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A motivating example: Voting

Consider a voting system where each voter submit an encrypted
vote.

I How can we ensure that the voters remain anonymous when
the votes are decrypted?

I There are two main ways to achieve this, homomorphic
tallying [CGS97] and mixnets [Cha81].
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Mixnets (2)

I How can we implement a mixnet?

I Chain of mixservers, each permutes and re-encrypts its list of
inputs.

T1 T2 · · · Tk
L0 L1 L2 Lk−1 Lk

1
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Proof of a shuffle

I How can we verify that a server really permutes and
re-encrypts the votes?

I Let each server produce an interactive zero-knowledge proof, a
proof of a shuffle [SK95, Nef01, FS01].

I Like [FS01], we will construct a proof that a commitment
contains a permutation matrix.

I One can then prove that the encrypted votes are permuted
accordingly.
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Test for permutation matrices

M permutation matrix

M =

 0 1 0
1 0 0
0 0 1



Mx =

 x2
x1
x3


∏N

i=1
〈mi , x〉 = x2x1x3

= x1x2x3

M not permutation matrix

M =

 0 1 0
2 0 −1
0 0 1



Mx =

 x2
2x1 − x3

x3


∏N

i=1
〈mi , x〉 = x2(2x1 − x3)x3

6= x1x2x3
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Test for permutation matrices

Theorem (Permutation Matrix)
Let M = (mi ,j) be an N × N-matrix over Zq and x = (x1, . . . , xN)
be a list of variables. Then M is a permutation matrix if and only if∏N

i=1
〈mi , x〉 =

∏N

i=1
xi and M1 = 1 .

Lemma (Schwartz-Zippel)
Let f ∈ Zq[x1, . . . , xN ] be a non-zero polynomial of total degree d
and let e1, . . . , eN be chosen randomly from Zq. Then

Pr[f (e1, . . . , eN) = 0] ≤ d
q
.
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Recall Pedersen commitments

Let g , g1 be randomly chosen generators in a group of prime order
q. The Pedersen commitment of m ∈ Zq is

C (m, s) = g sgm
1

where s is chosen randomly from Zq.

I perfectly hiding
I computationally binding
I homomorphic, C (m, s) C (m′, s ′) = C (m + m′, s + s ′)

C (m, s)e = C (em, es)
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Generalized Pedersen commitments [FS01]

Let g , g1, . . . , gN be randomly chosen generators in a group of
prime order q. We commit to a vector m = (m1, . . . ,mN)T by

C (m, s) = g s
N∏

i=1

gmi
i

where s is chosen randomly from Zq.

I perfectly hiding
I computationally binding
I homomorphic, C (m, s) C (m′, s ′) = C (m + m′, s + s ′)

C (m, s)e = C (em, es)
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Generalized Pedersen commitments

We commit column-wise to an N × N-matrix M = (mi ,j), so
a = C (M, s) is a list of N commitments satisfying

C (M, s)e = C (Me, 〈s, e〉)

where we use the convention

ae =
∏N

i=1
aei
i .
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A review of sigma proofs

A sigma proof is a three-message protocol such that
1. the view of the verifier can be simulated for any given challenge

2. a witness can be computed from any pair of accepting
transcripts with the same random tape and distinct challenges
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Example: Proof of knowledge of discrete logarithm

P wants to prove knowledge of x such that y = g x

1. P chooses r at random and sends α = g r

2. V sends a random challenge c
3. P responds with d = cx + r
V accepts the proof iff y cα = gd

There are similar protocols for proving any polynomial relation!
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Proof of knowledge of permutation matrix

Given a matrix commitment a, P wants to prove knowledge of a
permutation matrix M and randomness s such that a = C (M, s).

1. V chooses a vector e randomly and sends it to P.
2. P uses a sigma proof to prove knowledge of t, k and a vector

e ′ such that

C (e ′, k) = ae

C
(
1, t
)

= a1∏N
i=1 e

′
i =

∏N
i=1 ei

e ′ = Me
1 = M1∏N

i=1〈mi , e〉 =
∏N

i=1 ei
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Properties of the protocol

Theorem
The protocol is a honest verifier zero knowledge proof of knowledge
of a permutation matrix M such that a = C (M, s), assuming the
commitment scheme is binding.

I The zero-knowledge property is easy.
I We must construct an extractor which computes a

permutation matrix from accepting transcripts.
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Sketch of proof

1. Run the extractor of the sigma proof N times with e1, . . . , eN ,
each time extracting e ′i and ki such that C (e ′i , ki ) = ae i .

2. The random vectors are linearly independent with probability
at least 1− N/q.

3. Linear independence implies existence of α`,j ∈ Zq such that∑N
j=1 α`,je j is the `th standard unit vector in ZN

q .

4. Then
∑N

j=1 α`,je
′
j is the `th column in M since

al =
N∏

j=1

aα`,jej =
N∏

j=1

C
(
e ′j , kj

)α`,j = C

 N∑
j=1

α`,je ′j ,
N∑

j=1

α`,jkj
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Sketch of proof (2)

What if the extracted matrix M isn’t a permutation matrix?

1. If M1 6= 1 then

C
(
1, t
)

= a1 = C
(
M1, 〈s, 1〉

)
2. If

∏N
i=1〈mi , x〉 6=

∏N
i=1 xi then we invoke the extractor to get

e, e ′ and k satisfying
∏N

i=1〈mi , e〉 6=
∏N

i=1 ei . Observe that

C
(
e ′, k

)
= ae = C (Me, 〈s, e〉)

but e ′ 6= Me.
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Restricting the permutation

Given that we can prove that a committed matrix is a permutation
matrix, what other properties can we prove about the permutation?

For example, can we prove that the permutation is a rotation
[RW04, dHSSV09]?
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Restricting the permutation

Given that we can prove that a committed matrix is a permutation
matrix, what other properties can we prove about the permutation?

For example, can we prove that the permutation is a rotation
[RW04, dHSSV09]?

A rotation is precisely an
automorphism of the directed cycle
graph!

1
2

3
4

5
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Restricting the permutation

Given that we can prove that a committed matrix is a permutation
matrix, what other properties can we prove about the permutation?

For example, can we prove that the permutation is a rotation
[RW04, dHSSV09]?

Let us look at the undirected cycle
instead.

1
2

3
4

5
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Restricting the permutation (graphs)

I Let G be a graph with vertices V = {1, 2, 3, . . . ,N}. Encode
the edge set as

FG (x1, . . . , xN) =
∑

(i ,j)∈E

xixj .

I A permutation π is an automorphism of G if and only if

FG (x1, . . . , xN) = FG (xπ(1), . . . , xπ(N)) .

I Apply Schwartz-Zippel . . .
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Restricting the permutation (directed graphs)

We can encode not only graphs, but also
I directed graphs
I labeled graphs
I hypergraphs
I etc.

Returning to the rotation example, use the encoding polynomial

FG (x1, . . . , xN) =
∑

(i ,j)∈E

xix2
j = x1x2

2 + x2x2
3 + x3x2

4 + x4x2
5 + x5x2

1

Testing FG (x1, . . . , xN) = FG (xπ(1), . . . , xπ(N)) determines whether
π is a rotation.
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Restricting the permutation (polynomials)

Theorem
Let F be any polynomial in Zq[x1, . . . , xN ] and let SF be the group
of permutations π such that

F (x1, . . . , xN) = F (xπ(1), . . . , xπ(N)) .

Then we can prove that the permutation is chosen from SF .
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Summary

We have demonstrated

I an efficient proof of a shuffle with a simple analysis
I a general method for restricting the permutation to certain

groups

Problem Are there applications for other restrictions than
rotations, e.g. automorphisms of a complete binary
tree?
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Questions?
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