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S U M M A R Y  
As a model for the 2-D horizontal propagation of seismic surface waves, we study 
the propagation of non-plane acoustic waves in homogeneous and inhomogeneous 
media. W e  find that their phase velocity depends not only on the medium but also 
on the local geometry of the wavefield, especially on the distribution of amplitudes 
around the point of observation. The phase velocity of a wave is therefore 
conceptually and in most cases numerically different from the phase velocity 
parameter in the wave equation, which is determined by the elastic properties of the 
medium. The same distinction must be made for seismic surface waves. Although it 
is a common observation that waves of the same period can propagate with different 
phase velocities over the same path, the fundamental character of this observation 
has apparently not been recognized, and the two phase velocities are frequently 
confused in the seismological literature. We derive a local relationship between the 
two phase velocities that permits a correct structural interpretation of acoustic waves 
in inhomogeneous media, and also of non-plane seismic surface waves in laterally 
homogeneous parts of the medium. 

Key words: Eikonal equation, phase velocity, polar phase shift, structural inter- 
pretation, surface waves, wave equation. 

T W O  DEFINITIONS OF PHASE VELOCITY 
A N D  WAVENUMBER 

Seismologists do not in general bother to define the terms 
‘phase velocity’ or ‘wavenumber’ for anything other than 
plane waves. The general understanding is, however, as 
follows. 

Consider a train of waves travelling along the surface of a 
flat earth. It may originate from an extended source and 
contain multiple interfering signals; we record it with an 
array of stations but imagine that we could have observed it 
at any point ( x , y )  of the surface. We decompose the 
recorded signals into time-harmonic components of 
frequency w. Each component is characterized by a 
complex-valued amplitude distribution F(x ,  y, w ) ;  we drop 
the argument w and refer to F ( x , y )  as a wavefield. A 
natural wavefield is unlikely to have zeroes or nodal lines in 
the strict sense; if they should occur, we exclude them from 
consideration-we do not define a phase velocity in these 
points. Elsewhere, we can form the complex logarithm of F: 
lnF(x,y) = a(x ,  y) + i b ( x , y ) ,  with a and b real; a is the 
logarithmic amplitude and b is the phase of F. The local 
wavenumber vector w of a wavefield is defined as the 
negative gradient of the phase, thus 

w(x, y)  = -grad b(x, y)  = -grad 9m In F(x ,  y). (1) 

For reasons that will soon become clear, we avoid here the 
conventional symbol k for the wavenumber, From 
w(x,  y)  = Jw(x, y)J we obtain the local phase velocity as 

u(x, y )  = w / w ( x ,  y)  = o/lgrad 9m In F(x,  y)l . (2) 
This is a general definition of the phase velocity of 

time-harmonic signals along the surface of the earth, for 
wavefields of arbitrary spatial geometry. 

In seismological practice, the gradient of the phase is 
approximated by finite differences taken between the points 
of observation, and the resulting wavenumber or phase 
velocity attributed to a profile or an area ‘between’ these 
points. We must, however, keep in mind that w and v are 
properties of the wavefield, not of the medium. For 
example, w is zero for a standing plane wave but not for a 
propagating plane wave in the same medium. We will refer 
to w and u as dynamic parameters. 

Another wavenumber parameter k whose relationship 
with w we are going to investigate appears in the Helmholtz 
equation 

a2 a‘ A =- + - 
axz ay2 (A + k2)F(x ,  y )  = 0, 

This equation governs the propagation of most classical 
wavefields in homogeneous, isotropic media: acoustic, 
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electromagnetic, elastic compression and shear separately. If 
f is a vector field derived from a potential F that satisfies (3), 
then eq. (3) also applies to  each Cartesian component of f 
(but not to curvi-linear components such as longitudinal or 
transverse). Remarkably, the Helmholtz equation remains 
valid in acoustic media with non-uniform compressibility, 
and can be generalized to acoustic media with non-uniform 
density (Appendix 1). Single-mode seismic surface waves in 
a laterally homogeneous half-space obey the Helmholtz 
equation in the horizontal coordinates (Appendix 2). Our 
subsequent derivations therefore apply strictly to acoustic 
waves in 2-D and 3-D inhomogeneous media with constant 
density, and to single-mode seismic surface waves in 
laterally homogeneous media. 

The wavenumber k in the Helmholtz equation is simply 
an abbreviation for w / c  where in the acoustic case 
c = ( ~ / p ) ’ ~  is the sound velocity calculated from the 
incompressibility K and the density p of the medium; for 
surface waves c is the characteristic phase velocity of a 
mode. The important point is that k and c in the Helmholtz 
equation are structural parameters determined by the 
properties of the medium, independent of the specific 
geometry of the wavefield. Thus, k cannot be the same 
wavenumber as w. This becomes obvious if we solve (3) for 
k, respectively k(x,  y )  in the acoustic case: 

(4) 

Clearly, eqs (1) and (4) are not mathematical equivalents of 
each other, and the two wavenumbers are in general 
different. In homogeneous media, they agree only for 
ordinary propagating plane waves and linearly in- 
homogeneous plane waves, such as (y  - yo) exp (ikx). Other 
solutions of the wave equation with w = k require exotic 
media and have no obvious physical significance (Appendix 
3). Unfortunately, plane waves are the only paradigm 
treated in most seismological textbooks, so the conceptual 
and numerical difference between the two definitions of 
phase velocity is usually missed. In the real world of 
surface-wave seismology, plane waves do  not occur, and we 
must carefully distinguish between dynamic and structural 
wavenumbers and phase velocities. 

Generally, we may define the dynamic phase velocity as 
the local phase velocity of an individual wavefield. The 
structural phase velocity in a given point of the medium is 
that of a plane wave in a fictitious laterally homogeneous 
area around this point. In the case of guided or surface 
waves, such waves are known as local modes (e.g. Maupin 
1988); each mode has its own structural velocity. 

Measured, i.e. dynamic, phase velocities cannot directly 
be attributed to the structure and cannot be ‘regionalized’ or 
used as an input for a tomographic inversion. They must first 
be converted into structural phase velocities. Eq. (4) 
indicates that the second spatial derivatives of the wavefield 
must be known for this purpose while the dynamic phase 
velocity is determined from the first derivatives. 

Equations (1) and (4) are both non-linear with respect to 
F. However, (4) is compatible with the superposition 
principle while (1) is not. Any non-vanishing superposition 
of waves with the same structural wavenumber will 
reproduce that wavenumber when inserted into (4), but will, 
in general, exhibit a spatially variable dynamic wavenumber 

20 ACOUSTIC DYNAMIC WL 
Figure 1. Dynamic wavelength waves of a non-plane (but nearly 
plane) wave in a homogeneous structure with a structural 
wavelength of 18.81 arbitrary length units (ALU). The wavefield is 
composed of three plane waves. A ‘direct’ wave incident from the 
top and carrying 99.5 per cent of the total energy is superimposed 
with two weak ‘scattered’ waves incident at *60“ and carrying 0.25 
per cent of the energy each. The waves interfere destructively at the 
centre of the figure. The conventional method of interpretation 
would attribute the variations of the phase velocity to the structure. 

that does not permit a structural interpretation. This is 
illustrated in Fig. 1, which shows the dynamic wavelength of 
a superposition of three interfering plane waves of the same 
wavelength; the dynamic wavelength is not uniform, and 
might be misinterpreted as indicating an inhomogeneous 
structure. It is now clear why ‘interferences’ have always 
been a problem in surface-wave dispersion analysis. The 
conventional definition (1) of the wavenumber vector is 
useless when waves propagating in different directions 
interfere. Eq. (4) is unaffected by this complication and 
remains valid even for standing waves. For these b = const. 
w = 0, and all information on the medium is contained in 
the logarithmic amplitude a. The structural parameters 
cannot, in general, be determined from phase measurements 
alone. 

THE EIKONAL EQUATION A N D  THE 
DYNAMIC P H A S E  VELOCITY 

Equation (2) is closely related to the eikonal equation 

(grad 7’)’ = 1/c2 

as formulated for example by Aki & Richards (1980, p. 90). 
This becomes apparent when we define the traveltime 
function T so that it describes the traveltime of a phase front 
of our time-harmonic wave F(x, y)  exp (iot). Assuming zero 
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phase at the source, the phase at any location must be zero 
at time t = T(n, y). This is achieved with 

w, Y )  = -b(x,  Y ) / W .  (6) 

Solving (5) for c, we obtain the same expression as for u in 
eq. (2). Thus, the eikonal equation can be given a precise 
meaning: it defines the dynamic phase velocity. The normal 
understanding is of course that c in (5) is the structural 
velocity and the eikonal equation is a short-wavelength 
approximation. In that sense, the present paper is an 
investigation into the accuracy of the eikonal equation for 
finite wavelengths. The classical interpretation of surface- 
wave phase velocities is based on the eikonal equation in 
place of the wave equation, and therefore inaccurate. 

SOME HISTORICAL REMARKS 

It is hard to believe that the conceptual difference between 
structural and dynamic phase velocities should not have 
been noticed. Yet I have not found any mention of it in the 
seismological literature, neither in the classical papers on 
surface-wave dispersion measurements nor in modern 
textbooks such as Aki & Richards (1980) or Ben-Menahem 
& Singh (1981). 

It is of course a common observation that measured phase 
velocities are incompatible with a purely structural 
interpretation, and pertinent remarks are found in many 
places (e.g. Ewing & Press 1959; Knopoff, Mueller & Pilant 
1966; Dziewonski & Hales 1972; Seidl & Mueller 1977). 
However, the problem is usually covered with a smoke 
screen by distinguishing between a well behaved (i.e. plane 
wave) component of the wavefield that can be evaluated 
with eq. (2), and ill-behaved components that must be 
ignored. It will suffice to quote from Aki & Richards (1980, 
p. 582): ‘Even the fundamental-mode Rayleigh waves, which 
approach with different propagation directions because of 
lateral heterogeneity, must be considered as noise’. This 
concept is not very helpful. The real signal is an integral 
over a continuum of plane waves; how can we pick out one 
of these as ‘the signal’ and declare the others as noise? 

Some insight into the problem could have been gained 
from studies of wave propagation on a sphere, such as the 
paper by Brune, Nafe & Alsop (1961) on the polar phase 
shift. The existence of the polar phase shift should have 
made it obvious that surface waves do not necessarily 
propagate with the structural velocity. But this was 
apparently not recognized as being a general property of 
wave propagation. I conclude this from Knopoffs (1969) 
attempt to prove that in a heterogeneous medium ‘the 
apparent phase slowness (over a profile) is the average of 
the phase slownesses of the subparts of the medium’, and 
from Schwab & Kausel’s (1976a) paper on the quadripartite 
surface-wave method where structural and dynamic phase 
velocities are consistently confused. The same authors were 
well aware of the fact that surface waves on a spherically 
symmetric earth do not propagate with a constant velocity 
(Biswas & Knopoff 1970; Schwab & Kausel 1976b). They 
must have attributed the effect to the spherical geometry of 
the medium, rather than to the geometry of the wavefield. 

THE RELATIONSHIP BETWEEN DYNAMIC 
A N D  STRUCTURAL WAVENUMBERS 

The relationship between dynamic and structural wavenum- 
bers follows directly from a comparison of eqs (1) and (4). 
For all wavefields F = exp (a  + ib) that obey a Helmholtz 
equation we have from (4) 

k 2  = -exp ( - a  - ib) A exp (a + ib) 
= - (grad a + i grad b)* - A (a  + ib). (7) 

Splitting this expression into real and imaginary parts, and 
substituting w for -grad b according to (l), we obtain 

k2  = w2 - (grad a)2 - ha 
and 
2w.grada-Ab=O. 

Equation (8) is the desired relationship. The deviation of 
the dynamic wavenumber w from the structural wavenum- 
ber k depends only on spatial derivatives of the logarithmic 
amplitude, i.e. on the relative distribution of amplitudes 
around the point of observation. Observed dynamic 
wavenumbers can be corrected for the effects of 
non-uniform amplitude distribution with eq. (8). The 
relationship is local, i.e. we can determine the structural 
parameters locally without knowledge of the global 
properties of the medium or of the wavefield, especially 
without knowledge of the source. Unfortunately, the latter 
remark does not seem to apply to seismic surface waves, 
which do not generally fulfill the Helmholtz equation. 

Each of the two correction terms in the right-hand side of 
eq. (8) can be associated with a well known feature of wave 
propagation. Let us first assume that a and b are linear 
functions, i.e. Aa = 0 and Ab = 0 but grad a # 0. Then eq. (9) 
says that grada must be orthogonal to w, and F is an 
inhomogeneous plane wave. (8) now indicates that w is 
larger than k, i.e. the dynamic phase velocity is smaller than 
the structural one. This is in fact characteristic of 
inhomogeneous waves, and is usually included in the 
plane-wave formalism by giving the wavenumber vector one 
real and one imaginary component. 

The other correction term, Aa, is responsible for the polar 
phase shift and related effects (Brune et al. 1961; Schwab & 
Kausel 1976b; Wielandt 1980). Consider a point where 
grad a = 0, and the amplitude has a local extremum. If it is a 
maximum, then Aa < 0, w must be smaller than k, and the 
dynamic phase velocity larger than the structural one. This is 
in fact observed at caustics and foci of a wavefield (not only 
at the epicentre and its antipode on a spherical earth). In an 
amplitude minimum we have Aa >0, and the dynamic 
wavenumber-the gradient of the phase-is greater than 
normal. Because a is the logarithmic amplitude, Aa will 
become large when the amplitude comes close to zero. The 
phase changes rapidly in the vicinity of an amplitude 
minimum, a phenomenon known as a ‘phase jump’. 

Equation (8) has important consequences for the 
experimental set up of phase-velocity measurements. We 
need data from which we can estimate not only the local 
gradient of the phase (as in the three-station method) but 
also the first and second spatial derivatives of the 
logarithmic amplitude. Under the assumption that the 
logarithmic amplitude can locally be approximated with a 
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Figure 2(a). Progression of the phase front in time of steps of 0.1 
cycles. 
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Figure 2(b). Relative amplitudes. 
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Figure 3(a). Progression of the phase front in time steps of 0.1 
cycles. 

Figure 3(b). Relative amplitudes. 

Figure 2 (top). Acoustic test case. A 2-D plane wave with a wavelength of 18.81 ALU is incident from the top onto a circular area in which the 
structural wavelength is 17.94 ALU, thus about 5 per cent lower. The anomaly has a diameter of 6 ALU. 
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20 ACOUSTIC DYNAMIC WL 

Figure 2(c). Dynamic wavelength. 

ELASTIC WAVEG DYNAMIC WL 

Figure 3(c). Dynamic wavelength. 

20 ACOUSTIC STRUCIT: WL 

Figure 2(d). Structural wavelength, extracted from the wavefield 
with eq. (4). 

ELASTIC WAVEG. STRUCT WL 
Figure 3(d). Structural wavelength, extracted from the wavefield 
with eq. (4). 

Figure 3 (bottom). Elastic test case. The model structure is a layered waveguide representing the earth's continental crust, and has a vertical 
cylindrical inclusion in which the phase velocity is about 5 per cent lower. The horizontal geometry is identical to that of the acoustic test case, 
with a length unit of 1 km. The incident wave is the fundamental Rayleigh mode with a period of 2n seconds. The scattered wavefield contains 
all significant Rayleigh and Love modes. Details in Stange Kt Friederich (1992). 
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second-order polynomial in x and y, having six unknown 
coefficients, we would normally need six closely spaced 
stations to determine the structural velocity. Four or five 
stations would suffice in a suitable regular arrangement (e.g. 
four stations at the centre and corners of a regular triangle). 
Conventional two- or three-station measurements are, 
however, inadequate, and not even the four-station method 
proposed by Schwab & Kausel (1976a) is a solution. Of 
course, the required number and density of stations is a 
serious practical limitation; interpolation is another prob- 
lem, to which we will come back later. If the number of 
stations is insufficient or the amplitudes are inaccurate 
(which is normal), then we have to guess on the amplitude 
distribution and can obtain only an approximate correction 
to the observed dynamic wavenumber. If no guess is 
possible, we have to assume that the correction is zero, in 
which case we are back to the conventional interpretation. 

On the other hand, if we are somehow in a position to 
obtain the required data, then our derivations permit us-at 
least in the acoustic case-to remove the effect of 
interferences and to precisely image structures whose size is 
only a small fraction of a wavelength. This is illustrated with 
the following example. 

STRUCTURAL INTERPRETATION OF AN 
ACOUSTIC WAVEFIELD 

We apply eqs (1) and (4) to a synthetic wavefield that is an 
exact solution of the Helmholtz equation for a known 
structure (Fig. 2). The wavefield was computed with a 2-D 
version of the method described in Wielandt (1987). It 
represents a plane acoustic wave incident from the top of 
the figure onto a circular anomaly in an otherwise 
homogeneous background medium. The diameter of the 
anomaly is one third of the wavelength, and the sound 
velocity inside is about 5 per cent lower than outside. The 
wavefield is sampled at a grid of 41 X41 points 
(unfortunately, somewhat unrealistic for seismic observa- 
tions). Grid spacing is about 1/60 wavelength. We observe a 
slight distortion of the phase front (Fig. 2a) as the wave 
passes through the anomaly, and also amplitude distur- 
bances (Fig. 2b) due to the interference between incident 
and scattered waves. A conventional phase-velocity 
measurement according to eq. (2) would simply evaluate the 
phase gradient in the direction of undisturbed wave 
propagation. The result, expressed as the local dynamic 
wavelength A = 2a/w, is shown in Fig. 2(c). Obviously the 
conventional method is unable to resolve the structure; an 
extended diffraction pattern of apparent negative and 
positive anomalies appears in place of the uniform circular 
anomaly. In contrast, application of eq. (4) to the wavefield 
restores the distribution of the structural wavelength 
perfectly (Fig. 2d). Remaining small inaccuracies are due to 
spatial sampling. 

It is even possible to reconstruct an acoustic medium in 
which both the sound velocity and the density are variable. 
The equivalent to the Helmholtz equation for such a 
medium is, according to Appendix 1, 

(A + k2)F  = grad F . grad In p. (10) 

Proceeding in the same way as above, we find that the eqs 

(8) and (9) must be replaced by 

k‘ = w2 - (grad a)’ - Au + grad u * grad In p. (11) 

(12) grad b - grad In p = 2 grad u - grad b + Ab. 

This pair of equations permits an independent reconstruc- 
tion of the density and wavenumber distributions in the 
whole medium, provided only that the density is known 
along a transverse profile, e.g. along the ‘top’ edge of the 
area represented in Fig. 2. The density is obtained by 
integrating (12) in the direction of wave propagation; the 
wavenumber then follows directly from (1 1). The results 
(not shown) are of the same quality as in Fig. 2(d). 

APPLICATION TO SEISMIC SURFACE 
WAVES 

As stated above, Cartesian components of the particle 
motion of isolated modes of seismic surface waves (Love or 
Rayleigh) in a laterally homogeneous medium satisfy the 
Helmholtz equation. We can therefore use eq. (8) to correct 
observed phase velocities for the disturbances caused by 
interfering arrivals of the same mode. Moreover, we expect 
the acoustic Helmholtz equation to remain approximately 
valid for seismic surface waves when the structure is only 
slightly or smoothly inhomogeneous compared to the 
heterogeneity of the wavefield. This situation may arise near 
caustics, foci and seismic sources. In such a case we are 
certainly justified in considering the medium as locally 
homogeneous (i.e. neglect the logarithmic spatial derivatives 
of the elastic moduli against those of the displacement in the 
elastic equation of motion). A problematic situation for our 
concept is when the incident wavefield is reasonably smooth 
but the structure is inhomogeneous at a small scalelength; 
then the Helmholtz equation is a poor approximation for the 
elastic wave equation, and we cannot expect to obtain from 
eq. (4) a good image of the structure. 

Nevertheless, since the method has worked so well in the 
acgustic case, we have made some numerical experiments 
with elastic surface waves. There is only a limited choice of 
relevant structures for which the elastic wavefield can be 
computed with some precision. We have investigated the 
case of a vertical cylindrical inclusion in a laterally 
homogeneous, layered waveguide whose parameters were 
chosen such as to represent the continental crust. The 
method of computation, a mode-matching technique, is 
described in Stange & Friederich (1992). The wavelength is 
about 19 km and the diameter of the cylinder is 6 km; the 
phase velocity (or wavelength) inside the cylinder is about 5 
per cent lower than outside as in the acoustic model of Fig. 
2, which is actually a 2-D equivalent of the seismic model. A 
fundamental-mode Rayleigh wave incident from the top of 
the figure propagates through the inclusion (Fig. 3a) and 
gives rise to a scattered wave of the same mode and a series 
of converted Rayleigh and Love modes, all of which 
contribute to the wavefield shown. To remove a very slight 
numerical mismatch between the inner and outer wavefields, 
the computed wavefield was smoothed by convolution with a 
Gaussian with an l / e  radius of 0.5 km, causing a slight loss 
of resolution in Figs 3 compared to Figs 2. 

Figures 3(a), (b) and (c) represent phase, amplitude and 
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local wavelength of the vertical displacement. By com- 
parison with Figs 2(a), (b) and (c) it is apparent that for a 
scatterer of this size, the behaviour of acoustic waves and 
Rayleigh waves is quite different; acoustic scattering by a 
point scatterer is isotropic while Rayleigh wave scattering is 
predominantly forward (Snieder 1986; Stange & Friederich 

Nevertheless, the interpretation of the wavefield with eq. 
(4) results in a reasonable structural image (Fig. 3d), which 
is certainly better than the image obtained with the 
conventional method (Fig. 3c). The improvement would be 
still larger if we had used multiple incident waves, for which 
the conventional method fails even in the absence of 
structural anomalies (Fig. 1). 

1992). 

THE WAVE EQUATION AS A N  INVERSE 
PROBLEM 

The structural interpretation of observed wavefields is 
normally treated as an inverse problem, the direct problem 
being the solution of the wave equation for a given 
structure. We can now also consider solving the acoustic 
wave equation as the inverse problem to direct structural 
interpretation. Given any approximate or trial solution, eqs 
(11) and (12) define a structure for which the given solution 
is exact. We can then check if this reconstruction is 
sufficiently close to the original structure. If so, then the 
approximate solution is good enough for a structural 
interpretation; otherwise it will introduce systematic errors. 
We have thus a criterion for the usefulness of an 
approximate solution for structural interpretation. It should 
also be possible to improve a trial solution iteratively 
according to this criterion; details have not yet been worked 
out. 

I I  
I I  

m I I  
I I  

I I  I I  

Figure *a). A plane wave of wavelength A propagating over a 
network of seven randomly arranged stations. Negative instan- 
taneous amplitudes are shaded. The area shown is 3 A by 3 A. 

INTERPOLATION A N D  INTERPRETATION 

For an application of eqs (4) or (8) to real data, we must 
estimate second spatial derivatives of the wavefield. This is 
an unstable process that will in general require smoothing 
and interpolation. The result of the structural interpretation 
will critically depend on constraints imposed on the 
interpolating field. 

It is a disadvantage of the direct approach that we can 
apply a priori constraints only to the wavefield, not to the 
structure. We do  not know at present which constraints we 
would have to apply to the field in order to obtain a smooth 
and reasonable structure; smoothness of the interpolating 
field is an inadequate condition because strongly in- 
homogeneous wavefields can exist in smooth structures and 
vice versa. This, and the limitation to laterally homogeneous 
or slowly varying media, seem to make the direct approach 
impractical for the interpretation of real surface-wave data. 
Its strength lies in theoretical considerations; the direct 
approach exhibits the relationship between the observed 
field and the structural model more clearly than any other 
method of structural interpretation. 

All methods of structural interpretation depend, in one 
way or other, on questionable assumptions with respect to 
the wavefield between the points of observation. The 
conventional two-station and three-station methods assume 
that the wavefield is a plane wave of known or unknown 
incidence. Existing amplitude information is ignored; it 
would in most cases vitiate the plane-wave hypothesis. In a 
network of four or more stations, not even the phase can, in 
general, be represented by that of a plane wave. We must 
then admit more complicated wavefields, consisting of 
interfering plane waves with different wavenumber vectors. 

At this point we run into a fundamental problem of 
ambiguity. Any given set of observations can be interpolated 

Figure qb). A non-plane wave of a different wavelength can 
produce exactly the same amplitudes and phases at all stations of 
the network. This wave is composed of nine plane waves of 
wavelength 1.2 A, all propagating within *45" of the original 
direction of propagation. 
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with interfering plane waves of any given wavenumber. Figs 
4(a) and (b) show a numerical experiment with a 
homogeneous acoustic medium. Samples of a plane wave of 
wavenumber k ,  (Fig. 4a) are taken at seven randomly 
distributed stations and then interpolated with a superposi- 
tion of plane waves of a different but uniform wavenumber 
k ,=1 .2k l  (Fig. 4b). A structural interpretation of the 
interpolating wavefield would suggest the presence of a 
homogeneous medium with the wavenumber kL. 

Interpolation with an incorrect wavenumber may even 
result in a field smoother than the original. This is evident if 
we consider the wavefield of Fig. 4(b) as the original and 
that of Fig. 4(a) as an incorrect, oversimplified interpolation. 

We conclude that discrete samples of a 2-D wavefield do  
not contain stringent information on the underlying 
medium, and even the application of smoothness criteria to 
the interpolating field and the structure cannot restore this 
information uniquely. This non-uniqueness is common to all 
methods of structural interpretation; our numerical experi- 
ment is not related to any specific method. The 
mathematical situation in two dimensions is thus quite 
di€ferent from the 1-D case where the structural 
wavenumber of a homogeneous medium is uniquely 
determined (in fact, overdetermined) by samples of a 
wavefield at three points. 
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APPENDIX I: THE HELMHOLTZ 
EQUATION FOR ACOUSTIC WAVES IN 
INHOMOGENEOUS MEDIA 

Let p(x, y) be the density and K(X, y )  the incompressibility 
of an acoustic medium, p(x, y, t) the pressure, and u(x, y, r )  
the displacement (particle motion) vector. For brevity we 
omit all arguments; what follows is also valid in three 
dimensions. Time derivatives are written with dots as usual. 
A = div grad is the Laplace operator. Then p = - K div u, 
and the equation of motion is 

pii = -gradp. 

Forming the divergence of both sides, we obtain 

ii * grad p + p div ii = -Ap. 

We now eliminate u from the equation using 
ii = -p- ‘  gradp and divu = - ~ - ‘ p .  After rearranging the 
terms, we have 

P .. Ap - -p = gradp grad In p. 

For time-harmonic waves with angular frequency o this 
becomes 

K 

(A + $) p = gradp * grad In p 

which is our eq. (lo), and reduces to the ordinary Helmholtz 
eq. (3) for constant p. 

APPENDIX 11: THE HELMHOLTZ 
EQUATION FOR ELASTIC SURFACE 
WAVES IN A LATERALLY HOMOGENEOUS 
HALFSPACE 

The concept of ‘modes’ of wave propagation is connected 
with a specific method of solving the equation of motion, 
namely the separation of variables. We use here a slightly 
more general approach than found in most textbooks: we do 
not separate the horizontal coordinates. Our trial solution 
for the particle displacement vector is 

44 y ,  z ,  t )  

= [ f ( z ) .  4% Y ) ?  f ( z ) .  44 Y ) ,  dz). WfX,  Y ) l  - h ( t ) .  
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Each component of motion is assumed to be the product of 
three factors: a function of time, a function of the horizontal 
coordinates (this is what we have called a wavefield), and a 
function of depth. Separation of the variables x and y would 
leave only plane waves as solutions, and thus obscure the 
propagation effects we are studying. The trial solution must 
have vanishing tractions at the surface and vanishing 
amplitudes at infinite depth and must satisfy the equation of 
motion 

pii = div T 

where T is the stress tensor (e.g. Ben-Menahem & Singh 
1981, eq. 1.100). It is easily seen that the time dependence of 
a separated solution must be harmonic; we can then restrict 
ourselves to one frequency o and omit the time factor 
h ( t )  = exp (id). For a given frequency, all solutions that 
have the same depth dependence belong to one mode. 

Solutions where the vertical component disappears 
everywhere are Love modes. The boundary conditions at 
the free surface then require u, + vy = 0 and f’(0) = 0. 
(Subscripts indicate partial derivatives.) Inserting this into 
the equation of motion with elastic parameters depending 
only on depth, we find that u-’ Au and v-‘ Av must equal 
the same constant value, say -k2. Thus, u and v fulfill the 
Helmholtz equation with the same wavenumber. Then f 
must satisfy, with p as the shear modulus, 

(pf’)’ + (pw’ - pk’)f = 0 

which is equivalent to the system of eqs (7.24) of Aki & 
Richards (1980). Together with the boundary conditions, 
this equation forms an eigenvalue problem that determines 
k. 

Solutions with a non-vanishing vertical component are 
Rayleigh modes. The boundary conditions at the free 
surface then require f‘(0) f 0. We normalize f (z )  and g(z) 
by putting f’(0) = 1 and g(0) = 1. The absence of horizontal 
tractions at the surface requires u = -w, and v = -wy. The 
wavefield of the vertical displacement is thus a potential for 
the wavefields of the horizontal displacement. Inserting 
these relationships into the equation of motion, we find that 

u, v and w must all satisfy the Helmholtz equation with the 
same wavenumber k. The remaining coupled second-order 
differential equations for f ( z )  and g ( z )  are equivalent to the 
system of eqs (7.28) of Aki & Richards (1980), and 
determine k as an eigenvalue when the boundary conditions 
are applied. 

APPENDIX 111: WAVEFIELDS WHICH 
PROPAGATE WITH THE STRUCTURAL 
PHASE VELOCITY 

The wavefields in question, F(x, y) = exp [a(x, y )  + ib(x, y)], 
must satisfy eq. (9) and 

(grad b)’ = k’ (coincidence of wavenumbers) 

(grad a)’ + Au = 0 (from eq. 8). 

(13) 

(14) 
With three differential equations for two real functions, the 
problem is over determined. One would first solve the 
independent eq. (14) for a, then (9) for b;  then (13) 
determines the wavenumber of the medium. So it appears 
that in general eq. (13) cannot hold in an arbitrary medium, 
except in isolated points or lines. 

The two known types of solutions for homogeneous media 
result from the trivial solution of (14), a = const, and from 
the 1-D solution, a(y) = lny ,  both of which can be 
combined with a linear phase b(x )  = ikx. (All solutions can 
of course be rotated and translated, and constants added.) 
Separable 2-D solutions of (14) such as 

a(x, y) = In a x  + In py 
a(x, y) = In cosh a x  + In cos a y  

a(x, y) = In sinh a x  + In cos a y  

(with constant a and p )  require that b(x,y) is a non-linear 
function; hence the medium cannot be homogeneous and 
must reflect the unphysical character of the amplitude 
distribution. Non-separable solutions are unlikely to have 
more physical relevance. To pursue this topic further seems 
not to be worthwhile. 
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