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Propagating beam theory of optical fiber cross coupling
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Evanescent field coupling between parallel optical waveguides is treated by the propagating beam method. This
method utilizes Fourier analysis to generate the modal properties of optical waveguides from numerical solutions
to the paraxial-wave equation. Previous applications have been for single waveguides. Detailed results are pre-
sented here for a variety of coupled waveguide pairs: identical slab waveguides, identical and nonidentical single-
mode optical fibers, and identical few-mode optical fibers. Results include propagation constants and eigenfunc-
tions for the normal modes of the coupled systems. The difference between the propagation constants of the corre-
sponding normal modes determines the coupling length for the mode pair, whereas the eigenfunctions determine
the extent of power transfer. The results obtained establish the applicability of the propagating beam method to
the study of coupling in a general class of practical waveguides.

1. INTRODUCTION

The extension of guided-wave fields beyond confining core

regions permits the exchange of energy between closely po-

sitioned optical waveguides. This electromagnetic coupling
is both the origin of cross talk and the basis of directional
waveguide couplers. In either case, the transverse coupling
of optical waveguides has elicited wide interest for many
years.

The exchange of electromagnetic energy between coupled

transmission lines was analyzed first by Miller1 and subse-
quently by Cook,2 Fox,3 and Louisell.4 Field propagation in
coupled parallel optical fibers was treated using coupled-mode

theory by Jones, 5 Van Clooster and Phariseau, 6' 7 Marcuse,8

Snyder,9 and Arnaud.10 Cherin and Murphy," however,
studied the cross talk between highly multimoded optical fi-
bers by using a quasi-ray technique. A more rigorous analysis

of guided-wave modes in two parallel dielectric rods than is
possible with coupled-mode theory was furnished by
Wijngaard,'2 who computed the normal modes in terms of
circular harmonics without explicit reference to the modes of

an isolated rod. More recently, Yeh et al.13 examined
guided-wave propagation in two identical closely coupled fi-

bers with the help of numerical solutions to the scalar parax-
ial-wave equation.

All the preceding methods have advantages and disad-
vantages. Coupled-mode theory in its most tractable form
treats the coupling of only two modes-one mode for each of

two parallel waveguides. This form of the theory gives a

qualitatively accurate description of power transfer in many
situations, but, since it does not properly take into account
the deformation of the modes of the individual waveguides,
it is applicable only when coupling between fibers is weak.

This objection does not apply to the expansion method em-
ployed in Ref. 12, but for the latter method to be tractable, the
expansions must be truncated at terms of reasonably low order

with uncertain effects on accuracy. The ray-tracing tech-
niques should provide useful information for multimode
structures but would not be applicable to single- or few-mode

waveguides.

The propagating beam approach of Ref. 13 gives detailed
and accurate results when the method is applicable. One of
its limitations is that it is applicable only when the axial dis-
tance for the transfer of power between the waveguides is of

the order of the propagation distance that can be encompassed

in an accurate computation. For fibers of practical interest,
this computational distance is typically less than 10 cm. For
assessing the cross talk of parallel waveguides, on the other
hand, it may be necessary to deal with coupling distances of
the order of kilometers. For multimode waveguides, com-
putational results depend sensitively on input conditions and
are difficult to interpret without precise knowledge of the
modal composition of the fields and the beat distances for the
individual modes.

For a description of guided-wave propagation in coupled
waveguides that is accurate over all propagation distances of
practical interest, it is thus essential to have accurate infor-
mation on the normal modes, the modes of the combined
waveguide system. This information includes both the
propagation constants and the eigenfunctions. From the
propagation constants one can determine the distances for the

transfer of power corresponding to particular combinations
of normal modes. From the eigenfunctions one can determine

the completeness of this transfer.
The propagating beam method described in Refs. 14-17 was

developed for generating precisely this kind of information
from numerical solutions to the paraxial-wave equation. It
is applicable under weak guidance conditions, or when I Bn/n I
<< 1, which describes many systems of practical interest, and

it combines accuracy, computational efficiency, and versa-

tility. Although the applications that have been described
thus far have been restricted to index profiles of circular
symmetry, the method is equally applicable to general two-
dimensional profiles. In fact, for problems involving two
transverse dimensions, its advantages over more conventional

methods become particularly apparent.
In this paper we outline the procedures for solving coupled

waveguide problems with the propagating beam method, and
we present numerical results for a variety of systems: coupled
identical slab waveguides, coupled identical and nonidentical
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single-mode fibers, coupled identical three-mode fibers, and
coupled identical six-mode fibers. The paper is organized as

follows. Basic relations for the propagating beam method are

reviewed in Section 2. Some general properties of coupled

identical and nonidentical fibers are derived in Sections 3 and

4; conditions for maximal power localization and transfer are

derived in Section 5. Initial conditions for the propagating
fields are discussed in Section 6. Results for identical coupled

slab waveguides are presented in Section 7, and the remainder

of the paper is devoted to numerical examples involving
coupled optical fibers.

2. BASIC RELATIONS FOR THE
PROPAGATING BEAM METHOD APPLIED TO
IDEAL LOSSLESS MEDIA

The propagating beam method of mode analysis is based on
solutions of the paraxial-wave equation

2ik d =nV2 & + .2 (xy) (1)
az I£ I no

where 6' is a complex field amplitude, k = now/c, and no is the

refractive index of the cladding. One can also express 6'(x,
y, z) in terms of the set of orthonormal-mode eigenfunctions
for the fiber as

6'(x, y, z) = Ej Anjuj(x, y)exp(-i/nz),
ni

(2)

where the index j is used to distinguish different modes within

a degenerate set, the A'n are propagation constants, and the
coefficients Aj are determined by the field at z = 0. The
eigenfunctions unj(x, y) are also eigenfunctions of the
Helmholtz equation, and the corresponding propagation
constants On can be determined from the expression

n = -[1 - (1 + 23'n/k)/ 2], (3)
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(8)W. = Z 1Anil

are the mode weights and

X - 3'n) = exp[i(o - ,,)Z] - 1

- 12 (expli[(O - 3JZ + 27r]) - 1
\ i[(3 - )Z + 27r]

explif(j3 - 3',)Z - 27r] -1

+ i[(o 3- O)Z-2 23 (9)

To determine the eigenvalues 3n, it is necessary to solve Eq.

(1) with an initial field distribution that avoids the excitation
of modes with closely spaced eigenvalues.

The correlation function ? 1(z) is generated simultaneously
with the field '(x, y, z). When the field has been propagated
the desired axial distance Z, Pi(z) is multiplied by w(z) and
Fourier transformed to give P 1 (fl). Equation (7) can then be

fitted to the data set for PI1 (3), which determines the 3', and
Wn values. When high accuracy is required for the weight

factors Wn, it may be necessary to use a mutivariate nonlinear
least-squares fit, but for determining the propagation con-
stants it can be assumed in nearly all cases that, in the
neighborhood of an individual resonance, Pj(o) is accurately
represented by

P1(fi) = WnL(o -lOn) (10)

whence 3'n and Wn can be determined by a simple linear fit-
ting procedure.'5 The single-resonance fit was used for all
the numerical examples discussed in this paper.

If the exciting field has been chosen so that not more than
one mode of a degenerate set is excited, the mode eigenfunc-

tions can be evaluated by computing numerically the inte-
gral

unj(x, y) = const X f 6'(x, y, z)w(z)exp(i',nz)dz

which, however, is expressed relative to the value k. (To

obtain the propagation constants in conventional usage, it is
necessary to add k to the On values defined above.)

Knowledge of 6'(x, y, z) makes it possible to compute the
correlation function

91(Z) = SS 6/*(x, y, 0)6'(x, y, z)dxdy

= (6'*(x,y, 0) '(x, y, z)), (4)

where the integration is carried out numerically over the
waveguide cross section by using the trapezoidal rule. Sub-
stitution of Eq. (2) into Eq. (4) gives

Pj(z) = Ei iAj 1
2

exp(-i03',,z).
nj

Multiplying Eq. (5) by the Hanning window function

= const X 6"(x, y, O'n), (11)

which requires a prior determination of the 3',, values and an
additional propagation calculation.

3. EVEN- AND ODD-PARITY MODES FOR A
PAIR OF IDENTICAL OPTICAL FIBERS

The geometric configuration for two identical optical fibers
is shown in Fig. 1. A reflection through the plane x = 0, which

y

(5)

0<z •Z

z > Z
(6)

and taking the Fourier transform with respect to z gives

XPlM = E WnL 1(/3 - n) (7)

Fig. 1. Configuration for two identical circular symmetric fibers.

(9)

where

27rz
I - Cos -

Z
W(Z) = I0

1
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transforms (x, y) into (x', y'), where x' =-x and y' = y,
clearly leaves wave Eq. (1) invariant. As is well known, the

mode eigenfunctions unj (x, y) for this system must have the

property

JUn; (X, y) = Unj (-Xy) = ±Unj (X y), (12)

where the unitary operator ? transforms unj(x, y) in accor-
dance with a reflection about the y axis. The two engenvalues

± 1 represent the parity (under reflection) of the modes, and
we label the corresponding eigenfunctions utj(x, y) and unj(x,

Y).
If the two fibers are far apart, the corresponding even- and

odd-parity modes are degenerate, with the common propa-
gation constant

nj = ftfn = Onj, (13)

where /' is the propagation constant for a single isolated
fiber. If the fibers are brought close together, the degeneracy

is removed, and ,B'tt and /',j take on distinct values. It should

be noted that, even though the /3p are degenerate with respect

to the index j, this degeneracy will also be removed as the fi-

bers are brought together, and f3X will take on distinct values

for the same n but differing j.

The linear combinations

Uinj(X, y) = unj(X, y) + Unj(X, y),

U j(X, y) = UnJ(X, y) - Unt(X, y)

(14a)

(14b)

leave most of the energy on one or the other fiber, which are

arbitrarily labeled A and B. The evolution with respect to
axial distance z of uAj(x, y) and uB.(x, y) is described by

UA.(X, y' Z) = exp(in3jz)[UnK(X, y)

+ exp(-iAinJhz)un(x,y)], (15a)

zBj(X, y, z) = exp(if njz) [u j(x, y)

-exp(-iA/3njz)unj(x,y)], (15b)

where

Alon = Inj - (16)

Thus the intensity distribution for either linear combination
varies periodically in such a way that almost all the power

shifts back and forth from one fiber to the other with the pe-

riod L = 27r/AIOt.
The propagation constants 0 +j and 0'j can be expressed

as

Onj f u'Hu:-dxdy (17)

where, in analogy with quantum mechanics, we have defined

the Hamiltonian operator H as

H = 2k 2 + + 2 {[-n(xy)]21} (18)

Equation (17) can be used to estimate the values of I3+5and 0'j

if u+a and u-j are approximated by linear combinations of
mode eigenfunctions for an isolated fiber, i.e.,

U i(x, y) -Un(X, - XA, Y),

Unj(X, y) - Unj(X XB, Y)

(20a)

(20b)

Here the superscript zero designates an eigenfunction of an
isolated fiber. Substitution of Eq. (19) into Eq. (17) yields

On = nj1 +

(uA*VBUA) + (UB*VAUB) ± (UA*VAUB) ± (UB*VBUA)

2 ± (uA*uB) ± (uB*uA)

(21)

where for simplicity the subscripts of the eigenfunctions have

been omitted and

VAB = k_ ] 1
21 no 1 1;

(22)

Here the subscripts A and B designate profiles centered at the
appropriate fiber positions. With the neglect of (uA*VBUA),
(uB* VAUB), ( u A*u , and e uB*uA ,Eq. (21) reduces to the
coupled-mode result 1 8

fl'n~j = fnj + C' (23)

where the coupling constant c is defined by

C = (UA*VAUB

= (UB*VBUA). (24)

The necessity for neglecting certain integrals in order to
derive the coupled-mode result is evidence that coupled-mode

theory is valid only for modes that are weakly coupled. We
shall not have occasion to apply Eq. (21) directly, but it will
serve as a guide to which modes couple strongly.

4. PROPERTIES OF MODES FOR A PAIR OF
NONIDENTICAL OPTICAL FIBERS

When the two fibers are not identical, the normal-mode ei-
genfunctions are no longer eigenfunctions of the unitary re-

flection operator ? and thus cannot display simple even or
odd parity. They may, however, display a kind of quasi-parity

in which they resemble distorted versions of even- and odd-
parity eigenfunctions if the fibers are close together but de-
generate into functions localized on either one or the other
fiber when the fibers are far apart.

To show this quasi-parity we express the normal-mode ei-
genfunctions in the form

Unj(X, y) = Uj(X, y) + yUBJ-(X, y), (25)

where the constant Ty is determined by invoking the station-
arity condition

[((UA! + yuB;)H(uA- + yUB.))I -0. 2

5 ((<A! + yB)(U1A + tyU-)) 0 (26)
By applying Eq. (26) in conjunction with Eqs. (20a) and (20b)

and neglecting (uA*VBUA), (UB*VAUB), (uA*UB), and
(UB*UA), one obtains the following two values for -y:

ly 2 = _ n n ni | D + 1)

ut(xAy) = u(X, y) ± UB-(X, y), (19)

(27)

where flA and fB are the propagation constants for the iso-
lated fibers, andwith
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Fig. 2. (a) Mode spectra for single waveguide and (b) for two identical waveguides whose cores are just in contact. Spectra for even- and odd-
parity modes have been superposed.

2c = (uA*VAuB) + (UB*VBUA). (28)

[Phases can always be selected so that the phase of Eq. (28)

vanishes.] In the limit as (O'ni - g"B)/2c becomes small, or

when the fibers approach one another, -y approaches i1, and

Eq. (25) displays even or odd parity. In the limit as (P3A -
6')/2c becomes large, or as the distance between fibers in-

creases, y+ and y approach c/(ffnAj - P') and - (f3n- nj)/c,

respectively. In other words, as the field evolves with axial

distance, the power continues to be associated primarily with

one fiber, with little power transferring to the other fiber.
This contrasts with the behavior of identical fibers, which
periodically exchange their power almost completely, even for

large fiber separations.
If Eq. (25) is substituted into Eq. (17) and the approxima-

tions used in the derivation of Eq. (27) are applied, the familiar

coupled-mode result'7

03* = 1/2(034+ 0 'j) + [1/4(3 Aj3- BA)2 + c2]1/2 (29)

is obtained. As c becomes small in comparison with 0B4 - O'A
nj and 0i assume the values ffnAj and 9 B that are appropriate

to isolated fibers, which is consistent with the behavior of the

corresponding normal-mode eigenfunctions [Eq. (25)].

5. CONDITIONS FOR MAXIMAL POWER
LOCALIZATION AND TRANSFER

We wish to determine the linear combination of normal
modes

u(x,y) = u+(x,y) + Gu-(x,y) (30)

that (1) maximizes the power in one or the other fiber and (2)

maximizes the fractional power transfer from one fiber to the

other. Here u+(x, y) and u-(x, y) are normalized eigen-
functions for associated normal modes of coupled fibers, which

may or may not be identical. For simplicity we have ignored

subscripts.
To maximize the power in fiber B, we choose G to maximize

the integral

1 rf X= ((u+ + Gu-)2)+
1 + G2 Jo J- 1+ G2

(u+2 )+ 2G(ufu-)+ + G2(u-2)+
(31)

1 + G
2

.

where the superscript + on the angle brackets denotes inte-
gration over the right half-plane and u+(x, y) and u-(x, y)
have been chosen to be real. The appropriate value of G is

M. D. Feit and J. A. Fleck, Jr.
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GB 1/2 (u+) ) (U 2>(u+u)+ -

+ ((u+ +; §2)+) 2 + 111/21. (32)

For identical fibers that are not too close, G will be accurately

approximated by 1. For nonidentical fibers that are far apart,

on the other hand, I GB I << 1, and

GB (U+u)- + (33)
U2)- (U-2 )+ 33

The fraction of power associated with fiber B after the field

has propagated a distance z can be written as

Pu = (I+ + G exp(-iA/3z)uj1 2)+

1 + G2

(u+2 )+ + G2 (u 2 )+ 2G cos(A/3,Bz)(u+u-)+
= +G +
1+G 2 1+ G2 (34)

The variation of PB over the distance 7r/A/3F and, conse-

quently, the fractional power transfer from fiber B to fiber A

is

APB =4 G2 (35)

which is maximized when G = 1. In that case

APB max = 2 (uu ) . (36)

The field

u(x, y) = u+(x, y) + u(x, y) (37)

thus maximizes the power transfer for both identical and

nonidentical fibers. However, the field [Eq. (37)] maximizes

both power flow and power concentration simultaneously only

if the fibers are identical.

Table 1. Splitting Values (AjP' = - j) between
Propagation Constants for Positive- and Negative-
Parity Normal Modes for Two Equivalent Touching

Slab Waveguides Computed for Two Propagation
Distances

Mode (n) A:l+ (cm-I)a A/v: (cm-l)b

0
O - -
1 --

2 3.27418 X 10-11 5.09317 x 10-i'

3 1.32059 X 10-9 1.1205 x 10-9

4 2.1300X 10x-8 2.14131 X 10-8

5 2.97900 X 10-7 2.97943 X 10-7

6 3.27527 X 10-6 3.27606 X 10-6

7 2.93923 X 10-5 2.93904 x 10-5

8 2.19158 X 10-4 2.18996 X 10-4

9 1.37667 X 10-3 1.37675 X 10-3

10 7.36793 X 10-3 7.36869 X 10-3

11 3.3827 X 10-2 3.38251 x 10-2

12 1.33500 X 10-1 1.33673 X 10-

13 4.55580)x 10-1 4.55606 X 10-1

14 1.33469 X 100 1.33484 X 100

15 3.31488 X 100 3.31487 X 100

16 6.73585 X 100 6.73585 X 100

17 1.06880 X 101 1.06880 X 101

aComputation made with Z =4.096 cm.
b Computation made with Z = 8.192 cm.

6. CHOOSING INITIAL CONDITIONS FOR

EXCITING SPECIFIC MODE SETS

Since corresponding even- and odd-parity modes for pairs of

identical waveguides are almost degenerate, it may be nec-

essary to generate the even- and odd-parity modes indepen-

dently to avoid the overlap of resonances in the spectrum

Ti(O). For identical multimode slab waveguides, the com-
plete spectra for all bound even- and odd-parity modes can
be generated in a pair of computer runs, with the initial con-

ditions for Eq. (1) in the form

6'(x, 0) = o(X - xo) + Q(X + xo), (38)

where Q(x) is a general suitably well-behaved function.

For two identical optical fibers, the counterpart to Eq. (24)

is

6(x, y, 0) = Q(x -xo y) i e'(X + Xo, y). (39)

If the fibers are single mode, there is no problem in applying

condition (39). If the fibers are multimode, the possibility

exists of fortuitously exciting nearly degenerate normal modes.

Thus selecting Q(x, y) is not as simple as selecting 60 (x). One

approach is to form the initial field from one or more sym-

metric and antisymmetric combinations of appropriately
centered single-fiber eigenfunctions, i.e.,

e'(X, y, 0) = U'j (X - Xo, y)

UO i .(x + xo, y), j=I, 2,. .. , J. (40)

where J is the degree of degeneracy.

A problem immediately arises because linear combinations

of the degenerate eigenfunctions within a set are in principle
equally appropriate for use in Eq. (40). Not all linear com-

binations or representations, however, are equally useful. For

an appropriate representation, imposition of the initial con-

ditions of Eq. (40) will excite an assortment of normal modes

but with one mode predominating in amplitude. The task
of resolving the normal-mode resonances and identifying the

normal modes will clearly be simpler than for the case in which

a number of almost degenerate normal modes are excited with

comparable amplitudes.
If we consider, for example, two identical optical fibers with

parabolic-index profiles,

nl2 1 -2A l-)]n2 = = 1-2A()2a{o = (1 - 2A)ni

r < a

r > a

(41)

where r is measured from the appropriate local fiber center,
the degenerate unperturbed eigenfunctions can be expressed

in representations appropriate to either Cartesian or polar

coordinates. The former functions are

umn(x, y) = (7r2n+mm!n!)-l/2

X exp[-(x 2 
+ y 2)/2 U2]Hm(X/aa)Hn(yI.a), (42)

where Hm(x) and Hn(y) are Hermite polynomials and

a 1,/2
0'a = .(2A)1J2n _n . (43)

The latter functions are

uz(r, 0) = eiv° exp(-r2/2a2 )(r/ra)vLA (r2/I2), (44)

M. D. Feit and J. A. Fleck, Jr.
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Table 2. Propagation Constants for Even-Parity
Normal Modes of Two Coupled Slab Waveguides

Computed for Two Propagation Distances

Mode (n) on + (cm-1)a n+ (cm-)b Change (cm'1)

0 7.30617 X 102 7.30617 X 102 -1.74 X 10-6

1 6.85889 X 102 6.85889 X 102 -2.43 X 10-6

2 6.42891 X 102 6.42892 X 102 -3.06 X 10-6

3 6.00433 X 102 6.00433 X 102 6.02 X 10-6

4 5.58535 X 102 5.58535 X 102 4.12 X 10-6

5 5.16953 X 102 5.16952 X 102 -1.10 X 10-6

6 4.75700 x 102 4.75699 X 102 -1.17 X 10-5

7 4.34670 X 102 4.34671 X 102 3.22 X 10-6

8 3.93873 X 102 3.93873 X 102 3.45 X 10-5

9 3.53250 X 102 3.53250 X 102 4.63 X 10-6

10 3.12807 X 102 3.12807 X 102 2.66 X 10-5

11 2.72516 X 102 2.72516 X 102 6.64 X 10-6

12 2.32410 X 102 2.32410 X 102 3.38 X 10-4

13 1.92552 X 102 1.92552 X 102 3.18 X 10-5

14 1.53157 X 102 1.53157 X 102 1.09 X 10-4

15 1.14577 X 101 1.14578 X 101 2.11 X 10-5

16 7.70496 X 101 7.70497 X 101 3.80 X 10-5

17 4.00510 X 100 4.00510 X 10° 2.52 X 10-6

a Z = 4.096 cm.
b Z = 8.192 cm.

E

+1

.-

Cv

:t

a

C

C
0
0l

0

0-

1-62
1o- 64

1 -70 -600-0640-0 20-0
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fibers is even less amenable to generalization. Since the
normal modes for this case are neither of purely even nor odd

parity, it will be impossible to avoid exciting simultaneously

the modes corresponding to u+(x, y) and u-(x, y). If the
fibers are sufficiently close, the separation of the propagation

constants is large, and there is no problem in resolving the
mode resonances. If the fibers are far apart, the input field

can be taken as a mode eigenfunction for one or the other fiber,

appropriately centered.

7. COUPLING OF IDENTICAL SLAB
WAVEGUIDES

We consider the coupling of two identical slab waveguides

with refractive-index profiles

x-_;

Mc

Cu4-,

..0

x

0

Propagation constant for single fiber -j3 (cm-1 )

Fig. 3. Plot of difference Af-t of even- and odd-parity normal-mode
propagation constants for differing separations. The beat distance
or distance for energy transfer between fibers is L = 7r(A:)-1.

where L; (x) is a generalized Laguerre polynomial. The

members of either set can, in any case, be expressed as linear

combinations of members of the other set. The set in Eq. (42),

however, is clearly more appropriate for use in Eq. (40) than

the set in Eq. (44) since only the former set exhibits the re-

flection symmetry with respect to the x and y axes required
by the Hamiltonian H.

If one is treating coupled identical highly multimoded fi-

bers,, some of the unperturbed higher-order modes of the

isolated fibers will necessarily be highly degenerate, making

the task of identifying and classifying the normal modes dif-
ficult and complex.

The selection of initial conditions for coupled nonidentical

x

,'C

+
x

+ c

-120 -80 -40 0 40 80 120

x (Am)

Fig. 4. Normal-mode eigenfunctions for two similar coupled planar
waveguldes and n = 3. (a) Even parity, (b) odd parity, (c) sum of
even- and odd-parity eigenfunctions.
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Fig. 5. Normal-mode eigenfunctions (n = 17) for coupled identical
planar waveguides. (a) Even-parity mode, (b) odd-parity mode, (c)
sum of even- and odd-parity eigenfunctions.

Table 3. Propagation Constants (f', +,'-) and
Splitting (A#r' = frt - fri Computed for Two Coupled

Identical Single-Mode Fibers as a Function of
Separation of Centers d

d (Am3 B (cm-1) Jo-(cm-l) AO' {cm-1)

27.50985 27.50985 0

14 29.92722 24.65465 5.27257

10 34.52299 18.96165 15.56134

I2 = I (a I

a)n

x <a

x >a

0

- 0.1

0.2

0.1

0

0.2

0.1

0

-20 -10 0 10 20

x (Mm)

Fig. 6. Normal-mode eigenfunctions for two coupled identical single-
mode fibers plotted along a line connecting their centers. Fiber cores
are just in contact. (a) Even-parity mode, (b) odd-parity mode, (c)
sum, (d) difference. Fractional distribution of power on two fibers
corresponding to (c) and (d) is 0.03748 and 0.96252.

Table 4. Propagation Constants for Coupled
Nonidentical Single-Mode Fibers as a Function of

Separation d

d (Am) 3'+ (cm-') p3'- (cm-') AO' (cm-)

- 27.50985 19.09500 8.41485

21 27.53110 18.86732 8.66378

11 30.56741 14.53923 16.02818

where a = 1.85, a = 31.25 Am, A = 7.873 X 10-, and no = 1.5.

The waveguide centers are separated by a distance d that was

varied from 56 to 78 Am. A vacuum wavelength X = lgm was

(45) assumed, and propagation of the field was computed for axial

distances Z = 4.096 cm and Z = 8.192 cm, covered in 10-,um

increments. The function 60(x) used in Eq. (24) was

M. D. Feit and J. A. Fleck, Jr.
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0.1

0.05

0.1

0

0.1

0.2

0.1

0

-20 -10 0 10 20

x (Am)

Fig. 7. Normal-mode eigenfunctions for two nonidentical single-

mode fibers. Fiber cores are just in contact. (a) u+(x, 0) displays

quasi-even parity; (b) u-(x, 0) displays quasi-odd parity; (c) sum; (d)

difference.

C(x) = (1 + x)exp(-x 2 /2a 2 ), (46)

with a = 10.24 pm. If Eq. (46) is the input to a single wave-

guide, it will excite both even- and odd-parity (single wave-

guide) modes. Thus Eq. (46) in conjunction with Eq. (24) will

allow the excitation of all normal modes in a pair of propaga-

tion runs.
The spectrum IP 1(Q) I for a single isolated waveguide is

plotted versus -fl in Fig. 2(a). The spectra for the even- and

odd-parity normal modes for two identical coupled wave-

guides are superposed in Fig. 2(b). The assumed separation
is d = 62 Am, corresponding to the waveguide cores in contact

with each other. A total of 18 bound modes for the single

waveguide is evident in Fig. 2(a). The corresponding even-

and odd-parity normal modes can be identified in Fig. 2(b),

in which the odd-parity resonances are displaced slightly
toward j3 = 0. The splitting of the normal-mode eigenvalues,

t#+ = fln+ - O37n, is visible for the highest 4 or 5 orders of bound

modes but is generally imperceptible for lower-order normal

modes.

The AI3 values for individual normal modes, computed for

two propagation distances, are presented in detail in Table
1. Since the accuracy of propagation constants determined
from the locations of resonances improves with propagation
distance, computations were made with two values of Z to test

the accuracy of the computed splittings. The splitting values,

except those for the three lowest-order modes, are found to
be surprisingly insensitive to propagation distance, which
leads to confidence in their values. The sensitivity to prop-
agation distance of the propagation constants of the even-
parity normal modes is exhibited in Table 2. The implied
uncertainty in the propagation constants ranges from 10-4
cm-1 to 10-6 cm-'. The fact that the splitting values may

exhibit less sensitivity to distance than the propagation con-
stants from which they are derived results from the cancel-
lation of systematic errors.

The splitting Ad' is plotted as a function of propagation
constant for a single isolated waveguide in Fig. 3 for a range

of d values. From Fig. 3, it can be concluded that the power

coupling distance L = ir(A+h can be a strong function of

propagation constant or mode number. From these results

-a
0

+e

'3
>e

I

'-

(D

-
+

-a

'C-
+s

-20 -10 0 10 20

x (ym)

Fig. 8. Two nonidentical single-mode fibers with cores in contact.

Linear combination of normal-mode eigenfunctions choosen to
maximize power in one fiber. (a) u+(x, 0), (b) u-(x, 0), (c) u+(x, 0)

+ Gu-(x, 0), (d) u+(x, 0) - Gu-(x, 0), where G = 0.4662.

0E

0e

+
0

x..

+
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- 1.2469 X 10-3, and no = 1.5. The even- and odd-parity
/(\ a) normal modes were excited separately by using Q(x, y) =

exp[-(X 2 + y 2)/2a 2
] and a = 3.26 Am in Eq. (39). The

0.1 propagation constants j3'+ and ,3'- and the splitting A/-p

/ - f computed for X = 1 pm, Az = 5 gm, and z = 0.512 cm,
are given in Table 3 for three values of the separation d.

0.05 For the two cases of finite separation, the coupling between
fibers is clearly strong. Figure 6 shows the even- and odd-
parity normal-mode eigenfunctions and their sum and dif-

0 (b)7ference for d = 10 um, which brings the two fiber cores into
0.1 / contact. The displacement x is measured along a line joining

the centers of the two fibers. The fractional powers associated
3 /with fibers A and B, obtained by numerical integration, are
X' PA = 0.03748 and PB = 0.96252 for the field in Fig. 6(c). For

0.05 /Fig. 6(d), the fractional powers are reversed, and the indicated
fractional power transfer is AP = 0.92504.

0 Coupled Nonidentical Fibers
For this example fiber A parameters were retained, but fiber

0 0.1 V Bparameters were changed to a =6 m and A =0.8666 X

o (a)
° 0.05 - 0.1

o.1; . <1/ 1 1 - ' 0.051

+ 0

0 +
0

x? 00.1
2S 0.0

:3 0.

2 0.1
0

0.05-0.1

X (pUm)0

Fig. 9. Two nonidentical single-mode fibers at greater separation. 0.15
(a) u(x,0),a(b)i(x, ),(c)sum,a(d) difference. Normal-mode ei- 3
genfunctions resemble eigenfunctions for isolated fibers. Sum and
difference are no longer localized on one fiber.

0.1

one would conclude that, to address the problem of cross talk ,
between two parallel multimode optical fibers, it is essential S 0.05
to have quantitative information on the excitation of the +
various modes. If, on the other hand, the fibers are to func-
tion as a coupler, it is obvious that only the highest-order 0

modes can couple in a reasonable distance. 2~(d
Figures 4 and 5 show eigenfunctions for low-order (f = 3) c

and the highest-order (n = 17) even- and odd-parity normal 0.1
modes. A zero denotes the centers of the respective wave-
guides. Also displayed is the sum l(x) + u-(x), which 3
represents the field when there is maximum localization of 5 0.05
power on one waveguide.

0
8. COUPLED SINGLE-MODE OPTICAL FIRERS -20 -10 0 1 0 20
WITH TRUNCATED PARABOLIC PROFILES x (pum)

Fig. 10. Two nonidentical single-mode fibers at greater separation.
Coupled Identical Fibers Linear combination of normal-mode eigenfunctions chosen to max-
We consider first the coupling of identical single-mode fibers imize power on one fiber. (a) u+(x, 0), (b)uir(x, 0), (c) u+(x,0) +
with local index profiles given by Eq. (41), with a = 5 pm, A Guz-c(x, 0), (d) u +(x, 0) - Gui- x, 0), where G = 0. 1055.
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10-. For the latter fiber in isolation, 3' =19.095 cm-1. The

propagation constants for three separations are given in Table

4. It was not possible to excite separately the normal modes

corresponding to u+(x, y) and u-(x, y) with an initial con-

dition of the form of Eq. (39). However, the splitting AO' was

sufficiently large that both resonances could be resolved with

ease.

Figure 7 shows plots of the normal-mode eigenfunctions

u+(x, 0) and u-(x, 0) and their sum and difference for d = 11

,um, which brings the two cores into contact with each other.

The normal-mode eigenfunctions display the quasi-even and

-odd parity referred to in Section 4. The sum and difference

of the eigenfunctions display an asymmetric concentration

of power on the respective fibers. The power fractions asso-

ciated with Figs. 7(c) and 7(d) are PA = 0.86815, PB = 0.13185

and PA = 0.13758, PB = 0.86242, respectively. This corre-

sponds to a fraction AP = 0.7363 of total power trans-

ferred.
In Section 5 it was shown that the fraction of power on one

fiber could be maximized by choosing the field as the linear

(a)

M. D. Feit and J. A. Fleck, Jr.

Table 5. Propagation Constants for Coupled
Identical Three-Mode Fibers with Truncated

Parabolic-Index Profiles as a Function of Separation
d

Separation Mode Even Parity Odd Parity

d (Am) m n 03'tn (cm-,) 3'mn (cm'1)

0 0 131.6168 131.6168

1 0 37.3493 37.3493

0 1 37.3493 37.3493

20 0 0 131.6725 131.5626

1 0 38.5693 35.9167

0 1 37.5600 37.1124

16 0 0 132.0747 131.1756

1 0 41.4777 32.4936

0 1 38.2594 36.4229

14 0 0 132.9912 130.3899

1 0 45.0429 28.2560

0 1 39.2788 35.4268

(b)

IJ

-20 0 20 -26

V
0

-20 0

26

1i

-2 15
-20 0 20 -20 0 20 -15

x (JmA) X (pm)

Fig. 11. Normal-mode eigenfunctions for coupled identical three-mode fibers with truncated parabolic profiles. Examples of both even- (+)

and odd- (-) parity functions are shown. (a) uO1(x,y), (b) u-j(x,y), (c) ulo(x,y), (d) u-j(x,y). Theeigenfunctionsu i (x,y) resemble symmetric

and antisymmetric combinations of distorted versions of the functions uo,(x, y) = exp[-(x 2 
+ y

2
)/2u,]Hm(x/aa)Hn(y/ca), where Hm(x/aa)

is a Hermite polynomial.

1.lS,
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combination u+(x, y) + Gu-(x, y), with G determined by Eq.
(33). This maximal concentration of power on one fiber,

however, would take place at the expense of reduced power
transfer. This is apparent from Figs. 8(c) and 8(d), which are

plots of u+(x, 0) + Gi-(x, 0) and u+(x, 0) - Gu-(x, 0), for
G = 0.4662, obtained from Eq. (33). The power fractions

corresponding to Fig. 9(c) are PA = 0.04028 and PB = 0.95972,

and those corresponding to Fig. 9(d) are PA = 0.60091 and PB
= 0.39909. The associated fraction of power transferred is
AP = 0.5606. The field patterns in Figs. 8(c) and 8(d) and the

associated fractional power transfer are certainly more rep-
resentative of a functioning coupler than those associated with

Figs. 7(c) and 7(d).

Figure 9 shows normal-mode eigenfunctions and their sum

and difference for the same fiber combination at a separation
of 21 gm. The eigenfunctions now closely resemble those for

isolated fibers, and the corresponding propagation constants
are only slightly perturbed from their values for infinite sep-
aration (see Table 4). The field configurations in Figs. 9(c)

and 9(d) correspond to a maximum transfer of power. For
Fig. 9(c), the power distribution is PA = 0.59929 and PB =

0.40071, and for Fig. 9(d), PA = 0.39910 and PB = 0.60090.
The corresponding fractional power transfer is 0.200. Both
field configurations, however, correspond to an almost equal
sharing of power between the fibers and therefore do not ac-
curately represent the field conditions in a functioning cou-
pler.

On the other hand, Figs. 10(c) and 10(d), which show the

normal-mode superpositions a+ (x, y) + Gu -u(x, y), where G
= 0.1055, as determined by Eq. (39), more nearly represent
the field conditions in a functioning coupler. The power
fractions corresponding to Figs. 11(a) and 11(b) are PA =
0.00361, PB = 0.99639 and PA = 0.0469, PB = 0.9531, re-
spectively. The associated fractional power transfer is
0.043.
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Table 6. Propagation Constants for Coupled
Identical Six-Mode Fibers with Truncated Parabolic-

Index Profiles

Separation Mode Even Parity Odd Parity
d (pm) m n Itt, (cm-,) 4ym (cm-')

0 0 240.49913 240.49913

1 0 141.09882 141.09882

0 1 141.09882 141.09882

1 1 47.22126 47.22126

2 0 44.46053 44.46053

0 2 44.46053 44.46053

17 0 0 240.67743 240.33552

1 0 143.23196 139.20690

0 1 143.31982 140.88743

1 1 47.14235 41.83730

2 0 54.15728 36.51435

0 2 46.0326 45.54026

9. COUPLING

FIBERS

OF IDENTICAL THREE-MODE

For this case the fiber profiles are described by Eq. (41) with
a = 7 gm and A = 2.43805 X 10-3. For an isolated fiber such
a profile permits three bound modes, two of which are de-

generate.
The indices m, n, which designate the eigenfunction set of

Eq. (42) for an isolated fiber, are also good quantum numbers

when two fibers are brought together because the functions
of Eq. (42) exhibit the symmetry with respect to reflection
through the x and y axes that will be required of the normal
modes. Hence the normal modes for the coupled fiber system

can be designated by indices m and n and by parity +. The
eigenfunctions can in turn be written as um'n(x, y). The
propagation constants 3% n as functions of fiber separation d
appear in Table 5 for all bound normal modes. Figure 11
contains plots of the eigenfunctions ut,(x, y), ur0(x, y u-j(x,
y), and u-h(x, y), which resemble symmetric and antisym-
metric combinations of distorted versions of functions from
the set of Eq. (42).

In Table 5 it will be observed that the splitting 40- 0' is
always less than the splitting 114- i3%. This is easily un-

derstood from Fig. 11 and Eq. (21): the functions ut,(x, y)
and u -(x, y) clearly exhibit less overlap than the functions

utoa(x, y) and uj-j(x, y).

10. COUPLING OF IDENTICAL SIX-MODE
FIBERS

Here the parabolic profile of Eq. (41) was characterized by a
= 8.5 ptm and A = 3.586587 X 10-3, which permits six bound

modes for an isolated fiber. The modes of the combined
system can be labeled according to the scheme used for the
coupled three-mode fibers. Normal modes were generated

several at a time by choosing 60 (x, y) of Eq. (39) in the
form

0

Fig. 12. One of the spectrum functions used to identify the normal
modes of coupled identical six-mode fibers. Indices of modes excited
are indicated.

60(x) = (1 + x)f(x)exp(-x 2 /2f2 )Hn(y/a,,), (45)

where f(x) is a well-behaved function, e.g., another Gaussian
function. With Eq. (45), one can generate the bound normal
modes corresponding to a single value of n and all values of

m. The spectrum function I P(l) 1, for even-parity normal
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(a)

X,27 30

I I I I I -3 0

-20 o 20 -30

(b)
A

-20 0

x (pm)

Fig. 13. Normal-mode eigenfunctions for coupled identical six-mode

fibers with truncated parabolic profiles. (a) u20(x, y), (b) ufl(x,

Y).

modes and n = 0 in Eq. (45), is shown in Fig. (12). The

unexpected weak-satellite resonance corresponds to ut 2(x, y).

It is excited because uO2(x, y) has the same symmetry as ulo(X,

y). This accidental excitation of normal modes that do not

correspond to the exciting set can be expected to occur more

frequently as the number of bound modes of the coupled fibers

increases, and it tends to complicate the analysis and identi-

fication of normal modes.

The propagation constants for the separations d = and

d = 17 Am are given in Table 6 for all bound normal modes,

and the normal-mode eigenfunctions u% (x, y) and ujj(x, y)

are shown in Fig. 13. From Table 6 it may be noted that for

d = - the mode with indices (m, n) = (1, 1) does not belong

to the degenerate set that includes modes (2, 0) and (0, 2),

although all three modes would be degenerate for an infinite

focusing medium or a highly multimode parabolic profile.

The partial removal of degeneracy is due to the truncation of

the parabolic profile. The degeneracy of the modes (2, 0) and

(0, 2) is unaffected because of their symmetry. It will also be

noted from Table 6 that the splitting AP: is greater for those
odte pairs whose basic orientation is in the x direction rather

than in the y direction.

CONCLUSION

We have used the propagating beam method to determine the

normal-mode properties of a variety of coupled waveguides

of practical interest. The method is straightforward to apply,

and it allows a complete characterization of such systems

within the framework of the weak-guidance approximation.

These results demonstrate the wide applicability of the

propagating beam method to coupling problems in general and

to the analysis of general waveguiding structures with two

transverse dimensions.
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