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Propagation Losses in Metal-Film-Substrate 

Optical Waveguides 

Abstract-The propagation losses in metal-film-substrate two- 
dimensional optical waveguides are calculated. Losses  for confined 
modes  may become large  and are at least an order of magnitude 
larger  for  TM  than  for TE modes. Higher  order  modes suffer more 
loss  than  the  fundamental mode. Such  mode-dependent  loss  can 
make efficient mode  analyzers,  useful for integrated optics modula- 
tion schemes. 

INTRODUCTION 

LANAR films  deposited on substrates  have  recently 
been shown to bc vcry  useful  for  waveguiding  light, 
with prornisc for  the  fabrication of integrated 

optica.1 circuits [1]-[5]. I n  this  paper me shall cxplore 
optical  propagation losses in  planar film  waveguidcs  in 
the presence of a metal  electrode,  such  as that  required 
for electrooptic  rnodulat,ion. We  consider a wide range 
of waveguide  thicknesses and  refractive  indices  and 
ignore scattering losses, which are ncgligible in scmi- 
conductor  epitaxial  layer  waveguides 161. For suffi- 
ciently thin films the  optical  propagation losses may be 
substantial;  furthcrmorc,  the TM modes are  at  least  ten 
t,irnee as lossy as TE. modcs. This suggests that  a  metal 
deposit on a waveguiding  film  can  make  an effective 
polarizat,ion  analyzer, a co'nvenient  element to incor- 
porate  into  inkgrated  optical  circuits. 

Fig. 1 depict8 the  planar geornctry. The  spatial  varia- 
tion of the TF, electric field for  light of wavelength A 
in  a guide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT wavelengths  thick  is given by 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx < AT E&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx )  

.exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-iB $) 
r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

For TM modes  replacc E,,(x, z )  with H ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, z )  and  the 
form  remains  the  samc.  Thc  physical  origin of the loss 
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we consider  here  is the  absorption of the  tail of the 
field profile t.hat  extends  into,  the lossy mctal.  The  metal 
is  dcscribcd  by a complex refractive  index nl = r~ - ik, 
whose value  is  typically closc to those  shown in  Table I 
[7] .  This introduces  complex  values  into  all  the  propaga- 
tion  cquations. As a matter of notat.ion we shall  write 
all c,omplex pnramcters  in  the  form H .= H ,  + iHi. 

In  this  paper we shall  make  the  assumption  that  the 
light  intcnsity  distribution goes to zero inside  the  metal 
in a distancc  much  smaller than thc waveguide  thick- 
ness,  i.c., [If( << / Q ( .  This condition is  valid  when  the 
dielectric  constant of the  metal  is sufficiently  high. NU- 
merically  t,he  rcquiremcnt is1 

where m is the waveguide  mode  order (m = 0 , 1 , 2 ,  - * - )  . 
This  is  easily fulfilled for  the waveguides  considered 
here,  which are  an  appreciable  fraction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa wavelength 
thick  and  contain  only  a few  guided mode  orders. 

The  numerical  values  for  the dimensionless parameters 
Q, I € ,  P ,  and B are found  by n1at.ching appropriate 
boundary  conditions [SI. Wc  calculate  t'he  propagation 
loss  (i.e., Bi) from If, determined  by  the following tran- 
sccndcntal cqu a t '  ,ion : 

m = 0, 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  (3) 

where the const,ants are C,, = 2 n T d m ;  C,, = 

2 n T G  - n: = 2 x T d K ;  vZl = 1, 1123 = 1 for TE 
modcs; and q Z L  = n, /nl , v2,  = n22/n32 for TM modes. 
The complex propagation  constant B is determined  from 

B2 = ( 2 ~ 1 ' 1 1 ~ ) ~  - H z .  ( 4  
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The  aim of this  papcr is to  detcrminc  the  dcpendence 
of opt,ical  loss  on  wavcguide thkkncss T and dielectric 
discontinuity A€. It is prohibitive to numerically  calculat,e 

[HI2 + IHI2 << IC2,/2. From  Table I observe that  typically k2 >> n2 
This is derived from  the relationship Q2 + Hz = CZ,~.  i & 1 2  >> 

and /n1i2 >> n?. Thus (C2,( - 2 ~ l ' k .  Since JHJ - (m 3- l ) ~ ,  the 
condit,ion is [ ( m  + 1)/2] << k7'. 
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Fig. 1. Universal  curves of waveguide loss as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa function of 
dielectric constant for constant guide thickness; percentage 
of energy confined inside the guide  region is indicated a t  
typical points. Numbers on ordinate give loss for I-+ light 
guidcd in GaAa. Inset depicts  geometry. 

complex  solutions to  (3)  for  many  values of AE and T. 
For TE modes we can  obtain  simple  algebraic  solutions 
and show that BiT2 is  a  universal  function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&T2 with 
a proportionality  factor  that  depends  only on refractive 
indices. This  analysis  is  valid  also for T M  modes in  rela- 
tively  thick  waveguides  with  moderate  dielectric dis- 
continuities. 

The  mathematical  assumptions we shall  usc  are 

That is, the dielectric  discontinuity  must be small  and 
the guide must, be thicker  than some characteristic  value. 
From  the  numbers  in  Table I we see that  the  latter con- 
dition is by no means  always  satisfied. 

Using the  assumption of ( 5 ) ,  we may simplify (3) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4),  separate  real  and  imaginary  parts,  and  obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~ ~ 
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for  the  mth  order  mode, we specify a value  for H,, calcu- 
late  appropriate  waveguide  thickness  and  dielectric dis- 
continuity,  and  determine  corresponding  optical loss. 
This  eliminates  the need to solve a  transcendental equa- 
tion. 

Writing  the  optical loss  (unit,,s of inverse  wavelengt'hs) 
in terms of H,, 

where 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K;= -Im (n2,2, 6-J 

Thus i t  is clear  that yT3 is a  universal  function of A € T ~  
(i.e., H,) with  a  shape  that  is  independent of wavelength 
or  refractive  indices  and a magnitude  that  is propor- 
tional  to K .  

In  Fig. 1 we show these loss curves y T 3  as  a  function 
of A ~ T ~  for  the  three lowest  order  modes. As aeT2 be- 
comes small,  the loss gocs to zero;  this is waveguide  cut- 
off ( H ,  * ( m  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4)'~). Physically  this reflects the  fact 
that when the mode  is  not confined, the fraction of its 
power propagating  in  the lossy metal is negligible. This 
limit is not  useful, however,  since the  fraction of energy 
propagating  inside  the  guide becomes small.  For con- 
venience we have  indicated  this  fraction at typical  points 
in  the figure. 

For  large  values of aeT2 there  is  strong confinement of 
several modes. I n  this region H ,  -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( m  + 1 ) ~  and y ! P  

tend  toward  a  constant  value: 

This formula  allows us to  make  a  quick  estimate of thc 
operating losses from  the  magnitude of K .  An approxi- 
mate  form of K ,  valid when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAln1I2 >> nZ2 and kz  >> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnz, is 
given by 

c23 = ___ Hr (-1)" sin H ,  

We  are  intercsted in  exploring the optical loss for a 
range of dielectric  discontinuities  and  waveguide  thick- 
nesses.  Since we know (WL + .$) r 5 H ,  ,< (m + 1) r 

n 
TE 

n 
T M  

Values  for  typical  physical cases are shown in  Table 
I. Recalling  that y is  expressed in  units of invcree  wave- 
lengths,  t8he  optical loss is  by no means  small when  t>he 
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guide thickness becomes comparable to  a wavelength. 
The  numerical  values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvT3 in  Fig. 1 are given  for TE 
light of wavelength 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. From  this  graph  it  can  be seen 
t’hat a metal  layer on a guide 1 p thick will introduce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-e-5 attenuation  in 1 cm  for TI3 rnodes of wavelength 1 p. 

From t,he loss estimate of (11) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, we obwrvc that higher 
order modes suffer  substantially  more loss. Furthermore 
we observe tha t   TM modes are  much  more lossy than TIC 
modes 191. For guides  in  which  this simplified analysis 
describes TRI modes, the  ratio of TM t,o TE loss is 
K T ~ ~ / K T I ~ :  z k 2 / n 2 3 .  Observe,  finally, that  the losses are  a 
very strong  function of wavc.guidc thickness  and  nearly 
independent of dielectric  disc,ontinuity  (above  cutoff). 

We seek now t o  calcu1at)e the loss in wavc.guides that 
violate  the condit’ions of ( 6 ) .  In  cascs of interest, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIi << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H,, and we write 

where f = v23 + - T 2 3 )  H,2/C2:{2. These  equations 
hold  only ns long as C,,2 - H r 2  >> IZiz. Physically  this 
means that  the waveguide is above  optical cut,off. 

We solved the  real  transcendental (13) for I I ,  by 
comput,er and  then  calculated TIi and  finally  the  optical 
loss Ri = - HJZt/B,. The  shape of these  curves differs 
somewhat  from  the  universal  curves  in  Fig. 1. Never- 
theless,  30-percent  accuracy  can he obtained  with  ap- 
proximate  scaling  laws. We  may use  the  univrrsal  curve 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATM modes if the ahscissa  remains &T2, but  the 
ordinate becomes ,T3“. The  value of F was  calculated 
to  give  approximate  agrecmcnt for T 5 10 and AC S; 10. 
Heuristic  values of 8 for the first  three  mode  orders  are 
shown in  Table I. Whcn 6 = 0, (10) can be  used. 

We shall show how to  calculate  numerically  the T M  
loss in any mavcguide of given A6 and T using  t8he  ap- 
proximate  scaling  law. It is  necessary  first to scale the 
loss parameter y to  a yalue of T ~ h c r e  the C I I ~ V O S  of the 
figure are  valid.  The region T = 10 is valid for all cases 
of physical  interest  and we used this  in  estimating 8. 
At T = 10 we correlate TRI loss for  light  at  the wavc- 
length of interest to  TE loss for  light of 1-p wavelength 
by the  ratios of K. Thus we have,  for a guide of thick- 
ncss T and dielcct,ric discontinuity Ac: 

where yT3JTE*’ is read  from  the graph in Fig. 1 for the 
same  value of k T 2 .  Note  that for 10-p light,  failure to  
incorporate 6 into  the calculation may  introduce  an error of 
almost  two  orders of magnitude. 

The metal  layer  introduces a shift  in t,he T M  waveguide 
cutoff thickness of at most T M T c  - E T ,  5 1/4 -&, a n  
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effect  that was  included in our computer  calculations but 
will not be discussed in detail  here. 

X O D E  ANALYZER 

It has heen  shown that  optical losses are  higher for 
some modes than  for  others.  This suggests t,hat a metal 
film deposited  on a. planar waveguide may  make  an 
effective mock analyzer. Such an  analyzer will be  useful 
in  integratd optics  circuit,s as  an  important element 
of  amplitude modu1:ttors. Whcn a modulation  signal is 
used to convert the waveguided  light  from  one  mode 
into  another,  this mod(: analyzer will  sclect~ively transmit 
only  the  original wa,veguide  mode,  rcsult.ing in  amplitude 
modulation. 

For example, the  high ratio of T M  to TI? loss sug- 
gosts a polarization  analyzer. A mctal-depositcti  guide 
2.5 wavelengths  thick  with  dielectric  discontinuity h e  = 
0.048 and  length 0.5 cm transmit’s  ten t i n m  as much TI3 
light at I p as TAT light.  Suppose the guide is composcd 
of GaAs oricntcd  along  the [ I  101 face; then  a  voltage 
applied  across the guide  produces the  optimum  convcr- 
sion of one  polarization  into  the  other [ lo]. If light  is 
couplcd into  such a waveguide  modulator as the  rela- 
tively lossless TE mode, an applied  voltage will convert 
some of it  into t,he lossy T M  mode. Thus we have  devised 
a variable loss, or amplitude  modulat~or. An exact  theory 
of such  a  modulator would require  considering  the effect 
of crystal  anisotropy on the  electromagnetic modes of the 
waveguide [ l l ] and is I)cgontl the scopc of this  paper. 
A rough est,imatc  for bulk GaAs  indicates  that  full con- 
version of one polarization  into  the  other  can  he  achieved 
in 0.5 cm with 5 V across the 2.5-p-t,hick  waveguide. 

Another  example of an  intensity  modulator  utilizing 
mode-tkpcndent losses involves  variable  mode  conver- 
sion into  higher  order modes. It,  has been noted that  the 
losses are  proportional  to (?n + l )2;  in  particular,  the 
?n = 1 mock has  four  times  the loss of the 172 = 0 mode, 
if both  are wcll confined. An rffcctivc  intensity  modula- 
tor would  employ  surface acoust’ic waves to couple TM, 
modes into lossy TM, modes  in  the prcscncc of a metal- 
lic  clectrode in an arrangement  similar to, that  used  in 
[12]. ,4n c~lec.trooptic phase gratzing [13] could  also be 
employed to couple  light into higher order modes. 

The use of mode-dcpcndcnt  optical loss for intensity 
modulation will be most  useful  in  the design of totally 
integrated  optical  circuits  in which a modulator  and 
detector arc on the  same  chip.  Then  the  grating  coupler 
analyzc.rs or clxternul polarizers that  have been  used to 
date wil l  not, he enlployablc. 
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Fluctuation  Mechanism of Ultrashort Pulse Generation 
by Laser With Saturable  Absorber 
P. G. RRYUIiOV AND VLADILEN STEPANOVICH LETOKIIOV 

Absfracf-This paper presents  a theoretical treatment of the 
fluctuation mechanism involved in the generation of picosecond 
laser  pulses with saturable absorbers. The  processes  responsible 
for the shortening of the pulsewidth and for selection of the most 
intense pulse are treated. Some experimental results that confirmed 
the treatment are presented. The  influence of inertia of saturable 
absorber and nonlinear losses (self-focusing and self-modulation) 
is discussed. 

w 
INTRODUCl‘IOiY 

EMARKABLE progress  in  obtaining  high-power 
short  light pulses  was  achieved in 1966 [ l ]  , [2] .  

Measurements of pulse  duration  [3], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] showed 
the  ability of lasers  with  sat,urablc  absorbers  to  generate 
trains of pulses a few  picoseconds in  time  duration.  The 
st’udy of emitted  radiation  from  lasers  having  saturable 
absorbers  in  their  feedback  cavity  was  apprcciably ex- 
panded  after  the  introduction of the  two-photon fluores- 
cence method  for  time-duration  measurenlcnts [3],  [6]. 
The simplicity of this makes it  very  at,tractive.  Unfortu- 
nately,  the two-phot,on fluorescence method has no 
explicit  definiteness, as it produces  similar  records for 
both mode-locked  pulses and  for  irregular  fluctuation 
spikes  occuring  from  the  multinlode  radiation  from  any 
laser  [7]-[9].  The difference  lies in  the  value of the con- 
trast  ratio, which  changes  from 3 for  an ideal  ultrashort 
pulse train  to 1.5 for  incoherent  mult’inlodc  radiation 
(Gaussian  noise) [$I ,  [ 101, [ l l ] .  It is t l ~ u s  necessary 
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to  measure  the  contrast  ratio  with  very high accuracy 
if one  has  to  be  sure of the presence of ideal mode-locked 
pulses [12] .  In addition, i t  was found that  the  actual 
pulse  duration of the Nd: glass  laser wit.h a saturable  ab- 
sorber  is  an  order of magnit’ude  greater  than  the  limiting 
duration defined by  the  spectral  width of the  radiation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ Z ] .  T o  explain  this  fact,  the  author of paper  [13]  has 
proposed a  frequency  “chirping”  nxchanism  due to dis- 
persion,  which  broadens the  time  duration of the  sub- 
picosecond light pulses. On  the basis of th is   ~~~echanism, 
the use of the pulse  compression method to obtain  shorter 
time-duration  pulses [ 131, [ 141 was suggested. By con- 
trast,  in [ 151, [16] the  authors succeeded in  finding a 
subpicosecond structure  within  the  ultrashort  pulscs  with 
no  compensation  for  the  frequency  chirping.  Many  pa- 
pers,  besides those  mentioned  here,  have  been concerned 
with the  study of these  two  facts.  Detailed  information 
on t’he question may  be found  in [ 171, [18]. 

Far less attention  has been paid  to  the  study of the 
dynamics of ultrashort  pulse  formation process. Creation 
of thc  regular  train of ultrashort.  pulses  was considered 
to  be  an  evident process, the so-called  “self-mode  locking 
by  a  saturable  absorber.”  Previously,  mode  locking  in 
gas  and  solid-state  lasers  by  intrncavity  active-loss  mod- 
ulation  was  studied [19]-[21]. In  this case, the periodic 
disturbance of the  resonator  gradually  increases  the  num- 
ber of modes and,  finally,  results  in  the  strict  periodic 
sequence of pulses  with  time  duration rP = TJm, where 
m is a  number of locked  modes and T is  the  rcpetition 
period. A laser  utilizing a saturable  absorber  also  emits 
a strictly  periodic  sequence of very  short  pulses  with a 
broad  radiation  spectrum.  This  formal  resemblance gives 


