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Abstract. The goal of the ProofPeer project is to make collaborative
theorem proving a reality. An important part of our plan to make this
happen is ProofScript, a language designed to be the main user inter-
face of ProofPeer. Of foremost importance in the design of ProofScript
is its fit within a collaborative theorem proving environment. By this
we mean that it needs to fit into an environment where peers who are
not necessarily part of the current theorem proving and programming
language communities work independently from but collaboratively with
each other to produce formal definitions and proofs. All aspects of Proof-
Script are shaped by this design principle. In this paper we will discuss
ProofScript’s most important aspect of being an integrated language
both for interactive proof and for proof scripting.

1 Introduction

Interactive theorem proving (ITP) has come a long way since its inception in
the seventies. We have argued elsewhere [2] that collaborative theorem proving
(CTP) represents its natural evolution, where we defined CTP as the social
machine of ITP. The goal of the ProofPeer [I] project is to make CTP a reality
both by developing CTP fundamentals and by building a practical CTP system.

An important component of ProofPeer is the language that peers use to for-
mulate theorems and proofs, which we call ProofScript. In many respects our
role model and arguably the state of the art for a structured proof language
is Isabelle/Tsar [6]. The Isabelle/Isar system consists of a complicated stack in
which the programming language Standard ML powers the Isabelle kernel and
its programmatic extensions. Isar is the most important of these extensions.
That means that in order to add automation and scripting to Isar, one needs
to be familiar with the low-level ML fundamentals on which Isar itself is built.
In acknowledgment of this, limited capabilities for proof automation called Eis-
bach have recently been added to Isar so that proof methods can be formulated
within the Isar language itself [9]. Apart from the fact that this only makes pos-
sible proof automation of limited scope, we think that the general situation has
become even more complex by this addition, as depicted in Fig. [T}

Some say that complexity crushes the human mind, others say that one
should design things as simple as possible, but not simpler. Not wanting to ignore
any of these truths, with ProofScript we are trying to condense the capabilities,
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Fig. 1. Surface complexity of Isabelle/Isar vs. ProofPeer

ideas, and experience embodied by the Isabelle/Isar stack into a single language
which serves us as a fresh starting point for exploring collaborative theorem
proving. This is not unsimilar to how ITP started out, when ML was designed
as a language to explore the design space of ITP [I0] before extension pyramids
like Isabelle/Isar were built on top of it.

Our goal is to minimize the surface complezity the user of our system per-
ceives, thus opening up the system to a wide audience of mathematicians, en-
gineers, basically anyone in need of designing correct virtual or physical arti-
facts. We do not expect proofpeers to be familiar with type theory or to possess
other knowledge usually common only in the programming language community.
ProofScript provides us with a unified layer of abstraction which we hope is easy
to learn and become productive in. Picking up ProofScript should not be harder
than, for example, learning Javascript. Having this abstraction layer also stabi-
lizes ProofPeer as an environment, as changes to how theories are stored, how
they are interpreted/compiled, how their execution is distributed in our cloud
computing environment etc. can to a large extent happen under the hood.

In this paper we describe the current state of the ProofScript language. Al-
though capability wise we are nowhere near yet what the whole Isabelle/Isar
stack can do, we have made important steps towards this goal and we think that
the promise of our approach is now apparent.

We will first give an overview of the programming language aspects of Proof-
Script in Section [2] After describing the logical foundations of ProofScript in
Section [3] we describe in Section [d] how we integrated them with the program-
ming language into an approach we call structured proof scripting. We conclude
in Section Bl

For further information about ProofScript, and to experiment with our cur-
rent implementation, please consult the ProofScript documentation/ [3].
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2 The Programming Language

In this section we give an overview of the ProofScript programming language,
with a focus on why we designed the language as we did.

2.1 Theories and Namespaces

ProofScript is written in units called theories. All theories except the root| the-
ory [8] have one or more parent theories which they extend, thus forming a
directed, acyclic and connected theory extension graph. Before a theory is exe-
cuted, all of its parents must have been executed. The result of executing a theory
is basically a binding of names to computed values, which is usually persisted
after execution.

Each theory has its own unique namespace. Like Java packages, namespaces
are organized as a directory-like structure. We use them to limit both name
conflicts in theories and user access privileges to those theories. The namespace
tree is orthogonal to the extension graph, and thus one way for peers to col-
laborate with each other is by extending each other’s theories. Within a theory,
namespace aliases can be defined.

2.2 Types and Patterns

ProofScript is dynamically typed. This means types are checked during the ex-
ecution of a theory, and not statically, i.e. at some time between the writing
and the execution of the theory. This choice is somewhat unorthodox, given that
we have drawn earlier parallels with Standard ML, which is famous for the in-
vention of static type checking via the Hindley-Milner type system. The main
reason for our choice is that a static type system that approximates the flexibil-
ity of dynamical typing would need to include advanced concepts like functors,
type classes, and so on. This would presume a depth of programming knowledge
which is simply not realistic for our intended target audience of proofpeers. To
further strengthen our argument, languages like Python and Julia have shown
that dynamic typing is well-received in the scientific community.

Another more subtle reason is that ProofScript’s logic is based on set theory,
which in some sense is closer to dynamic typing than static typing. Of course
there is no technical reason why there should be any affinity between scripting
language and logic, but from an anthropological point of view there seems to be
an advantage in fostering these affinities.

Unlike set theory though, being a vehicle for theorem proving, ProofScript
has strong types. In particular this means that values of type Theorem can only be
created by truth preserving operations sanctioned by the logical kernel. Similarly,
any other value obeys the invariants established by its type.

There are four built-in logic related types: Context, Theorem, Term and Type.
These are covered in Section [3] Furthermore, there are currently eight built-in
non-logical types, shown in Figure 2}
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Type Example Value
Nil nil
Integer -18446744073709551617
String "ProofScript"
Boolean false
Tuple (7, "seven", ("two", 2))
Set {2, 3, 5, 7, "prime"}
Map {7 — "seven", 3 — "three", "four" — 4}
Function X — X * X

Fig. 2. Built-in non-logical types of ProofScript

ProofScript has pattern matching. The matching for logical terms is treated
in Section [4f Examples for other patterns are shown in Figure [3] As shown in
the examples, patterns can be used to perform simple type checks.

Pattern Example Explanation
x : Integer matches any integer
(x, _, y) if x == matches any triple that has equal first and third elements
. matches any tuple with at least two elements where the
x> yifx=y first and the last element are equal
None matches a value equal to the custom constructor None
matches any value created by applying the custom con-
Some x structor Some
f x matches any value which is a constructor application
_ : Option matches any value that has the custom type Option

Fig. 3. Examples of non-logical patterns

It is possible in ProofScript to define custom datatypes. An example is shown
in Figure [4] (left hand side) where the custom type Option is defined, together

datatype Option datatype List
None Nil
Some x Cons (head, tail : List)

Fig. 4. Custom types Option and List

with two constructors None and Some. Some takes an argument and None does
not. An example for an expression yielding a value of type Option is Some (1,
None). Examples for using pattern matching with this custom type are shown in
Figure 3] Note that type and constructor names must start with an uppercase



ProofScript: Proof Scripting for the Masses 5

letter. Mostly this is just a convention we like to enforce, but for constructor
names it also makes it easier to distinguish in patterns between constructors
and variables.

The argument of a datatype constructor can be constrained by an arbitrary
pattern. A datatype modelling heterogeneous lists could therefore be defined as
shown in Figure [4] (right hand side). While expressions like Cons(1, Cons(2,
Cons (3, Nil))) would evaluate successfully to a value of type List, an ex-
pression like Cons (1, 2) would lead to a runtime error.

2.3 Purely Functional Structured Programming

ProofScript is a purely functional programming language with strict evaluation.
By this we mean that functions are first-class, there are no side-effects, and
arguments are evaluated before they are passed to a function. This makes it
possible for peers to write concise, expressive, modular, yet predictable code.
The absence of side-effects, besides its other obvious advantages, also im-
mensely simplifies the semantics and economy of how theories are managed and
shared. Imagine theory A being extended by n theories Ty, ..., T,. In ProofPeer,
after executing a theory, its resulting state is persisted and reused, immediately
or at a later time. In our example, that would mean that after executing all of
the aforementioned theories, n + 1 theory states would have been persisted. If
instead A were to contain a function which depended on and mutated some state,
then calling this function from T; could lead to a changed state of A which then
would need separate persisting. Assuming none of the T; extend each other, after
executing all theories, up to 2n+1 theory states would have been persisted. Now
assume that the T; contained mutable state themselves and depended on each
other, say T; also extends T; for all 4 < j. In the worst possible case, that would

lead to w persisted theory states. Our intention is to develop technolo-
gies for collaborative theorem proving which scale, so avoiding such quadratic
growth by enforcing the absence of side-effects is an obvious thing to do.

Despite its advantages, purely functional programming is not mainstream.
Imperative programming is a much more popular style to program in. A major
reason for this is that structured programming, which is one of the pillars on
which imperative programming rests, is just much more readable to most people
than a program written by composing higher-order functions.

We want the advantages of purely functional programming, but we also want
to appeal to the mainstream. Fortunately, purely functional programming and
structured programming are not at odds with each other at all, but can eas-
ily be combined in an approach called purely functional structured program-
ming [11]. We have adopted this approach for ProofScript, and therefore it is
possible to program in ProofScript both by composing functions and by writing
block-structured code, including for-loops, while-loops, etc.

As a simple example, consider computing the greatest common divisor of
two integers in ProofScript as shown in Figure[5] On the left hand side, typical
functional code for computing the gecd is presented. The right hand side displays
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an alternative formulation of gcd using structured programming. Both styles
fit within the paradigm of purely functional structured programming, and both
versions of gcd are side-effect free.

def gcd (a, b) = def gcd (a, b) =
if a < 0 then gcd (-a, b) if a < 0 then a = -a
else if b < 0 then b = -b
if b < 0 then gcd (a, -b) while b > 0 do
else (a, b) = (b, a mod b)
if b == 0 then a return a

else gcd (b, a mod b)

Fig. 5. Greatest common divisor in ProofScript

2.4 Layout-sensitive Syntax

Rules that endow indentation and layout with meaning have been adopted by a
diverse range of computer languages, from programming languages like Python,
Haskell or Scala to markup languages like Markdown. It seems that having ex-
plicit rules for layout is especially helpful for novices [12] by removing clutter in
the form of curly braces, semicolons, and the like, making errors more obvious
by making intended, indented and actual structure synonymous.

That is why we have created ProofScript from the start as a language where
indentation and layout is meaningful. ProofScript’s syntax is defined by a context-
free grammar with added explicit annotations which constrain the possible shapes
of parsed text. The technical details of this have been developed over the past
three years and are actually still evolving. It was our hope from the beginning
that semantic layout would not only make it easier directly for the users them-
selves to read and write code, but also that the error recovery mechanisms of the
parser would profit from it — this is important for the interactive experience we
are striving for. As it turns out, this is indeed the case, and has lead us to the
discovery of a general way of combining lexing and parsing which we call [local
lexing| [4] and which will be described in a forthcoming separate paper.

The main use of indentation in ProofScript is to delineate the block structure
of code, making it an ideal companion of our paradigm of purely functional
structured programming. An example is the use of indentation to resolve the
dangling else conflict, as might already be apparent from Figure

It is often argued that while semantic layout might be beneficial for novices, in
a professional setting meaningful layout is detrimental to productivity. A simple
example is that usually text editors can be configured to equate a tab character
with a fixed number of space characters, often this number is 2 or 4. Differing
editor configurations can thus lead to differing meanings of the same program
code, which is clearly undesirable. Our solution to this particular problem is to
simply disallow the tab character in legal ProofScript. Additionally, we hope to
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avoid this problem entirely by letting peers interact with ProofPeer in a web
environment under our control.

Another example is that of the naive use of Landin’s offside rule [I3] to
associate indentation with meaning, which leads to code that might easily break
or change its meaning when common automatic refactorings like changing the
name of an identifier are applied to it. The offside rule states that “The southeast
quadrant that just contains the phrase’s first symbol must contain the entire
phrase [...].” If we apply this rule to the hypothetical code snippets in Figure @
then it would make sense for the left hand side to evaluate to [(11, 10000)]
and for the right hand side to yield [(10000, [1011)] (the do* control flow
statement evaluates all expressions in its argument block and returns them as a
tuple). But the right hand side is just a refactoring of the left hand side where
we replaced £ with somefunction! To combat this problem, neither of the two
code snippets shown in Figure [f] are valid ProofScript. We achieve this by only
using layout rules which only compare distances made up entirely of spaces, as
opposed to comparing the lengths of texts made up of arbitrary characters. For
example, we cannot compare the length (in pixels or centimeters) of the text “def
f x = dox” which consists of 13 characters with the length of 13 spaces. This
also solves related problems, such as the fact that a different variable-width font
could possibly change the meaning of a program. The legal ProofScript versions
of the code shown in Figure [f] are presented in Figure [7] Clearly, their meaning
is stable under the refactorings f — somefunction and somefunction +— f,
respectively.

do* do*
val x = 10 val x = 10
def f x = do* x + 1 def somefunction x = do* x + 1
X =X % X X =X % X
X * X X * X
f x somefunction x

Fig. 6. Instabilities in Landin’s offside rule under refactorings

do* do*
val x = 10 val x = 10
def f x = def somefunction x = do* x + 1
do* X =X * X

x + 1 X * X
X = X ¥ X somefunction x
X * X

f x

Fig. 7. Corrected versions of the invalid code in Figure [f]
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3 Logical Foundations

Most people who use math do not work in a formal setting. They have been
taught a naive form of set theory, and usually they know that more rigorous
and (hopefully) paradox-free versions exist which are very similar to naive set
theory, like Zermelo Fraenkel set theory (ZF).

To accommodate all of these people, ProofScript’s logic is based on Zermelo
Fraenkel set theory. Isabelle/ZF [14/15] has pioneered how to embed Zermelo
Fraenkel set theory with choice (ZFC) in intuitionistic higher-order logic. Our
approach differs from the Isabelle/ZF approach in that we embed ZF in classical
higher-order logic. We call this logic ZFH [I7] (the H stands both for higher-
order logic and Hilbert choice). The reason for this is that we want to be able
to draw on the wealth of experience and tools which have been developed in the
realm of classical higher-order logic (HOL).

ZFH is almost identical to the logic of HOL-ST [7] and Isabelle/HOLZF [16],
which embed ZFC within HOL via a special type representing the universe of
ZF sets that comes with the constants and axioms which make up ZF (note that
the axiom of choice is implied by the properties of the Hilbert choice operator
in HOL). A dilemma that comes up in both HOL-ST and Isabelle/HOLZF is
that it is often not clear how to choose between ZF and HOL. Natural numbers
for example could be formalised as a ZF set, but they could also be defined as
a type in HOL. We resolve this dilemma in ZFH by not having any facilities
for defining new HOL types, and by disallowing type variables in terms. This
restriction makes it clear that HOL is to be used as the “meta logic”, whereas
ZF is the logic where all the real work gets done. Because ZFH is a restricted
version of HOL-ST and Isabelle/HOLZF, it is consistent if they are.

In the following we will explain the various parts that constitute ZFH and
how ProofScript’s logical kernel manages them.

3.1 Types and Terms

A type 7 is either the universal type of ZF sets %, the propositional /boolean
type P, or a function type 71 — 7»:

T = %|]P)|T1*>T2.

A term t is either a constant ¢, a polymorphic constant p[7], a higher-order
function z : 71 — t, a bound variable x or a higher-order application ¢ to:

t s=c|plt]|z:Tt] x|ttt

We have chosen the notation = : 7 — ¢ over the notation Az : 7. ¢t because
the former is more familiar to a wider audience than the latter.

There are only three polymorphic constants p: equality =, universal quan-
tification V and existential quantification 3. All other constants are monomor-
phic constants c¢; this means in particular that all user-defined constants are
monomorphic.
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Terms on their own do not have any type because we do not know the types
of the monomorphic constants ¢ which appear in a term. The type of a term can
only be determined relative to a contezt C. Contexts are the topic of Section [3.3]
For our purposes here we can simply view a context C as a partial function from
constants c to types C(c). We can then define the type I¢(t) of a term ¢ relative
to a context C as shown in Figure 8] I is a partial function, and we call ¢ valid

Ie(t)=1Ic¢p
I'cv(c) =C(c) if C is defined at ¢
Icyv(z) =V(x) ifV is defined at x

(r—=P)—=P ifpe{v,3}
TP  ifpe{=}

Iev(plt]) = {

IevE:t=t)=7—=p ifIoyp—m=p
Teyv(tite)=p ifIcyv(t)=7—pand Icy(te) =7

Fig. 8. The type I¢(t) of a term ¢ relative to a context C

(in C) if I is defined at ¢, i.e. if I'¢(t) = 7 for some type 7. Note that a valid
term has mo free variables: in valid ZFH terms, all variables appearing in the
term must be bound to the argument of an enclosing higher-order function.

Because a term without a context is usually useless, the kernel only operates
on certified terms, which are basically pairs (C,t) of a context C and a term ¢
such that ¢ is valid in C.

3.2 Type Inference

Of course when actually writing down concrete terms in ProofScript, most of
the time there is no need to explicitly provide the type 7 in the terms p[r] and
x : T — t as ProofScript performs fully automatic type inference in the spirit of
Hindley-Milner. This can be done by allowing type variables for the purposes of
the internal type inference algorithm only. There is a caveat though: given that
there are no type variables in ZFH terms, what do we do if the result of the type
inference still contains type variables?

A simple solution to this problem is to replace all type variables simply by %,
the universe of ZF sets. This makes sense as our focus is on set theory anyway,
so among the infinitely many possible instantiations this is the most likely one.

This is almost the solution we chose; our actual solution is slightly more
involved but allows the overloading of syntactic function application with both
higher-order function application and set theoretic function application. This is
described in detail in [I7]. The resulting type inference can be described as being
basically Hindley-Milner, but preferring set-theoretic function application over
higher-order function application and the type % over all other types.
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3.3 Contexts and Theorems

We have already pointed out that in ProofScript terms only make sense relative
to a context C. The context is responsible for maintaining a record of which
constants have been defined or introduced so far, and which axioms have been
assumed. Contexts in ProofScript are not derived constructs but axiomatic and
built-in, and the kernel is responsible for their creation and maintenance. The
specification for the concrete syntax of terms is also associated with contexts
but not maintained by the kernel.

A context can be thought of as unifying two concepts which in other HOL
systems are separate: that of the global logical state of the kernel (or theory
context in a system that supports theories), and that of the local logical context.

At the start of a theory, a new context is created based on the contexts of
all theories that the theory extends. From then on, there are basically four ker-
nel operations to construct new contexts from existing ones: Introduce, Assume,
Define and Choose. Each of them creates a new context of the kind indicated by
the operation, and each of these new contexts maintains a backpointer to the
context it was created from, its parent context. During the execution of a Proof-
Script theory, a tree of contexts is created, the root being the context created at
the start of the theory.

Theorems are basically certified terms (C,t) such that I'z(t) = P and such
that ¢ has been proven to represent a true proposition in context C. There are
three different ways to create theorems: 1) Theorems can be created via built-in
functions. Examples are reflexive, which returns theorems of the form (C,t =
t), or the function instantiate, which allows the instantiation of (some of)
the universally quantified variables of an existing theorem. 2) Theorems can be
created by lifting them between contexts. This is described later. 3) Theorems
are created as byproducts of constructing new contexts. This is described in the
following where we discuss the four basic kernel operations for constructing new
contexts.

All of the following kernel operations are being applied to an existing context
C. The newly created context D has C as its parent; the context D also stores
which operation using what parameters created it. Here are the operations:

Introduce(n, 7) takes a name n and a type 7 and creates a new context D from
C with an additional constant d with name n and of type 7 in D. The name
n is not allowed to belong to any constant ¢ in C.

Assume(t) takes a certified term ¢ of type P and autolifts it into context C (see
Section [.5), resulting in the certified term (C,t'). It then creates a new
context D from C and returns the theorem (D, t').

Define(n, t) takes a name n and a certified term ¢. The name n is not allowed
to belong to any constant in C. It first autolifts ¢ into context C, resulting
in the certified term (C,t’). After creating a new context D from C with an
additional constant d with name n and of type I¢(t'), it returns the theorem
(D,d=1t).
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Choose(n, t) takes a name n and a theorem ¢. The name n is not allowed to
belong to any constant in C, and the theorem must have the form

(C,Vay :7y....Vap : 5. Jy : 7.1")  for some k > 0.

We assume that all z; are different from each other (otherwise we would
enforce this via automatic a-conversion).

The operation first creates the context D from C with an additional constant
d with name n and of type 7y — ... — 7 — 7 and then returns the theorem

(D,Vxy : 1. ... Vog s 1. U [day ...z /y]).

3.4 Theories and Namespaces

When a theory has been executed, one of the leaves of its context tree becomes
the completed context of that theory. In principle, it would be possible to select
any of the leaves after the creation of the complete context tree, but instead we
have chosen that during the creation of the context tree of a theory it is always
clear which one of the current leaves of the tree is the one which will lead to
the completed context. The sequence of these designated leaves forms the main
context thread of the theory, which at the end of execution will be the same
as the path from the context at the start of the theory to the final completed
context. The kernel manages the thread by maintaining for each executing theory
a pointer to the current leaf of the main context thread; each time a new context
is created whose parent is on the main context thread (the only exception is
SpawnThread, introduced below), it asks the kernel to put it on the main context
thread as well. The kernel will oblige if the pointer it maintains points to the
parent of the new context, and will adjust it to point now to the new context
instead; otherwise the creation of the new context will fail. Figure [9] illustrates
the main context thread. Note that there are two additional kinds of contexts
for managing the main context thread:

Complete() demands that context C is on the main context thread and creates
a new context D on it which has all unqualified constants removed from it
and which is not allowed to have any children.

SpawnThread() demands that context C is on the main context thread and cre-
ates a new context D which is not on the main context thread.

The names of logical constants may include a namespace qualification. Only
constants which are introduced on the main context thread may be qualified;
the namespace they are qualified with is of course the namespace of the theory
the main context thread belongs to. Unqualified constants are treated as private
constants which cannot be referred to by extending theories. This is reflected in
how the context at the start of the theory is formed: it contains all and only
the constants of the completed contexts of the theories it extends — and these
constants are all qualified.

Note that it is not allowed to have an Assume context on the main context
thread of any theory except theory root which introduces all axioms of ZFH.
This means that all theories are conservative extensions of the root theory.
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/"' Main Context Thread ™+

Start of Theory

kSpawnThread

kSpawnThread

Introduce ...

Assume ...
Assume ...

i | Introduce ...

Introduce ... )

Complete

Fig. 9. Context tree and main context thread

3.5 Lifting between Contexts

We will consider in this section how the kernel lifts theorems and certified terms
between contexts.

Let us first introduce some shorthand notation. For two theories A and B,
let us write B > A if B directly or transitively extends A. Furthermore, for any
context C let us write theory(C) for the theory that C belongs to. Finally, for two
contexts C and D we write D > C if theory(C) = theory(D) and C is a direct or
transitive parent of D.

Consider a theorem or certified term (D, t) which we wish to lift into context
C. In practice, there are only two relevant situations, and the kernel only supports
these: we have either theory(C) > theory(D) or theory(C) = theory(D).

We will first consider the situation where theory(C) = theory(D). If C = D
or C > D then there is nothing to do and the result of the lift is simply the
theorem / certified term (C,t) — an exception arises when C is the completed
context, in which case ¢ may only contain qualified constants. We will defer the
case D > C until later. If none of these cases hold, we find the unique context
C’ in the context tree of the theory such that both D = C’ and C > C’, and such
that for any other C” with D = C” and C = C” we have C' = C”. We can now
perform the lift by first lifting (D, t) to (C’,t') and then lifting (C’, ') to (C,t).

Secondly, assume we find ourselves in the situation theory(C) &> theory(D). We
then find the completed context D’ of theory(D) and lift (D,t) to (D', ¢'). If ¢/
would contain unqualified constants, which are considered private in theory(D),
the lifting to D’ fails. Otherwise the full lifting yields (C,t').
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Note that for lifting to work as described it is crucial that a name introduced
via a context is different from all names in the parent context so that no “constant
capture” can occur when lifting downwards the context tree.

Lifting Upwards We will now consider the deferred case D >~ C. In particular
we consider only the special case where C is the direct parent of D — the general
case is derived from this by lifting along a successive sequence of parents leading
from D to C. We furthermore distinguish by the kind of the context D and
whether we are lifting a theorem or a certified term, and whether the lifting is
done in a canonical or a structure preserving way. Even without the cases for
the context kinds SpawnThread and Complete (which are trivial) this leaves us
with a total of 16 cases. Therefore we treat here only the cases for Introduce.

So assume that we want to lift a theorem (D,t) from an Introduce(n, 7)
context to its parent in a structure preserving way to obtain a theorem (C,t’).
Let ¢ be the constant with name n that has been introduced by the context.
Then we set t = Va : 7.t[z/c] where z is a fresh variable not occuring as a
bound variable anywhere in ¢. If instead we lift the canonical way, we arrive at
the same ¢’ if ¢ actually appears in ¢; otherwise we just set ¢’ = t.

Lifting a certified term (D,t) works similarly. When lifting in a structure
preserving way we set t' = x : 7 — t[x/c|, when lifting canonically we simply set
t' =t if ¢ does not occur in t and t' = x : 7 — t[x/c] otherwise.

Auto Lifting We have previously used the phrase of autolifting a certified term
(D,t) to context C. By this we simply mean that we lift (D,t) to (C,t') the
canonical way; but in addition the autolift only succeeds if ¢ and ¢ are identical.

Correctness Introducing contexts as a first-class concept into the kernel and
providing axiomatic lifting between contexts is an interesting and we think
promising new approach to building HOL systems. Contexts correspond closely
to how mathematicians actually reason and it seems to be clear that they are
reducible to ordinary logic; therefore we believe that our implementation of them
is correct. Obviously it would be better to have a formal proof for this which
we do not have yet. But then again, there are only very few theorem proving
systems around where the kernel has actually been proven to be correct.

4 Structured Proof Scripting

Structured proof and purely functional structured programming are such a good
fit, one might almost think that one was made for the other. Both are side-effect
free, and both use a block structure notation which can be nested. Contexts as
introduced in Section [3.3] make it easy to marry the two as we will outline in
this section.

To turn purely functional structured programming into structured proof
scripting, we augment the program state with two additional components, the
current context, and the literal context. Literal context and current context are
the same, except during the execution of a function call: then the literal context
is the same as the literal context at the point of the function definition. The
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reason for this is that we need both a dynamically scoped context, which is the
current context, and a lexically scoped one, which is the literal context.

There are several built-in statements which manipulate the current context.
One of them is the let-statement which introduces either an Introduce or a Define
context, depending on its argument which is a term literal. For example,

let 'x'

takes the current context, applies Introduce(x, %) to it, and makes the result the
new current context, whereas

let x_def: 'x = d'

makes Define(x, 'd"') the new current context D and binds x_def to the theorem
(D,'x = 4d").
Another logical statement is the theorem-statement. Assume the statement

theorem t: 'V p. p — p' val tm = 'V p. p — p'
let 'p : P! def prf () =
assume prop: 'p' let p: 'p : P!
prop assume prop: p
prop
theorem t: tm
prf O

Fig. 10. A simple theorem

shown in Figure [10] (left hand side) is issued in the current context C. What is
happening here is that the block starting at let is evaluated to yield the theorem
(D, 'p') where D results from C by first applying to it SpawnThread (if C is on
the main context thread) and then Define(p,P) and Assume('p'). The theorem
(D, 'p') is lifted back into context C both in a canonical and in a structure
preserving way, and the results are compared with (C,'V p. p — p'); if at
least one of them is equal (modulo «/3/n-conversion), and in this case both are,
the lifted theorem is bound to the identifier t (after a possible a/3/n-conversion
to match the theorem statement).

Logical statements and non-logical statements can be freely mixed as shown
in the example in Figure (right hand side), which proves the same theorem
as the previous example. Note how the current context is dynamically passed
along during the function call prf ().

In general it is not a good idea to introduce a logical constant with a fixed
name p within a function because that name might already have been taken
within the context that the function is called with. A more general way to write
prf which avoids name clashes is shown on the left hand side of Figure The
expression fresh "p" returns a constant name similar to p which has not been
used yet within the current context. This new name is then inserted into the
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def prf () = def prf () =
val p : String = fresh "p" let '<val p» : P'
let '<p» : P! assume prop: '<p>'
val p : Term = '<p>' prop
assume prop: '<p>'
prop

Fig. 11. Avoiding name clashes with fresh

term literal argument of let via the quote <p>. As a syntactic convenience, this
can be written simply as displayed on the right hand side of Figure [[1}

Quotes are useful not only in the above situation, but whenever one wishes
to insert a string or a term into a term literal. Furthermore, quotes are used
within term literal patterns to designate the holes inside the term literal pattern
which are expected to be filled by the pattern match. For example here is how
one would define a function which takes apart an implication into premise and
conclusion and which fails if the argument term is not an implication:

def dest_imp '<p> — <c>' = (p, c)

The allowed term patterns are those of the higher-order pattern fragment iden-
tified by Dale Miller [I8I19].

To conclude this outline of structured proof scripting, let us return to the
issue of current and literal context. Our examples so far have shown how the
current context is used and evolved. But what is the [literal context good for?
The answer is that the literal context is used for parsing term literals. Imagine
for example you had implemented a theory Geometry in which you define the
logical constant sin. You also provide a helper function which determines if
a term represents the sin function as shown in Figure Now imagine that

theory Geometry theory A extends Geometry
let 'sin = ... let 'sin = ...
def show is_sin 'sin'

is_sin 'sin' = true

is_sin _ = false

Fig. 12. Theories Geometry and A

another theory A also shown in Figure [I2) extends theory Geometry and defines
its own sin constant. What would you expect the show-statement to print, true
or false? It will print false, as the term literal 'sin' in theory Geometry refers
to the logical constant \Geometry\sin, and in theory A refers to \A\sin instead.
To implement this behaviour, term literals are parsed by the literal context, and
not by the current context. Note however that quotes within term literals are
evaluated still within the current context, not the literal one.
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5 Conclusion

We have presented ProofScript, a language for structured proof scripting. We
believe that this language can become a firm and simple foundation of ProofPeer,
our system in the making for collaborative theorem proving. ProofScript today
still needs to grow as a language and as an environment. Many features are still
being developed, among them: extensible syntax, theories with assumptions,
execution of /code generation for functions defined in logic, automation, and an
actual interactive user interface. Yet, it is already a functioning theorem proving
system with promise — we have bootstrapped the system to a point where it can
convert certificates from an automated theorem prover for first-order logic into
valid ProofScript proofs, which is described in a forthcoming paper [5].
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