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Normal propagation of a shock wave in general relativity through the inhomogeneous 

gases is considered. Approximation in which the equillibrium medium is devided into 

infinitesimal layer of a uniform density (the Chisnell-Ono method) is applied. In general 

relativity, energy density induces a gravitational force and matter deforms space-time. Both 

these effects are included simply in determining propagation of a shock wave. It is found 

that the growth of strength of the shock wave due to pressure gradient is suppressed 

compared with the Newtonian case. Both effects have influence on propagation of the shock 

wave near the surface of a star where shock strength becomes large. However, the effect 

owing to gravitational field induced by pressure is rather larger than that by deformation 

of the space-time. As an example propagation of the shock wave in the neutron star is 

calculated numerically and it is shown that shock strength is estimated to be 10~20% small 

compared with that in flat space-time. 

§ 1. Introduction 

General relativistic effects, which come mainly from the facts that energy 

density induces gravity and the space-time deviates from flat space-time, have many 

influences on phenomena of a cosmic scale. Fluid motion in general relativity has 

been investigated by several authors. Cahill and Taub1} found that the flow be

comes similarity one as far as Killing vector satisfies some condition. They obtained 

the solution for flow containing strong shock wave (similarity type) and also 

studied the type of solutions for various equation of state. Recently, general re

lativistic flows were investigated by many authors,2} particularly for similarity flows. 

Bogoyavlensky3} considered propagation of the strong blast wave, and he classified 

many types of solution in a particular form of metric and found the existence of 

oscillatory state for gases behind a shock wave. However, he did not consider 

propagation itself. On the other hand, except for the similarity solution, propaga

tion of a shock wave was considered by direct numerical solution of Einstein 

equation."}.;} They carried out direct numerical computation of collapse for a star 

and also confirmed numerically the generation of a shock wave in some stage of 

collapse. However, owing to numerical smoothing, clear structure of the shock 

wave remained ambiguous. Furthermore numerical method may be cumbersome. 

Thus, it is desirable to develop semi-analytical formulation, if possible. 

Here, we consider propagation of shock wave including general relativistic 
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1542 T. Ishizuka 

effects by new formulation, i.e., an extension of the Chisnell-Ono method,6> which 
is reformulated in Newtonian case and its validity is discussed in § 2. In special 
relativity, it may become important that Lorentz factor is not neglected when a 
fluid velocity approaches the light velocity and energy itself is attracted by gravity. 
In general relativity, besides the factors mentioned above, it is much important 
that thermodynamic energy induces gravity and space-time is strongly deformed 
near compact objects (such as neutron star or black hole). In § 3 the Chisnell
Ono method is generalized inc! uding effects of general relativity. Though this 
formulation is only applicable for the stationary propagation of the shock wave 
in static equilibrium of the stellar objects, its physical image may be clear and 
therefore it may be applicable to propagation of a shock wave 111 non-spherical 
explosion. 7> 

Structure of the stellar objects through which the shock wave propagates IS 
also influenced in general relativity. In § 4, we compute numerically the growth 
of strength of shock wave for a simple stellar structure in general relativity and 
the results are presented, compared with the Newtonian cases. 

§ 2. Chisnell-Ono method 

t 

Let us imagine a shock wave impinging a material layer of some thickness 
(in this case Llx) .6> Transmission and 
reflection of the shock wave occur at 
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Fig. l. Time (t) versus distance (x) diagram 
shov.-ing refraction and reflection of a shock 
vvave. 

this layer. The thin layer considered 
(Fig. 1), after the transmission of 
the shock wave, gains momentum. 
However, this momentum may be neg
ligibly small because of an infinitesimal 
jump of densities between this layer 
and the preceding one. Thus, im
mediately after the transmission of the 
shock wave, the pressure difference 
between regions 1 and 5, which is 
balanced with the gra vita tiona! force, 
equals that of regions 4 and 3. Thus 
we have 

(1) 

Next, the condition of contact discontinuity at the layer before and after the trans
mission of shock wave gives 

(2) 

Now, let us introduce quantities ¢ and ¢, which mean relative velocity of flow 2 
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Propagation of a Shock lVave zn General Relativity 

to flow 1 or 2 to the shock front, 

and 

r;\(12: 1) = [(P,-1)1) (s,-s1)1(fJ,+s~) CP~+s,)r1', 

00 (1) = [ (p,-P1) (s, + P1) I (s,- sJ (f),+ S1)] 112 

1543 

(3 ·a) 

(3. b) 

(3 ·c) 

where s is energy density. These relations can be derived from shock conditions 

at the front of the shock vvave and are shown in the Appendicies for the case 

of general relativistic shock wave. By use of the same notations as defined in a 

previous paper, Eqs. (1) ancl (2) give, in linear approximation, 

(4) 

and 

¢(12: 1) -¢(23: 2) =r;\(54: 5). (5) 

Substitution of the Newtonian version of Eq. (3·a), I.e., r;\(12: 1) = -1) 

[P1 (1- Jl) I p1 (fl + Z 12)] 112 , into Eq. ( 4) gives the equation determining strength 

of the shock wave versus pressure or radius of the objects. It is also obtained 

in the next section as a limit of Newtonian cases in general relativistic formulation. 

As is easily seen from Fig. 1, this method is fundamentally based on the existence 

of the static stellar structure. Therefore, we cannot apply this formulation to non

static case, for example, to propagation of shock wave through gases dynamically 

collapsing. The propagation of the shock wave in freely falling gases occurs 

frequently in astrophysical phenomena and this is studied by similarity method31 for 

example. However, similarity solution assumes particular distribution of matter. 

On the other hand, contrary to the similarity formulation, the Chisnell-Ono method 

is applicable to any distribution of m:~tter. Thus, it is hoped to develope dynamical 

version of this method. 

§ 3. The case of strongly gravitating gases 

The general relativistic equation of hydrostatics in the stellar structure is given 

by 

(6) 

for a spherically symmetric mass distribution. Here G is gravitational constant 

and c light velocity. We have used static Schwarzschild metric. Contribution to 

energy density comes both from rest mass density and from internal energy density. 

As is known, the right-hand side of Eq. (6) has a definite physical meaning. The 

first term in the numerator shows that internal energy and pressure of the gases 
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as well as its rest mass are attracted by gravitational force. The second term in 
the numerator gives sources of gravity, in which not only the rest mass but also 
the thermodynamic energy are included. Lastly, the denominator expresses the 
deformation of space. Contrary to Newtonian cases, pressure gradient becomes 
large in general relativity. These factors may have influences on the propagation 
of the shock wave. 

In the case considered, the gravitational mass l'vfr is given by 

(7) 

Now, we separate the energy density into mass density and that of internal energy. 
The latter quantity, different from the Newtonian case, have had to be included 
in the calculation of propagation of shock wave. Thus we put e = pc2 +e. Then, 
by use of thermodynamic relation e =PI (r-1), we must revise Eq. (1) to 

_P4-Ps_= ~+a(PsjP_l_-1) 
P5- fJt 1- f3 (fJsl Pt -1) 

(8) 

Here, we approximate f4n:pr2l(r-1)dr=4rrr3pl3(r-1). In numerical calcula
tion, P may be replaced by P because of compactness of stellar body considered. 
The quantity a, defined by a= 11 [1 + 3Mrc2 (r-1) I 4n:r3 (3r- 2) p J, shows the ratio 
of contribution of pressure to source of gravity. On the other hand, the quantity 
(3 includes the effect of space deformation on the propagation and is given by 
(3=8rrGr2PI[3c4 (r-1) (1-rglr)], where rg is the Schwarzschild radius of a stellar 
object. We here estimate order of magnitude of the parameters a and (3. Al
though a has at most the value of about 0.6 in extreme relativistic gases, where 
r= 413, (3 becomes infinitely large when radius of the stellar object approaches 
critical one, i.e., Schwarzschild radius. As is seen from both expressions of a and 
{3, pressure plays an essential role. At the stellar interior where pressure is 
negligibly small, the factors a and (3 are nearly zero. On the other hand, in the 
case where pressure of gas is low but its volume is large, these factors must 
not be negligible. Such a case may occur on a cosmic scale in the early universe 
but is not considered here. 

By making use of the notations previously defined and after some manipulation 
taking account of the first order term of dz and dp, Eq. (8) is reduced to 

(9) 

In a flat space, where a= 0 and (3 = 0, this relation is reduced to Eq. ( 4). Physi
cally, z23 expresses the strength of the reflected shock wave at the infinitesimal 
layer (Fig. 1). This must have the value of about 1. Even for an extremely 
strong shock wave, z 23 must be slightly different from 1. As z becomes larger, 
we see that Eq. (9) is reduced to z 23 =1-dzlz-dPIP. Therefore, also in general 
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Propagation of a Shod vVave in General Relativity 1545 

relativity, the strength of the reflected shock wave is always nearly equal to 1. 
Next, the contact condition (2) must be revised by taking account of the 

relativistic addition law of velocity. As is shown in Appendix A, various relations 
between velocities of flow and shock front are the same as special relativity when 

they are expressed in terms of proper velocity instead of coordinate velocity. Using 

and 

¢(12: 1) = ((32-(31)/(1-{]d32), 

¢ (23: 2) = Cf3a- /32) I (1- /32/3a) 

we can express the contact condition given previously m the following form: 

¢(12: 1) -¢(23: 2) -¢(54: 5) +¢(12: 1) ·¢(23: 2) ·¢(54: 5) =0 0 (10) 

If we use for z 23 Eq. (4) which is the non-relativistic version of Eq. (9) and use 
the relation for ¢ in the special relativistic case, i.e., Eq. (3 ·a), we can obtain the 
equation determining propagation of the special relativistic shock wave as was 
already found in Ref. 9). This is a very complex form as is given in Appendix 

B. Our interest, however, is in the effects induced by general relativity. Thus, 
to see clearly the difference between general relativity and Newtonian case, we 

take a much simpler case. vV e assume the same gases ahead of and behind the 

shock front (r1 = r2). Furthermore, we use non-relativistic version for the Rankine
Hugoniot relation as given in Appendix B. Then, substituting z23 and z54 into 
Eq. (10) and taking only the first order terms of dz, dp, dp, and velocity of 
sound, we find after all the equation 

dz 
1 _dlnp +2 1. [1 _1_(~+f3)Cz- 1)JjC1+Az)z-

d ln p z -11 + (Jz z z 1 +A 

1 2 2 [1-(J(z-1)] / 1+Az 
z +A- z -1- z -1 1 + (Jz . ~ (1 +A) z 

d ln p 

(11) 

which determines the variation of strength of the shock wave propagating through 
the inhomogeneous gases. 

Before computing numerically, we consider how the general relativistic effects 

appear in the above equation. We may see that a and /3 in the numerator of 
the right-hand side act as factors diminishing the growth rate of strength of the 
shock wave. Also (3 in the denominator may have a similar effect because of plus 

s1gn. These effects are confirmed numerically in the next section. 

§ 4. Results and discussion 

Strong gravitational field is realized in and near the neutron stars or the 
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Fig. 2. Physical variables in the stellar interior 
used. Central density is l.OX 10" (gr/cm'). 
Metric coefficients and pressure versus non· 
dimensional radius x(=r/R,) are plotted. 

Fig. 3. Variation of strength of a shock wave 
versus radius. For comparison, the case in 
Newtonian mechanics (dot) are also plotted. 

surface of the black hole. It may be thought that at the early stage of a super

nova explosion, the collapsing body becomes neutron star or black hole. During 

this process of dense body formation, propagation of a shock wave may be influenced 

by deformation of space-time. Therefore, as a numerical example we compute prop

agation of a shock wave in the neutron stars. To avoid complexity, we. use the 

model of constant density. Although such a star is not realized astrophysically, 

we can estimate some physical characteristics for general relativistic structure of 

the star and here use it only in order to determine metric and pressure distribu

tion. Then, we assume that gas is ordinary one of adiabatic index r = 513. Mass 

M" pressure p and metric coefficients ev2 and e'12 are given by JJ1r = 4n'/3pr3, 

p- (pc21~) [[ (1-Rgr2j~.a) I (1 ~_!?-gl ~ .. )J~f2- IJ 
- -1= (113) [ (1- Rgr2 I R, 3) I (1- Rgl R,) J 112 ' 

and 

e'/2 = 1.5 (1- Rgl R.) 112- (1- Rgr2 I R/) 11212 . 

Here R. and Rg are radius of the neutron star and corresponding Schwarzschild 

radius, respectively. In Fig. 2, static physical quantities are plotted. As is well 
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Propagation of a Shock 1Vave zn General Relativity 1547 

known, stars of mass larger than 

Mcritical have no stable configuration. 

In this calculation we put 1\dtotal = 0.5 

(solar unit). Then R, and Rg are 

6.4 X 105 (em) and 1.4 X 105 (em), re

spectively. Density assumed is 1. 0 

X10 15 (gr/cm3). Also we have as

sumed initial strength of the shock 

.wave to be 2.2 starting from the center 

or to be 10 at the intermediate point 

of the stellar radius, respectively. In 

Fig. 3 the growth of strength of the 

shock wave both in the present case 

and in the Newtonian one is plotted. 

It is easily seen that the growth of 

shock strength in general relativity 

is suppressed compared with that in 

Newtonian case, but the suppression 

is comparatively small. This effect, 

however, is due to both factors of 

a and 1'1. To see the effects due to a 
and /3 respectively, we represent the 

(l 
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Fig. 4. Effects of a and {3 on the growth of the 

shock wave. a and ,9 themselves are also 

represented. 

curves of strength z determined by the case when either of the two appears in 

Eq. (11) in Fig. 4. \Ve see that the factor a makes the growth of the shock 

strength much suppressed. On the other hand, /3 has minor influence on the 

propagation of the shock vvave in this model. In Fig. 4, we show the values 

of a and /3 although these are very small. As seen from the figure, deformation 

of space occurs near the surface of the star. On the other hand, although a has 

rather large values in the central part of the star the suppression due to this 

appears in the outer part because of large values of z. Tn supernovae explosion 

collapsing core may shrink rapidly and outside it there remains gaseous envelope 

through which a shock wave propagates. Thus, much larger effect may be expected 

in realistic models of star. Rate of suppression in z, however, can be estimated 

to be 10~20% less in the model used. Thus, we can conclude that stellar ex

plosion in general relativity may be slightly more difficult to occur than in New

tonian mechanics. 

Although the formulation considered in this paper is valid only in stationary 

generation of explosion energy, the conclusion obtained will be valid in real ex

plosion. To justify the results, we consider this conclusion from another viewpoint. 

In general relativity proper volume becomes much larger than that in a flat space 

and then pressure due to thermal energy generated in the star during explosion 

is smaller.w Therefore, the shock strength may become weak in curved space 
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1548 T. Ishizuka 

On the other hand, the time for a shock wave to travel the star of radius R, 
is given by T = (lj c) f~'ev2 I fj,dr, where {3, is velocity of the shock front. If the 
gas ahead of the shock wave is at rest, {3, is given by 1/J (1). From the above 
relation, we can see that the time required becomes long. Qualitatively, these facts 
agree with those mentioned previously. 
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Appendix A 

--¢ and cjJ versus Velocity Relation--

Let us define Nfl, a four-unit vector normal to the front of a shock wave 111 

Schwarzschild coordinate system. Its line element is given by 

ds' = c'e' dT'- e1dr2 - r'dQ'. (A·1) 

Then, by introduction of energy-momentum tensor T 116, we have for conservation 
of energy and momentum at the front of the shock wave, 

(A·2) 

The symbol [ J defines the difference of variables ahead of and behind the shock 
front. Mass conservation is expressed in the form: 

[pu"Nfl] =0. (A·3) 

p and ufl are matter density and four-velocity of a fluid particle, respectively. 
Defining U =u11N" and after some lengthy calculation, we obtain the following 
equations: 

and 

u; = (p,-p,) (P,+ c,) I [ (c, + p,) (c,- Cj + p,-p,) J' 

U/ = (P2- p,) ( c, + p,) I [ ( c1 + p,) ( c,- c, + p, - Pz) ] 

(A·4) 

(A·5) 

(A·6) 
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Propagation of a Shoch ·wave in General Relativity 1549 

Suffix 1 or 2 denotes gas ahead of or behind the shock front. Also, c is given 

by E:=pc 2 + e. 

Next, these relations can be expressed by use of usual proper velocity of a 

fluid particle and a shock wave, /3 and f3so respectively. Let us denote the relative 

velocity of a shock front to the fluid 1 or the fluid 2 to 1, as ~(1) or ¢(12: 1). 

These are given in the velocity form by 

~(1) = V 2 (A·7) 

and 

(A·8) 

with V/ =UN (1 + U ;"). 
Now, expressing explicitly V or U by the proper velocities of the fluid and 

the shock front we obtain 

v = C/3,- /3) I (1- /3,{3) (A·9) 

and 

u = C/3,- f]) I { vT- /32 vl- /3."}. (A·10) 

From Eq. (A· 8) ¢ becomes q) = (!32- f]J I (1- /31/32). Finally, by substitution of 

Eqs. (A· 4) and (A· 5) into Eqs. (A· 7) and (A· 8), ~and ¢ are expressed in the 

following forms: 

(A ·11) 

and 

(A·12) 

Appendix B 

--General Relativistic Ranhine-Hugoniot Relation--

This relation is the same as that for special relativistic shock wave, as far 

as we use proper velocity for fluid particle and shock front. We can find it from 

two conservation laws (A· 2) and (A· 3) and it is given by 

(B·1) 

This relation can be reexpressed by means of the notations previousely defined9l in 

the form: 

(B·2) 
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where z=P2/P1, y=p1/p., C=P~/(p~c'), b~=r,/(r,-1) and ~=b,jbl. The y-z rela
tion in general case is so cumbersome that we must use the simplified relation 
corresponding to each situation occurred. Here, the most simple case, i.e., r;, ~1, 
is considered. In this case y is given by 

y= (l+Az)/(z+A) (B · 3) 

with A= Cr-1)/Cr+l). 
Now, substituting this relation into <f; and ¢, and expanding z 51 , z 23 in terms 

of z, P and p and the first order terms of dz and dp, we can obtain Eq. (11). 
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