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Abstract 

The asymptotic theory of Choudhary and Felsen [IEEE Trans. Ant. Prop. 
AP-21, 827 (1973)] on the propagation of scalar inhomogeneous waves in two-
dimensional isotropic media is extended to the case of three-dimensional vector 
fields. The theory is applied to the propagation of Gaussian beams in nonhomoge­
neous media. The wave trajectory equations are then reformulated for anisotropic 
media and used for tracking a Gaussian beam in a tokamak plasma. 
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I. In t roduct ion 

High frequency microwave beams are used in some of the most powerful 
diagnostics of thermonuclear plasmas.1-2 By measuring the spectrum of electro­
magnetic waves, which are either injected into the plasma or generated within the 
plasma itself, it is possible to obtain important information on plasma density 
(interferometry), magnetic field (polarimetry), electron temperature {radiome-
try), turbulence (scattering), etc. A crucial factor in the interpretation of exper­
imental data is the location and size of the investigated plasma region. This is 
determined by the degree of collimation of the probing wave, by the characteristics 
of the launching and receiving antennas, and by plasma inhomogeneities which 
deflect and spread the wave beam. To improve the measurement spatial local­
ization, use is made very often of highly collimated waves, such as the Gaussian 
beam of a laser, and waves are launched and received with focussing elements, 
like lenses and curved mirrors. The effect of plasma refraction is estimated with 
ray-tracing techniques based on the theory of geometrical optics. 3 ' 4 Unfortunately, 
even though the wavelength of the probing wave is, in most cases, much shorter 
than the plasma scale lengths, the approximation of geometrical optics breaks 
down near the focal region where the diagnosed plasma is usually located. 

In the conventional theory of geometrical optics, 3 , 4 the local description of 
the field is given in terms of homogeneous plane waves E(r)exp[—ikS(r)}, where 
k is the free-space wave number, and E(r) is a spatially dependent amplitude. 
The function S(r) is the wave phase which is assumed to be a real quantity in 
a loss-free medium. These functions are obtained from the leading terms of an 
asymptotic series expansion of the solution of Maxwell's equations and can only 
describe fields whose amplitude does not change appreciably over a distance of 
a wavelength. This impairs the validity of the geometrical approximation near a 
focal point or a caustic. In order to deal with these cases, Choudhary and Felsen5 

have extended1 the theory of geometrical optics of two-dimensional scalar fields 
by including evanescent or inhomogeneous waves, i.e., plane waves with complex 
phase (or ei'lrona/), S(r). 

In this paper, the theory of geometrical optics with complex eikonal is used 
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for the study of wave beam propagation in nonhomogeneous media. In Sec. II, 
the existing scalar theory5 is reviewed and extended to three-dimensional vector 
fields. In Sec. Ill, the theory is applied to the propagation of Gaussian beams in 
nonhomogeneous isotropic media. In Sec. IV, the equations of the wave trajectory 
are generalized for anisotropic media, and the results are used for the propagation 
of a Gaussian beam in a tokamak plasma, Finally, the conclusions are summarized 
in Sec. V. 

I I . Complex Eikonal 

The formulation of geometrical optics with evanescent waves follows the route 
of conventional theory. The only difference is that the local plane waves are 
assumed to have a complex rather than a real phase, S(r). The electric field is 
taken in the form 

E(r, t) = EoOOexpHfcStr) + «"*] > (1) 

where u; is a real frequency, and Eo(r) is a slowly varying function which, as an 
Ansatz, is expressed as a series in powers of 1/fc 

*('> = £ £ ' (2) 
n>0 

where e„ are complex functions of position. A priori, with very few simple excep­
tions, it is impossible to say whether this expansion is valid either as a convergent 
or as an asymptotic series. Nevertheless, experience supports its use and, in most 
cases, it is the only tractable method. 

Substituting (1) and (2) and equivalent equations for the magnetic field into 
Maxwell's equations, one obtains from the lowest order terms the eikonal equation 

(VS) 2 = n 2 , (3) 

and from the first order terms the transport equation for the amplitude Co 

( V 2 5 + 2VS-V)€b + 2(eo-Vn/n)V5 = 0 . (4) 
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The vector et, must also satisfy the subsidiary condition 

e^ • VS = 0 , (5) 

which is derived from the lowest order term in the divergence of the electric 
displacement. The function n(r) which appears in Eq. (3) and (4) is the local 
refractive index of the medium which, for simplicity, is assumed isotropic and 
loss-free. 

By casting eo in the form 

eo = £(r )e , (6) 

with E(r) a solution of 
(V 2 S + 2 V S V ) £ = 0 , (7) 

the amplitude transport equation (4) becomes 

V S V e + (e-Vn/n)VS = 0 , (8) 

with the auxiliary condition 
e V S = 0 . (9) 

To solve the eikonal equation, it is convenient to write 5(r) = R(r) + il(r) , 
with R(r) and /(r) real functions, and to introduce the unit vectors 

s = VR/J3 , t = VI/a , 

with /? = | Vi?| and a = | V/|. Upon separation into real and imaginary parts, Eq. 
(3) gives 

/3 2 - a2 = n2 , (10) 
s-t = 0 . (11) 

Along the tangent lines of the vector field s, which are normal to the surfaces of 
constant phase R , the imaginary part of S remains constant. These lines are the 
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equivalent of the phase rays of conventional geometrical optics. The important 
difference is that, in the case of complex eiionals, the power flow deviates from 
the direction of advancing phase fronts.5 Along the tangent lines of the vector field 
t , which are normal to the surfaces of constant exponential amplitude J , the real 
part of 5 remains constant. In the following, these lin s will be referred as phase 
and amplitude paths (or rays), respectively. Nevertheless, it should be stressed 
that neither the total wave amplitude nor the total phase is constant along these 
lines. If s and t are the arc-length along these two sets of lines, the trajectory 
equations are 

^(/3s) = V/3, | ( f l*) = V a , (12) 

with 0 and a subject to condition (10). 

By writing 
E(r) = exp[u(r) + iv(r)], 

with u and v real functions, Eq. (7) reduces to the following set of equations 

V-(/fe) + 2 / f e - V u - 2 o t - V v = 0 , (13) 

V ( o t ) + 2,3sVi/ + 2a t -Vu = 0 . (14) 

These equations were first derived in Ref. 4 as the transport equations for two-
dimensional scalar fields. In the case of vector fields, the solution of Eq. (8) is 
also needed for determining the wave amplitude. 

To solve Eq. (8), it is convenient to introduce the unit vector tj> = s x t and 
write e = eas + ett + e^tj} which put condition (9) into the form 

Pet+iaet=0. (15) 

This equation, together with (10), (11), and (12), makes the component of 
Eq. (8) along the s-axis equivalent to the component along the i-axis. In other 
words, once condition (15) is verified at one point of a phase or amplitude path, 
it remains valid over the whole path. Thus the field e is determined by Eq. (15) 
and the t- and ^components of Eq. (8) which can be written as 
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and 
V.e* +,•(!)**, = > [ « ( f ) V , ( | ) + 1 *• V.t], (17) 

where, for brevity, V, = s • V , Vf = t - V and V^ = 0 • V . These equations were 
obtained by using Eqs. (10), (11), (12), and the relation 

• • (s+sH-
which is derived from the vector identity 

V(a• b) = a x (V x b) + b x (V x a) + (a- V)b + (b• V)a , 

by using a = VR, b = V/, and Eq. (11). 
From (16) and (17) one obtains the equation 

V J / + i ( | ) v t / = 0 , (18) 

with / = (nei//3)2 + ej, which admits solutions with / = const, along phase and 
amplitude paths. For the case of axial symmetry, like a circular Gaussian beam 
propagating in vacuum or in a cylindrical lens-like medium, the right-hand side 
of Eqs. (16) and (17) are zero and the functions (n//3)et and e^ can be taken 
constant along a phase or an amplitude path. 

This completes the set of equations for the lowest order approximation of the 
propagation of evanescent waves in isotropic media. 

III. Gaussian beam 

In this Section, the theory described in Sec. II is applied to the study of the 
propagation of a Gaussian beam. The computation of the wave field proceeds as 
follows: 
(a) Solve the phase path equation (12) subject to conditions (10) and (11)^ given 

an initial phase front where the values of R (= const.) and I(r) are prescribed. 
This provides the functions a(r) and /3(r) and the field of vectors s, t, and 
<t>-
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(b) Solve the amplitude transport equations (13) and (14), given the value of 
E(r) on the initial phase front. 

(c) Solve the amplitude transport equations (16) and (17) together with Eq. (15), 
given the value of e on the initial phase front. 

The phase path equation can be integrated with the Runge-Kutta method,6 while 
the two-step Lax-Wendroff scheme6 can be used for solving the amplitude trans­
port equations. 

To solve the field equations, it is convenient to define on the initial phase 
surface a system of curvilinear coordinates (p, (f>) with the contours of constant 
amplitude I as the <£-lines. If p and <f> are the unit vectors along the two coordinate 
lines, tp coincides with the homonymous vector of Sec. II. By using the solution 
of the phase equation (12), which can be written as 

V.s = ^ , (19) 

with Vx = V — V„ it is possible to extend the definition of these coordinates 
to every phase surface by assuming constant values of p and <j> on a phase path. 
Since the function I(T) is also constant along these rays, the vector <p of Sec. II 
continues to coincide with the unit tangent vector of the 0-line. By making use 
of the equation 

V t = ( ^ t ) ( V ' > " ( p ' ^ V * ) ' ( 2 0 ) 

with V p ~ p • V, one can rewrite the transport equations in the new system of 
coordinates (p,<f>,s). 

Before dealing with the case of nonhomogeneous media, it is instructive to 
consider that of vacuum propagation and compare the results with known analytic 
solutions of the wave equation. Figure 1 shows the phase paths obtained with 
numerical integration of Eq. (19) for a circular beam propagating in vacuum with 
a wavelength of 0.5 cm. The wave has an initial spherical phase front with a 
radius of curvature of 150 cm and a Gaussian electric field distribution with 1/e 
radius of 10 cm. Obviously, in the conventional theory of geometrical optics all 
rays would have converged towards a single point. 
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These results and those obtained from the amplitude transport equations 
can be compared with well-known and widely used solutions of the parabolic 
wave equation.7 In a Cartesian coordinate system (x, y,z) with the z-axis along 
the direction of beam propagation and the vector potential A polarized along the 
ar-axis, a solution of the parabolic wave equation is 8 

A = xUexp[-ikz - (x2 + y2)/^}, (21) 

with 
U = uT lexp[*0(z) - ik(x2 + y2)^) , (22) 

and u>2(z) = (26/fc)(l + z2j&\ \(R{z) = zf{z2 + ft2), and tan^z)} = z/b. The 
argument of the exponential in Eq. (21) must be compared with the eikonal 5(r), 
the phase tp(z) of Eq. (22) with the \alue of the function v{r) obtained from the 
solution of Eqs. (13) and (14), and the value of R with the radius of curvature of 
the phase fronts. Excellent agreement is found in all three cases; consequently, the 
theory of Sec. II is equivalent to the parabolic approximation. Since this consists 
of neglecting the second derivative in z of the slowly varying wave amplitude, Eq. 
(21) implies that the approximation is valid whenever (kw}~2 « 1, i.e., when 
the beam radius is larger than the wavelength. This condition can be rewritten 
as a 2 « 1 as 0*. 

Let us now consider the case of propagation in nonhoroogeneous media. Fig­
ure 2 shows the effect of a variable index of refraction with spatial dependence 
n(r) = 1-0 .3 exp[-((ar - 20) 2 + (z- 25) 2)/75 2] on a Gaussiaji beam with initial 
linear polarization and the same conditions of Fig. 1. As an example of solution 
of the amplitude transport equations, Fig. 3 displays the value of ej versus the 
optical length d = j£ fi[$')ds' for the rays of Fig. 2 which propagate below the 
central ray. The standard theory of geometrical optics would have given constant 
values along completely different trajectories. 

IV. Wave tracking in anisotropic media 

The theory described in Sec. II cannot be used for tracking a wave in an 
anisotropic medium which is the case of interest for the diagnostic applications 
mentioned in the Introduction. 

8 

file:///alue


The starting point in the derivation of the wave trajectory equations in 
anisotropic media is again the eikonal equation, i.e., the consistency condition 
for solution of the lowest order eikonal approximation of Maxwell's equations. As 
in Sec. II, we consider only the case of a loss-free medium and, analogously to 
Eq. (3), we cast the eikonal condition in the form 

£>(r, VS) = (VS)2 - n 2(r, VS) = 0 , (23) 

where now, contrary to the isotropic case, the refractive index n = n(r, VS) is 
also a function of the complex vector VS = 08 + iat. In the following, we shall 
consider the case of a cold magnetized plasma and take for n the Appleton-Hartree 
expression.9 This depends also on the mode of propagation, i.e., the ordinary and 
the extraordinary modes. 

The theory is considerably simplified by the assumption that a « 0. By 
expanding the function D(r, VS) around VS = 0s and keeping terms of up to 
the second order in (a/0), we get 

D M ) + j a ( r ) , ™ _ ^ t t : ^ = 0 , W 
where 0 = 0s, and use is made of the dyadic notation. Upon separation into real 
and imaginary parts, Eq. (24) gives for a loss-free medium (i.e., when n2(r,(3) is 
a real function) 

H(r,0)^^~n^0)-^(r} + ^tt:^^=O, (25) 

and 

t . ( * _ * ^ f l ) = 0 . ( 2 6 ) 

For an isotropic medium (i.e., when n 2 = n 2(r)), these two equations coincide 
with Eqs. (10) and (11), respectively. 

From Eq. (25) one can derive the wave trajectory equations which, in Kamil-
tonian form, are 

dv _ dH/80 d0 _ dH/dr 
dl " \dH/d/3\ ' dl " \dH/d/3\ ' [ ' 



where I is the arc-length along the trajectory. Equations (27) must be solved 
self-consistently with Eq. (26), The latter constrains the group velocity to be 
tangent to the surface of constant exponential amplitude / which, contrary to the 
case of isotropy, is not necessarily orthogonal to the surface of constant phase R 
( i . e . , s - t^0) . 

For an anisotropic medium, the derivation of the transport equations for 
the lowest order field amplitudes is considerably more difficult than in the case of 
isotropy. The problem is the same as in the standard theory of geometric optics in 
media with non-Hermitian dielectric tensors which has been treated very elegantly 
in Ref. 10. Since the algebra quickly becomes very cumbersome, the reader is 
referred directly to this paper, and to Ref. 11 for more algebraic details. 

Figures 4 and 5 show two examples of numerical integration of the trajectories 
equations for the case of a Gaussian beam propagating in a tokamak medium with 
the extraordinary and the ordinary mode, respectively. The beam characteristics 
and its initial conditions are those of Fig. 1, and, like in many of the diagnostics 
mentioned in the Introduction, it is injected from the top of the plasma torus 
along a downward vertical direction. The magnetic configuration has a Shafranov 
equilibrium12 with the characteristics of a typical TFTR discharge in the enhanced 
confinement mode,1 3 and with a toroidal magnetic field of 50 kG. The electron 
density is constant on magnetic surfaces with the value of 7 x 10 1 3 cm~3 on the 
magnetic axis. 

It is the presence of the last two terms in the left-hand side of Eq. (25) which 
prevents the formation of a focal point or a caustic surface. Since the contribution 
of these terms becomes important only near the focal region, one must switch 
to the new formalism only in the vicinity of the focus. Nevertheless, it is less 
cumbersome to use everywhere the wave trajectory equations (27) since their 
numerical complexity is not greater than that of the ray equations of conventional 
geometrical optics. As a matter of fact, the numerical code used for tracking the 
beams of Figs. 4 and 5 was just a straightforward modification of a standard 
ray-tracing code used previously14 for the study of Electron Cyclotron Heating in 
tokamaks. 
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V. Conclusion 

In this paper, the asymptotic theory of Choudhary and Felsen on the prop­
agation of scalar inhomogeneous waves in two-dimensional isotropic media has 
been extended to three-dimensional vector fields. The theory has been applied to 
the propagation of Gaussian beams in vacuum, where it is in very good agreement 
with analytic solutions of the parabolic wave equation, and in nonhomogeneous 
media. 

The wave trajectory equations have been generalized for anisotropic media 
by expanding the eikonal equation into a power series of (a/'(3) and keeping terms 
of up to the second order. In a loss-free medium, the solutions of these equations 
are subject to the constraint that the direction in which the amplitude decays 
most rapidly is perpendicular to the wave trajectory. An example of solution has 
been given for the case of propagation of a Gaussian beam in a tokamak plasma. 

In conclusion, the geometrical theory of propagation of inhomogeneous waves 
in nonuniform media has been extended to vector fields and to anisotropic media. 
It provides a simple and powerful tool for calculating the lowest order diffraction 
effects in complicated nonhomogeneous media where the solution of the wave 
equation becomes very cumbersome, if not impossible. 
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Figure Captions 

Fig. 1. Phase paths of a Gaussian beam propagating in vacuum along the 2-axis with 
a wavelength of 0.5 cm, starting from an initial spherical phase front with a 
radius of curvature of 150 cm. 

Fig. 2. Same as Fig. 1 with a variable index of refraction. 

Fig. 3. Value of et versus the optical length d = f£ /3(s')ds' along the phase paths 
of Fig. 2 which propagate below the beam central ray. Values increase from 
the center to the edge of the beam. 

Fig. 4. Wave trajectories of the Gaussian beam of Fig. 1 propagating in a tola-
mak plasma with the extraordinary mode. The plasma density is assumed 
constant on magnetic surfaces (dashed circles). 

Fig. 5. Same as Fig. 4 with the ordinary mode. 
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