Proofs of Restricted Shuffles

Björn Terelius and Douglas Wikström

KTH, Stockholm

May 3, 2010

A motivating example: Voting

Consider a voting system where each voter submit an encrypted vote.

A motivating example: Voting

Consider a voting system where each voter submit an encrypted vote.

- How can we ensure that the voters remain anonymous when the votes are decrypted?

A motivating example: Voting

Consider a voting system where each voter submit an encrypted vote.

- How can we ensure that the voters remain anonymous when the votes are decrypted?
- There are two main ways to achieve this, homomorphic tallying [CGS97] and mixnets [Cha81].

Mixnets

Mixnets (2)

- How can we implement a mixnet?

Mixnets (2)

- How can we implement a mixnet?
- Chain of mixservers, each permutes and re-encrypts its list of inputs.

Proof of a shuffle

- How can we verify that a server really permutes and re-encrypts the votes?

Proof of a shuffle

- How can we verify that a server really permutes and re-encrypts the votes?
- Let each server produce an interactive zero-knowledge proof, a proof of a shuffle [SK95, Nef01, FS01].

Proof of a shuffle

- How can we verify that a server really permutes and re-encrypts the votes?
- Let each server produce an interactive zero-knowledge proof, a proof of a shuffle [SK95, Nef01, FS01].
- Like [FS01], we will construct a proof that a commitment contains a permutation matrix.

Proof of a shuffle

- How can we verify that a server really permutes and re-encrypts the votes?
- Let each server produce an interactive zero-knowledge proof, a proof of a shuffle [SK95, Nef01, FS01].
- Like [FS01], we will construct a proof that a commitment contains a permutation matrix.
- One can then prove that the encrypted votes are permuted accordingly.

Test for permutation matrices

M permutation matrix
M not permutation matrix

$$
M=\left(\begin{array}{ccc}
0 & 1 & 0 \\
2 & 0 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Test for permutation matrices

M permutation matrix
M not permutation matrix

$$
\begin{aligned}
& M=\left(\begin{array}{ccc}
0 & 1 & 0 \\
2 & 0 & -1 \\
0 & 0 & 1
\end{array}\right) \\
& M \bar{x}=\left(\begin{array}{c}
x_{2} \\
2 x_{1}-x_{3} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

Test for permutation matrices

M permutation matrix

$$
\begin{array}{rlrl}
M=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & M=\left(\begin{array}{ccc}
0 & 1 & 0 \\
2 & 0 & -1 \\
0 & 0 & 1
\end{array}\right) \\
M \bar{x}=\left(\begin{array}{c}
x_{2} \\
x_{1} \\
x_{3}
\end{array}\right) & M \bar{x}=\left(\begin{array}{c}
x_{2} \\
2 x_{1}-x_{3} \\
x_{3}
\end{array}\right) \\
\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle & =x_{2} x_{1} x_{3} \\
& =x_{1} x_{2} x_{3} & \prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle & =x_{2}\left(2 x_{1}-x_{3}\right) x_{3} \\
& \neq x_{1} x_{2} x_{3}
\end{array}
$$

Test for permutation matrices

Theorem (Permutation Matrix)
Let $M=\left(m_{i, j}\right)$ be an $N \times N$-matrix over \mathbb{Z}_{q} and $\bar{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a list of variables. Then M is a permutation matrix if and only if

$$
\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle=\prod_{i=1}^{N} x_{i} \quad \text { and } \quad M \overline{1}=\overline{1} .
$$

Test for permutation matrices

Theorem (Permutation Matrix)
Let $M=\left(m_{i, j}\right)$ be an $N \times N$-matrix over \mathbb{Z}_{q} and $\bar{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a list of variables. Then M is a permutation matrix if and only if

$$
\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle=\prod_{i=1}^{N} x_{i} \quad \text { and } \quad M \overline{1}=\overline{1} .
$$

Lemma (Schwartz-Zippel)

Let $f \in \mathbb{Z}_{q}\left[x_{1}, \ldots, x_{N}\right]$ be a non-zero polynomial of total degree d and let e_{1}, \ldots, e_{N} be chosen randomly from \mathbb{Z}_{q}. Then

$$
\operatorname{Pr}\left[f\left(e_{1}, \ldots, e_{N}\right)=0\right] \leq \frac{d}{q}
$$

Recall Pedersen commitments

Let g, g_{1} be randomly chosen generators in a group of prime order q. The Pedersen commitment of $m \in \mathbb{Z}_{q}$ is

$$
\mathcal{C}(m, s)=g^{s} g_{1}^{m}
$$

where s is chosen randomly from \mathbb{Z}_{q}.

Recall Pedersen commitments

Let g, g_{1} be randomly chosen generators in a group of prime order q. The Pedersen commitment of $m \in \mathbb{Z}_{q}$ is

$$
\mathcal{C}(m, s)=g^{s} g_{1}^{m}
$$

where s is chosen randomly from \mathbb{Z}_{q}.

- perfectly hiding
- computationally binding
- homomorphic, $\mathcal{C}(m, s) \mathcal{C}\left(m^{\prime}, s^{\prime}\right)=\mathcal{C}\left(m+m^{\prime}, s+s^{\prime}\right)$

$$
\mathcal{C}(m, s)^{e}=\mathcal{C}(e m, e s)
$$

Generalized Pedersen commitments [FS01]

Let g, g_{1}, \ldots, g_{N} be randomly chosen generators in a group of prime order q. We commit to a vector $\bar{m}=\left(m_{1}, \ldots, m_{N}\right)^{\mathrm{T}}$ by

$$
\mathcal{C}(\bar{m}, s)=g^{s} \prod_{i=1}^{N} g_{i}^{m_{i}}
$$

where s is chosen randomly from \mathbb{Z}_{q}.

Generalized Pedersen commitments [FS01]

Let g, g_{1}, \ldots, g_{N} be randomly chosen generators in a group of prime order q. We commit to a vector $\bar{m}=\left(m_{1}, \ldots, m_{N}\right)^{\mathrm{T}}$ by

$$
\mathcal{C}(\bar{m}, s)=g^{s} \prod_{i=1}^{N} g_{i}^{m_{i}}
$$

where s is chosen randomly from \mathbb{Z}_{q}.

- perfectly hiding
- computationally binding
- homomorphic, $\mathcal{C}(\bar{m}, s) \mathcal{C}\left(\bar{m}^{\prime}, s^{\prime}\right)=\mathcal{C}\left(\bar{m}+\bar{m}^{\prime}, s+s^{\prime}\right)$ $\mathcal{C}(\bar{m}, s)^{e}=\mathcal{C}(e \bar{m}, e s)$

Generalized Pedersen commitments

We commit column-wise to an $N \times N$-matrix $M=\left(m_{i, j}\right)$, so $a=\mathcal{C}(M, \bar{s})$ is a list of N commitments satisfying

$$
\mathcal{C}(M, \bar{s})^{\bar{e}}=\mathcal{C}(M \bar{e},\langle\bar{s}, \bar{e}\rangle)
$$

where we use the convention

$$
a^{\bar{e}}=\prod_{i=1}^{N} a_{i}^{e_{i}}
$$

A review of sigma proofs

A sigma proof is a three-message protocol such that

1. the view of the verifier can be simulated for any given challenge

A review of sigma proofs

A sigma proof is a three-message protocol such that

1. the view of the verifier can be simulated for any given challenge
2. a witness can be computed from any pair of accepting transcripts with the same random tape and distinct challenges

Example: Proof of knowledge of discrete logarithm

\mathcal{P} wants to prove knowledge of x such that $y=g^{x}$

1. \mathcal{P} chooses r at random and sends $\alpha=g^{r}$
2. \mathcal{V} sends a random challenge c
3. \mathcal{P} responds with $d=c x+r$
\mathcal{V} accepts the proof iff $y^{c} \alpha=g^{d}$

Example: Proof of knowledge of discrete logarithm

\mathcal{P} wants to prove knowledge of x such that $y=g^{x}$

1. \mathcal{P} chooses r at random and sends $\alpha=g^{r}$
2. \mathcal{V} sends a random challenge c
3. \mathcal{P} responds with $d=c x+r$
\mathcal{V} accepts the proof iff $y^{c} \alpha=g^{d}$
There are similar protocols for proving any polynomial relation!

Proof of knowledge of permutation matrix

Given a matrix commitment a, \mathcal{P} wants to prove knowledge of a permutation matrix M and randomness \bar{s} such that $a=\mathcal{C}(M, \bar{s})$.

1. \mathcal{V} chooses a vector \bar{e} randomly and sends it to \mathcal{P}.
2. \mathcal{P} uses a sigma proof to prove knowledge of t, k and a vector \bar{e}^{\prime} such that

$$
\begin{gathered}
\mathcal{C}\left(\bar{e}^{\prime}, k\right)=a^{\bar{e}} \\
\mathcal{C}(\overline{1}, t)=a^{\overline{1}} \\
\prod_{i=1}^{N} e_{i}^{\prime}=\prod_{i=1}^{N} e_{i}
\end{gathered}
$$

Proof of knowledge of permutation matrix

Given a matrix commitment a, \mathcal{P} wants to prove knowledge of a permutation matrix M and randomness \bar{s} such that $a=\mathcal{C}(M, \bar{s})$.

1. \mathcal{V} chooses a vector \bar{e} randomly and sends it to \mathcal{P}.
2. \mathcal{P} uses a sigma proof to prove knowledge of t, k and a vector \bar{e}^{\prime} such that

$$
\begin{array}{cc}
\mathcal{C}\left(\bar{e}^{\prime}, k\right)=a^{\bar{e}} & \bar{e}^{\prime}=M \bar{e} \\
\mathcal{C}(\overline{1}, t)=a^{\overline{1}} & \overline{1}=M \overline{1} \\
\prod_{i=1}^{N} e_{i}^{\prime}=\prod_{i=1}^{N} e_{i} & \prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{e}\right\rangle=\prod_{i=1}^{N} e_{i}
\end{array}
$$

Properties of the protocol

Theorem
The protocol is a honest verifier zero knowledge proof of knowledge of a permutation matrix M such that $a=\mathcal{C}(M, \bar{s})$, assuming the commitment scheme is binding.

Properties of the protocol

Theorem
The protocol is a honest verifier zero knowledge proof of knowledge of a permutation matrix M such that $a=\mathcal{C}(M, \bar{s})$, assuming the commitment scheme is binding.

- The zero-knowledge property is easy.

Properties of the protocol

Theorem

The protocol is a honest verifier zero knowledge proof of knowledge of a permutation matrix M such that $a=\mathcal{C}(M, \bar{s})$, assuming the commitment scheme is binding.

- The zero-knowledge property is easy.
- We must construct an extractor which computes a permutation matrix from accepting transcripts.

Sketch of proof

1. Run the extractor of the sigma proof N times with $\bar{e}_{1}, \ldots, \bar{e}_{N}$, each time extracting \bar{e}_{i}^{\prime} and k_{i} such that $\mathcal{C}\left(\bar{e}_{i}^{\prime}, k_{i}\right)=a^{\bar{e}_{i}}$.

Sketch of proof

1. Run the extractor of the sigma proof N times with $\bar{e}_{1}, \ldots, \bar{e}_{N}$, each time extracting \bar{e}_{i}^{\prime} and k_{i} such that $\mathcal{C}\left(\bar{e}_{i}^{\prime}, k_{i}\right)=a^{\bar{e}_{i}}$.
2. The random vectors are linearly independent with probability at least $1-N / q$.

Sketch of proof

1. Run the extractor of the sigma proof N times with $\bar{e}_{1}, \ldots, \bar{e}_{N}$, each time extracting \bar{e}_{i}^{\prime} and k_{i} such that $\mathcal{C}\left(\bar{e}_{i}^{\prime}, k_{i}\right)=a^{\bar{e}_{i}}$.
2. The random vectors are linearly independent with probability at least $1-N / q$.
3. Linear independence implies existence of $\alpha_{\ell, j} \in \mathbb{Z}_{q}$ such that $\sum_{j=1}^{N} \alpha_{\ell, j} \bar{e}_{j}$ is the ℓ th standard unit vector in \mathbb{Z}_{q}^{N}.

Sketch of proof

1. Run the extractor of the sigma proof N times with $\bar{e}_{1}, \ldots, \bar{e}_{N}$, each time extracting \bar{e}_{i}^{\prime} and k_{i} such that $\mathcal{C}\left(\bar{e}_{i}^{\prime}, k_{i}\right)=a^{\bar{e}_{i}}$.
2. The random vectors are linearly independent with probability at least $1-N / q$.
3. Linear independence implies existence of $\alpha_{\ell, j} \in \mathbb{Z}_{\boldsymbol{q}}$ such that $\sum_{j=1}^{N} \alpha_{\ell, j} \bar{e}_{j}$ is the ℓ th standard unit vector in \mathbb{Z}_{q}^{N}.
4. Then $\sum_{j=1}^{N} \alpha_{\ell, j} \bar{e}_{j}^{\prime}$ is the ℓ th column in M

Sketch of proof

1. Run the extractor of the sigma proof N times with $\bar{e}_{1}, \ldots, \bar{e}_{N}$, each time extracting \bar{e}_{i}^{\prime} and k_{i} such that $\mathcal{C}\left(\bar{e}_{i}^{\prime}, k_{i}\right)=a^{\bar{e}_{i}}$.
2. The random vectors are linearly independent with probability at least $1-N / q$.
3. Linear independence implies existence of $\alpha_{\ell, j} \in \mathbb{Z}_{\boldsymbol{q}}$ such that $\sum_{j=1}^{N} \alpha_{\ell, j} \bar{e}_{j}$ is the ℓ th standard unit vector in \mathbb{Z}_{q}^{N}.
4. Then $\sum_{j=1}^{N} \alpha_{\ell, j} \bar{e}_{j}^{\prime}$ is the ℓ th column in M since

$$
a_{I}=\prod_{j=1}^{N} a^{\alpha_{\ell, j} \bar{e}_{j}}=\prod_{j=1}^{N} \mathcal{C}\left(\bar{e}_{j}^{\prime}, k_{j}\right)^{\alpha_{\ell, j}}=\mathcal{C}\left(\sum_{j=1}^{N} \alpha_{\ell, j} \bar{e}_{j}^{\prime}, \sum_{j=1}^{N} \alpha_{\ell, j} k_{j}\right)
$$

Sketch of proof (2)

What if the extracted matrix M isn't a permutation matrix?

Sketch of proof (2)

What if the extracted matrix M isn't a permutation matrix? 1. If $M \overline{1} \neq \overline{1}$ then

$$
\mathcal{C}(\overline{1}, t)=a^{\overline{1}}=\mathcal{C}(M \overline{1},\langle\bar{s}, \overline{1}\rangle)
$$

Sketch of proof (2)

What if the extracted matrix M isn't a permutation matrix?

1. If $M \overline{1} \neq \overline{1}$ then

$$
\mathcal{C}(\overline{1}, t)=a^{\overline{1}}=\mathcal{C}(M \overline{1},\langle\bar{s}, \overline{1}\rangle)
$$

2. If $\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle \neq \prod_{i=1}^{N} x_{i}$

Sketch of proof (2)

What if the extracted matrix M isn't a permutation matrix?

1. If $M \overline{1} \neq \overline{1}$ then

$$
\mathcal{C}(\overline{1}, t)=a^{\overline{1}}=\mathcal{C}(M \overline{1},\langle\bar{s}, \overline{1}\rangle)
$$

2. If $\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle \neq \prod_{i=1}^{N} x_{i}$ then we invoke the extractor to get $\bar{e}, \bar{e}^{\prime}$ and k satisfying $\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{e}\right\rangle \neq \prod_{i=1}^{N} e_{i}$.

Sketch of proof (2)

What if the extracted matrix M isn't a permutation matrix?

1. If $M \overline{1} \neq \overline{1}$ then

$$
\mathcal{C}(\overline{1}, t)=a^{\overline{1}}=\mathcal{C}(M \overline{1},\langle\bar{s}, \overline{1}\rangle)
$$

2. If $\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle \neq \prod_{i=1}^{N} x_{i}$ then we invoke the extractor to get $\bar{e}, \bar{e}^{\prime}$ and k satisfying $\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{e}\right\rangle \neq \prod_{i=1}^{N} e_{i}$. Observe that

$$
\mathcal{C}\left(\bar{e}^{\prime}, k\right)=a^{\bar{e}}=\mathcal{C}(M \bar{e},\langle\bar{s}, \bar{e}\rangle)
$$

but $\bar{e}^{\prime} \neq M \bar{e}$.

Restricting the permutation

Given that we can prove that a committed matrix is a permutation matrix, what other properties can we prove about the permutation?

Restricting the permutation

Given that we can prove that a committed matrix is a permutation matrix, what other properties can we prove about the permutation?

For example, can we prove that the permutation is a rotation [RW04, dHSSV09]?

Restricting the permutation

Given that we can prove that a committed matrix is a permutation matrix, what other properties can we prove about the permutation?

For example, can we prove that the permutation is a rotation [RW04, dHSSV09]?

A rotation is precisely an automorphism of the directed cycle
 graph!

Restricting the permutation

Given that we can prove that a committed matrix is a permutation matrix, what other properties can we prove about the permutation?

For example, can we prove that the permutation is a rotation [RW04, dHSSV09]?

Let us look at the undirected cycle instead.

Restricting the permutation (graphs)

- Let \mathscr{G} be a graph with vertices $V=\{1,2,3, \ldots, N\}$. Encode the edge set as

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=\sum_{(i, j) \in E} x_{i} x_{j}
$$

Restricting the permutation (graphs)

- Let \mathscr{G} be a graph with vertices $V=\{1,2,3, \ldots, N\}$. Encode the edge set as

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=\sum_{(i, j) \in E} x_{i} x_{j}
$$

- A permutation π is an automorphism of \mathscr{G} if and only if

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=F_{\mathscr{G}}\left(x_{\pi(1)}, \ldots, x_{\pi(N)}\right)
$$

Restricting the permutation (graphs)

- Let \mathscr{G} be a graph with vertices $V=\{1,2,3, \ldots, N\}$. Encode the edge set as

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=\sum_{(i, j) \in E} x_{i} x_{j}
$$

- A permutation π is an automorphism of \mathscr{G} if and only if

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=F_{\mathscr{G}}\left(x_{\pi(1)}, \ldots, x_{\pi(N)}\right)
$$

- Apply Schwartz-Zippel ...

Restricting the permutation (directed graphs)

We can encode not only graphs, but also

- directed graphs
- labeled graphs
- hypergraphs
- etc.

Restricting the permutation (directed graphs)

We can encode not only graphs, but also

- directed graphs
- labeled graphs
- hypergraphs
- etc.

Returning to the rotation example, use the encoding polynomial

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=\sum_{(i, j) \in E} x_{i} x_{j}^{2}
$$

Restricting the permutation (directed graphs)

We can encode not only graphs, but also

- directed graphs
- labeled graphs
- hypergraphs
- etc.

Returning to the rotation example, use the encoding polynomial

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=\sum_{(i, j) \in E} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{4}^{2}+x_{4} x_{5}^{2}+x_{5} x_{1}^{2}
$$

Restricting the permutation (directed graphs)

We can encode not only graphs, but also

- directed graphs
- labeled graphs
- hypergraphs
- etc.

Returning to the rotation example, use the encoding polynomial

$$
F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=\sum_{(i, j) \in E} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{4}^{2}+x_{4} x_{5}^{2}+x_{5} x_{1}^{2}
$$

Testing $F_{\mathscr{G}}\left(x_{1}, \ldots, x_{N}\right)=F_{\mathscr{G}}\left(x_{\pi(1)}, \ldots, x_{\pi(N)}\right)$ determines whether π is a rotation.

Restricting the permutation (polynomials)

Theorem
Let F be any polynomial in $\mathbb{Z}_{q}\left[x_{1}, \ldots, x_{N}\right]$ and let S_{F} be the group of permutations π such that

$$
F\left(x_{1}, \ldots, x_{N}\right)=F\left(x_{\pi(1)}, \ldots, x_{\pi(N)}\right)
$$

Then we can prove that the permutation is chosen from S_{F}.

Summary

We have demonstrated

Summary

We have demonstrated

- an efficient proof of a shuffle with a simple analysis

Summary

We have demonstrated

- an efficient proof of a shuffle with a simple analysis
- a general method for restricting the permutation to certain groups

Summary

We have demonstrated

- an efficient proof of a shuffle with a simple analysis
- a general method for restricting the permutation to certain groups

Problem Are there applications for other restrictions than rotations, e.g. automorphisms of a complete binary tree?

Questions?

References I

R. R. Cramer, R. Gennaro, and B. Schoenmakers.

A secure and optimally efficient multi-authority election scheme.
In Advances in Cryptology - Eurocrypt '97, volume 1233 of Lecture Notes in Computer Science, pages 103-118. Springer Verlag, 1997.
國
D. Chaum.

Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM, 24(2):84-88, 1981.

References II

嗇 S. de Hoogh, B. Schoenmakers, B. Skoric, and J. Villegas. Verifiable rotation of homomorphic encryptions. In Public Key Cryptography - PKC 2009, volume 5443 of Lecture Notes in Computer Science, pages 393-410. Springer Verlag, 2009.

圊 J. Furukawa and K. Sako.
An efficient scheme for proving a shuffle.
In Advances in Cryptology - Crypto 2001, volume 2139 of
Lecture Notes in Computer Science, pages 368-387. Springer Verlag, 2001.

References III

(A. Neff.
A verifiable secret shuffle and its application to e-voting.
In 8th ACM Conference on Computer and Communications
Security (CCS), pages 116-125. ACM Press, 2001.
囯 M. K. Reiter and X. Wang.
Fragile mixing.
In 11th ACM Conference on Computer and Communications
Security (CCS), pages 227-235. ACM Press, 2004.
嗇 K. Sako and J. Killian.
Reciept-free mix-type voting scheme.
In Advances in Cryptology - Eurocrypt '95, volume 921 of
Lecture Notes in Computer Science, pages 393-403. Springer
Verlag, 1995.

References IV

