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ABSTRACT

In this paper, we study kink waves in twisted magnetic tubes. In the equilibrium state there is the electrical current with constant
density inside the tube directed along the tube axis. This current creates the azimuthal magnetic field with the magnitude proportional
to the distance from the tube axis inside the tube and inversely proportional to this distance outside the tube. We derive the dispersion
equations for propagating waves and for unstable perturbations in the long wavelength approximation. We show that there are no
solutions to the dispersion equation determining the frequencies of unstable perturbations, which implies that there are no unstable
long kink modes. We study the dispersion equation for propagating waves both in the case when the plasma density is larger than that
in the surrounding plasma as well as when it is smaller. In the first case we obtain that, depending on the wave number, the dispersion
equation for propagating waves has either no solutions, or one solution, or two solutions. In the case when there is one solution, in
the approximation of very weak twist, the wave mode propagates with the phase speed slightly larger than the kink speed. This wave
mode is called the accelerated kink wave. In the case when there are two solutions to the dispersion equation, one of the two solutions
gives the frequency of a quasi-mode that is subjected to the Alfvén resonance outside the tube. The other solution gives the frequency
of a true eigenmode of linear ideal MHD. In the approximation of very weak twist its phase speed is smaller than the kink speed. This
mode is called the decelerated kink wave. In the case of rarefied tube, depending on the wave number, the dispersion equation has
either one or three solutions. When there is only one solution, the mode frequency is very close to the Alfvén frequency far from the
tube, so the wave mode practically coincides with the Alfvén wave. When there are three solutions, the largest frequency practically
coincides with the Alfvén frequency far from the tube. Two other solutions almost coincide. In all cases the wave modes existing in
the case of rarefied tube are quasi-modes that are subjected to the Alfvén resonance. A possible application of the obtained results to
the solar atmospheric seismology is discussed.
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1. Introduction

Since transverse oscillations of coronal magnetic loops were first
detected by TRACE and interpreted as fast standing kink waves
(Aschwanden et al. 1999; Nakariakov et al. 1999), they continue
to receive ample attention of solar physicists. Later propagat-
ing kink waves have been observed in coronal loops (Tomczyk
et al. 2007; Tomczyk & McIntosh 2009; Pascoe et al. 2010), in
spicules (De Pontieu et al. 2007; He et al. 2009a,b), in the fine
structure of prominences (Okamoto et al. 2007), and in filament
threads (Lin et al. 2007, 2009). Recently, Morton et al. (2012) re-
ported observations of the simultaneous propagation of kink and
sausage waves in a chromospheric magnetic wave guide. In the
first theoretical interpretation of kink waves in coronal loops, a
very simple model of a coronal magnetic loop, which is a straight
magnetic tube, was used (e.g. Ryutov & Ryutova 1976; Edwin &
Roberts 1983). More sophisticated models have been developed
later. For a review of theory of the coronal loop oscillations see,
e.g. Ruderman & Erdélyi (2009).

The numerous observations of propagating kink waves
prompted a number of theoretical studies of these waves. In

� Appendices are available in electronic form at
http://www.aanda.org

particular, the damping of these waves was studied (Pascoe et al.
2010, 2011, 2012; Ruderman et al. 2010; Terradas et al. 2010;
Soler et al. 2008; Hood et al. 2013), the energy flux in the mag-
netic flux tube was calculated (Goossens et al. 2013), and possi-
ble Doppler signatures of propagating kink waves were analysed
(Goossens et al. 2014).

One important problem in the theory of coronal loop kink os-
cillations is the effect of magnetic twist. Twisted magnetic tubes
have been studied for many years in the context of the tube sta-
bility (e.g. Dungey & Loughead 1954; Roberts 1956; Shafranov
1957; Kruskal & Tuck 1958; Parker 1974; Browning & Priest
1983). They have also been studied in relation to the magneto-
hydrodynamic (MHD) wave resonant absorption (e.g. Sakurai
et al. 1991; Goossens & Ruderman 1995; Goossens et al. 1995;
Ballay & Erdélyi 2002). Wave propagation in twisted magnetic
tubes has been investigated by Bogdan (1984), Bennett et al.
(1999), Erdélyi & Carter (2006), Carter & Erdélyi (2007), and
Erdélyi & Fedun (2007).

Ruderman (2007, Paper I) considered kink waves in a thin
twisted magnetic tube with a purely axial magnetic field outside
the tube and the azimuthal component of the magnetic field pro-
portional to the radial distance from the tube axis inside the tube.
Although Paper I mainly dealt with standing waves, the equation
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governing the waves that was derived also describes propagating
waves. Terradas & Goossens (2012) studied the standing kink
waves in a magnetic tube with the magnetic twist confined to an
annulus inside the tube.

In the magnetic tube considered in Paper I, the magnetic field
is discontinuous at the tube boundary, meaning that there is the
surface current at this boundary. In this paper we aim to study
kink waves in a magnetic tube with a more realistic equilibrium
magnetic field that is continuous at the tube boundary. We only
consider propagating waves. Standing waves are studied in an
accompanying paper.

The paper is organized as follows: in the next section we
formulate the problem and present the governing equations and
boundary conditions. In Sect. 3 we derive the dispersion equa-
tions determining the frequencies of propagating waves and un-
stable perturbations. In Sect. 4 we investigate the properties
of propagating waves. Section 5 contains the summary of the
results and our conclusions.

2. Equilibrium state and governing equations

We consider a twisted magnetic tube of radius a.The equilibrium
plasma density is assumed to be constant inside and outside the
tube. Hence, in cylindrical coordinates r, ϕ, z with the z-axis
coinciding with the tube axis, it is given by

ρ =

{
ρi, r < a,
ρe, r > a, (1)

where ρi and ρe are constant. Observations show that in coro-
nal loops ρi > ρe. However, in waveguides in the chromosphere
the opposite inequality can be satisfied. The only condition that
we impose on the plasma density here therefore is ρi � ρe. We
assume that there is electrical current with constant density di-
rected along the tube axis. This electrical current creates the az-
imuthal magnetic field with the magnitude proportional to r in-
side the tube and to 1/r outside. The equilibrium magnetic field
only depends on r and has two components, axial, Bz, and az-
imuthal, Bϕ. We use the cold plasma approximation throughout,
therefore the equilibrium magnetic field must be force-free. This
condition reduces to

dB2

dr
= −2B2

ϕ

r
, (2)

where B2 = B2
ϕ + B2

z . We use the subscripts “i” and “e” to dis-
tinguish between quantities inside and outside the tube. We drop
these indices when there is no danger of confusion. We assume
that Bze is constant, Bϕi is proportional to r, Bϕe is inversely pro-
portional to r, and the magnetic field is continuous at r = a.
Then, using Eq. (2), we obtain that the equilibrium magnetic
field is given by

B2
z =

{
B2

0 + 2A2(a2 − r2), r < a,

B2
0, r > a,

Bϕ =

{
Ar, r < a,

a2A/r, r > a,
(3)

where A and B0 are positive constants, and we assume
that Bz > 0.

The plasma motion is described by the linearised ideal MHD
equations for cold plasmas,

ρ′ = −∇ · (ρξ) = 0, (4)

ρ
∂2ξ

∂t2
=

1
μ0

(∇ × b) × B +
1
μ0

(∇ × B) × b, (5)

b = ∇ × (ξ × B). (6)

Here ξ is the plasma displacement related to the plasma veloc-
ity u by u = ∂ξ/∂t, b the magnetic field perturbation, ρ′ the den-
sity perturbation, B the background magnetic field, ρ the back-
ground plasma density, and μ0 the magnetic permeability of free
space.

Equation (4), which defines the density perturbation, is not
used below. It has been shown in Paper I that Eqs. (5) and (6)
can be transformed to

ρ
∂2ξr

∂t2
= −∂P
∂r
+

B
μ0
D‖br − 2Bϕbϕ

rμ0
, (7)

ρ
∂2ξ⊥
∂t2
= −D⊥P +

B
μ0
D‖b⊥ + br

μ0

[
Bz

rB

d(rBϕ)

dr
− Bϕ

B
dBz

dr

]
, (8)

br = BD‖ξr, (9)

b⊥ = BD‖ξ⊥ + ξr
[

Bϕ
rB

d(rBz)
dr

− Bz

B

dBϕ
dr

]
, (10)

P = −Bϕ
μ0

∂(ξrBϕ)

∂r
− Bz

rμ0

∂(rξrBz)
∂r

− B2

μ0
D⊥ξ⊥. (11)

Here P = (Bϕbϕ + Bzbz)/μ0 is the magnetic pressure perturba-
tion, ξ⊥ = (Bzξϕ − Bϕξz)/B, and b⊥ = (Bzbϕ − Bϕbz)/B. The
operatorsD⊥ andD‖ are determined by

D⊥ = Bz

rB
∂

∂ϕ
− Bϕ

B
∂

∂z
, D‖ = Bϕ

rB
∂

∂ϕ
+

Bz

B
∂

∂z
· (12)

Note that the component of the plasma displacement that is par-
allel to the equilibrium magnetic field, ξ‖ = (Bϕξϕ + Bzξz)/B,
is equal to zero in the cold-plasma approximation.

Equations (7)–(11) have to be supplemented with the kine-
matic and dynamic boundary conditions at the tube boundary.
The kinematic boundary condition states that the radial plasma
displacement has to be continuous,

ξri = ξre at r = a. (13)

Because both the plasma displacement in the radial direction and
the azimuthal magnetic field are continuous at the tube boundary,
the dynamic boundary condition reduces to

Pi = Pe at r = a. (14)

Finally, all perturbations have to vanish as r → ∞.
Equations (7)–(11) together with the boundary conditions (13)
and (14) are used in the next section to derive the disper-
sion equations for kink waves and unstable perturbations in the
magnetic tube.

3. Deriving the dispersion equations

In this section, we derive the dispersion equations that determine
the frequency of kink perturbations. We take all variables pro-
portional to eimϕ, where |m| = 1. We only consider long waves
and assume that the tube is thin, a/l = ε 	 1, where l is the
wavelength. In accordance with this we introduce the scaled
variable in the z-direction, Z = εz. The phase speed of kink
waves is of the order of VA = B0(μ0ρi)−1/2, so the character-
istic Alfvénic time is a/VA. On the other hand, the characteristic
period of kink waves is l/VA. This estimate suggests introducing
the scaled time T = εt. To satisfy the Shafranov-Kruskal stability
criterion (e.g. Roberts 1956; Shafranov 1957; Kruskal & Tuck
1958), similar to Paper I, we assume that A = εÃ with Ã � B0/a.
This assumption also agrees very well with observations that
showed that the azimuthal component of the magnetic field in
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coronal magnetic loops is much smaller than the axial compo-
nent. We perfome the Fourier analysis of the perturbations with
respect to Z and consider perturbations in the form of normal
modes. In accordance with this, we take perturbations of all
variables proportional to exp[i(KZ −ΩT )].

Now, eliminating br and b⊥ from Eqs. (7)–(11), we reduce
this system of equations to equations for ξr, ξ⊥ and P:

(
Ω2 −Ω2

A

)
ξr +

2B̃ϕ
rμ0ρ

d(B̃ϕξr)

dr
=
ε−2

ρ

dP
dr
+

2iBB̃ϕK

rμ0ρ
ξ⊥ + O

(
ε2

)
,

(15)(
Ω2 −Ω2

A

)
ξ⊥ =

iε−2

F
P +

2B̃ϕΩA

r
√
μ0ρ
ξr + O

(
ε2

)
, (16)

P = − B2

rμ0

d(rξr)
dr
+

2ε2B̃2
ϕ

rμ0
ξr − iB2F

μ0
ξ⊥. (17)

Here B̃ϕ = ε−1Bϕ,

ΩA =
1√
μ0ρ

⎛⎜⎜⎜⎜⎜⎝mB̃ϕ
r
+ B0K

⎞⎟⎟⎟⎟⎟⎠ , F =
mBz

rB
− ε

2B̃ϕK

B0
· (18)

Since we consider a static equilibrium, it follows from the gen-
eral spectral theory of the linear ideal MHD that the square of
the eigenfrequency is always real, but it can either be positive
or negative (e.g. Goedbloed & Poedts 2004). We here consider
both cases.

Substituting the expression for P given by Eq. (17) in
Eqs. (16), we obtain

F

[
Fξ⊥ − i

r
d(rξr)

dr

]
= ε2
μ0ρ

B2
0

(
Ω2 − Ω2

A

)
ξ⊥

+ ε2
2iB̃ϕK

rB0
ξr + O(ε4). (19)

We consider this equation as an equation for ξ⊥ and search for
the solution in the form of the series expansion with respect to ε2,

ξ⊥ = ξ(0)
⊥ + ε

2ξ(1)
⊥ + . . . (20)

After calculating the solution to Eq. (19), we substitute it in
Eq. (17) to obtain the expression for P in terms of ξr. Substituting
this expression and expression for ξ⊥ in Eq. (15) we obtain the
equation for ξr and solve it. Then we express P in terms of ξr .
We carry out this procedure separately in the internal (r < a) and
external (r > a) region.

3.1. Solution inside the tube

Using Eqs. (1) and (3), we write Eqs. (15), (17) and (19) in the
internal region as

(
Ω2 −Ω2

Ai

)
ξr+

2Ã2

μ0ρi

d(rξr)
dr
=
ε−2

ρi

dP
dr
+

2iB0ÃK
μ0ρi

ξ⊥ + O
(
ε2

)
, (21)

P = − B2
i

rμ0

d(rξr)
dr
+

2ε2rÃ2

μ0
ξr −

iB2
i Fi

μ0
ξ⊥ + O

(
ε4

)
, (22)

Fi

[
Fiξ⊥ − i

r
d(rξr)

dr

]
= ε2
μ0ρi

B2
0

(
Ω2 −Ω2

Ai

)
ξ⊥

+ ε2
2iÃK

B0
ξr + O

(
ε4

)
, (23)

where

ΩAi =
mÃ + B0K√
μ0ρi

, Fi =
mBzi

rBi
− ε

2rÃK
B0
· (24)

Below, we also use the expansions

Bzi = B0 + ε
2Ã2 a2 − r2

B0
+ O

(
ε4

)
,

Bi = B0 + ε
2Ã2 2a2 − r2

2B0
+ O

(
ε4

)
.

(25)

In the first-order approximation we collect terms of the order of
unity in Eq. (23). As a result, we obtain

ξ(0)
⊥ =

i
m

d(rξr)
dr
· (26)

In the next order approximation we collect terms of the order
of ε2 in Eq. (23). Then, using Eqs. (24)–(26), we obtain

ξ(1)
⊥ =

imr2

2

⎡⎢⎢⎢⎢⎣μ0ρi(2Ω2 − Ω2
Ai)

B2
0

− K2

⎤⎥⎥⎥⎥⎦ d(rξr)
dr
+

2ir2ÃK
B0

ξr· (27)

Substituting Eqs. (26) and (27) in Eq. (22) and using Eq. (24)
yields

ε−2P = rρi

⎡⎢⎢⎢⎢⎣m (
Ω2 −Ω2

Ai

) d(rξr)
dr
+

2ÃΩAi√
μ0ρi
ξr

⎤⎥⎥⎥⎥⎦ + O (
ε2

)
. (28)

Substituting Eqs. (26) and (28) in Eq. (21) and collecting terms
of the order of unity in the obtained equation we obtain the equa-
tion for ξr valid in the leading-order approximation with respect
to ε2:(
Ω2 −Ω2

Ai

) (
r2 d2ξr

dr2
+ 3r

dξr
dr

)
= 0· (29)

Equation Ω2 = Ω2
Ai describes Alfvén waves inside the tube. We

exclude these waves from the analysis. This implies that the ex-
pression in the second pair of brackets in Eq. (29) is zero. Then
the solution to Eq. (29) regular at r = 0 is

ξr = η, (30)

where η is an arbitrary constant. Substituting this result in
Eq. (28) we obtain, again in the leading-order approximation,

P = ε2aηρi

⎛⎜⎜⎜⎜⎜⎝Ω2 − B2
0K2 − Ã2

μ0ρi

⎞⎟⎟⎟⎟⎟⎠ · (31)

3.2. Solution in the external region

While the characteristic scale in the radial direction in the tube
is a, this is, in general, not true outside the tube. In the whole ex-
ternal region this characteristic scale is l. However, the external
region can be divided into two parts: the inner external region
defined by the condition r ∼ a, and the outer external region
defined by the condition r � a. The characteristic scale in the
radial direction in the inner external region is still equal to a,
so we can use Eqs. (15)–(17) to describe the plasma motion in
this region. In the outer external region we have to introduce the
new scaled variable R = εr. Then we can obtain the solution
in the external region using the method of matched asymptotic
expansions. In accordance with this method we obtain the so-
lution in the inner and outer external region separately, and then
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match the two solutions in the overlap region defined by the con-
dition a 	 r 	 l.

The solution in the outer external region is not used to de-
rive the dispersion equation. All that we need from this solution
is the boundary condition for the solution in the inner external
region that is imposed by the matching conditions. In accor-
dance with the matching conditions the asymptotic expression
for the solution in the inner external region valid for large r has
to coincide with the asymptotic expression for the solution in
the outer external region valid for small R. Since Bϕ is inversely
proportional to r, it can be neglected in the outer external region
and the magnetic field in this region can be considered as ap-
proximately homogeneous and in the z-direction. The solution
describing the plasma motion in the presence of such an equi-
librium magnetic field was obtained, for example, in Paper I.
In this solution, P ∝ R−1 and ξr ∝ R−2 for small R. Then the
matching conditions imply that the asymptotic behaviour of the
solution in the inner external region for large r has to be P ∝ r−1

and ξr ∝ r−2. In accordance with this, we determine the solution
in the inner external region that vanishes as r → ∞ below.

Using Eqs. (1) and (3), we write Eqs. (15), (17) and (19) in
the external region as

(
Ω2 −Ω2

Ae

)
ξr +

2a4Ã2

μ0ρer2

d
dr

(
ξr
r

)
=
ε−2

ρe

dP
dr

+
2ia2B0ÃK
μ0ρer2

ξ⊥ + O
(
ε2

)
, (32)

P = − B2
e

rμ0

d(rξr)
dr
+

2ε2a4Ã2

μ0r3
ξr − iB2

eFe

μ0
ξ⊥, (33)

Fe

[
Feξ⊥ − i

r
d(rξr)

dr

]
= ε2
μ0ρe

B2
0

(
Ω2 −Ω2

Ae

)
ξ⊥

+ ε2
2ia2ÃK

r2B0
ξr + O

(
ε4

)
, (34)

where

ΩAe =
1√
μ0ρe

⎛⎜⎜⎜⎜⎝ma2Ã
r2
+ B0K

⎞⎟⎟⎟⎟⎠ , Fe =
mB0

rBe
− ε

2a2ÃK
rB0

· (35)

We also use the expansion

Be = B0 + ε
2 a4Ã2

2r2B0
+ O

(
ε4

)
. (36)

In the first-order approximation the solution to Eq. (34) is again
given by Eq. (26). In the next order approximation we obtain

ξ(1)
⊥ = imr2

⎡⎢⎢⎢⎢⎣μ0ρe(2Ω2 −Ω2
Ae)

B2
0

− K2

⎤⎥⎥⎥⎥⎦ d(rξr)
dr
+

2ia2ÃK
B0

ξr . (37)

Substituting Eqs. (35)–(37) in Eq. (33) yields

ε−2P = rρe

⎡⎢⎢⎢⎢⎣(Ω2 − Ω2
Ae

) d(rξr)
dr
+

2ma2ÃΩAe

r2 √μ0ρe
ξr

⎤⎥⎥⎥⎥⎦ + O (
ε2

)
. (38)

Collecting terms of the order of unity in Eq. (32) and using
Eqs. (26) and (38) we obtain, after some algebra, the equation
for ξr valid in the leading-order approximation with respect to ε2:

d
dr

[
r3

(
Ω2 −Ω2

Ae

) dξr
dr

]
= 0. (39)

It follows from this equation that

r3

⎡⎢⎢⎢⎢⎢⎢⎣Ω2 − 1
μ0ρe

⎛⎜⎜⎜⎜⎝ma2Ã
r2
+ B0K

⎞⎟⎟⎟⎟⎠2⎤⎥⎥⎥⎥⎥⎥⎦ dξr
dr
= χ = const. (40)

Below we only consider trapped waves with frequencies smaller
than the Alfvén frequency at r � a. Hence, we impose the
condition

|Ω| < B0|K|
μ0ρe

(41)

whenΩ2 > 0. Then, integrating Eq. (40) and taking into account
that ξr → 0 as r → ∞ we obtain

ξr =
m χ
√
μ0ρe

4a2Ã|Ω| ln

∣∣∣∣∣∣ (ΩAe −Ω)(B0K + Ω
√
μ0ρe)

(ΩAe + Ω)(B0K −Ω√μ0ρe)

∣∣∣∣∣∣ · (42)

This expression is valid when Ω2 > 0. If Ω2 < 0 the solution to
Eq. (40) is given by

ξr =
m χ
√
μ0ρe

2a2Ã|Ω|

(
arctan

ΩAe

|Ω| − arctan
B0K

|Ω| √μ0ρe

)
· (43)

Note that ξr ∼ 1/r2 when r � a in complete agreement with the
matching conditions. Using Eq. (40) we obtain from Eq. (38) in
the leading-order approximation with respect to ε2 that

P =
ε2ρe χ

r
+ ε2 r ρe ξr

⎡⎢⎢⎢⎢⎣Ω2 − 1
μ0ρe

⎛⎜⎜⎜⎜⎝B2
0K2 − a4Ã2

r4

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ · (44)

This equation is valid for any sign of Ω2. In particular, it fol-
lows from this expression that P ∼ 1/r for r � a, which again
completely agrees with the matching conditions.

3.3. Matching solutions

The solutions in the internal and external regions are related
by the boundary conditions (13) and (14). Substituting expres-
sions (30) and (42) in the boundary condition (13) we obtain the
equation

η =
mχ
√
μ0ρe

4a2ÃΩ
ln

∣∣∣∣∣∣∣ (mÃ+B0K −Ω√μ0ρe)(B0K + Ω
√
μ0ρe)

[mÃ+B0K + Ω
√
μ0ρe](B0K −Ω√μ0ρe)

∣∣∣∣∣∣∣ (45)

which is valid forΩ2 > 0. Substituting expressions (30) and (43)
in the boundary condition (13), we obtain the equation

η =
m χ
√
μ0ρe

2a2Ã|Ω|

⎛⎜⎜⎜⎜⎝arctan
mÃ + B0K
|Ω| √μ0ρe

− arctan
B0K

|Ω| √μ0ρe

⎞⎟⎟⎟⎟⎠ (46)

which is valid forΩ2 < 0. Substituting expressions (31) and (44)
in the boundary condition (14) we obtain the equation

ηa2(ρi − ρe)Ω2 = ρeχ. (47)

which is valid for any sign ofΩ2. Equations (45) and (47) consti-
tute the system of linear homogeneous equations for η and χ. It
has non-trivial solutions only when its determinant is zero. This
condition gives the dispersion equation

ω
√
μ0ρe ln

∣∣∣∣∣∣ (mA + B0k − ω√μ0ρe)(B0k + ω
√
μ0ρe)

(mA + B0k + ω
√
μ0ρe)(B0k − ω√μ0ρe)

∣∣∣∣∣∣ = 4mρeA
ρi − ρe

,

(48)
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which is valid for ω2 > 0, where k = εK and ω = εΩ are non-
scaled wavenumber and frequency.

Similarly, the system of linear homogeneous equations con-
stituted by Eqs. (46) and (47) only has non-trivial solutions
when ω satisfies the dispersion equation

|ω| √μ0ρe

(
arctan

B0k
|ω| √μ0ρe

− arctan
mA + B0k
|ω| √μ0ρe

)
=

2mρeA
ρi − ρe

· (49)

This dispersion equation is valid for ω2 < 0. When ρe < ρi, it is
easy to see that the left-hand side of this equation is always neg-
ative when m = 1, while it is always positive when m = −1. This
implies that Eq. (49) does not have any solutions, so there are
no unstable kink modes in the long-wavelength approximation.
Now we consider the case where ρe > ρi. We rewrite Eq. (49)
as g(x) = h(x), where

g(x) = m {arctan[x(1 + mσ)] − arctan x} ,
h(x) =

2σρex
ρe − ρi

, σ =
A

B0k
·

By differentiating, we obtain

g′(x) =
σ[1 − x2(1 + mσ)]

(1 + x2)[1 + x2(1 + mσ)2]
, h′(x) =

2σρe

ρe − ρi
,

where the prime indicates the derivative. It is straightforward to
show that g′(x) < σ, so g′(x) < h′(x). Since g(0) = h(0) = 0,
it follows that g(x) < h(x). Hence, Eq. (49) does not have solu-
tions also when ρe > ρi. Summarizing, we conclude that Eq. (49)
does not have solutions for any sign of m and any relation be-
tween ρe and ρi. This implies that there are no unstable kink
modes in the long-wavelength approximation. It is worth empha-
sizing that this is no complete proof of stability of the equilib-
rium considered in this paper. There can be unstable kink modes
with a wavelength comparable with the tube radius, or unstable
modes of other types.

4. Investigating the dispersion equation
for propagating waves

4.1. Wave mode frequency

We introduce the quantities

ζ =
ρi

ρe
, V =

B0√
μ0ρe
, κ =

kB0

A
, � =

ωB0

AV
· (50)

Then Eq. (48) is rewritten as

f (�) ≡ � ln
∣∣∣∣∣ (m + κ −�)(κ +�)
(m + κ +�)(κ −�)

∣∣∣∣∣ = 4m
ζ − 1

· (51)

It is easy to see that the left-hand side of this equation is an
even function, so if � is a solution to this equation then −� is
a solution as well, which agrees with the general spectral theory
of linear ideal MHD. This observation enables us to consider in
our analysis � > 0 only. We also note that

�(κ; m = −1) = �(−κ; m = 1). (52)

In accordance with this, we take m = 1 below. In the dimension-
less variables the condition that a wave mode is trapped given by
Eq. (41) reduces to

� < |κ|. (53)

Fig. 1. Dependence of � on κ for κ > 0. The solid and dashed line
correspond to ζ = 3 and ζ = 10 respectively. The dotted lines show the
approximation given by Eq. (54). The dash-dotted lines are the graphs
of function � = (1 + κ)/

√
ζ for ζ = 3 and ζ = 10.

The graphical investigation of Eq. (51) presented in Appendix A
shows that when ζ > 1, it always has exactly one positive solu-
tion that satisfies the inequality (53) when κ > 0, no real solu-
tions when −1 < κ < 0, and two positive solutions when κ < −1.

Consider the limit of weak twist, A 	 |k|B0. In the dimen-
sionless variables this condition implies that |κ| � 1 and� � 1.
Then, assuming in addition that |κ| −�� 1, we obtain

� ≈ |κ|
√

2√
ζ + 1

(
1 +

1
2κ

)
· (54)

In dimensional variables, this relation takes the form

ω = Ck |k|
(
1 +

A
2kB0

)
, C2

k =
2B2

ρi + ρe
, (55)

where Ck is the kink speed. We see that in the limit of weak twist,
the phase speed of the wave with k > 0 is higher than Ck, while
the phase speed of the wave with k < 0 is lower than Ck. We here
call the eigenmode with k > 0 the accelerated kink wave and the
eigenmode with k < 0 the decelerated kink wave.

The approximate solution to the dispersion equation valid for
0 < κ � 1/(ζ − 1) is given by

� ≈ κ
[
1 − 2

1 + 2κ
exp

(
− 4
κ(ζ − 1)

)]
· (56)

In Fig. 1 the dependence of � on κ is shown for κ > 0 and two
values of ζ, 3 and 10. The dotted lines show the approximation
given by Eq. (54). Although this approximations was derived
under the condition |κ| � 1, we can see that, in fact, it works
for |κ| � 1.

When −κ � 1, the larger of the two positive solutions to the
dispersive equation that exists when κ < −1 is given by

� ≈ |κ| − 1
2
· (57)

In dimensional variables this relation takes the form

ω = V

(
|k| − A

2B0

)
· (58)

When 0 < −κ − 1	 1, the two solutions to the dispersion equa-
tion are given by the approximate expression

� ≈ −(κ + 1)

[
1 ± 2 exp

(
4

(κ + 1)(ζ − 1)

)]
· (59)
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Fig. 2. Dependence of the frequency � of two modes on κ for κ < −1.
The solid and dashed lines correspond to ζ = 3 and ζ = 10. The
lower dotted lines show the approximation given by Eq. (54), while
the upper dotted line shows the approximation given by Eq. (57). The
dashed-dotted lines are the graphs of function � = |1+ κ|/√ζ for ζ = 3
and ζ = 10.

The dependence of frequencies of the two wave modes on κ
for κ < −1 is shown in Fig. 2.

It was assumed in Sect. 3.1 that the wave frequency does not
coincide with the internal Alfvén frequency. In the dimension-
less variables the internal Alfvén frequency is

�Ai =
|1 + κ|√
ζ
· (60)

Figure 1 shows that� is a monotonically increasing function of
κ for κ > 0, and, at κ = 0, � = 0 while �Ai = 1/

√
ζ. On the

other hand, it follows from Eqs. (54) and (60) that � > �Ai for
κ � 1. Hence, there is a value κAi that � = �Ai at κ = κAi. At
this value of κ, there should be strong interaction between the
kink mode and the internal Alfvén wave.

Now we investigate if an eigenmode frequency can coincide
with the external Alfvén frequency, which is given in the dimen-
sionless variables by �Ae = |a2/r2 + κ|. When κ > 0, �Ae > κ,
while, for trapped waves, � < κ. Hence, � < �Ae and the
eigenmode frequency cannot coincide with the external Alfvén
frequency.

Consider now κ < 0. Since propagating modes only exist
when κ < −1, we obtain�Ae = −a2/r2 − κ. Then it follows that

− κ − 1 < �Ae < −κ. (61)

Since the eigenfrequency of the decelerated wave mode is lower
than −κ − 1, we conclude that it is lower than�Ae. On the other
hand, �Ae monotonically increases from −κ − 1 to −κ when r
increases from a to ∞. Since the frequency of the second mode
that exists when κ < −1 is between −κ − 1 and −κ, we conclude
that there is rA such that the frequency of this mode coincides
with�Ae at r = rA, meaning that there is an Alfvén-resonant po-
sition for this kink mode. This implies that this kink mode is not
an eigenmode, but a quasi-mode. Because the Alfvén resonance,
it damps, therefore its frequency is complex. Its real part is ap-
proximately defined by the dispersion Eq. (48) only when the
damping is weak. We did not investigate the resonant damping
of this kink mode. It will be the a subject of the future study.

Now we consider the case where ρe > ρi. It is proved in
Appendix A that in this case there are no trapped modes when
κ > 0, there is exactly one trapped mode when κm(ζ) < κ < 0,

Fig. 3. Dependence of κm on ζ.

Fig. 4. Dependence of� on κ for κ < 0 and ζ = 0.5. The dotted line has
the equation � = −κ, i.e. it shows the Alfvén frequency far from the
tube boundary.

three trapped modes when −1 < κ < κm(ζ), and again exactly
one trapped mode when κ < −1. The dependence of κm on ζ
is shown in Fig. 3. In Fig. 4 the dependence of frequencies of
trapped modes on κ is shown for κ < 0 and ζ = 0.5.

When |κ| � 1 and κ < 0, the frequency of the trapped mode
is given by the approximate expression

� = −κ − 1
2
· (62)

When 0 < κ+ 1 	 1, the two lower trapped eigenmode frequen-
cies are given by the approximate expression

� = (κ + 1)

[
1 ± 2 exp

( −4
(1 − ζ)(1 + κ)

)]
· (63)

Finally, when κ < 0 and |κ| 	 1, the eigenfrequency is given by

� = −κ
[
1 − 2 exp

(
4

κ(1 − ζ)
)]
· (64)

It is also easy to obtain the approximate expressions for κm and
for the corresponding double root of the dispersion equation,
�m,

κm ≈ −1
2
− exp

(
− 4

1 − ζ
)
, (65)

�m ≈ 1
2
− 17 − ζ

1 − ζ exp

(
− 8

1 − ζ
)
· (66)

Note that the value given by Eq. (65) coincides with the nu-
merically calculated value presented in Fig. 3 with very high
accuracy for all values of ζ < 1.

When κ is close to κm the two larger roots of the dispersion
equation are given by the approximate formula

� ≈ �m ± exp

(
− 2

1 − ζ
) √
κm − κ· (67)
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Fig. 5. Zoomed dependence of � on κ for κ < 0 and ζ = 0.5.

This approximate expression is only valid when |� −�m | 	 1,
which is equivalent to the condition

κm − κ 	 exp

(
− 4

1 − ζ
)
· (68)

Hence, Eq. (67) is only valid in a very close vicinity of κm.
When ζ = 0.5, we have κm ≈ −0.500335 ≈ −0.5 and �m ≈

0.499996 ≈ 0.5. We see in Fig. 4 that the dispersion curves are
almost straight lines. We denote the frequency of the wave mode
that exits when −1 < κ < 0 as �1, the frequency of the wave
mode that exits only when −1 < κ < κm as�2, and the frequency
of the wave mode that exits when κ < κm as �3. The dispersion
curve � = �2(κ) connects the points (−1, 0) and (κm, �m) in
the κ�-plane. This curve is slightly above the curve� = �1(κ),
but the difference between �1 and �2 is so small, however, that
these two curves are indistinguishable when −1 < κ < κm. The
apex point of the curve� = �1(κ) is (−0.5, 0.5), while the curve
� = �3(κ) starts from the point (κm, �m). The distance between
the points (−0.5, 0.5) and (κm, �m) is so small that the second
curve looks like the continuation of the first one. To better reveal
the behaviour of dispersion curves we zoomed the vicinity of
point (−0.5, 0.5) in Fig. 5.

The dotted curve has the equation � = −κ, meaning that it
shows the Alfvén frequency far from the tube boundary. We see
that it almost indistinguishable from the curves � = �1(κ) and
� = �2(κ), which means that the frequencies of these modes
are very close to the Alfvén frequency far from the tube. This
means that these modes are very close to Alfvén waves with m =
±1 that can exist far from the tube where the Alfvén speed is
almost constant. Although from the formal mathematical point
of view, modes with frequencies�1 and �2 are trapped modes,
the bulk of their energy is contained far from the tube, therefore
physically they do not look like trapped modes. Note that the
qualitative behaviour of the dispersion curves is the same for
any ζ < 1.

Finally, we prove that all trapped wave modes that exists
when ζ < 1 are, in fact, quasi-modes and subject to reso-
nant absorption. For the external Alfvén frequency we have
�Ae = |a2/r2 + κ|. We see that �Ae = |1 + κ| when r = a. When
κ > −1,�Ae monotonically decreases when r increases and takes
its minimum equal to zero at r = r/

√−κ. Then it monotonically
increases when r increases further and tends to −κ as r → ∞.
Since for all trapped modes � < −κ, the frequency of any such
mode is equal to the external Alfvén frequency at some value
of r when κ > −1.

When κ < −1, the external Alfvén frequency monotonically
increases from −κ − 1 to −κ when r increases from a to infinity.
Since the frequency of the only trapped mode that exists in this

case is between −κ − 1 and −κ, it is again obvious that this fre-
quency is equal to the external Alfvén frequency at some value
of r.

Finally, we discuss the relation between the properties of
propagating waves in straight and twisted tubes. Trapped wave
modes do not exist in a magnetic tube where the density in-
side the tube is lower than that in the surrounding plasma (e.g.
Ruderman & Roberts 2006). We obtain a straight tube taking
A → 0, which corresponds to κ → ∞. The frequency of the sin-
gle mode that exists when κ < −1 tends to the Alfvén frequency
far from the tube, and thus this mode is no longer trapped. Hence,
the results obtained for a twisted tube agree with those obtained
for a straight tube.

4.2. Wave mode polarization

In this section we study the polarization of wave modes. Since
all trapped modes are quasi-modes when ζ < 1, we restrict our
analysis to ζ > 1. First of all, we note that in the leading-order
approximation with respect to ε, we have ξϕ = ξ⊥, ξz = 0, and ξ⊥
is related to ξr by Eq. (26). Then we have inside the tube

ξr = η exp[i(ϕ + kz − ωt)], ξϕ = iη exp[i(ϕ + kz − ωt)], (69)

where, without loss of generality, we can take η real. Below we
only consider waves propagating in the positive z-direction, so
we take ω > 0 when k > 0, and ω < 0 when k < 0 (we recall
that if ω is a solution to the dispersion equation, then −ω is also
a solution). Since ω(k; m = −1) = ω(−k; m = 1), we have the
second eigenmode solution

ξr = η exp[−i(ϕ + kz − ωt)], ξϕ = −iη exp[−i(ϕ + kz − ωt)],

(70)

where, in accordance with our agreement, we substituted −ω
for ω. The superposition of these two solutions gives the real
solution

ξr = η cos(ϕ + kz − ωt), ξϕ = −η sin(ϕ + kz − ωt). (71)

We immediately see that the length of the displacement vec-
tor does not change and is equal to η, so the wave mode is
circularly polarized. Now we introduce auxiliary Cartesian co-
ordinates x, y, z with the same z-axis as in the cylindrical co-
ordinates. Then for the components of the projection of the
displacement vector on the xy-place we have

ξx = η cos(ωt − kz), ξy = η sin(ωt − kz). (72)

First we consider the wave mode with k > 0, so in accordance
with our agreement, ω > 0. In accordance with Eq. (54), in the
long-wavelength approximation, the phase speed of this wave
is higher than Ck. At a fixed z the displacement vector rotates
with the angular velocity ω in the counter-clockwise direction.
Hence, this is a right-hand polarized wave as defined from the
point of view of the source.

For modes with k < 0 the situation is just the opposite. In ac-
cordance with Eq. (54), in the long-wavelength approximation,
the phase speed of this wave is lower than Ck. Since ω < 0, at
a fixed z, the displacement vector rotates with the angular ve-
locity |ω| in the clockwise direction. Hence, this is a left-hand
polarized wave as defined from the point of view of the source.

The situation here is quite similar to that with circularly po-
larized waves propagating along the magnetic field in a Hall
plasma. These waves propagate with the Alfvén speed in the
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very long-wavelength approximation. When the dispersion cor-
rection in the long-wavelength approximation is taken into ac-
count, the phase speed of the right-hand polarized wave is
slightly higher than the Alfvén speed, while the phase speed of
the left-hand polarized wave is slightly lower than the Alfvén
speed (see, e.g. Ruderman & Caillol 2008, and references
therein).

We now discuss the relation between the properties of kink
waves and their polarization from somewhat different point of
view. The equation of magnetic field lines is

r dϕ
Bϕ
=

dz
Bz
, (73)

and any field line is situated on a cylindrical surface r = const.
In particular, at the tube boundary, where Bz = B0 and Bϕ = aA,
the equations of any field line are

r = a, z =
B0

A
ϕ + const. (74)

This is the equation of a right-hand helix of radius a and
pitch 2πB0/A.

We now consider the hodograph of vector h = (ξx, ξy, z) ob-
tained at fixed t by varying z from −∞ to∞. We take the vector ξ
to be inside the tube, so its components are given by Eq. (72). As
a result we obtain a left-hand helix when k > 0, that is, when
the wave is accelerated, and a right-hand helix when k < 0,
that is, when the wave is decelerated. Both helices are of ra-
dius η and pitch 2π/|k| = l. Since there are accelerated waves
with any k > 0, an accelerated wave with any pitch of the hodo-
graph of vector h can propagate. On the other hand, a deceler-
ated wave can only propagate when k < −A/B0, that is, when
the pitch of the hodograph of vector h is smaller than the pitch
of any magnetic field line on the tube surface.

We assumed from the very beginning that A > 0, which
means that all the magnetic field lines are right-hand helices.
We now consider the case where A < 0, so all the magnetic
field lines are left-hand helices. In this case the analysis remains
almost the same. The only difference is that in this case, the ac-
celerated wave is left-hand polarized, and the decelerated wave
is right-hand polarized.

We give one example. We consider the kink wave propaga-
tion along a coronal loop. Let the component of the equilibrium
magnetic field that is orthogonal to the loop axis rotate by the
angle α when we move from one loop foot point to the other.
In particular, α = 2π corresponds to the full turn of the mag-
netic field line. In accordance with Eq. (74) we have the relation
A/B0 = α/L, where L is the loop length. Using this result we
obtain the relation κ = 2πL/αl (recall that l is the wavelength).
Obviously, the analysis of this paper can only be used for waves
with l 	 L. Then, assuming that the twist is not very strong ei-
ther, α � 2π, we obtain κ � 1. This implies that we can use
the approximate formula (55) for the frequencies of the acceler-
ated and decelerated wave. Then we obtain that the ratio of their
frequencies is approximately equal to

ωa

ωd
= 1 +

2αl
πL
, (75)

where ωa and ωd are the frequencies of the accelerated and de-
celerated kink wave. Even for quite short waves with l of the or-
der of L/10, the frequencies can differ by as much as 40% when
there is a substantial magnetic twist in the loop with α � 2π.

Up to now, no observations have been reported of two kink
waves that simultaneously propagate along a magnetic wave

guide. Quite possibly, that the magnetic twist in wave guides
in the solar atmosphere is always very low and, as a result,
the accelerated and decelerated wave have almost the same
phase speed. Another explanation is that perturbations propagat-
ing with different phase speeds in magnetic wave guides have
not been searched for in observational data. The results ob-
tained here may prompt researchers dealing with observations
to search for such perturbations. If simultaneously propagat-
ing kink waves with different phase speeds are observed, then
this might be very useful from the point of view of solar atmo-
spheric seismology because such an observation could be used
to estimate the angle of the magnetic twist α using Eq. (75).

5. Summary and conclusions

We have studied the propagation of kink waves in twisted mag-
netic tubes. It was assumed that in the equilibrium state, there is
electrical current with constant density inside the tube directed
along the tube axis. This current creates the azimuthal compo-
nent of the magnetic field with the magnitude proportional to the
distance from the tube axis inside the tube and inversely propor-
tional to this distance outside the tube. The plasma density was
assumed to be constant inside and outside the tube. The analy-
sis was carried out in the long-wavelength approximation, that
is, under the assumption that the wavelength is much larger than
the tube radius.

In accordance with the general spectral theory of linear
MHD the eigenfrequencies of wave modes can be either real or
purely imaginary. The modes with the real frequency are prop-
agating waves, while those with purely imaginary frequencies
are either damped or growing perturbations. We derived the dis-
persion equations for the two cases separately (see Eqs. (48)
and (49)). We showed that the dispersion equation for modes
with purely imaginary frequency does not have any solutions.
This implies that there are no unstable kink modes in the
long-wavelength approximation.

When the plasma density inside the tube is higher than that in
the surrounding plasma, the investigation of the dispersion equa-
tion for propagating waves showed that there are three distinc-
tive wave number intervals. In the first interval exactly one wave
mode is trapped. Because in the approximation of weak twist the
phase speed of this mode is higher than the kink speed, we called
this wave mode the accelerated kink wave. In the second inter-
val the dispersion equation does not have any solutions, so there
are no propagating waves with wavenumbers from this interval.
In the third interval the dispersion equation has two solutions.
The wave mode with the higher frequency is a quasi-mode be-
cause its frequency is in the external Alfvén continuum and is
subjected to the Alfvén resonance. Hence, its frequency is com-
plex. The real part of its frequency is approximately determined
by the dispersion equation only when the damping due to Alfvén
resonance is weak. The wave mode with the lower frequency is
a true wave mode of linear ideal MHD. In the approximation of
weak twist, the phase speed of this mode is lower than the kink
speed. This inspired us to call this wave mode the decelerated
kink wave.

We also studied the case where the plasma density inside the
tube is lower than that in the surrounding plasma. In this case
the trapped modes only exist when the wave number is negative,
so the wave number can vary from zero to minus infinity. The
interval of the wave number variation can be divided into three
subintervals, the thirst subinterval being semi-infinite. When the
wave number is either in the first or in the third subinterval, there
is exactly one trapped mode. This mode frequency is very close
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to the external Alfvén frequency far from the tube axis. The bulk
of the energy of this mode is in the region far from the tube
boundary. Hence, although from the formal mathematical point
of view, this mode can be called trapped, its physical properties
do not resemble the characteristics of trapped modes.

When the wave number is in the second subinterval, there
are three trapped wave modes. The frequency of the first mode
is again very close to the external Alfvén frequency far from
the tube axis. The frequencies of the two other modes are very
close to each other. Finally, all wave modes are, in fact, quasi-
modes and must be subject to damping as a result of resonant
absorption.

To study the propagating kink waves, we used a relatively
simple model of a magnetic tube with the constant electrical cur-
rent density inside the tube and a current-free environment. The
assumption that the environment is current-free, so that the cur-
rent is only concentrated inside the tube, seems to be quite gen-
eral. If it is satisfied, then the equilibrium magnetic field outside
the tube is independent of a particular distribution of the electri-
cal current inside the tube. Its axial component is constant, and
the azimuthal component is inversely proportional to the dis-
tance from the tube axis. If the current density inside the tube
varies in the radial direction, then the local Alfvén frequency
will also vary in the radial direction, and we can expect wave
damping as a result of resonant absorption. However, we can
expect that the propagation properties of the waves will remain
qualitatively the same. In particular, if the plasma density inside
the tube is higher than that of the surrounding plasma, one can
expect that there will be two modes with opposite polarization
that propagate with different phase speeds.

We also comment on the relation between propagating and
standing waves. In a magnetic tube with straight magnetic field
lines a standing wave is a superposition of two identical propa-
gating waves travelling in the opposite directions. The presence
of magnetic twist destroys the invariance of the equilibrium with
respect to changing the tube axis direction. For a particular equi-
librium as considered in Paper I, however, a standing wave is
still a superposition of two propagating waves. The only differ-
ence in comparison with a tube with straight magnetic field lines
is that now the two propagating waves have the same frequency
but different wave numbers.

The situation is completely different for the equilibrium
considered in this article. The solution in the external region is
not factorized, meaning that it cannot be written as a product of
the function of r that is independent of the wave number and
a multiplier that depends on the wave number (see Eqs. (42)
and (44)). As a result, a superposition of two or even a few prop-
agating waves cannot satisfy the frozen-in boundary conditions
at the loop footpoints in the external region. Studying standing
waves is a much more difficult problem than studying propa-
gating waves. It should be solved without the Fourier analysis
with respect to z, so the governing equations cannot be reduced
to ordinary differential equations. This implies that there is no
obvious relation between standing and propagation waves, and

we cannot conclude about the properties of standing waves on
the basis of analysing propagating waves.
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Fig. A.1. Graphical investigation of the dispersion equation for κ > 0.
The solid lines show the graph of function Y = f (�), while the dashed
lines have equations Y = 4/(ζ − 1). The upper dashed-dotted line corre-
sponding to ζ > 1 intersects the solid lines at two points corresponding
to two roots to the dispersion equation. However, only one of these roots
satisfies the condition� < |κ|. The vertical dotted line indicates the root
satisfying the condition � < |κ|. The lower dashed-dotted line corre-
sponding to ζ < 1 intersects the solid lines at two points corresponding
to roots of the dispersion equation. However, none of them satisfies the
condition � < |κ|.

Appendix A: Graphical investigation
of the dispersion equation

In this section we present the graphical investigation of the dis-
persion equation. We start from the case where ζ > 1. In Fig. A.1
the graph of function Y = f (�) is shown for κ > 0. The upper
horizontal line Y = 4/(ζ − 1) corresponding to ζ > 1 crosses
this graph twice, so there are two positive roots to Eq. (51).
However, only one of them satisfies the inequality (53). Hence,
there is only one trapped wave mode with positive frequency
when κ > 0.

In Fig. A.2 the graph of function Y = f (�) is shown for
− 1

2 < κ < 0. Now the upper horizontal line Y = 4/(ζ − 1) does
not cross the graph of function Y = f (�). Hence, there are no
roots of Eq. (51) when − 1

2 < κ < 0. In Fig. A.3 the graph of
function Y = f (�) is shown for −1 < κ < − 1

2 . Again the upper
horizontal line Y = 4/(ζ−1) does not cross the graph of function
Y = f (�). Hence, there are no roots of Eq. (51) when −1 < κ <
− 1

2 . Summarizing, we conclude that there are no propagating
wave modes when −1 < κ < 0.

Finally, Fig. A.4 displays the graph of function Y = f (�)
for κ < −1. It is quite similar to Fig. A.1. In particular, the up-
per horizontal line Y = 4/(ζ − 1) again crosses the graph of
function Y = f (�) twice, so there are two positive roots to
Eq. (51). However, now both roots satisfy the inequality (53).
Hence, there are two trapped wave modes with positive fre-
quency when κ < −1 but, as is shown in Sect. 4.1, the wave with
the higher frequency is a quasi-mode that is subject to resonance
absorption.

Now we proceed to studying the case where ζ < 1. Since
now 4/(ζ − 1) < −4, while f (�) → −1 as � → ∞, in Fig. A.1
the lower horizontal line Y = 4/(ζ − 1) corresponding to ζ < 1
crosses the graph of function Y = f (�) twice, so there are
two positive roots of Eq. (51). However, none of them satisfies

Fig. A.2. Graphical investigation of the dispersion equation for − 1
2 <

κ < 0. The solid lines show the graph of function Y = f (�), while the
dashed-dotted lines have equations Y = 4/(ζ − 1). The upper dashed-
dotted line corresponding to ζ > 1 does not intersect the solid lines,
which implies that there are no propagating wave modes when − 1

2 <
κ < 0. Depending on the value of ζ < 1, the lower dashed-dotted line
intersects the solid lines either at two or at four points, so there are up
to four positive roots of the dispersion equation. However, only one of
them satisfies the condition � < |κ|. The vertical dotted line indicates
the root satisfying the condition � < |κ|.

Fig. A.3. Graphical investigation of the dispersion equation for −1 <
κ < − 1

2 . The solid lines show the graph of function Y = f (�), while
the dashed-dotted lines have equations Y = 4/(ζ − 1). The upper
dashed-dotted line corresponding to ζ > 1 does not intersect the solid
lines, which implies that there are no propagating wave modes when
−1 < κ < − 1

2 . Depending on the value of ζ < 1, the lower dashed-
dotted line intersects the solid lines either at two or at four points, so
there are up to four positive roots of the dispersion equation. The root
corresponding to the intersection with the right branch of graph of func-
tion Y = f (�) does not satisfy the condition � < |κ|, while all other
roots satisfy this condition. The vertical dotted lines indicate the roots
satisfying the condition � < |κ|·

the inequality (53). Hence, there are no trapped wave modes
when κ > 0.

Depending on the value of ζ < 1, the lower horizontal line
Y = 4/(ζ − 1) in Fig. A.2 can cross the graph of function f (�)
either two or four times. Hence, there can be up to four posi-
tive roots to Eq. (51). However, only one of them satisfies the
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Fig. A.4. Graphical investigation of the dispersion equation for κ < −1.
The solid lines show the graph of function Y = f (�), while the dashed
lines have equations Y = 4/(ζ − 1). The upper dashed-dotted line corre-
sponding to ζ > 1 intersects the solid lines at two points corresponding
to two roots to the dispersion equation. Both these roots satisfy the con-
dition � < |κ|. The lower dashed-dotted line intersects the solid lines at
two points, so there are two positive roots. But only the smaller root sat-
isfies the condition � < |κ|. The vertical dotted lines indicate the roots
satisfying the condition � < |κ|.

Fig. A.5. Dependence of fm on κ is shown by the solid line. The hori-
zontal dashed-dotted line shows fm = 4/(ζ − 1), and the vertical dotted
line indicates κm.

inequality (53). Hence, there is exactly one trapped wave mode
with the positive frequency when − 1

2 < κ < 0.
In Fig. A.3 the graph of function Y = f (�) is shown for

−1 < κ < − 1
2 . For � > 0 this graph consists of three branches.

An intersection of the horizontal line Y = 4/(ζ − 1) with the
right branch corresponds to a root that does not satisfy the
inequality (53). The horizontal line intersects the left branch for
any value ζ < 1. The corresponding root of Eq. (51) satisfies
the inequality (53) and thus it is the frequency of a trapped
mode. We denote the maximum value of function f (�) in
the interval (κ + 1,−κ) as fm(κ). This function monotonically
decreases from 0 to −∞ when κ varies from −1 to − 1

2 . The de-
pendence of fm on κ is shown in Fig. A.5. When 4/(ζ−1) > fm(κ)

the dashed-dotted line does not intersect the middle branch, so in
this case there is only one trapped wave mode. Otherwise there
are three trapped wave modes. We see in Fig. A.5 that the condi-
tion 4/(ζ −1) > fm(κ) is satisfied when κ ∈ (

κm,− 1
2

)
, and it is not

satisfied when κ ∈ (−1, κm
)
. Hence, there are three trapped wave

modes when κ ∈ (− 1, κm
)
, and only one when κ ∈ (

κm,− 1
2

)
. The

dependence of κm on ζ is shown in Fig. 3.
Finally, in Fig. A.4 the graph of function Y = f (�) is shown

for κ < −1. The horizontal line intersects this graph at two
points. But only the smaller root satisfies the condition� < |κ|.

Appendix B: Proof that the frequencies
of the decelerated kink wave
and the quasi-mode do not coincide
with the internal Alfvén frequency

In this section we prove that the frequencies of the two trapped
wave modes that exist when ζ > 1 and κ < −1 do not coin-
cide with the internal Alfvén frequency. We can see in Fig. A.3
that the function f (�) is monotonically increasing in the interval
(0,−κ − 1). Let us prove that

f (�Ai) <
4
ζ − 1

· (B.1)

This inequality can be rewritten as

g(κ) ≡ ln

∣∣∣∣∣∣ (
√
ζ + 1)(

√
ζκ − κ − 1)

(
√
ζ − 1)(

√
ζκ + κ + 1)

∣∣∣∣∣∣ < − 4
√
ζ

(ζ − 1)(κ + 1)
· (B.2)

We have

dg
dκ
=

2
√
ζ

ζκ2 − (κ + 1)2
> 0 (B.3)

because ζ > 1 and −κ − 1 < −κ. Hence, g(κ) is a monotonically
increasing function. For |κ| � 1

g(κ) = − 2
√
ζ

(ζ − 1)κ
+ O(|κ|−2) < − 4

√
ζ

(ζ − 1)(κ + 1)
· (B.4)

Since g(κ) is monotonically increasing, this result implies that
the inequality (B.2) is correct for any κ < −1. Then the same is
true for the inequality (B.1), which can be rewritten as

f (�Ai) < f (�−). (B.5)

Since f (�) is monotonically increasing in the interval (0,−κ−1),
this inequality implies that�Ai < �−. Since�− < �+, it follows
that also �Ai < �+.
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