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Abstract. Proofs of work (PoW) have been suggested by Dwork and
Naor (Crypto’92) as protection to a shared resource. The basic idea is to
ask the service requestor to dedicate some non-trivial amount of compu-
tational work to every request. The original applications included pre-
vention of spam and protection against denial of service attacks. More
recently, PoWs have been used to prevent double spending in the Bitcoin
digital currency system.

In this work, we put forward an alternative concept for PoWs –
so-called proofs of space (PoS), where a service requestor must dedi-
cate a significant amount of disk space as opposed to computation. We
construct secure PoS schemes in the random oracle model (with one
additional mild assumption required for the proof to go through), using
graphs with high “pebbling complexity” and Merkle hash-trees. We dis-
cuss some applications, including follow-up work where a decentralized
digital currency scheme called Spacecoin is constructed that uses PoS
(instead of wasteful PoW like in Bitcoin) to prevent double spending.

The main technical contribution of this work is the construction of
(directed, loop-free) graphs on N vertices with in-degree O(log log N)
such that even if one places Θ(N) pebbles on the nodes of the graph,
there’s a constant fraction of nodes that needs Θ(N) steps to be pebbled
(where in every step one can put a pebble on a node if all its parents
have a pebble).

1 Introduction

Proofs of Work (PoW). Dwork and Naor [16] suggested proofs of work (PoW)
to address the problem of junk emails (aka. Spam). The basic idea is to require
that an email be accompanied with some value related to that email that is
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moderately hard to compute but which can be verified very efficiently. Such a
proof could for example be a value σ such that the hash value H(Email, σ) starts
with t zeros. If we model the hash function H as a random oracle [8], then the
sender must compute an expected 2t hashes until she finds such a σ.1 A useful
property of this PoW is that there is no speedup when one has to find many
proofs, i.e., finding s proofs requires s2t evaluations. The value t should be chosen
such that it is not much of a burden for a party sending out a few emails per
day (say, it takes 10 s to compute), but is expensive for a Spammer trying to
send millions of messages. Verification on the other hand is extremely efficient,
the receiver will accept σ as a PoW for Email, if the hash H(Email, σ) starts with
t zeros, i.e., it requires only one evaluation of the hash funciton. PoWs have
many applications, and are in particular used to prevent double spending in the
Bitcoin digital currency system [38] which has become widely popular by now.

Despite many great applications, PoWs suffer from certain drawbacks.
Firstly, running PoW costs energy – especially if they are used on a massive
scale, like in the Bitcoin system. For this reason Bitcoin has even been labelled
an “environmental disaster” [3]. Secondly, by using dedicated hardware instead
of a general purpose processor, one can solve a PoW at a tiny fraction of the
hardware and energy cost, this asymmetry is problematic for several reasons.

Proofs of Space (PoS). From a more abstract point of view, a proof of work is
simply a means of showing that one invested a non-trivial amount of effort related
to some statement. This general principle also works with resources other than
computation like real money in micropayment systems [37] or human attention
in CAPTCHAs [12,46]. In this paper we put forward the concept of proofs of
space where the resource in question is disk space.

PoS are partially motivated by the observation that users often have a sig-
nificant amount of free disk space available, and in this case using a PoS is
essentially for free. This is in contrast to a PoW: even if one only contributes
computation by processors that would otherwise be idle, this will still waste
energy which usually does not come for free.

A PoS is a protocol between a prover P and a verifier V which has two
distinct phases. After an initialisation phase, the prover P is supposed to store
some data F of size N , whereas V only stores some small piece of information.
At any later time point V can initialise a proof execution phase, at the end of
which V outputs either reject or accept. We require that V is highly efficient in
both phases, whereas P is highly efficient in the execution phase providing he
stored and has random access to the data F .

As an illustrative application for a PoS, suppose that the verifier V is an
organization that offers a free email service. To prevent that someone registers a
huge number of fake-addresses for spamming, V might require users to dedicate
some nontrivial amount of disk space, say 100 GB, for every address registered.
Occasionally, V will run a PoS to verify that the user really dedicates this space.

1 The hashed Email should also contain the receiver of the email, and maybe also a
timestamp, so that the sender has to search for a fresh σ for each receiver, and also
when resending the email at a later point in time.
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The simplest solution to prove that one really dedicates the requested space
would be a scheme where the verifier V sends a pseudorandom file F of size
100 GB to the prover P during the initialization phase. Later, V can ask P to
send back some bits of F at random positions, making sure V stores (at least
a large fraction of) F . Unfortunately, with this solution, V has to send a huge
100 GB file to P, which makes this approach pretty much useless in practice.

We require from a PoS that the computation, storage requirement and com-
munication complexity of the verifier V during initialization and execution of the
PoS is very small, in particular, at most polylogarithmic in the storage require-
ment N of the prover P and polynomial in some security parameter γ. In order
to achieve small communication complexity, we must let the prover P generate a
large file F locally during an initialization phase, which takes some time I. Note
that I must be at least linear in N , our constructions will basically2 achieve this
lower bound. Later, P and V can run executions of the PoS which will be very
cheap for V, and also for P, assuming it has stored F .

Unfortunately, unlike in the trivial solution (where P sends F to V), now
there is no way we can force a potentially cheating prover P̃ to store F in-
between the initialization and the execution of the PoS: P̃ can delete F after
initialization, and instead only store the (short) communication with V during
the initialization phase. Later, before an execution of the PoS, P reconstructs F
(in time I), runs the PoS, and deletes F again once the proof is over.

We will thus consider a security definition where one requires that a cheating
prover P̃ can only make V accept with non-negligible probability if P̃ either uses
N0 bits of storage in-between executions of the PoS or if P̃ invests time T for
every execution. Here N0 ≤ N and T ≤ I are parameters, and ideally we want
them to be not much smaller than N and I, respectively. Our actual security
definition in Sect. 2 is more fine-grained, and besides the storage N0 that P̃ uses
in-between initialization and execution, we also consider a bound N1 on the total
storage used by P̃ during execution (including N0, so N1 ≥ N0).

High Level Description of Our Scheme. We described above why the simple
idea of having V send a large pseudorandom file F to P does not give a PoS as
the communication complexity is too large. Another simple idea that comes to
mind is to let V send a short description of a “randomly behaving”permutation
π : {0, 1}n → {0, 1}n to P, who then stores a table of N = n2n bits where
the entry at position i is π−1(i). During the execution phase, V asks for the
preimage of a random value y, which P can efficiently provide as the value
π−1(y) is stored at position y in the table. Unfortunately, this scheme is no
a good PoS because of time-memory trade-offs [27] which imply that one can
invert a random permutation over N values using only

√
N time and space.3 For

random functions (as opposed to permutations), it’s still possible to invert in
time and space N2/3. The actual PoS scheme we propose in this paper is based

2 One of our constructions will achieve the optimal I = Θ(N) bound, our second
construction achieves I = O(N log log N).

3 And initialising this space requires O(N log(N)) time.
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on hard to pebble graphs. During the initalisation phase, V sends the description
of a hash function to P, who then labels the nodes of a hard to pebble graph
using this function. Here the label of a node is computed as the hash of the
labels of its children. V then computes a Merkle hash of all the labels, and sends
this value to P. In the proof execution phase, V simply asks P to open labels
corresponding to some randomly chosen nodes.

Outline and Our Contribution. In this paper we introduce the concept of a
PoS, which we formally define in Sect. 2. In Sect. 3 we discuss and motivate the
model in which we prove our constructions secure (It is basically the random
oracle model, but with an additional assumption). In Sect. 4 we explain how
to reduce the security of a simple PoS (with an inefficient verifier) to a graph
pebbling game. In Sect. 5 we show how to use hash-trees to make the verifier
in the PoS from Sect. 4 efficient. In Sect. 6 we define our final construction and
prove its security in Sects. 6.1 and 6.2.

Our proof uses a standard technique for proving lower bounds on the space
complexity of computational problems, called pebbling. Typically, the lower
bounds shown using this method are obtained via the pebbling games played on
a directed graph. During the game a player can place pebbles on some vertices.
The game starts with some pebbles already on the graph. Informally, placing a
pebble on a vertex v corresponds to the fact that an algorithm keeps the label of
a vertex v in his memory. Removing a pebble from a vertex corresponds there-
fore to deleting the vertex label from the memory. A pebble can be placed on
a vertex v only if the vertices in-going to v have pebbles, which corresponds to
the fact that computing v’s label is possible only if the algorithm keeps in his
memory the labels of the in-going vertices (in our case this will be achieved by
defining the label of v to be a hash of the labels of its in-going vertices). The
goal of the player is to pebble a certain vertex of the graph. This technique was
used in cryptography already before [17,19,20]. For an introduction to the graph
pebbling see, e.g., [44].

In Sect. 6.1 we consider two different (infinite families of) graphs with differ-
ent (and incomparable) pebbling complexities. These graphs then also give PoS
schemes with different parameters (cf. Theorem 3). Informally, the construction
given in Theorem 1 proves a Ω(N/ log N) bound on the storage required by a
malicious prover. Moreover, no matter how much time he is willing to spend
during the execution of the protocol, he is forced to use at least Ω(N/ log N)
storage when executing the protocol. Our second construction from Theorem 2
gives a stronger bound on the storage. In particular, a successful malicious prover
either has to dedicate Θ(N) storage (i.e., almost as much as the N stored by
the honest prover) or otherwise it has to use Θ(N) time with every execution of
the PoS (after the initialization is completed). The second construction, whose
proof can be found in the full version of this paper [18], is based on superconcen-
trators, random bipartite expander graphs and on the graphs of Erdös, Graham
and Szemerédi [21] is quite involved and is the main technical contribution of
our paper.
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More Related Work and Applications. Dwork and Naor [16] pioneered
the concept of proofs of work as easy-to-check proofs of computational efforts.
More concretely, they proposed to use the CPU running time that is required to
carry out the proof as a measure of computational effort. In [1] Abadi, Burrows,
Manasse and Wobber observed that CPU speeds may differ significantly between
different devices and proposed as an alternative measure the number of times
the memory is accessed (i.e., the number of cache misses) in order to compute
the proof. This approach was formalized and further improved in [2,15,17,47],
which use pebbling based techniques. Such memory-hard functions cannot be
used as PoS as the memory required to compute and verify the function is the
same for provers and verifiers. This is not a problem for memory-hard functions
as the here the memory just has to be larger than the cache of a potential prover,
whereas in a PoS the storage is the main resource, and will typically be in the
range of terabytes.

Originally put forward to counteract spamming, PoWs have a vast number of
different applications such as metering web-site access [22], countering denial-of-
service attacks [6,30] and many more [29]. An important application for PoWs
are digital currencies, like the recent Bitcoin system [38], or earlier schemes like
the Micromint system of Rivest and Shamir [42]. The concept of using bounded
resources such as computing power or storage to counteract the so-called “Sybil
Attack”, i.e., misuse of services by fake identities, has already mentioned in the
work of Douceur [14].

PoW are used in Bitcoin to prevent double spending: honest miners must con-
stantly devote more computational power towards solving PoWs than a potential
adversary who tries to double spend. This results in a gigantic waste of energy [3]
devoted towards keeping Bitcoin secure, and thus also requires some strong form
of incentive for the miners to provide this computational power.4 Recently a
decentralized cryptocurrency called Spacecoin [39] was proposed which uses PoS
instead of PoW to prevent double spending. In particular, a miner in Spacecoin
who wants to dedicate N bits of disk space towards mining must just run the PoS
initialisation phase once, and after that mining is extremely cheap: the miner
just runs the PoS execution phase, which means accessing the stored space at a
few positions, every few minutes.

A large body of work investigates the concepts of proofs of storage and
proofs of retrievability (cf. [5,9,13,24,25,31] and many more). These are proof
systems where a verifier sends a file F to a prover, and later the prover can
convince the verifier that it really stored or received the file. As discussed above,
proving that one stores a (random) file certainly shows that one dedicates space,
but these proof systems are not good PoS because the verifier has to send at least
|F| bits to the verifier, and hence does not satisfy our polylogarithmic bound on
the communication complexity.

4 There are two mechanisms to incentivise mining: miners who solve a PoW get some
fixed reward, this is currently the main incentive, but Bitcoin specifies that this
reward will decrease over time. A second mechanism are transactions fees.
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Proof of Secure Erasure (PoSE) are related to PoS. Informally, a PoSE allows
a space restricted prover to convince a verifier that he has erased its memory
of size N . PoSE were suggested by Perito and Tsudik [41], who also proposed
a scheme where the verifier sends a random file of size N to the prover, who
then answers with a hash of this file. Dziembowski, Kazana and Wichs used
graph pebbling to give a scheme with small communication complexity (which
moreover is independent of N), but large Ω(N2) computation complexity (for
prover and verifier). Concurrently, and independently of our work, Karvelas and
Kiayias [32], and also Ateniese et al. [4] construct PoSE using graphs with high
pebbling complexity. Interestingly, their schemes are basically the scheme one
gets when running the initialisation and execution phase of our PoS (as in Eq. (7)
in Theorem 3).5 References [32] and [4] give a security proof of their construction
in the random oracle model, and do not make any additional assumptions as we
do. The reason is that to prove that our “collapsed PoS” (as described above)
is a PoSE it is sufficient to prove that a prover uses much space either during
initialisation or during execution. This follows from a (by now fairly standard)
“ex post facto” argument as originally used in [17]. We have to prove something
much stronger, namely, that the prover needs much space (or at least time) in
the execution phase, even if he makes an unbounded amount of queries in the
initialisation phase (we will discuss this in more detail in Sect. 3.1). As described
above, a PoS (to be precise, a PoS where the execution phase requires large
space, not just time) implies a PoSE, but a PoSE does not imply a PoS, nor
can it be used for any of the applications mentioned in this paper. The main
use-case for PoSE we know of is the one put forward by Perito and Tsudik [41],
namely, to verify that some device has erased its memory. A bit unfortunately,
Ateniese et al. [4] chose to call the type of protocols they construct also “proofs
of space” which led to some confusion in the past.

Finally, let us mention a recent beautiful paper [10] which introduces the
concept of “catalytic space”. They prove a surprising result showing that using
and erasing space is not the same relative to some additional space that is filled
with random bits and must be in its original state at the end of the computation
(i.e., it’s only used as a “catalyst”). Thus, relative to such catalytic space, proving
that one has access to some space as in a PoS, and proving that one has erased
it, like in PoSE, really can be different things.

2 Defining Proofs of Space

We denote with (outV, outP) ← 〈V(inV),P(inP)〉(in) the execution of an interac-
tive protocol between two parties P and V on shared input in, local inputs6 inP

5 There are some differences, the bounds in [4] are somewhat worse as they use hard-
to-pebble graphs with worse parameters, and [32] do not use a Merkle hash-tree to
make the computation of the verifier independent of N .

6 We use the expression “local input/output” instead the usual “private
input/output”, because in our protocols no values will actually be secret. The reason
to distinguish between the parties’ inputs is only due to the fact that P’s input will
be very large, whereas we want V to use only small storage.



Proofs of Space 591

and inV, and with local outputs outV and outP, respectively. A proof of space
(PoS) is given by a pair of interactive random access machines,7 a prover P and
a verifier V. These parties run the PoS protocol in two phases: a PoS initial-
ization and a PoS execution as defined below. The protocols are executed with
respect to some statement id, given as common input (e.g., an email address in
the example from the previous section). The identifier id is only required to make
sure that P cannot reuse the same space to execute PoS for different statements.

Initialization is an interactive protocol with shared inputs an identifier id,
storage bound N ∈ N and potentially some other parameters, which we
denote with prm = (id, N, . . .). The execution of the initialization is denoted
by (Φ, S) ← 〈V,P〉(prm), where Φ is short and S is of size N . V can output
the special symbol Φ = ⊥, which means that it aborts (this can only be the
case if V interacts with a cheating prover).

Execution is an interactive protocol during which P and V have access to the
values stored during the initialization phase. The prover P has no output,
the verifier V either accepts or rejects.

({accept, reject}, ∅) ← 〈V(Φ),P(S)〉(prm)

In an honest execution the initialization is done once at the setup of the system,
e.g., when the user registers with the email service, while the execution can
be repeated very efficiently many times without requiring a large amount of
computation.

To formally define a proof of space, we introduce the notion of a (N0, N1, T )
(dishonest) prover P̃. P̃’s storage after the initiation phase is bounded by at most
N0, while during the execution phase its storage is bounded to N1 and its running
time is at most T (here N1 ≥ N0 as the storage during execution contains at
least the storage after initialization). We remark that P̃’s storage and running
time is unbounded during the the initialization phase (but, as just mentioned,
only N0 storage is available in-between the initialization and execution phase).

A protocol (P,V) as defined above is a (N0, N1, T )-proof of space, if it satisfies
the properties of completeness, soundness and efficiency defined below.

Completeness: We will require that for any honest prover P:

Pr[out = accept : (Φ, S) ← 〈V,P〉(prm) , (out, ∅) ← 〈V(Φ),P(S)〉(prm)] = 1.

Note that the probability above is exactly 1, and hence the completeness is
perfect.

Soundness: For any (N0, N1, T )-adversarial prover P̃ the probability that V
accepts is negligible in some statistical security parameter γ. More precisely,
we have

Pr[out = accept : (Φ, S) ← 〈V, P̃〉(prm), (out, ∅) ← 〈V(Φ), P̃(S)〉(prm)] ≤ 2−Θ(γ) (1)

7 In a PoS, we want the prover P to run in time much less than its storage size. For
this reason, we must model our parties as random access machines (and not, say
Turing machines), where accessing a storage location is assumed to take constant
(or at most polylogarithmic) time.
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The probability above is taken over the random choice of the public para-
meters prm and the coins of P̃ and V.8

Efficiency: We require the verifier V to be efficient, by which (here and below)
we mean at most polylogarithmic in N and polynomial in some security
parameter γ. Prover P must be efficient during execution, but can run in
time poly(N) during initialization.9

In the soundness definition above, we only consider the case where the PoS is
executed only once. This is without loss of generality for PoS where V is stateless
(apart from Φ) and holds no secret values, and moreover the honest prover P

uses only read access to the storage of size N holding S. The protocols in this
paper are of this form. We will sometimes say that a PoS is (N0, N1, T )-secure
if it is a (N0, N1, T )-proof of space.

It is instructive to observe what level of security trivially cannot be achieved
by a PoS. Below we use small letters n, t, c to denote values that are small, i.e.,
polylogarithmic in N and polynomial in a security parameter γ. If the honest
prover P is an (N, N + n, t) prover, where t, n denote the time and storage
requirements of P during execution, then there exists no

1. (N, N + n, t)-PoS, as the honest prover “breaks” the scheme by definition,
and

2. (c, I + t + c, I + t)-PoS, where c is the number of bits sent by V to P dur-
ing initialization. To see this, consider a malicious prover P̃ that runs the
initialization like the honest P, but then only stores the messages sent by V

during initialization instead of the entire large S. Later, during execution, P̃

can simply emulate the initialization process (in time I) to get back S, and
run the normal execution protocol (in time t).

3 The Model

We analyze the security and efficiency of our PoS in the random oracle (RO)
model [8], making an additional assumption on the behavior of adversaries,
which we define and motivate below. Recall that in the RO model, we assume
that all parties (including adversaries) have access to the same random function
H : {0, 1}∗ → {0, 1}L. In practice, one must instantiate H with a real hash func-
tion like SHA3. Although security proofs in the RO model are just a heuristic
argument for real-world security, and there exist artificial schemes where this
heuristic fails [11,23,34], the model has proven surprisingly robust in practice.

8 Our construction is based on a hash-function H, which will be part of prm and we
require to be collision resistant. As assuming collision resistance for a fixed function
is not meaningful [43], we must either assume that the probability of Eq. (1) is over
some distribution of identities id (which can then be used as a hash key), or, if we
model H as a random oracle, over the choice of the random oracle.

9 As explained in the introduction, P’s running time I during initialization must be
at least linear in the size N of the storage. Our construction basically match this
I = Ω(N) lower bound as mentioned in Footnote 2.
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Throughout, we fix the output length of our random oracle H : {0, 1}∗ →
{0, 1}L to some L ∈ N, which should be chosen large enough, so it is infeasible
to find collisions. As finding a collision requires roughly 2L/2 queries, setting
L = 512 and assuming that the total number of oracle queries during the entire
experiment is upper bounded by, say 2L/3, would be a conservative choice.

3.1 Modeling the Malicious Prover

In this paper, we want to make statements about adversaries (malicious provers)
P̃ with access to a random oracle H : {0, 1}∗ → {0, 1}L and bounded by three
parameters N0, N1, T . They run in two phases:

1. In a first (initialization) phase, P̃ makes queries10 A = (a1, . . . , aq) to H
(adaptively, i.e., ai can be a function of H(a1), . . . ,H(ai−1)). At the end of
this phase, P̃ stores a file S of size N0L bits, and moreover he must commit
to a subset of the queries B ⊆ A of size N (technically, we’ll do this by a
Merkle hash-tree).

2. In a second phase, P̃(S) is asked to output H(b) for some random b ∈ B. The
malicious prover P̃(S) is allowed a total number T of oracle queries in this
phase, and can use up to N1L bits of storage (including the N0L bits for S).

As H is a random oracle, one cannot compress its uniformly random outputs. In
particular, as S is of size N0L, it cannot encode more than N0 outputs of H. We
will make the simplifying assumption that we can explicitly state which outputs
these are by letting SH ⊂ {0, 1}L, |SH| ≤ N0 denote the set of all possible
outputs H(a), a ∈ A that P̃(S) can write down during the second phase without
explicitly querying H on input a in the 2nd phase.11 Similarly, the storage bound
N1L during execution implies that P̃ cannot store more than N1 outputs of H
at any particular time point, and we assume that this set of ≤ N1 inputs is well
defined at any time-point. The above assumption will allow us to bound the
advantage of a malicious prover in terms of a pebbling game.

The fact that we need the additional assumption outlined above and cannot
reduce the security of our scheme to the plain random oracle model is a bit
unsatisfactory, but unfortunately the standard tools (in particular, the elegant
“ex post facto”argument from [17]), typically used to reduce pebbling complexity

10 The number q of queries in this phase is unbounded, except for the huge exponential
2L/3 bound on the total number of oracle queries made during the entire experiment
by all parties mentioned above.

11 Let us stress that we do not claim that such an SH exists for every P̃, one can easily
come up with a prover where this is not the case (as we will show below). All we need
is that for every (N0, N1, T ) prover P̃, there exists another prover P̃′ with (almost)
the same parameters and advantage, that obeys our assumption.

An adversary with N0 = N1 = T = 1 not obeying our assumption is, e.g., a P̃

that makes queries 0 and 1 and stores S = H(0) ⊕ H(1) in the first phase. In the
second phase, P̃(S) picks a random b ← {0, 1}, makes the query b, and can write
down H(b), H(1 − b) = S ⊕ H(b). Thus, P̃(S) can write 2 > N0 = 1 values H(0) or
H(1) without quering them in the 2nd phase.



594 S. Dziembowski et al.

to the number of random oracle queries, cannot be applied in our setting due
to the auxiliary information about the random oracle the adversary can store.
We believe that a proof exploiting the fact that random oracles are incompress-
ible using techniques developed in [26,45] can be used to avoid this additional
assumption, and we leave this question as interesting future work.

3.2 Storage and Time Complexity

Time Complexity. Throughout, we let the running time of honest and adver-
sarial parties be the number of oracle queries they make. We also take into
account that hashing long messages is more expensive by “charging”k queries
for a single query on an input of bit-length L(k − 1) + 1 to Lk. Just counting
oracle queries is justified by the fact that almost all computation done by honest
parties consists of invocations of the random-oracle, thus we do not ignore any
computation here. Moreover, ignoring any computation done by adversaries only
makes the security proof stronger.

Storage Complexity. Unless mentioned otherwise, the storage of honest and
adversarial parties is measured by the number of outputs y = H(x) stored.The
honest prover P will only store such values by construction; for malicious provers
P̃ this number is well defined under the assumption from Sect. 3.1.

4 PoS from Graphs with High Pebbling Complexity

The first ingredient of our proof uses graph pebbling. We consider a directed,
acyclic graph G = (V, E). The graph has |V | = N vertices, which we label with
numbers from the set [N ] = {1, . . . , N}. With every vertex v ∈ V we associate
a value w(v) ∈ {0, 1}L, and extend the domain of w to include also ordered
tuples of elements from V in the following way: for V ′ = (v1, . . . , vn) (where
vi ∈ V ) we define w(V ′) = (w(v1), . . . , w(vn)). Let π(v) = {v′ : (v′, v) ∈ E}
denote v’s predecessors (in some arbitrary, but fixed order). The value w(v) of
v is computed by applying the random oracle to the index v and the values of
its predecessors

w(v) = H(v, w(π(v))) . (2)

Note that if v is a source, i.e., π(v) = ∅, then w(v) is simply H(v). Our PoS will
be an extension of the simple basic PoS (P0,V0)[G,Λ] from Fig. 1, where Λ is
an efficiently samplable distribution that outputs a subset of the vertices V of
G = (V, E). This PoS does not yet satisfy the efficiency requirement from Sect. 2,
as the complexity of the verifier needs to be as high as the one of the prover. This
is because, in order to perform the check in Step 3 of the execution phase, the
verifier needs to compute w(C) himself. In our model, as discussed in Sect. 3.1,
the only way a malicious prover P̃0(S) can determine w(v) is if w(v) ∈ SH is
in the encoded set of size at most N0, or otherwise by explicitly making the
oracle query H(v, w(π(v))) during execution. Note that if w(i) �∈ SH for some
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Parameters prm = (id, N, G = (V, E), Λ), where G is a graph on |V | = N vertices and

Λ is an efficiently samplable distribution over V β (we postpone specifying β as well as

the function of id to Sect. 6).

Initialization (S, ∅) ← 〈P0, V0〉(prm) where S = w(V ).

Execution (accept/reject, ∅) ← 〈V(∅), P(S)〉(prm)
1. V0(∅) samples C ← Λ and sends C to P0.

2. P0(S) answers with A = w(C) ⊂ S.

3. V0(∅) outputs accept if A = w(C) and reject otherwise.

Fig. 1. The basic PoS (P0, V0)[G, Λ] (with inefficient verifier V0).

i ∈ π(v), then P̃0(S) will have to make even more queries recursively to learn
w(v). Hence, in order to prove (N0, N1, T )-security of the PoS (P0,V0)[G,Λ] in
our idealized model, it suffices to upper bound the advantage of Player 1 in the
following pebbling game on G = (V, E):

1. Player 1 puts up to N0 initial pebbles on the vertices of V.
2. Player 2 samples a subset C ← Λ of size α of challenge vertices.
3. Player 1 applies a sequence of up to T steps according to the following rules:

(i) it can place a pebble on a vertex v if (1) all its predecessors u ∈ π(v) are
pebbled and (2) there are currently less than N1 vertices pebbled.

(ii) it can remove a pebble from any vertex.
4. Player 1 wins if it places pebbles on all vertices of C.

In the pebbling game above, Step 1 corresponds to a malicious prover P̃0 choosing
the set SH. Step 3 corresponds to P̃0 computing values according to the rules in
Eq. (2), while obeying the N1 total storage bound. Putting a pebble corresponds
to invoking y = H(x) and storing the value y. Removing a pebble corresponds
to deleting some previously computed y.

5 Efficient Verifiers Using Hash Trees

The PoS described in the previous section does not yet meet our Definition from
Sect. 2 as V0 is not efficient. In this section we describe how to make the verifier
efficient, using hash-trees, a standard cryptographic technique introduced by
Ralph Merkle [35].

Using Hash Trees for Committing. A hash-tree allows a party P to compute
a commitment φ ∈ {0, 1}L to N data items x1, . . . , xN ∈ {0, 1}L using N − 1
invocations of a hash function H : {0, 1}∗ → {0, 1}L. Later, P can prove to a
party holding φ what the value of any xi is, by sending only L log N bits. For
example, for N = 8, P commits to x1, . . . , xN by hashing the xi’s in a tree like
structure as

φ = H( H( H(x1, x2),H(x3, x4) ),H( H(x5, x6),H(x7, x8) ) )
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We will denote with T H(x1, . . . , xN ) the 2N −1 values of all the nodes (including
the N leaves xi and the root φ) of the hash-tree, e.g., for N = 8, where we define
xab = H(xa, xb)

T H(x1, . . . , x8) = {x1, . . . , x8, x12, x34, x56, x78, x1234, x5678, φ = x12345678}

The prover P, in order to later efficiently open any xi, will store all 2N −1 values
T = T H(x1, . . . , xN ), but only send the single root element φ to a verifier V.
Later P can “open” any value xi to V by sending xi and the log N values, which
correspond to the siblings of the nodes that lie on the path from xi to φ, e.g., to
open x3 P sends x3 and open(T , 3) = (x12, x4, x5678) and the prover checks if

vrfy(φ, 3, x3, (x12, x4, x5678)) =
(

H(x12,H(x3, x4)), x56789)
?
= φ

)

As indicated above, we denote with open(T , i) ⊂ T the log N values P must
send to V in order to open xi, and denote with vrfy(φ, i, xi, o) → {accept, reject}
the above verification procedure. This scheme is correct, i.e., for φ, T computed
as above and any i ∈ [N ], vrfy(φ, i, xi, open(T , i)) = accept.

The security property provided by a hash-tree states that it is hard to open
any committed value in more than one possible way. This “binding” property can
be reduced to the collision resistance of H: from any φ, i, (x, o), (x′, o′), x �= x′

where vrfy(φ, i, x, o) = vrfy(φ, i, x′, o′) = accept, one can efficiently extract a
collision z �= z′,H(z) = H(z′) for H.

We add an initialization phase to the graph based PoS from Fig. 1, where the
prover P(prm) commits to x1 = w(v1), . . . , xN = w(vN ) by computing a hash
tree T = T H(x1, . . . , xN ) and sending its root φ to V. In the execution phase,
the prover must then answer a challenge c not only with the value xc = w(c),
but also open c by sending (xc, open(T , c)) which P can do without any queries
to H as it stored T .

If a cheating prover P̃(prm) sends a correctly computed φ during the initial-
ization phase, then during execution P̃(prm, S) can only make V(prm, φ) accept
by either answering each challenge c with the correct value w(c), or by breaking
the binding property of the hash-tree (and thus the collision resistance of the
underlying hash-function).

We are left with the challenge to deal with a prover who might cheat and
send a wrongly computed Φ̃ �= φ during initialization. Some simple solutions are

– Have V compute φ herself. This is not possible as we want V’s complexity to
be only polylog in N .

– Let P prove, using a proof system like computationally sound (CS) proofs [36]
or universal arguments [7], that φ was computed correctly. Although these
proof systems do have polylogarithmic complexity for the verifier, and thus
formally would meet our efficiency requirement, they rely on the PCP theorem
and thus are not really practical.

Dealing with Wrong Commitments. Unless P̃ breaks the collision resistance
of H, no matter what commitment Φ̃ the prover P sends to V, he can later only
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open it to some fixed N values which we will denote x̃1, . . . , x̃N .12 We say that
x̃i is consistent if

x̃i = H(i, x̃i1 , . . . , x̃id
) where π(i) = {i1, . . . , id} (3)

Note that if all x̃i are consistent, then Φ̃ = φ. We add a second initialization
phase to the PoS, where V will check the consistency of α random x̃i’s. This can
be done by having P̃ open x̃i and x̃j for all j ∈ π(i). If P̃ passes this check, we
can be sure that with high probability a large fraction of the x̃i’s is consistent.
More concretely, if the number of challenge vertices is α = εt for some ε > 0,
then P̃ will fail the check with probability 1 − 2−Θ(t) if more than an ε-fraction
of the x̃i’s are inconsistent.

A cheating P̃ might still pass this phase with high probability with an Φ̃ where
only 1 − ε fraction of the x̃i are consistent for some sufficiently small ε > 0. As
the inconsistent x̃i are not outputs of H, P̃ can chose their value arbitrarily, e.g.,
all being 0L. Now P̃ does not have to store this εN inconsistent values x̃j while
still knowing them.

In our idealized model as discussed in Sect. 3.1, one can show that this is
already all the advantage P̃ gets. We can model an εN fraction of inconsistent
x̃i’s by slightly augmenting the pebbling game from Sect. 4. Let the pebbles from
the original game be white pebbles. We now additionally allow player 1 to put
εN red pebbles (apart from the N0 white pebbles) on V during step 1. These
red pebbles correspond to inconsistent values. The remaining game remains the
same, except that player 1 is never allowed to remove red pebbles.

We observe that being allowed to initially put an additional εN red pebbles
is no more useful than getting an additional εN white pebbles (as white pebbles
are strictly more useful because, unlike red pebbles, they later can be removed.)
Translated back to our PoS, in order prove (N0, N1, T )-security of our PoS allow-
ing up to εN inconsistent values, it suffices to prove (N0 − εN, N1 − εN, T )-
security of the PoS, assuming that the initial commitment is computed honestly,
and there are no inconsistent values (and thus no red pebbles in the correspond-
ing game).

6 Our Main Construction

Below we formally define our PoS (P,V). The common input to P,V are the
parameters prm = (id, 2N, γ, G, Λ), which contain the identifier id ∈ {0, 1}∗, a
storage bound 2N ∈ N (i.e., 2NL bits),13 a statistical security parameter γ, the
description of a graph G(V, E) on |V | = N vertices and an efficiently samplable
distribution Λ which outputs some “challenge”set C ⊂ V of size α = α(γ, N).

Below H denotes a hash function, that depends on id: given a hash function
H′(.) (which we will model as a random oracle in the security proof), throughout

12 Potentially, P̃ cannot open some values at all, but wlog. we assume that it can open
every value in exactly one way.

13 We set the bound to 2N , so if we let N denote the number of vertices in the under-
lying graph, we must store 2N − 1 values of the hash-tree.
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we let H(.) denote H′(id, .). The reason for this is simply so we can assume that
the random oracles H′(id, .) and H′(id′, .) used in PoS with different identifiers
id �= id′ are independent, and thus anything stored for the PoS with identifier id

is useless to answer challenges in a PoS with different identifier id′.

Initialization (Φ, S) ← 〈V,P〉(prm):
1. P sends V a commitment φ to w(V )

– P computes the values xi = w(i) for all i ∈ V as in Eq. (2).
– P’s output is a hash-tree S = T H(x1, . . . , xN ), which requires

|S| = (2N − 1)L bits) as described in Sect. 5.
– P sends the root φ ∈ S to V.

2. P proves consistency of φ for α = α(γ, N) random values
– V picks a set of challenges C ← Λ where the size of C is α and

sends C to P.
– For all c ∈ C, P opens the value corresponding to c and all its

predecessors to V by sending, for all c ∈ C

{(xi, open(S, i)) : i ∈ {c, π(c)}}

– V verifies that P sends all the required openings, and they are
consistent, i.e., for all c ∈ C the opened values x̃c and x̃i, i ∈
π(c) = (i1, . . . , id) must satisfy x̃c = H(c, x̃i1 , . . . , x̃id

), and the
verification of the opened commitments passes. If either check
fails, V outputs Φ = ⊥ and aborts. Otherwise, V outputs Φ = φ,
and the initialization phase is over.

Execution (accept/reject, ∅) ← 〈V(Φ),P(S)〉(prm):
P proves it stores the committed values by opening a random
β = Θ(γ) subset of them

– V picks a challenge set C ⊂ V of size |C| = β at random, and sends
C to P.

– P answers with {oc = (xc, open(S, c)) : c ∈ C}.

– V checks for every c ∈ C if vrfy(Φ, c, oc)
?
= accept. V outputs accept

if this is the case and reject otherwise.

6.1 Constructions of the Graphs

We consider the following pebbling game, between a player and a challenger, for
a directed acyclic graph G = (V, E) and a distribution λ over V .

1. Player puts initial pebbles on some subset U ⊆ V of vertices.
2. Challenger samples a “challenge vertex” c ∈ V according to λ.
3. Player applies a sequence of steps according to the following rules:

(i) it can place a pebble on a vertex v if all its predecessors u ∈ π(v) are
pebbled.
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(ii) it can remove a pebble from any vertex.
4. Player wins if it places a pebble on c.

Let S0 = |U | be the number of initial pebbles, S1 be the total number of used
pebbles (or equivalently, the maximum number of pebbles that are present in the
graph at any time instance, including initialization), and let T be the number of
pebbling steps given in 3i). The definition implies that S1 ≥ S0 and T ≥ S1 −S0.
Note, with S0 = |V | pebbles the player can always achieve time T = 0: it can
just place initial pebbles on V .

Definition 1. Consider functions f = f(N, S0) and g = g(N, S0, S1). A family
of graphs {GN = (VN , EN ) | |VN | = N ∈ N} is said to have pebbling complexity
Ω(f, g) if there exist constants c1, c2, δ > 0 and distributions λN over VN such
that for any player that wins the pebbling game on (GN , λN ) (as described
above) with probability 1 it holds that

Pr[ S1 ≥ c1f(N, S0) ∧ T ≥ c2g(N, S0, S1) ] ≥ δ (4)

Let G(N, d) be the set of directed acyclic graphs G = (V, E) with |V | = N
vertices and the maximum in-degree at most d. We now state our two main
pebbling theorems:

Theorem 1. There exists an explicit family of graphs GN ∈ G(N, 2) with peb-
bling complexity

Ω(N/ log N, 0) (5)

In the next theorem we use the Iverson bracket notation: [φ] = 1 if statement φ
is true, and [φ] = 0 otherwise.

Theorem 2. There exists a family of graphs GN ∈ G(N, O(log log N)) with
pebbling complexity

Ω(0, [S0 < τN ] · max{N, N2/S1}) (6)

for some constant τ ∈ (0, 1). It can be constructed by a randomized algorithm
with a polynomial expected running time that produces the desired graph with
probability at least 1 − 2−Θ(N/ log N).

Complete proofs of these theorems are given in the full version of this paper [18];
here we give a brief summary of our techniques. For Theorem 1 we use the con-
struction of Paul, Tarjan and Celoni [40], and derive the theorem as a corollary
of their Lemma 2. For Theorem 2 we use a new construction which relies on three
building blocks: (i) random bipartite graphs Rd

(m) ∈ G(2m, d) with m inputs and

m outputs; (ii) superconcentrator graphs C(m) with m inputs and m outputs;
(iii) graphs Dt = ([t], Et) of Erdös, Graham and Szemerédi [21] with dense long
paths. These are directed acyclic graphs with t vertices and Θ(t log t) edges (of
the form (i, j) with i < j) that satisfy the following for some constant η ∈ (0, 1)
and a sufficiently large t: for any subset X ⊆ [t] of size at most ηt graph Dt

contains a path of length at least ηt that avoids X. We show that family Dt can
be chosen so that the maximum in-degree is Θ(log t). The main component of
our construction is graph G̃d

(m,t) defined as follows:
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– Add mt nodes Ṽ = V1 ∪ . . . ∪ Vt to G̃d
(m,t) where |V1| = . . . = |Vt| = m. This

will be the set of challenges.
– For each edge (i, j) of graph Dt add a copy of graph Rd

(m) from Vi to Vj ,

i.e. identify the inputs of Rd
(m) with nodes in Vi (using an arbitrary permu-

tation) and the outputs of Rd
(m) with nodes in Vj (again, using an arbitrary

permutation).

We set d = Θ(1), t = Θ(log N) and m = Θ(N/t) (with specific constants), then
G̃d

(m,t) ∈G(mt, O(log log N)).

Note that a somewhat similar graph was used by Dwork, Naor and Wee [17].
They connect bipartite graphs Rd

(m) consecutively, i.e. instead of graph Dt they use
a chain graph with t nodes. Dwork et al. give an intuitive argument that removing
at most τm nodes from each layer V1, . . . , Vt (for some constant τ < 1) always
leaves a graph which is “well-connected”: informally speaking, many nodes of
V1 are still connected to many nodes of Vt. (We give a formal treatment of their
argument in the full version of this paper [18].) However, this does not hold
if more than m = Θ(N/ log N) nodes are allowed to be removed: by placing
initial pebbles on, say, the middle layer Vt/2 one can completely disconnect V1

from Vt.
In contrast, in our construction removing any τ ′N nodes still leaves a graph

which is “well-connected”. Our argument is as follows. If constant τ ′ is sufficiently
small then there can be at most ηt layers with more than τm initial pebbles (for
a given constant τ < 1). By the property of Dt, there exists a sufficiently long
path P in Dt that avoids those layers. We can thus use the argument above for
the subgraph corresponding to P . We split P into three parts of equal size, and
show that many nodes in the first part are connected to many nodes in the third
part.

In this way we prove that graphs G̃d
(m,t) have pebbling complexity Ω(0, [S0 <

τN ] ·N). To get complexity Ω(0, [S0 < τN ] ·max{N, N2/S1}), we add mt extra
nodes V0 and a copy of superconcentrator C(mt) from V0 to Ṽ . We then use a
standard “basic lower bound argument” for superconcentrators [33].

Remark 1. As shown in [28], any graph G ∈ G(N, O(1)) can be entirely pebbled
using S1 = O(N/ log N) pebbles (without any initial pebbles). This implies that
expression N/ log N in Theorem 1 cannot be improved upon. Note, this still
leaves the possibility of a graph that can be pebbled using O(N/ log N) pebbles
only with a large time T (e.g. superpolynomial in N). Examples of such graph for
a non-interactive version of the pebble game can be found in [33]. Results stated
in [33], however, do not immediately imply a similar bound for our interactive
game.

6.2 Putting Things Together

Combining the results and definitions from the previous sections, we can now
state our main theorem.
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Theorem 3. In the model from Sect. 3.1, for constants ci > 0, the PoS from
Sect. 6 instantiated with the graphs from Theorem 1 is a

(c1(N/ log N), c2(N/ log N),∞) -secure PoS. (7)

Instantiated with the graphs from Theorem 2 it is a

(c3N, ∞, c4N)-secure PoS. (8)

Efficiency, measured as outlined in Sect. 3.2, is summarized in the table below
where γ is the statistical security parameter

Communication Computation P Computation V

PoS Eq. (7) Initialization O(γ log2 N) 4N O(γ log2 N)

PoS Eq. (7) Execution O(γ log N) 0 O(γ log N)

PoS Eq. (8) Initialization O(γ log N log log N) O(N log log N) O(γ log N log log N)

PoS Eq. (8) Execution O(γ log N) 0 O(γ log N)

Equation (8) means that a successful cheating prover must either store a file of
size Ω(N) (in L bit blocks) after initialization, or make Ω(N) invocations to
the RO. Equation (7) gives a weaker Ω(N/ log N) bound, but forces a potential
adversary not storing that much after initialization, to use at least Ω(N/ log N)
storage during the execution phase, no matter how much time he is willing to
invest. This PoS could be interesting in contexts where one wants to be sure that
one talks with a prover who has access to significant memory during execution.

Below we explain how security and efficiency claims in the theorem were
derived. We start by analyzing the basic (inefficient verifier) PoS (P0,V0)[G,Λ]
from Fig. 1 if instantiated with the graphs from Theorems 1 and 2.

Proposition 1. For some constants ci > 0, if GN has pebbling complexity
Ω(f(N), 0) according to Definition 1, then the basic PoS (P0,V0)[GN , ΛN ]
as illustrated in Fig. 1, where the distribution ΛN samples Θ(γ) (for a sta-
tistical security parameter γ) vertices according to the distribution λN from
Definition 1, is

(S0, c1f(N),∞)-secure (for any S0 ≤ c1f(N)) (9)

If GN has pebbling complexity (0, g(N, S0, S1)), then for any S0, S1 the PoS
(P0,V0)[GN , ΛN ] is

(S0, S1, c2g(N, S0, S1))-secure. (10)

Above, secure means secure in the model from Sect. 3.1.

(The proof of appears in the full version [18].) Instantiating the above proposition
with the graphs GN from Theorems 1 and 2, we can conclude that the simple
(inefficient verifier) PoS (P0,V0)[GN , ΛN ] is

(c1N/ log N, c2N/ log N, ∞) and (S0, S1, c3 · [S0 ≤ τN ] · max{N, N2/S1})
(11)
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secure, respectively (for constants ci > 0, 0 < τ < 1 and [S0 < τN ] = 1
if S0 ≤ τN and 0 otherwise). If we set S0 = ⌊τN⌋ = c4N , the right side
of Eq. (11) becomes (c4N, S1, c3 · max{N, N2/S1}) and further setting S1 =
∞ (c4N, ∞, c3N) As explained in Sect. 5, we can make the verifier V0 efficient
during initialization, by giving up on εN in the storage bound. We can choose
ε ourselves, but must check Θ(γ/ε) values for consistency during initialization
(for a statistical security parameter γ). For our first PoS, we set ε = c1

2 log N and

get with c5 = c1/2 using c2 ≥ c1

(c1 · N/ log N − ε · N
︸ ︷︷ ︸

=c5N/ log N

, c2 · N/ log N − ε · N
︸ ︷︷ ︸

≥c5N/ log N

,∞)

security as claimed in Eq. (7). For the second PoS, we set ε = c4

2 which gives
with c6 = c4/2

(c4N − εN
︸ ︷︷ ︸

≥c6N

,∞ − εN, c3N)

security, as claimed in Eq. (8). Also, note that the PoS described above are PoS
as defined in Sect. 6 if instantiated with the graphs from Theorems 1 and 2,
respectively.

Efficiency of the PoS Eq. (7). We analyze the efficiency of our PoS, mea-
suring time and storage complexity as outlined in Sect. 3.2. Consider the
(c1N/ log N, c2N/ log N, ∞)-secure construction from Eq. (7). In the first phase
of the initialization, P needs roughly 4N = Θ(N) computation: using that the
underlying graph has max in-degree 2, computing w(V ) according to Eq. (2)
requires N hashes on inputs of length at most 2L+log N ≤ 3L, and P makes an
additional N − 1 hashes on inputs of length 2L to compute the hash-tree. The
communication and V’s computation in the first phase of initialization is Θ(1)
(as V just receives the root φ ∈ {0, 1}L).

During the 2nd phase of the initialization, V will challenge P on α (to be
determined) vertices to make sure that with probability 1 − 2−Θ(γ), at most an
ε = Θ(1/ log N) fraction of the x̂i are inconsistent. As discussed above, for this
we have to set α = Θ(γ log N). Because this PoS is based on a graph with degree
2 (cf. Theorem 1), to check consistency of a x̂i one just has to open 3 values.
Opening the values requires to send log N values (and the verifier to compute
that many hashes). This adds up to an O(γ log2 N) communication complexity
during initialization, V’s computation is of the same order.

During execution, P opens φ on Θ(γ) positions, which requires Θ(γ log N)
communication (in L bit blocks), and Θ(γ log N) computation by V.

Efficiency of the PoS Eq. (8). Analyzing the efficiency of the second PoS is
analogous to the first. The main difference is that now the underlying graph has
larger degree O(log log N) (cf. Theorem 2), and we only need to set ε = Θ(1).
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