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Abstract. Propagation and stability of light pulses under the combined influence of the 
optical Kerr ellect, dispersion and diffraction are investigated by adopting a variational 
procedure. In particular, it is found thrt ‘light bullets’, i.e. radially symmetric pulses 
propagating without distortion, are not necessarily unstable under perturbations which do 
not maintain radial symmetry. 

The self-induced non-linear contribution to the refractive index no of a transparent 
medium ( n  = no + n, l ,  1 being the instantaneous optical intensity of the propagating 
field) is known as the optical Kerr effect. It can give rise to two distinct phenomena, 
that is a longitudinal and a transverse one, respectively termed as ‘self phase modulation’ 
and ‘self focusing’. The first is able to modify the temporal shape of the pulse, either 
shortening or broadening it according to the dispersive properties of the medium at the 
carrier frequency; in particular, in a single mode optical fibre, where diffraction can be 
neglected under usual operating conditions, the non-linear shortening of the pulse can 
exactly balance the linear dispersive broadening and give rise to an ‘envelope soliton’ 
which propagates undistnrted. The second affects the transverse spatial characteristics 
of the pulse, in view of the self-guiding properties of the beam associated with the 
presence of a refractive index larger (whenever n2 z 0) at its centre than at the periphery; 
in particular, in an unbounded, non-dispersive medium, self focusing can exactly 
compensate for the effect of diffraction and produce a beam propagating with no 
variation in its transverse shape. The above two situations were first investigated in the 
pioneering papers of Hasegawa and Tappert [I] and of Chiao et al [2], respectively, 
while a considerable amount of work has been devoted to the stability properties under 
perturbations of the equilibrium situation in which exact balance occurs [3-61. 

More recently, propagation of optical pulses under the simultaneous influence of 
dispersion, diffraction, self focusing and self phase modulation has attracted a good deal 
of attention [7-lo]. In particular, the possibility has been recognized of generating 
pulses (‘light bullets’) which, held together by the presence of non-linearity, propagate 
without changing their temporal and spatial shape [9]. The stability analysis, both 
numerical [ I l l  and analytical [9,lO], shows that they are unstable, that is that any 
small deviation from the equilibrium condition leads either to their collapse in space and 
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time or to their divergence. While this is the case for radially symmetric fields, that is 
fields depending (apart from the propagation coordinate z) on the combination 
p2 = t2 + q’ + I’, where 5, q and T are respectively the transverse coordinates and the 
temporal one (suitably normalized), it is no longer true for the more general situation 
of non-spherical deviations from equilibrium (i.e. separately depending on 5’ + q’ and 
T’), as we will show in the following. This will be done by generalizing a Lagrangian 
approach which has been already successfully employed to describe non-linear propaga- 
tion problems [10,12,13]. 

The wave equation describing paraxial propagation along the z direction reads 

where E(x, y, z, t )  exp(ikz - iwt) is the electric field and V = I/(dk/dw) and A = l/(d2k/dw2) 
are respectively the group velocity and the group-velocity dispersion at the carrier 
frequency o. In the anomalous dispersion regime (i.e. A i 0), equation (1) can be recast 
in the dimensionless form [9] 

where I = (t - z / V ) (  -kA)’ / ’ ,  (t, q, [) = (kx, ky, kz) and U = (n2/no)”2E.  
Ifwe consider cylindrical symmetric solutions ofthe kind u(p, I), where p = (5’ + q2)’”, 

an appropriate field Lagrangian density 9, from which equation (2) can be deduced 
as a Euler-Lagrange equation corresponding to a vanishing variation [I41 

S 9 ? d p d r d ( = O  s (3) 

reads 

having set U = IuI exp(iq). 
In the frame of the Ritz optimization procedure, we look for an approximate 

analytical solution to be found within a set of suitably chosen trial functions of the form 

where F is a well behaved prescribed function. If we insert equation ( 5 )  into equation 
(3), the variational principle reduces to 



Letter to the Editor 9 

with 

+ @MO/a2 + &PM0/p2 + 2aa:aZMo + ab:p2Mo - yMi/2aZp (7) 

where the dot stands for the [ derivative, 

4 ' + m  (dF/dw)' 
- 

a = i J n f m  w4F(w) dw b = - J  w2 F dw 
3 0  

y = 2 Jo+m w2FZ(w) dw 

and we have assumed the normalization condition 

2 s,'" w2F(w) dw = 1. (9) 

Accordingly, the exact field Lagrangian Y is substituted by the reduced Lagrangian 
whose Euler-Lagrange equations for the <-dependent parameters MO, a, p, a,, a,, b, 
read [14] 

ko = o (energy conservation) U = 2aa, ii = 2pb, (10) 

aa,a -$/a' + 2aa:a + b M 0 / u 3 p  = 0 

io + aala2 + +ablp2 + @/az + +&p2 + 2aa2a: + ap'b: - y ~ ~ / ~ ~ p  = o (11) 

(12) 

ab+ - &p/p3 + 2ab:p + + y ~ ~ / ~ ~ p ~  = 0. 

a = tb/ua' - yMo/ao3p 

(13) 

(14) 

From equations (lo), (12) and (13) we obtain 

f i  = $/apt" - yMo/aa2p2. 

While equations (14) are not derivable from a potential, this turns out to he possible 
after performing the change oivariabie v = p i P ,  which aiiows the resuiting equations 
to  be written as U = -aV/aa, C = - dV/av, where (see figure 1) 

V(a,  v )  = Qb/aa2 - y M 0 / 2 4 a a 2 v  + &3/av2 .  (15)  

We now look for self-supporting fields, that is pulses of the form of equation (5) with 
a and p independent from i. The corresponding equilibrium values secs and veq are 
obtained through the vanishing of the first partial derivatives of V, which yields 
acq = 21'2vv,q = pes = 4yM0/p. In turn, the constancy of a and p entails the vanishing 
of a, and b, (see the second and third parts of equation (lo)), while the equality of aec4 
and peq implies (see equation ( 5 ) )  radially symmetric solutions of the kind found in [SI. 

The stability analysis, i.e. the field behaviour for small displacements of a and v from 
their equilibrium value, is carried out in a straightforward way by evaluating the second 
partiai derivative of V, which iurnishes 
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Figure 1. Tridimensional plot of the normalized potential 

V(o, v)/Cp'/4(4yM0)'u] = I/X' - I/X'Y + 1/4Y2 

where (X, Y )  = (p/2"'2yM0)(o. v) .  

both derivatives being evaluated for a = ueq, v = Y.. . Equations (16) imply that the field 
is in a state of indifferent equilibrium under pertuFbation of its transverse width, while 
it is in stable equilibrium under perturbation of its temporal width. These are noteworthy 
results, since a perturbation preserving radial symmetry, that is along the line U = p, 
yields unstable equilibrium (collapse or divergence of the pulse), as found in [9,lO] or, 
directly, through our approach; this can be seen by evaluating the second derivative of 
V along the line a = 2'"v = p, thus obtaining the negative value -@/uafQ. 

The previous analysis can be as well applied to a bidimensional situation, that is a 
field independent from one of the transverse dimensions, e.g. q .  The Lagrangian reads 
in this case 

while the trial functions have the form 

With the same procedure adopted in the three-dimensional case, we again obtain 
equation (10) while equations (11) and (14) are substituted by 

a, t a'dla2 + db,p2 t ip/a2 + ip ' /p2  + 2n'a'a: + 2a'p2b: - y'Mo/ap = 0 (19) 

where we have assumed the normalization condition 

271 wF(w) dw = 1 
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and we have set 

+ m  (dF/dw)' dw 
F 

a' = n s,' w3F(w) dw p' = n w 

y' = 2x io+: wF2(w) dw. 
(22) 

0 

The potential V associated with equation (20) reads 

B' Y"V0 B' V ( u , p )  = ~ - ~ + - 
8a 'd  2u'op 8u',u2 

and the vanishing of the first partial derivatives yields U = p and MO = Me, = p /2y ' .  
Thus, in the two-dimensional case self-supporting fields exist independently from the 
value of U and p ,  provided that they are equal and MO = Mep. With this choice, the 
potential becomes 

V ( u , p ) = -  - - ~  
8,' 8' r U p " 

so that the system is obviously stable under perturbations removing it from the 
equilibrium line U = p. If. conversely. U = p but M, # Mc,, equation (20) furnishes 

with a = (Mcq - Mo)y'/2a', so that one has collapse for MO > Me, and divergence for 
MO < Me,. 

We note that the coefficients a, p, y and a', f l ' ,  y' depend on the trial function F. 
For example, if we set F(x) = ( 2 / ~ " ~ )  exp( - w 2 )  (tridimensional case) or F(x) = 
(l/x) exp( - w2) (bidimensional case), we have a = 1, = 4, y = 1/(2n)"' and a' = $, 
p' = 2 and y' = 1/2n. Nevertheless, our stability analysis provides a criterion not based 
on the choice of the trial function, and this assures its general validity. 

In conclusion, we have employed a Lagrangian formalism which allows us to 
investigate the stability properties of light pulses propagating under the combined effects 
of dispersion, diffraction and the optical Kerr effect. Our analysis turns out to be more 
complete than those developed for pulses maintaining radial symmetry [9,10]. In fact, 
while one could heuristically infer the equilibrium to be inherently unstable [SI, we 
have shown that this is not in general the case under perturbations driving the system 
away from radial symmetry (U = p),  This has relevant implications as far as the 
possibility of generating optical pulses which collapse simultaneously in space and time 
is concerned, since it requires a fine tuning of the temporal and spatial widths. 
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