/48(1+
√
1−α)1/12(1−

√
1−α)−1/6q1/6

× 1

{21/3(1−α)1/24(α/q)−1/12}225/12(1−β)1/48(1+
√
1−β)1/12(1−√

1−β)−1/6q1/2
+ 4q.

Hence, from (2.9), (2.10), (2.11), (2.12), (4.2), (4.5), (4.8), and (4.10), it suffices
to prove that

χ3(q)χ(−q6)
√

ϕ(q6)
√

ϕ(−q2)χ2(−q12)

χ3(−q2)χ(q3)
√

ϕ(−q6)
√

ϕ(q2)
− f2(−q2)χ3(−q)χ(−q6)

f2(−q12)χ(−q2)χ(−q3)

=
2qχ3(−q6)χ(q3)

χ(−q)χ2(−q2)χ(−q4)χ(−q12)
+ 4q.

Using (4.15), we find that

χ3(q)χ(q6)χ2(−q12)

χ2(−q2)χ(q2)χ(q3)
− f2(−q2)χ3(−q)χ(−q6)

f2(−q12)χ(−q2)χ(−q3)

=
2qχ3(−q6)χ(q3)

χ(−q)χ2(−q2)χ(−q4)χ(−q12)
+ 4q.

Applying the definitions of f and χ from (2.2) and (2.3), we can rewrite the
last equation in terms of q-products, namely,

(−q2; q2)2∞(−q; q2)3∞(−q6; q12)∞
(−q12; q12)2∞(−q2; q4)∞(−q3; q6)∞

− (q2; q2)2∞(q; q2)3∞(q6; q12)∞
(q12; q12)2∞(q2; q4)∞(q3; q6)∞

= 2q
(−q; q)∞(−q2; q2)2∞(−q4; q4)∞(−q3; q6)∞(−q12; q12)∞

(−q6; q6)3∞
+ 4q.

Equate the coefficients of qN on both sides of the last equation to finish the
proof. �

Remark. Theorem 5.19 is equivalent to Conjecture 3.45 in Sandon and Zanello’s
paper [16].

Example 5.20. Let N = 5 in Theorem 5.19. Then DS(5) = 3 + 2 ·
(

3
2

)

= 9

and DT (4) = 4 + 2 +
(

3
2

)

= 9. The partitions relevant to us are given by

5r=5b=5o=3r+1r+1g= · · · ;
4r=41=42=43=3r+1r=3b+1r=2r+2o= · · · .

Theorem 5.21. Let S denote the set of partitions into seven distinct colors,

with the red parts appearing at most once but not in odd multiples of 6, the

blue parts appearing at most once with multiples of 3, but not odd multiples

of 6, the green and pink colors appearing at most once with parts congruent

to ±2 modulo 12, and the remaining three colors appearing at most once with
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parts congruent to ±4 modulo 12. Let T denote the set of partitions into four

distinct colors, with the red and blue parts appearing at most once with parts

not congruent to 6 or ±4 modulo 12, the green color appearing at most once

with parts congruent to ±4 modulo 12, and the pink color appearing at most

once with parts congruent to ±1 modulo 6. Let DS(N) denote the number of

partitions of N into distinct elements of S, and let DT (N) denote the number

of partitions of N into distinct elements of T . Then, for all N ≥ 1,

DS(N) = DT (N − 1).

Proof. Applying Theorems 5.17 and 5.19 directly, we can easily complete the
proof. �

Remark. Theorem 5.21 is equivalent to Conjecture 3.44 in Sandon and Zanello’s
paper [16].

Example 5.22. Let N = 4 in Theorem 5.21. Then DS(4) = 4 + 2 +
(

3
2

)

= 9
and DT (3) = 2 + 2 · 3 + 1 = 9. The corresponding partitions are given by

4r=41=42=43=3r+1r=3b+1r=2r+2g= · · · ;
3r=3b=2r+ 1p= · · ·=1r + 1b + 1p.

Theorem 5.23. Let S denote the set of partitions into four distinct colors,

with the red and blue parts appearing at most once with parts not congruent to

2 modulo 4, the green parts appearing at most once with parts congruent to ±1
modulo 6, and the orange parts appearing at most once with parts congruent to

±4 modulo 12. Let T denote the set of partitions into four distinct colors, with

the red and blue parts appearing at most once with parts that are not multiples of

4, the green parts appearing at most once with parts congruent to ±1 modulo 6,
and the orange parts appearing at most once with parts congruent to ±2 modulo

12. Let DS(N) denote the number of partitions of N into distinct elements of

S, and let DT (N) denote the number of partitions of N into an odd number of

distinct elements of T . Then, for all N ≥ 1,

DS(N) = DT (N).

Proof. Recall the parameterizations for α and β of degree 3 given in (5.2) and
(5.3). By simple elementary algebra, we can check that

(5.22) 1− (1−α)1/4(1−β)1/4 = (αβ)1/4
{α3/8

β1/8
− (1− α)3/8

(1− β)1/8

}

.

Multiply both sides of the equation (5.22) by 21/2 (1−α)3/16

(1−β)1/16
to deduce that

21/2
{ (1− α)3

1− β

}1/16

−
√
1− α21/2

{ (1− β)3

1− α

}1/16

=− 21/2
{ (1 − α)3

1− β

}3/16

(αβ)1/4 + 21/2
α3/8

β1/8

{ (1 − α)3

1− β

}1/16

(αβ)1/4.
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Next, applying (5.13) and (5.19), we can also check that

(1+
√
1−α)1/4(1+

√

1−β)1/4−(1−
√
1−α)1/4(1−

√

1−β)1/4(5.23)

−
√
1−α{(1+

√
1−α)1/4(1+

√

1−β)1/4+(1−
√
1−α)1/4(1−

√

1−β)1/4}

=− 21/2
{ (1− α)3

1− β

}3/16

(αβ)1/4 + 21/2
α3/8

β1/8

{ (1− α)3

1− β

}1/16

(αβ)1/4.

Multiplying both sides of (5.23) by 21/2β1/8(1−β)1/16

α3/8(1−α)3/16(αβ)1/4
and rearranging the

resulting identity, we find that

21/2
1−

√
1− α

(1−
√
1−α)1/4(1−

√
1−β)1/4

β1/8(1− β)1/16

α3/8(1− α)3/16

= 21/2
1 +

√
1− α

(1+
√
1−α)1/4(1+

√
1−β)1/4

β1/8(1− β)1/16

α3/8(1− α)3/16
− 2

β1/8(1− α)3/8

α3/8(1− β)1/8
+ 2,

which is equivalent to

2 · 21/2{α(1−α)/q}−1/825/12(1−β)1/48(1+
√
1−β)1/12(1−

√
1−β)−1/6q1/2

25/4(1−α)1/16(1+
√
1−α)1/4(1−

√
1−α)−1/2q1/221/6{β(1−β)/q3}−1/24

=
21/2{α(1−α)/q}−1/82(1−α)1/8(α/q)−1/4z3/41 2−3/4(1+

√
1−α)3/4z

1/4
3 (1−β)1/16

21/6{β(1−β)/q3}−1/2421/3(1−β)1/24(β/q3)−1/12z
3/4
1 (1−α)3/16z

1/4
3 2−1/4(1+

√
1−β)1/4

− 21/2(1−α)1/4(α/q)−1/82(1−α)1/8(α/q)−1/4

21/6(1−β)1/12(β/q3)−1/2421/3(1−β)1/24(β/q3)−1/12
+ 2.

Hence, from (2.10), (2.11), (2.12), (4.2), (4.5), and (4.10), it suffices to prove
that

2
χ3(q)χ(−q12)

χ3(−q4)χ(q3)
=

χ3(q)χ3(−q2)ϕ1/2(−q6)ϕ3/2(q2)

χ(q3)χ(−q6)ϕ1/2(q6)ϕ3/2(−q2)
− χ3(−q)χ3(−q2)

χ(−q3)χ(−q6)
+ 2.

Using the formula (4.15), we find that

2
χ3(q)χ(−q12)

χ3(−q4)χ(q3)
=

χ3(q)χ3(q2)

χ(q3)χ(q6)
− χ3(−q)χ3(−q2)

χ(−q3)χ(−q6)
+ 2.

Applying the definition of χ from (2.3), we can rewrite the last equation in the
shape

2
(−q; q2)3∞(−q4; q4)3∞

(−q12; q12)∞(−q3; q6)∞

=
(−q; q2)3∞(−q2; q4)3∞
(−q6; q12)∞(−q3; q6)∞

− (q; q2)3∞(q2; q4)3∞
(q6; q12)∞(q3; q6)∞

+ 2.

Equate the coefficients of qN on both sides of the last equation to finish the
proof. �

Remark. Theorem 5.23 is equivalent to Conjecture 3.47 in Sandon and Zanello’s
paper [16].
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Example 5.24. LetN = 5 in Theorem 5.23. Then DS(5) = 3+32+2·
(

3
2

)

= 18

and DT (5) = 3 + 2 ·
(

3
2

)

+
(

3
2

)

· 3 = 18. The partitions that we want are given
by

5r=5b=5g=4o+1g= · · ·=3r+1r+1g= · · · ;
5r=5b=5g=3r+1r+1g= · · ·=2r+2o+1g= · · · .
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