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1. The notion of a traveling wave front in the context of population dynamics is 
a natural one and has undoubtedly been in existence a long time. This concept, 
however, was apparently first modeled by a differential equation by FISHER in 1937 
[1]. Fisher had in mind a community in which the processes of natural selection 
and random spatial migration were evident. The front then represented a wave of 
spatial advance of a favorable gene. In the final analysis, FISHER'S equation was 
simply the usual logistic growth equation, supplemented by an extra term uxx 
representing the effect of spatial diffusion: 

ut = Uxx + rU(1 -  u). 

He found, and Kolmogorov et al. [2] established rigorously, that for every number 
c > 2 l/~, there is a wave front solution 

u(x, t)= U(x-ct) 

with velocity c. The front joins the stable state u -- 1 with the unstable state, u = 0, in 
the sense that 

U ( -  ~ ) - -  1, U ( ~ ) = 0 .  

Furthermore, for each such c the profile U is unique (modulo translations in x). 
Besides the natural selection situation FISHER had in mind, his equation also 

applies to single species dynamic models incorporating logistic growth and spatial 
diffusion. The logistic equation for a single species is, of course, easily generalized to 
a pair of equations for the dynamics of two fairly arbitrarily interacting species: 

fi = uf(u ,  w) (1 a) 

k = w g ( u , w ) .  (lb) 

The study of such systems goes back to the work of LOTKA and VOLTERRA in the 
early part of the century, and that work is by now classical. If r 1 = f (0 ,  0) and r 2 
=g(0, 0) are positive, the origin is unstable for (1). Supposing there is, in addition, a 
stable state (tT, if) for (1), one may ask a question analogous to FISHER's: when the 
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effect of spatial migration is introduced into the model by inserting diffusion terms, 
does the resulting system support wave fronts joining the unstable state (0, 0) to the 
stable state (0, k)? 

The purpose of our paper is to answer this question affirmatively, in the case 
when the equilibrium (0, ~) comes about through competition and crowding effects, 
i.e., when f and g are decreasing functions of u and w in a neighborhood of (t~, ~). 
The only additional major assumption we make is that f(0,  0)>f(u ,  w)>0 and 
g(0, 0)>g(u, w)> 0 for ue(0, ~), we(0, ~). 

As with FISHER's original equation, fronts turn out to exist for all c greater than 

or equal to a certain minimal speed c*. In FISHER's case, c* = 2 ]/~, and in our case, 

if both species' diffusivities are equal to one, then c* = 2 Max []/~-~, ~ 2 ] .  But unlike 
the scalar case, we find that the fronts are not unique, even for a given c. In fact, for 
each c__> c*, there is a one-parameter family of fronts. This multiplicity generally 
does not affect the rates of approach of the profiles to their limits at + ~ ,  as this is 
determined by c alone; it is rather reflected in the properties of these profiles for 
finite values of their argument. 

Wave fronts of the type we study represent a progressive replacement of one 
equilibrium state (ahead of the front) by another (behind the front). It is important 
to realize that simple wave fronts do not provide the only mechanism for such a 
replacement. For  example, this might be accomplished in two stages, an in- 
termediate equilibrium being involved, and each of the two stages perhaps with its 
own wave front. An easy specific example would be when f = r 1 (1 - u), g = r z (1 - w), 
so that the two equations are uncoupled: 

u ~ - u ~ x = r l u ( 1  - u )  

w t - - W x x = r z w ( 1 - - w ) .  

Then the dynamics ofu and w are independent. The transition from the state (0, 0) to 
(1, 1) might then happen by means of a u-front traveling with minimal velocity 

2 ~ (first stage), combined with a w-front traveling with minimal velocity 2 ~ 2  
(second stage). If r 1 > r2, then eventually the second stage, representing a transition 
from (1, 0) to (1, 1), will lag behind the first, a transition from (0, 0) to (1, 0). This type 
of combination of fronts is not covered in the present paper. 

Other work has been done on wave fronts for systems of the form (2), though 
their existence has not been proved; see, for example, [3]. 

2. The model we examine, then, consists of( l )  with spatial migration in a one- 
dimensional habitat accounted for by diffusion terms: 

u, - k 1 uxx = u f ( u ,  w), (2a) 

w~ - k 2 Wxx = wg(u,  w), (2b) 

(kl >0, k2>0 ). 

Such systems are of considerable current interest. The functions u(x, t) and w(x,  t) 
represent the densities of the two species, as functions of space and time. 

We assume the existence of an equilibrium point (iT, @) of (1) with t7 > 0, @ > 0. 
We further assume it is stable, so the eigenvalues of the linearization of the right- 
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hand side about (t~, k) both have negative real parts. This is equivalent to the pair of 
conditions 

D=de t  [ f l  f2] >0; 17fl +fig2 <0, (3) 
gl g2 

where f~ -= ~ (t~, k), etc. 

In accordance with our interpretation of (1) as competing species equations, we 
also assume that 

f l < 0 ,  g2<0, f2<O, gl<O (4) 
and 

0<  f(u, w)<ri ,  0 <g(u, w)<r 2 (5) 
for 

u~(0, tT), w~(0, ~), 

where we have set r~ =f (0 ,  0), r 2 = g ( 0 ,  0). Our basic result is the following. 

Theorem. For each c > [Max (4q kl, 4r 2 k2) ] 1/2 _ c*, there exists a one parameter 
family o f  wave front  solutions o f  (2): 

u = U(x - c t), w = W ( x  - ct), 

joining (0, O) with (~, ~), in the sense that 

U ( -  oo)=t~, W ( -  oo)=k, U(oo)= W(oo) =0. (6) 

The functions U and W are positive for  f ini te  values o f  their argument. Moreover, 
there exist no positive wave fronts for  c < c*. 

3. The functions U and W will necessarily satisfy the pair of equations 

k I U" + c U ' +  U f ( U ,  W)=0, (7a) 

k z W " + c W ' +  Wg(U,  W)=0, (7b) 

primes denoting differentiation with respect to z = x - c t ,  and the proof of the 
theorem involves a qualitative analysis of the trajectories of(7). These equations are 
more conveniently written as a system of first order equations, identifying ql = U, 
qz=U ', q3=W, q 4 = W ' :  

q'l =q2 (8a) 
c ql 

' = -~-~ ~ f (qx q3) (8b) q2 q2 - -  , 

q~ =q4 (8c) 

, c q3 
q4 = -~-2 q4-k-~2 g(q~' q3). (8d) 
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Linearizat ion of  this system about  the critical point  (0, 0, 0, 0) reveals that  
no trajectory can approach  the origin as z ~ ~ with q~ and q3 remaining positive, 
unless c > c*. This establishes the last part  of  the theorem. 

4. All the trajectories we construct  will lie within a certain region A c IR 4, 
which we now define. Let 

q = (ql . . . . .  q4) ,  

1 ( c - - ~ i ) < 0  , i = 1 , 2 ,  
mi ~ - - ~ i i  

A = { q ' m l q l < q a < O ,  m z q 3 < q 4 < O ,  0 < q l < g ,  0 < q 3 < # } .  

L e m m a  1. Let  c >  c*. Let  q(z) be a trajectory o f  (8) satisfying q(O)eA. Then 
lim q (z) = 0. 

z ~ o o  

Proof. Since q'~ = q2 < 0 and q~ = q4 < 0 in A, we see that q~ and q3 decrease with z 
as long as q(z)eA.  If  q leaves A for some z > 0 ,  let z o be the first value at which 
q(z)r  Then at z = z  o, one of  the four inequalities 

m l q x < q 2 < O ,  m 2 q 3 < q 4 < O  

must be replaced by an equality. We consider the various possibilities in turn. If 
q2(zo)=Owi th  q~ >0,  then necessarily q'2(Zo)>O, so that from (8b) 

0 <= ka q'2(Zo) = - cq2 - q~ f ( q l ,  q3) = - q l f ( q l ,  q3). 

This inequality contradicts  (5). A similar contradict ion shows that q4(zo)+O if 
q3(z0) >0-  

NOW suppose that  m~ q~ (Zo)=q2(zo). Then since the point  (qa (zo) , q2(zo)) must  
be approached  from within A, it follows that 

q'~(Zo) 
q'l (Zo) => ml" 

Substituting (8) into this inequality and using the fact that  q2 = m~ q~ < 0, we find 
this implies 

f ( q l ,  q3) >= - m2 kl  - cml .  

By the definition of  ml, the r ight-hand side is equal to r 1. This again contradicts (5), 
unless of  course q l = q3 = 0 at z = z o. But this is impossible because the uniqueness 
proper ty  of  differential equations would then imply q l - q a - = 0 .  

In a similar manner  we see that it is impossible for the trajectory to first arrive at 
the boundary  of  A at a point  where q4 =mzq3.  

Therefore the trajectory stays within A for all z, with ql and q3 decreasing as z 
increases. Hence lim qi = ~ ,  i = 1 and 3. It also follows from the boundedness  ofq  (z) 

and (8) that  q' is bounded.  In particular, the boundedness of  q~ = q'~', together with 
�9 ' " - - - k - -  " �9 t the hmlt relation q 1 q~, lmphes q 1 (z) = q2 (z) -~ 0. Thus a point on the line qa = 0 is 
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approached as z ~ ~ .  The analogous argument above can be used again to show qll 
=0. Similarly, q3(~)=~33 =0  and q4(~)=0.  This completes the proof. 

5. Our purpose, of course, is to show the existence of trajectories q(z) with 
q ( -  ~ )  =(iT, 0, ~, 0)---~ and q(~)  =0. In view of Lemma 1, it suffices to show the 
existence of trajectories with q ( -  ~ ) =  ~ and q(z)~A for some z. Such trajectories 
lie on the unstable manifold M of ~. Locally at q, M is tangent to the unstable 
manifold Q of the linearization of (8) about q, and a small neighborhood of ~ on 
one is the homeomorphic image of a small neighborhood of ~ on the other. The 
existence of such trajectories will therefore follow, if it can be shown that 

Q n A :# r (9) 

We set p = q - ~  and write the linearization of (8) about ~ in the form 

0 

A: - ( f l  
0 

The manifold Q is spanned by 
eigenvalues with positive real part. 

p' =Ap, 

1 0 0 

c 
o 

kl kl 
0 0 1 

C 

- k 2  g2 -k2_ 

the eigenvectors of A corresponding to 

Lemma 2. t] is a hyperbolic critical point, and Q is two-dimensional. 
For the proof, we introduce the matrix A(p) defined, for p~[0, 1], by simply 

replacing the quantity f2 in the second row, third column of A by Pf2. We show that 
A(p) has two positive and two negative eigenvalues. This fact for p = 1 is the 
assertion of the lemma. The characteristic equation of A(p) is 

Fv(2)=--24 +a2 3 +b22 +c2 +d(p)=u, 
where 

a~ f l  Pf2, 
D(p), D(p)= g2 

and the coefficients a, b, c are independent of p. By (3) and (4), 

D(p) =D +(1 - P)gl f2 =>D >0, 
whence 

d(p) = F.(0) > 0. (10) 

First, consider the case p = 0. Then the set of eigenvalues of A(0) is the union of 
the eigenvalues of its two principal 2 x 2 blocks 

0 
[_kU_~f ~ _lk~ ] and [ - ~ g 2 - l k ~  ]" 
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These are exactly calculated and found to be 

1 (c+l/c2-4k, fl) and -~---~2(c+_l/c2-4kzg2). (11) 
2k, - 

We see from (4) that these are real; two are positive, and two are negative. 
Therefore for p=O, Fp(2) has the properties indicated in the figure: F0(0)>0, 

F 0(2) > 0 for large 121, and F o (2) < 0 for some positive and negative values of 2. The 
assertion of the lemma is true in this case. 

When p is now increased from 0 to 1, the effect on the graph of the function Fp is 
to shift it upwards or downwards. Furthermore since gl f2 >0,  the coefficient d 
depends monotonically on p, so when p is increased, d does not increase, and the 
graph of Fp is not shifted upward. This means it still assumes negative values for 
some positive and negative values of 2. By virtue of (10), however, Fl(0)=d(1) 
remains positive, so that F 1 continues to have two negative and two positive roots. 
This proves the lemma. 

6. For  the following, we introduce the notation 

Q (p) = the unstable manifold of p' = A (p) p; 

N = the negative cone in ~4 :  

N =  { p ~ 4 :  pi<O, i=  1 . . . . .  4}; 

S = unit sphere in IR4; 

R(p)=Q(p)nN~S. 
Lemma 3. Q n N ~ O. 

Proof. The manifold Q(p) is the span of the eigenvectors of A(p) with positive 
eigenvalues. By Lemma 2, it is two-dimensional. Clearly Q =Q(1). Furthermore, 
A(p) and Q(p) depend continuously on p and we can identify normalized 
eigenvectors 4) 1 (p) and ~b2(p) on Q n S which are linearly independent and depend 
continuously on p. Let 2, and 22 be the corresponding positive eigenvalues. 

When p = 0, we may calculate q~i explicitly: 

q~l(O) =(1 +).12) - '/2(0, O, 1, 21), 

where from (11), 
21 = (2k2)- 1 ( _  c + (c 2 - 4k 2 g2) 1/2); 
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also 
4)2(0) = K ( 1 ,  22, fl, fl22) 

for some constants  K and ft. It is clear that  a linear combinat ion  of 4)1 (0) and 4)2(0) 
exists which lies in N. Therefore  Q(0)c~ N # 0. 

N o w  as p increases from 0 to 1, either Q(p)c~ N remains non-empty  or there is a 
first value p = p0 at which Q (p) c~ N = 0. We show that  the second alternative cannot  
occur. 

If f2 =0,  nothing changes with p and we are through. A similar argument  
establishes the result if gl =0.  Therefore  below we assume f2 <0 ,  gl <0.  

Since Q (p) is a two-dimensional  plane, Q (p) c~ S is a curve in IR 4, and (for p < Po) 
R(p) an arc of  that  curve, with nonzero  endpoints  on the boundary  of  N. This 
boundary  consists of port ions of the coordinate  hyperplanes T~= {p: Pi=0},  i 
= 1 . . . .  ,4. Let  qJl (P) and 02 (P) be the endpoints  of R (p). When  R(p) # 9, the points 
~/1 and ~/2 lie on different T/'s. This is clear because ~k 1 (p) and O2(P) generate Q(p) 
and if both  were on the same Ti, then Q(p) would lie on T~, contradict ing the fact that  
Q(p)nN=i=(~. 

Suppose the second alternative were true. Since the points ~i(p), 0 < p < p 0, lie in 
a bounded  set, there exists a sequence p,Tpo with ~Oi(p, ) --. ~ki, so that  ~ieQ(po) and 
each ff~ is on some T t. Two cases arise: 

(1) t~ 1 =#~2. Then  ffl and if2 generate Q(po). Moreover ,  they must  lie on a 
c o m m o n  hyperplane Tt; otherwise a linear combinat ion  of  them would lie in N, 
which is cont rary  to the definition of P0. It follows that  the entire manifold Q(po) 
must lie on T t, so that  for some l = 1, 2, 3, or  4, the I th component  of  all vectors in 
Q(Po), in part icular  of  4)1 and 4)2, vanish. 

The equat ion A(p)4)=24) in component  form is 

)'4)1 =4)2, (l la) 
c t~ 

)'4)2 = -~4)2-~-[(f14)l+Pf24)3), ( l l b )  

)'4)3 =4)4, ( l l c )  

c r} 
)-4)4 = - k 2  4 ) 4 - k 2  (gl 4)1 + g24)3). (11 d) 

We return to the s ta tement  that  Q (po) ~ Tz- If I = 1 or 2, then by (11 a), 4)/1 = 4)~ = 0; 
and i f l = 3 0 r 4 , 4 ) ~ -  i -4)4 = 0, so in fact two components  vanish for all vectors in 

Q(Po). 
(2) ~1 = ~ 2  - ~. Then  since Oi(P) lie on distinct T~ for p <Po ,  it must  happen  that  

t~ lies on the intersection of  two T's, so that two components  vanish. 
Thus in either case, some nontr ivial  l inear combinat ion  of 4)1 and 4)2 has two 

components  vanishing: 

C14)~ -~-C24)2=0, l=l I and 12, C~ not both  zero. 

First, suppose (l 1, 12) = (1, 2). Then  by (11 a), 

C 14)~ + C24)12 = 0  (12) 
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and 
C~ 2~ q~ + C222 q~ 2 =0.  (13) 

= 1 0" But since 21 :~2 2, this implies ~b] ~2 =0. From (11a), this further yields q~2 = , 
from (11b), 1 0" q~3 = , and from (11c), q~]=0. This is impossible, because ~bXeS. 
Similarly, the case (11, 12) =(3, 4) is excluded. 

Next, suppose (11, 12)=(1, 3). Then (13) is replaced by 

C~ O~ + C202 =0.  (14) 

Equations ( l lc )  and (11 d) yield the following relation between qS~ and qS]: 

P 2  2 c where ( ) = 2  + ~ [ 2 + ~ [ g  2. Here we may exclude the possibility that P(2)=0,  
"'z "-L 

since this would imply q~] = q~ = 0, and we would be in the case considered above. 
Since P(2/):~0, (14) becomes 

C1 1 C2 2 
(~1 ~- p ~ 2 )  (~1 = 0 .  P(21) 

As before, this equation and (14) have a nontrivial solution only if P(2 0 =P()]-2), 
which implies 

r 
21 +21 +~-2 =0.  

But this is impossible, since 2 i > 0 a n d  c > 0. 
The only other case is (ll ,  12) =(2, 4). By the same argument as before, we have 

P(~'I) _ P('~2) 

21 22 ' 

which implies 0 <2122 =k2  g2 =<0. Again, this is impossible. 

All possibilities being exhausted, we conclude that at no value pE[0, 1] does it 
happen that Q (p)c~ N = r In particular, for p = 1 we obtain the desired conclusion. 

7. From Lemma 3, it follows that the manifold M enters N. And since M is two- 
dimensional, we have in fact a one-parameter family of trajectories on M c~ N. Each 
of these trajectories goes to the critical point ~ as z ~ - oo (by the definition of M), 
and to the origin as z--+~ (by Lemma 1). This proves the theorem. 

8. For  each c > c*, we have shown the existence of a one-parameter family of 
wave fronts for which each component u, w is monotone decreasing. This 
monotonicity property is clear from our arguments because q(z )eA,  this implying 
that q2 = U' < 0  and q4 = W ' <  0. At the same time, it is clear that monotonicity is 
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not  a necessary condition,  but only a convenience for our  proof. Very likely 
n o n m o n o t o n e  fronts exist as well. 

Note. This research was sponsored in part by the National Science Foundation under 
Grant MPS-74-06835-01. 
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