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Abstract

The asymptotic theory of Choudhary and Felsen [IEEE Trans. Ant.. Prop.
AP-21, 827 (1973)] on the propagation of scalar inhomogeneous waves in two-
dimensional isotropic media is extended to the case of three-dimensional vector
fields. The theory is applied to the propagation of Gaussian beams in nonhomoge-
neous media. The wave trajectory equations are then reformmlated for anisotropic
media and used for tracking a Gaussian beam in a tokamak plasma.
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I. Introduction

High frequency microwave beams are used in some of the most powerful
diagnostics of thermonuclear plasmas.!? By measuring the spectrum of electro-
magnetic waves, which are either injected into the plasma or generated within the
plasma itself, it is possible to obtain important information on plasma density
(interferometry), magnetic field (polarimeiry), electron temperature {radiome-
try), turbulence (scattering), etc. A crudal factor in the interpretation of exper-
imental data is the location and size of the investigated plasma region. This is
determined by the degree of collimation of the probing wave, by the characteristics
of the launching and receiving antennas, and by plasma inhomogeneities which
deflect and spread the wave beam. To improve the measurement spatial local-
ization, use is made very often of highly collimated waves, such as the Gaussian
beam of a laser, and waves are launched and received with focussing elements,
like lenses and curved mirrors. The effect of plasma refraction is estimated with
ray-tracing techniques based on the theory of geometrical optics.®? Unfortunately,
even though the wavelength of the probing wave is, in most cases, mmch shorter
than the plasma scale lengths, the approximation of geometrical optics breaks
down near the focal region where the diagnosed plasma is usually located.

In the conventional theory of geometrical optics,3® the local description of
the field is given in terms of homogeneous plane waves E(r)exp[—ikS(r)), where
k is the free-space wave number, and E(r) is a spatially dependent amplitude.
The function S(r} is the wave phase which is assumned to be a real quantity in
a loss-free medium. These functions are obtained from the leading terms of an
asymptotic series expansion of the solution of Maxwell’s equations and can only
describe fields whose amplitude does not change appreciably over a distance of
a wavelength. This impairs the validity of the geometrical approximation near a
focal point or a caustic. In order to deal with these cases, Choudhary and Felsen®
have extended: the theory of geometrical optics of two-dimensional scalar fields
by including evanescent or inhomogeneous waves, i.e., plane waves with complex
phase (or eikonal), S(r).

In this paper, the theory of geometrical optics with complex eikonal is used
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for the study of wave beam propagation in nenhomogeneous media. In Sec. II,
the existing scalar theory® is reviewed and extended to three-dimensional vector
fields. In Sec. III, the theory is applied to the propagation of Gaussian beams in
nonhomogeneous isotropic media. In Sec. IV, the equations of the wave trajectory
are generalized for anisotropic media, and the results are used for the propagation
of a Gaussian beamin a tokamak plasma, Finally, the conclusions are sumnmarized

in Sec. V.

II. Complex Eikonal

The formulation of geometrical optics with evanescent waves follows the route
of conventional theory. The only difference is that the local plane waves are
assumed to have a complex rather than a real phase, S(r). The electric field is
tzken in the form :

E(r. t) = Eo(r)exp|[—-ikS(r) +iwt] , (1)

where w is a real frequency, and E,(r) is a slowly varying function which, as an
Ansatz, is expressed as a series in pcwers of 1/k

Eo(r) =) 1= (2)

n20

where e,, are complex functions of position. A priori, with very few simple excep-
tions, it is impossible to say whether this expansion is valid either as a convergent
or as an asymptotic series. Nevertheless, experience supports its use and, in most
cases, it is the only tractable method.

Substituting (1) and (2) and equivalent equations for the magnetic field into
Maxwell’s equations, one obtains from the lowest order terms the eikonal equation

(VS =n?, 3)
and from the first order terms the transport equation for the amplitude e,

(V2S +2VS - V)e, +2(es - Va/n)VS =0 . (4)
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The vector e, nmust also satisfy the subsidiary condition
e -VS5=0, (5)

which is derived from the lowest order term in the divergence of the electric
displacernent. The function n{r) which appears in Eq. (3) and (4) is the local
refractive index of the medium which, for simplicity, is assumed isotropic and
loss-free.

By casting e, in the form
e = Elr)e, (6)

with E(r) a solution of
(V3§ +2VS.-V)E=0, (7

the amplitude transport equation (4) becomes
VS -Ve+(e-Vn/n)VS =0, (8)

with the awadliary condition
e VS=0. (9)

To solve the eikonal equation, it is convenient to write S(r) = K(r) +I(r) ,
with R(r) and I(r) real functions, and to introduce the unit vectors

s=VR/@, t=Vija,

with 3 = |VR| and a = |V|. Upon separation into real and imaginary parts, Eq.
(3) gives

P -a?=n?, (10)

s-t=0. (11)

Along the tangent lines of the vector field s, which are normal to the surfaces of

constant phase & , the imaginary part of S remains constant. These lines are the
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equivalent of the phase rays of conventional geometrical optics. The important
difference is that, in the case of complex eikonals, the power flow deviates from
the direction of advancing phase fronts.> Along the tangent lines of the vector field
t, which are normal to the surfaces of constant exponential amplitude I , the real
part of S remains constant. In the following, these lin - will be referred as phase
and amplitude paths (or rays), respectively. Nevertheless, it should be stressed
that neither the total wave amplitude nor the total phase is constant along these
lines. If s and ¢ are the arc-length along these two sets of lines, the trajectory
equations are
d d

a(ﬂs) =Vj, Zi_i(at) =Va, (12)

with G and « subject to condition (10).
By writing
E(r) = exp[u(r) +iv(r)] ,
with u and v real functions, Eq. (7) reduces to the following set of equations

V-(8s)+208s-Vu—20t-Vo =0, (13)
V. (at)+20s-Vv+20t-Vu=0. (14)

These equations were first derived in Ref. 4 as the transport equations for two-
dimensional scalar fields. In the case of vector fields, the solution of Eq. (8) is
also needed for determining the wave amplitude.

To solve Eq. (8), it is convenient to introduce the unit vector ¢p=s x t and
write e = €,8 + ¢;t + e,¢p which put condition (9) into the form

ﬁel +iae, =0. (15)

This equation, together with (10), {11), and (12), makes the component of
Eq. (8) along the s-axis equivalent to the component along the t-axis. In other
words, once condition (15) is verified at one point of a phase or amplitude path,
it remains valid over the whole path. Thus the field e is determined by Eq. (15)
and the t- and ¢-components of Eq. (8) which can be written as
a

Va(Ge) +i(5) Vil ged =eo[i()Vs(5) + 5 -4, 19)
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and

V.eo +i(g)\7¢e¢, = -’B’e, [i(%)%(%) + g & V,t], (17)

where, for brevity, V, =s-V ,V, =t-Vand V, = ¢- V. These equations were
obtained by using Egs. (10), (11), (12), and the relation

which is derived from the vector identity
Va-b)=ax(Vxb)+bx(Vxa)+(a:-V)b+(b-V)a,

by using a = VR, b= VI, and Eq. (11).
From (16) and (17) one obtains the equation

V.f+i(%)vtf =0, (18)

with f = (ne,/3)? + €%, which admits solutions with f = const. along phase and
amplitude paths. For the case of axial symmetry, like a circular Gaussian beam
propagating in vacuum or in a cylindrical lens-like medium, the right-hand side
of Egs. (16) and (17) are zero and the functions (n/B3)e; and ey can be taken
constant along a phase or an amplitude path.

This compietes the set of equations for the lowest order approximation of the
propagation of evanescent waves in isotropic media.

II1. Gaussian beam

In this Section, the theory described in Sec. II is applied to the study of the
propagation of a Gaussian bearn. The computation of the wave field proceeds as
follows:

(a) Solve the phase path equation (12) subject to conditions (10) and (11), given
an initial phase front where the values of R (= const.} and I(r) are prescribed.

This provides the functions a(r) and 3(r) and the field of vectors s, t, and

.



(b) Solve the amplitude transport equations (13) and (14), given the value of

E(r) on the initial phase front.

(c) Solve the amplitude transport equations {16) and (17) together with Eq. (13),
given the value of e on the initial phase front.

The phase path equation can be integrated with the Runge-Kutta method,® while

the two-step Lax-Wendroff scheme® can be used for solving the amplitude trans-

port equations.

To solve the field equations, it is convenient to define on the initial phase
surface a system of curvilinear coordinates (p,¢) with the contours of constant
amplitude I as the ¢-lines. If p and ¢ are the unit vectors along the two coordinate
lines, ¢ coincides with the homonymous vector of Sec. II. By using the solution
of the phase equation (12), which can be written as

v
=5
with V; = V - V,, it is possible to extend the definition of these coordinates
to every phase surface by assuming constant values of p and ¢ on a phase path.
Since the function I(r) is also constant along these rays, the vector ¢ of Sec. II
continues to coincide with the unit tangent vector of the ¢>-line. By making use
of the equation

V.s (19)

1
Ve= W(Vp —{p-#)Vy) , (20)

with V, = p- V, one can rewrite the transport equations in the new system of
coordinates (p, @, s).

Before dealing with the case of nonhomogeneous media, it is instructive to
consider that of vacuum propagation and compare the results with known analytic
solutions of the wave equation. Figure 1 shows the phase paths obtained with
numerical integration of Eq. (19) for a circular beam propagating in vacuum with
a wavelength of 0.5 cm. The wave has an initial spherical phase front with a
radius of curvature of 150 cm and a Gaussian electric field distribution with 1/e
radius of 10 cm. Obviously, in the conventional theory of geometrical optics all
rays would have converged towards a single point.
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These results and those obtained from the amplitude transport equations
can be compared with well-lmown and widely used solutions of the parabolic
wave equation.” In a Cartesian coordinate system (z, y,z) with the z-axis along
the direction of beamn propagation and the vector potential A polarized along the
x-axis, a solution of the parabolic wave equation is®

A = xUexp|-ikz — (22 + %) /v] , (21)
with
U = wlexpliv(z) - ik(z® +42)/2R] (22)
and w?(z) = (2b/k)(1 + 22/0?), 1/R(z) = z/(2% + V?), and tan[1(z)] = z/b. The
argument of the exponential in Eq. (21) must be compared with the eikonal S(r),
the phase 1(z) of Eq. (22) with the value of the function v(r) obtained from the
solution of Egs. (13) and (14), and the value of R with the radius of curvature of
the phase fronts. Excellent agreement is found in all three cases; consequently, the
theory of Sec. 1I is equivalent to the parabolic approximation. Since this consists
of neglecting the second derivative in z of the slowly varying wave amplitude, Eq.
(21) implies that the approximation is valid whenever (kw)~2 << 1, i.e., when
the beam radius is larger than the wavelength. This condition can be rewritten
as o? << 1= 32

Let us now consider the case of propagation in nonhomogeneous media. Fig-
ure 2 shows the effect of a variable index of refraction with spatial dependence
n(r) = 1-0.3 exp[—((z ~ 20)? + (2 — 25)2)/75%] on a Gaussian beam with initial
linear polarization and the same conditions of Fig. 1. As an example of solution
of the amplitude transport equations, Fig. 3 displays the value of e; versus the
optical length d = [ 3(s")ds' for the rays of Fig. 2 which propagate below the
central ray. The standard theory of geometrical optics would have given constant
values along completely different trajectories.

IV. Wave tracking in anisotropic media
The theory described in Sec. Il cannot be used for tracking a wave in an

anisotropic medium which is the case of interest for the diagnostic applications
mentioned in the Introduction.
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The starting point in the derivation of the wave trajectory equations in
anisotropic media is again the eikonal equation, i.e., the consistency condition
for solution of the lowest order eikonal approximation of Maxwell’s equations. As
in Sec. II, we consider only the case of a loss-free medium and, analogously to
Eq. (3), we cast the eikonal condition in the form

D(r,VS) = (VS)2 - n?(r,VS) =0, (23)

where now, contrary to the isotropic case, the refractive index n = n(r,VS) is
also a function of the complex vector VS = (38 + iat. In the following, we shall
consider the case of a cold magnetized plasma and take for » the Appleton-Hartree
expression.® This depends also on the mode of propagation, i.e., the ordinary and
the extraordinary modes.

The theory is considerably simplified by the assumption that o << 3. By
expanding the function D(r,VS) around VS = s and keeping terms of up to
the second order in (a/f3), we get

D(r,8) +ia(r)t - 22 {%’ﬁ) - azz(r)tt %’2(2’;3 )
where (3 = 3s, and use is made of the dyadic notation. Upon separation into real
and imaginary parts, Eq. (24) gives for a loss-free medium (i.e., when »2(r, 8) is
a real function)

az(r) 6%n’(r, B)

He )= -n(ef) - o)+ T T 0D 0, p)
and 2
t.(Qﬁ a"a(;; ))_0. (26)

For an isotropic medium (i.e., when n? = n?(r)), these two equations coincide
with Egs. (10) and (11), respectively.

From Eq. (25) one can derive the wave trajectory equations which, in Hamil-
tonian form, are

_OH/B 4B 3H/[or 7

T 1PH/38 & T [8H/5A)
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where [ is the arc-length along the trajectory. Equations (27) must be soived
self-consistently with Eq. (26). The latter constrains the group velocity to be
tangent to the surface of constant exponential amplitude J which, contrary to the
case of isotropy, is not necessarily orthogonal to the surface of constant phase R
(i.e.,s-t£0).

For an anisotropic medium, the derivation of the transport equations for
the lowest order field amplitudes is considerably more difficult than in the case of
isotropy. The problem is the same as in the standard theory of geometric optics in
media with non-Hermitian dielectric tensors which has been treated very elegantly
in Ref. 10. Since the algebra quickly becomes very cumbersome, the reader is
referred directly to this paper, and to Ref. 11 for more algebraic details.

Figures 4 and 5 show two examples of numerical integration of the trajectories
equations for the case of a Gaussian beam propagating in a tokamak medium with
the extraordinary and the ordinary mode, respectively. The beam characteristics
and its initial conditions are those of Fig. 1, and, like in many of the diagnostics
mentioned in the Introduction, it is injected from the top of the plasma torus
along a downward vertical direction. The magnetic configuration has a Shafranov
equilibrium!? with the characteristics of a typical TF'TR discharge in the enhanced
confinement mode,'® and with a toroidal magnetic field of 50 kG. The electron
density is constant on magnetic surfaces with the value of 7 x 10'® em~=2 on the
magnetic axis.

It is the presence of the last two terms in the left-hand side of Eq. (25) which
prevents the formation of a focal point or a caustic surface. Since the contribution
of these terms becomes important only near the focal region, one must switch
to the new formalism only in the vidnity of the focus. Nevertheless, it is less
cumbersome to use everywhere the wave trajectory equations (27) since their
nurnerical complexity is not greater than that of the ray equations of conventional
geometrical optics. As a matter of fact, the numerical code used for tracking the
beains of Figs. 4 and 5 was just a straightforward modification of a standard
ray-tracing code used previously!* for the study of Electron Cyclotron Heating in
tokamaks.
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V. Conclusion

In this paper, the asymptotic theory of Choudhary and Felsen on the prop-
agation of scalar inhomogeneous waves in two-dimensional isotropic media has
been extended to three-dimensional vector fields. The theory has been applied to
the propagation of Gaussian beams in vacuum, where it is in very good agreement
with analytic solutions of the parabolic wave equation, and in nonhormogeneous
media.

The wave trajectory equations have been generalized for anisotropic media
by expanding the eikonal equation into a power series of {a/(3) and keeping terms
of up to the second order. In a loss-free medium, the solutions of these equations
are subject to the constraint that the direction in which the amplitude decays
most rapidly is perpendicular to the wave trajectory. An example of solution has
been given for the case of propagation of a Gaussian beam in a tokamak plasma.

In conclusion, the geometrical theory of propagation of inhomogeneous waves
in nonuniform media has been extended to vector fields and to anisotropic media.
It provides a simple and powerful tool for calculating the lowest order diffraction
effects in complicated nonhomogeneous media where the solution of the wave
equation becomes very cumbersome, if not impossible.
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Fig. 1.

Fig.
Fig.

Fig.

Fig.

Figure Captions

t

Phase paths of a Gaussian beam propagating in vacuum along the z-axis with
a wavelength of 0.5 cm, starting from an initial spherical phase front with a

radius of curvature of 150 cmn.
Same as Fig. 1 with a variable index of refraction.

Value of e, versus the optical length d = [ 3(s')ds’ along the phase paths
of Fig. 2 which propagate below the beam central ray. Values increase from
the center to the edge of the beam.

Wave trajectories of the Gaussian beam of Fig. 1 propagating in a toka-
mak plasma with the extraordinary mode. The plasma density is assumed
constant on magnetic surfaces (dashed circles).

Same as Fig. 4 with the ordinary mode.
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