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Propagation in radially-inhomogeneous
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The propagation of electromagnetic waves along a radially-inhomogeneous single-mode optical fibre with
small index difference between core and cladding is studied. As in the case of the step-index fibre the

propagation modes are weakly guided and their transverse fields are essentially polarized in one direction.

The simple field descriptions and characteristic equation obtained here enable mode spot size and bend-
ing loss to be determined and are useful for practical design work of radially-inhomogeneous single-
mode optical fibres.

1. Introduction

A refractive-index profile having a carefully chosen distribution [1] is normally introduced into multi-
mode fibres in order to maximize the available bandwidth. The WKB method may be used for the
analysis of such multimode graded-index fibres [1] but is not suitable for single-mode fibres. Studies of
single-mode fibres tend to assume a stepped refractive-index distribution but in practice even a smali
amount of diffusion at the core/cladding interface during fabrication [2] may produce an appreciable
profiling effect [3] due to the small core size. It is important to determine the effect such profiling has
on the fibre characteristics.

Single-mode fibres can be analysed by direct solution of the wave equation [4], by a power-series
expansion [S]| and by variational techniques [6, 7] with varying degrees of accuracy. Unfortunately all
these methods are rather tedious and involve considerable effort to deduce the field equations, charac-
teristic equation, etc. We therefore calculate the field equations for a radially-inhomogeneous single-
mode fibre by a simplified method making only the assumption

A <] (N
where A is the relative refractive index difference between that at the centre of the core (1) and in the

cladding (n,) i.e.

2 2
A = (n1—n3) T

2n? Hy

In a step-index, single-mode fibre the modes that propagate under the above condition are weakly guided
and are essentially polarized linearly {8]. We show that the same is true for a radially-inhomogeneous
fibre and from the field equations we deduce the spot size of the HE,; mode and the bending loss.

2. Field distribution and characteristic equation
Consider a cylindrical fibre in which the dielectric constant varies only in the transverse (radial)
direction r as

fl

eR) = €,(1 —2AR%Y for

0< R
el —2A) = ¢ forR>=

1
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where R = r/a = normalized fibre radius, @ = core radius and « = parameter between 1 and = which
describes the index profile in the fibre core.
As indicated above we assume A < 1,
Solutions are sought in cylindrical coordinates (r, 8, z) for the electric and magnetic field components
of the type:
E, = eR)Sy(6, )
Eg = e5(R)S,(6, z) 3)

E, = jQAIVH e, (R)S,(0, 2)

and
H, = h(R)S:\(0,2)
Hy = he(R)S,(0, 2) (4)
H, = jQAE V) *h,(R)S (6, 2)
where
sin (n6) cos (n6)
S1(6, 2) ={ or }exp (—iBz) S2(0,2) = { or }exp (—jBz); (%)
cos (nf) — sin (n8)
and
e for0 <K R<1
¢ =| ®)
e, forl < R.

V is the normalized frequency defined by

V? = 2wluea?A. @)
By using the method of Kurtz and Streifer [4] the electric and magnetic fields in the core can be

expressed as
eR) = A,¢; + 429,

eg(R) = —A ¢, + A2,
e, (R) = A,G, + 4,6,

1/2 (8)
h(R) = (e:/w)""*(A1¢1 —A202)
ho(R) = (e,/w)"* (4,9, +A20,)
h(R) = A1G, —A4,G,
where functions ¢; and G; (i = 1, 2) satisfy
d%¢; 1 dey [ (n¥ 1)2}
il o SUTON . £ BT 2_122p -
R R IR U°—V*R R ¢, =0 )
and
_ _%_(1 *n)
G; = iR R O (10)

The upper (lower) sign corresponds toi =1 (2) and A, and A, are constants. The parameter U in the core
is defined as

U? = wluea® — %> (11)
The field in the cladding can be obtained in a similar way. The parameter W in this case can be defined as
W? = 824% — wue,a® (12)

so that
V= U+ W2 (13)

The electric and magnetic field components in the cladding are given in terms of the modified Hankel
function by:
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e(R) = [%(C—D)Kn(WR)JrCWKn_I(WR)] w2

ep(R) = [}%(C—D) K, (WR) —DWK,,_I(WR)} W

14
e;(R)= CK,(WR)

h(R) = —(e2/)'? e (R)
ho(R) = (e2/1)' e, (R)
h.(R) = DK,(WR)

C and D are constants.
The continuity of F,, H,, Eg and Hy at the boundary (R = 1) provides the unknown constants and

the eigenvalue equation. Thus

K1 (W) HK,,_I(W) _n¢l}+{K,,+l(W) _n%] lKn_1<W)g2_¢l] 0 (%)

WK,,(W)g2 ¢ WK, (W) &1 WK,(W) £ WK (W)
_ Agt+ A8 — A8y — A28 (16)
K.(W) Kn.(W)
Kp- (W) _ Kni1(W)
AI[WK,,(W)gl &l = A4, Wgz '—¢2} .

Here, g; and ;are values of G; and ¢; at R = 1, respectively, and n = (e,/€,)!/>. Asn — 1 then the
eigenvalue equation (Equation 15) decomposes into the two characteristic equations

WK
L WA representing HE,,,,, modes
Vi Ky (W)
WK ( (17)
g2 Kn W) .
- = ——— representing EH,,,,, modes.
V2 K. (W) p g bHpm

Substitution of Equation 17 into Equation 16 gives A, = 0 for HE,,,,, modes and 4, = 0 for EH,,,,
modes. The field equations and characteristic equations for the TE,,, and TM,,, modes are obtained
simply by settingn = 0.

Equations 9, 10 and 17 show that the HE,,,, and EH,,_, ,, modes (# > 2), and the HE,,,, and TE,,,
(or TMy,,,) modes are identical. When n # 1, this degeneracy ceases to exist, but in most practical cases
the approximation n = 1 gives good results. This degeneracy results in linearly polarized LP;,, modes
[6], the properties of which may be deduced from the field equations, 8 and 14. Thus the field com-
ponents of the LP;,, modes polarized in the y direction are

sin (16)
E, = A¢g(R)| or
208 (10)
sin (16)
H, = —A(e;/w)' ¢ (R)| or
cos (10)
cos(I—1)8 cos ({ + 18
E, = jQAIVH'2AH,(R) or — Hy(R) or
—sin(I—1)8 —sin (! + 1)8
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sin (/ — 1)8 sin (I + 1)6
HZ = _j(erl//JVz)l/zA H”(R) or +1{21(R) or (]8)
cos (I — 1)6 cos(/+ 1)
where
o (R) = P(R) in the core
P(R 1)K’(WR) in the claddi
= =1)——--  in the claddin
I KW g
and R ;
H; = ——i’}%)+(~ 1)"E¢,(R) for i = 1,2, (19)
Function Py(R) is obtained from the differential equation
a*p, 1 dp
4=t 2 _ 2R0( N 71 2 — . 2
R TR R [Us—=v FIR*1P, = 0 (20)

The characteristic equation of the LP;,,, modes is given by

WK1 (W) _ — dP(R)/AR
KI(W) P,(R) R=1

+1 2N

3. Propagation characteristics of a single-mode fibre

The propagation characteristics of a single-mode, graded-index fibre can be evaluated by setting / = 0.
For this particular case the second-order differential equation (Equation 20) can be easily solved by the
series expansion method, since the series converges rapidly due to the small V, U values. (In multimode
fibres Equation 20 can be solved by the WKB method.) Thus a series solution is assumed, in the
interval 0 <R <1, of the form

Po(R) = i a R, (22)
q=0

Substitution into Equation 20 and equating coefficients of each power of R produces a set of equations
in the coefficients a, as follows:

ag = I
a; = 0
a, = ‘"(10U2/22
AQoyvy = —aa_lU2/(a+ 1)2
Agia = — (@ U —agVH/(a + 2)?

Ao +3 2—.((10[”(]2—611[/2)/(0(4‘ 3)2 (23)

When « is large enough the coefficients @, become Bessel functions of zero order, as would be expected
for a step-index fibre (a = ¢°). For any other value of a, all the relevant parameters (V, U, W and f) can
be obtained from the characteristic equation (Equation 21) for [ = 0. For example Fig. 1 shows the
U-V curves of the HE; mode for various values of & from which the propagation constant § can be
obtained since fa = (V*/2A — U?)!"2. It may be seen that for a given normalized frequency V the
value of U increases as « decreases, i.e. with departure from a step-index profile. However little change
occurs as « falls from oo to 50 while an a of 14 is necessary before U increases by 5%. Thereafter the
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Figure 1 Variation of U with normatised frequency for
the HE,, mode in fibres of various refractive-index
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profiles. The speckled area denotes the region of multi-
5 20 25 30 35 40 mode operation. The dashed line indicates the con-
\Y ditions for which the spot size is a minimum.

effect of optical smoothing of the profile becomes more evident and, for example, at V' = 2.5 a para-
bolic profile changes U to 2.14 compared with 1.67 for a step-index. For the particular case of a para-
bolic profile it is possible to make a comparison with the results of Dil and Blok [5]. For a = 2 there is
good agreement (within a few percent) with their Fig. 3 thus justifying the use of the approximations
made here.

Comparison with the results given in [3] shows good agreement with the cut-off value of the LPy,
mode calculated from Equations 20 and 21. It can be seen that, as with U, changes in & from that
corresponding to a step-index profile down to ~ 50 has little effect on V. Thereafter the change is more
rapid and for a parabolic profile ¥, has increased to 3.518. The use of a graded profile in single-mode
fibres may thus reduce the restrictions on core diameter and ease to some extent the problems of
jointing, launching and coupling.

The normalized intensity distributions of the HE;; mode for various « are shown in Fig. 2 for both
single-mode (a) and multimode (b) conditions. In both cases the field intensity falls off more rapidly
at lower values of « as might be expected from the reduced degree of guidance in the core.

-0 10 V=3.0
= >
¢ @
2 05 S 05 Core | Cladding
S = :

i
| 1 |
0 0 0.5 10 15
R= F/G R= r/o

Figure 2 Field distribution in fibres of various refractive-index profiles as a function of normalized radius for
fa) ¥ =24, (b} V=230.
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4. Spot size of HE|; mode in radially-inhomogeneous fibre
An important feature of propagation in single-mode fibres is the loss due to microbending. Petermann
[9] has reported that by restricting the index difference and normalized frequency in a single-mode
fibre the microbending loss can be made small since it increases appreciably with spot size of the HE,,
mode which in turn is a function of V. The spot size of the HE,; mode is defined by Petermann as:

wi = [ PER ar /J: rE2 dr. (24)
However we propose a different and simpler definition [10] which is first explained by reference to a
step-index fibre. We then show that the spot size given by Equation 24 is in good agreement with our
definition.

The excitation efficiency of the HE;; mode by a Gaussian beam varies with the normalized frequency
of a fibre. In the region well above cut-off [11] the maximum excitation efficiency (about 97%) can be
obtained with a Gaussian beam having a spot size (to 1/e intensity) of about 0.484. For the single-mode
region [12], the maximum excitation efficiency and the corresponding normalized spot size of the
input beam are shown in Fig. 3 as a function of V., The excitation efficiency exceeds 99% for normalized
frequencies between 2.0 and the cut-off value 2.4 because the field distribution of the HE,; mode is
then very similar to that of a Gaussian beam. Therefore we define the spot size of the HE;; mode as
that of the input TEM,, laser beam at which the maximum excitation efficiency is obtained. This is a
transformation of the definition from the field distribution of the HE;; mode inside the fibre,
expressed in terms of Equation 24, to the external Gaussian distribution producing the best match.

Fig. 4 compares the definitions as a function of V for a step-index fibre; the dashed curve is obtained
from Equation 24 and the solid one is from our new definition (Fig. 3). The divergence of the two
curves for small V'is due to the lower excitation efficiency. Nevertheless the two methods are in good
agreement (within 1% at V' = 2.4) particularly at the ¥ values of most interest. It should be noted that
these definitions of spot size differ from the 1/e intensity width of the HE,, mode in the core.

Using this new definition which we have shown to be valid for the step-index fibre we have calcu-
lated the normalized spot size of graded fibres from that of the input Gaussian beam which gives maxi-
mum launching efficiency. It can be seen from Fig. 5 that the normalized spot size varies with « and in
general is larger than that for a step-index fibre at small ¥ and smaller for large V. The crossover point
depends strongly on the value of . For the particular case of & = 2 Petermann [13] has calculated the
spot size using the definition given in Equation 24 and there is good agreement with the curve for o = 2

in Fig. 5. This is a further justification for the present analysis and for our new definition of spot size
for the HE,; mode.
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-4 16 18 2.0 22 24 efficiency shown when incident on a
\' step-index single-mode fibre.
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0.6—;_1_;%;*1_1_ curve is calculated in the usual way from Equation 24
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The points in Fig. 5 show the limit of single-mode operation (i.e. the cut-off frequencies of the LPy,
mode) for which the relative spot sizes are 0.78 for the step-index fibre and 0.58 for a = 2. Calculations
for a specific fibre of A = 0.002; 7, = 1.459 and A = 0.633 um are given in Fig. 6 which shows that the
actual spot size depends on V and has a minimum value at a particular value V., which depends on «.
The spot size is a minimum in a step-index fibre and is 10% larger in a fibre having a parabolic refractive-
index distribution. One might therefore expect that, for a comparable curvature power spectrum, the
microbending loss would also be smaller in a step-index fibre. The dotted line in Fig. 1 indicates that
Vim occurs, fortunately, in the single-mode regime and, for each «, at a convenient normalized fre-
quency. Thus the minimum spot size, at least for the example taken, does not change appreciably with a.
Furthermore near the minimum the spot size is insensitive to small changes in V.
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05 Figure 5 Normalized spot size as a function

of normalized frequency for a wide range of

refractive-index profiles. The points
indicate the cut-off frequency for the value
of « indicated.
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Figure 7 Bending loss as a function of radius of curvature for various profiles at normalized frequencies {a) V = 2.4,
(b) V=3..

The curvature loss indicated is not necessarily typical of those in practical single-mode fibres since
it can be reduced appreciably by increasing A.

6. Conclusions
The characteristic equation and the field distributions of the HE,;; mode in a radially inhomogeneous
fibre have been obtained under the usual assumption that the index difference between core and
cladding is small. The field equations are those of linearly-polarized modes and have been solved by a
series expansion method. The convergence of the series is rapid so that the computation time is quite
short. Normalized curves of the field distributions and of the mode dispersion for an arbitrary
refractive index profile have been deduced. It is found that the cut-off frequency of the LP;; mode
increases with decreasing a slowly at first but then more rapidly. For example as « falls from e to 10
the cut-off frequency changes by only 5% but increases by 40% as a falls to 2. The spot size, on which
the microbending loss is strongly dependent, has been calculated and has its smallest value in a step-
index fibre. The spot size in a given fibre is a minimum at a ¥ value which depends on a. For the fibre
parameters considered V,,, always lies in the single-mode regime and at a convenient normalized fre-
quency. The minimum spot size changes only by 10% from a = e to & = 2 and thus the corresponding
increase in microbending loss is not expected to be large.

For a fixed V number the curvature loss increases rapidly as « is decreased but the change is less
marked at the corresponding cut-off frequencies.
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