
JOURNAL OF GEOPHYSICAL RESEARCH VOLUME 67. No. 10 SEPTEMBER 1962 

Propagation of Acoustic-Gravity Waves 
in the Atmosphere 

FRANK PRESS AND DAVID HARKRIDER 

Seismological Laboratory 
California Institute of Technology, Pasadena 

Abstract. ]Komogeneous wave guide theory is used to derive dispersion curves, vertical 
pressure distributions, and synthetic baregrams for atmospheric waves. A complicated mode 
structure is found involving both gravity and acoustic waves. Various models of the atmos- 
phere are studied to explore seasonal and geographic effects on pulse propagation. The influ- 
ence of different zones in the atmosphere on the character of the baregrams is studied. It is 
found that the first arriving waves are controlled by the properties of the lower atmospheric 
channel. Comparison of theoretical results and experimental data from large thermonuclear 
explosions is made in the time an,d frequency domains, and the following conclusions are 
reached: (1) The major features on baregrams are due to dispersion; (2) superposition of 
severM modes is needed to explain observed features; (3) scatter of d•t• outside the range 
permitted by extreme atmospheric models shows the influence of winds for Ax; wind effects 
and higher modes are less important for A• waves. A discussion is included on atmospheric 
terminations and how these affect dispersion curves. 

INTRODUCTION 

Interest in the problem of the propagation of 
a pulse in the atmosphere began when world- 
wide pressure disturbances were observed in 
connection with the explo,sion of the volcano 
Krakatoa in 1883. The great Siberian meteorite 

of 1908 provided additional data which were used 
in attempts to correlate observations with the- 
ories of pulse propagation. These studies were 

prompted by a desire to account for the velocity 
of the pulse, to explain its peculiar signature, 
and to see if evidence could be found from pro- 

gressive waves which would shed some light on 
the existence of free oscillations of the atmos- 

phere. A mode of free oscillations having a pe- 
riod close to 12 solar hours is required by the 
resonance theory of the solar atmospheric fide. 

The atmospheric pulse was of further interest in 
that it could provide information concerning 

the structure of the atmosphere. (For a sum- 

mary of early papers see Wilkes [1949].) 
Interest in this problem was renewed with 

the detonation of thermonuclear bombs in the 

atmosphere. These 'megaton'-class explosions ex- 
cited long atmospheric waves and provided data 

from a world-wide net of sensitive baregraphs 

[Yamomoto, 1956, 1957; Hunt, Palmer, and 

x Contribution 1086, Division of Geological Sci- 
ences, California Institute of Technology. 

Penney, 1960; Oksman and Katajo, 1961; Car- 

penter, Harwood, and Whiteside, 1961; Donn 

and Ewing, 1961; Wexler and Haas, 1962]. Al- 
though the earlier theoretical studies [Scorer, 
1950; Pekeris, 1948; Yamomoto, 1957] provided 
much insight into the nature of wave propaga- 

tion, they were of limited use in analyzing the 
observations because these investigators were 

forced to assume oversimplified atmospheres in 
order to obtain solutions. 

With the advent of the high-speed digital com- 

puter it became possible to obtain numerical 
solutions for a more realistic atmospheric model. 

In addition, the structure of the atmosphere is 
sufficiently well known from rocket soundings 
and satellite observations so that it is now not 

a significant variable of the problem. Major 
emphasis is therefore no longer placed on de- 
ducing the structure of the atmosphere, but on 
using a reasonably well known structure to ex- 

plain the significant features observed on the 
baregrams. 

In this paper we present numerical solutions 
for the homogeneous problem of wave propa- 

gation in which the atmosphere is considered as 
a two-dimensional wave guide. Phase and group 

velocity dispersion curves a. nd vertical pressure 
distributions are numerically evaluated for a 
number of modes and are discussed in terms of 

atmospheric structure. A comparison is made 
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between observations a•d theory in both the 
frequency and the time domain. The inhomo- 
geneous problem, in which the source and at- 

mospheric excitation functions are also included, 
will be treated in a following paper by the sec- 
ond author. 

Our procedure will be to represent the com- 

plex vertical temperature structure of the at- 

mosphere by a large number of isothermal lay- 

ers. The solution to the equation of motion for 
each layer takes a particularly simple form. 
Boundary conditions at each interface and the 

characteristic equation for the multilayered 
wave guide are cast in a matrix formulation 

suggested by Haskell [1953] which is particu- 
larly suited for programming on a digital com- 

puter. In practice, 20 to 40 layers are sufficient 

to obtain an adequate approximation of the 
real atmosphere. This approach is similar to that 

of Pfeifer and Zarichny [1962], but our con- 
clusions differ somewhat from theirs. Yamomoto 

[1957] and Hunt, Palmer, and Penney [1960] 

also used an isothermal layer representation, 

but they limited themselves to only a few layers. 
Although the latter authors were in error in 

their formulation of the interface boundary 

conditions, much of their discussion is still use- 

ful in elucidating the nature of the atmospheric 
pulse. 

TI-IEOR¾ AND •U1VIERICAL METI-IODS 

The linearized equations of motion for a con- 

stant velocity layer in a horizontally stratified 

atmosphere are given by [Pekeris, 1948] 2 

_•_ •2 2 2 - • • + •(•- •) x• = o (•) 

gmk Otto -- gm"Y• )Xm (2) 

•,•p,•(z) -- i, op2(z) 

2. 2 2 g,•C•m X,• + ('ygm •' (3) ß - - ,,, "m )Xm] 

•,• -- g,•'k 2 -- w 4 (4) 

where the dots denote differentiation with re- 

spect to the vertical coordinate z. z is taken 

•. For definitions of symbols not defined in the 
text, see appendix. 
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positive in the upward direction and a space and 

time dependence Jo(kr) exp (io•t) is included. 

Assuming azimuthal symmetry, X• is the first 
time derivative of the dilatation and is given in 

cylindrical coordinates by 

Ow 10(ru) 
x = •; + (•) r Or 

where u, w, and p denote perturbations from 

equilibrium of horizontal velocity, vertical ve- 

locity, and pressure, respectively. 

In addition, we have for the equilibrium state 
in each layer 

dP ø o o 
dz -- -- gP P -- RKøpø 

o 

a -- 'y- 'yRK ø (6) 
p 

From (6) we obtain for layer m 

o 

Pm (Z) --' pmO(Zm_l)e -2xm( ...... ) 
0 --2Xra(Z--Zra--x/2) 

'-- pine 

where Xm = 'Ygm/2 a• •, p? = pmO(Zm--•/2), and 
z•_•/2 is the altitude of the midpoint of the m 

layer. Since p?(z•_•) = p•_ P(z•_•), we have 

pmO(Zm--1) Ogm_12pmO(Zm_l) Ogm_l 2 
= • o - • (7) 

Om-•ø(Zm-•) "• Pm-• (Zm-•) 

We assume •all motio• and impose the 

bound•w conditions of continuity of vertic• 

pa•icle velocity •d total pressure across the 

disturbed interfaces. Retaining o•y first-order 

terms, we find that the change in total pressure 

of a small p•rcel which is displaced • vertical 

distance V from its static equilibrium position 
z is the pressure perturbation, p(z), at the zero 

displacement position plus 8p -- -- gpø(z)v. 
Now defining p• (z) -- p (z) + 8p, using (3) 

and w -- i•v, we obtain 

p•(z) i o2(z) • (s) • • •m Xm 

At the l•yer interfaces we will now require 

p•_•(Zm-•) = 

in order to guarantee continuity of pressure. 

It is interesting to note that when there is no 

temperature or gritty discontinuity across an 

interface, one can use as a boundary condition 
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continuity of p(z) since for that particular case 

p•..(zm-•) = p•-._•(zm_•) is equivalent to 
Pm(Zm-O = Pm-•(Zm-O. This relation was used 
by Pekeris [1948] in his model of the atmosphere. 

The general solution of (1) is given by 

Xm = eX•Z[Am'e-i•r•' • - Am"ei•r•Z]Jo(kr)eiWt 
(•) 

where 

kr • •n 

(lO) 

for (c, k) such that (kr•.) •' > O, and 

kr•m - --i k 2 1--•.,• -- • 1 
for (c, k) such that (kr•.) • ( O. Here •m 

(2 • _ •/•)•m ( •m for all • • 1, and 
is the Brunt resonant angular frequency for the 

constant velocity layer m and is given by 

•.m • am • -- 1/•m. 
Substituting (9) into (2) and (S), evaluating 

at Zm and z•_•, and eliminating the constants 
•m' and •", we obtain the following matrix 
relation 

[w•(z•)•= [-(am)• (am)•••Wm(Zm--•)• (11) p•(Zm): _(a2•1 (am)•:•p•,,,(Z•-l): 

where 

(a2• = e 

ß c os rm + • k• -- (•r • •) J 
(a21• = i(•c) • 

•m k • + •m•(•r•.)• •in •m 
' •mø•m • •m (•r•2 (1 

P m ø •m sin P m 
(am)• = i 

( •c) • ( •r•.) 
-kmdm 

(am)• = • 

cos '• •m (•r•.)J 

and Pm= (kr•) din. In equations 12 we see 
that mat•x elements (am)i• are real or imaginary 

for (c, k) real and for j • k equal to even or 

odd integers, respectively. Therefore, the ele- 

ments of a matrix resulting from the matrix 

multiplication of any number of layer matrices 

will be real or imaginary in the same sense as 
the individual matrices. 

For gm : 0 the am matrix reduces to a form 

equivalent to the nongravitating liquid-layer 
matrix given by Dorman [1962] in his discussion 

of elastic wave propagation in layered wave 

guides. 

The conditions for continuity of w and p•. at 

interfaces and the connection between layers 

described by (11) together enable us to write 
the following matrix relation 

Wn-t(Z•-D 1 -- A I wø(0) 1 (13) •_•(z•_•): •p•o(O) 

where A = a•_•...a•. 

At z = 0, layer I is in contact with a fiat 

rigid boundary where we require w0(0) - 0 and 

thus peo(0) = p0(0) ---- p0. Equation 13 becomes 

Ip•n-i(Zn-i)l '-- AIpl (14) p•--i(Zn--,)-J 0 

Before deriving the period equation for an 
atmosphere terminated by an isothermal half- 

space extending from z•_, to infinity, we consider 

two special cases. 

The first is an atmosphere bounded at z•_, by a 
free surface. For this case we have p,•_, (z•_,) - 0, 
and (14) reduces to 

0 po 

which in turn yields A•.•. po = 0. Therefore, the 
period equation for an atmosphere with a free 
surface at z._, is 

A2• = 0 (16) 

The second case is an atmosphere bounded by 
a rigid surface at z•_•. Here we have w,•_•(z•,_•) = 
0, and (14) reduces to 

0 

which yields the following period equation: 

Axe* ---- 0 (17) 

where iAi•* = Ai•, and Aiz:* is real for j • k 
equal to an odd integer. 
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For the case of an atmosphere bounded by an 
isothermal half-space, we require that the nth 

layer coefficient Ad' - 0. For (kr,•) • > 0 this 
is equivalent to requiring that there be no 

radiation from infinity into the wave guideß 

For (kr,n) 2 < 0 this requirement guarantees that 

the kinetic energy integrated over a column of 

atmosphere will be finite. 

Setting Af - 0 in the solution for w•(z) and 

pv.(z) evaluated at z•_• we find that 

,(zn_l)J Lp,n(Z•_,) 

where 

•nZn--! 

b• e -- e 
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A•:* q- (kc) • 

Lb•,•J 

(19) 
ß g•5- -- -- it•. •(kr.,,) Jo(kr) e i•' 

•knZn-- x 

ß e -ikranzn_•(kc)2 

pnO(Zn-1)Oln 2 i• t 
ß 

Substituting (18) into (14) and eliminating 
from the two resulting linear equations, we 

obtain as the period equation for an n layered 

hMf-space 

bin 
A,•A• = 0 

b2• 

or 

A•* + (kc) a g'•k? -- zo•. (kr,•.) 
p.ø(z•_,)a.•' • 

ß A• = 0 (20) 

All quantities in (20) are Mways real for all 
(c, k) real except for i(kr•), wMch is real or 
imagMary dependMg on the wlues of the real 

(c, k). Since in tMs paper we are interested in 
undamped propagation, we now make the 

requirement that (kr•): be negative. This ex- 

cludes leaMng or complex modes of propagation. 

Under tMs condition, (20) is real and takes the 

form used in numerical calculation of dispersion 
curves: 

O/n 

0, 2 

ß A• = 0 (21) 

The condition that (kr,•) • be negative now 
prescribes a cutoff region in the (c, k) plane 
defined by (kr,•) = 0. The boundary of this 

region is obtained in terms of c and period T by 
setting (10) equal to zero. This yields 

2 

T TBa(•nn • 1)1/2/( 3 -- 1) •/• = c _ 
where Tr• is the Brunt resonant period of the 

half-space and is given by Tr• = 2•r/ar•. From 
(22) we have the following asymptotic values of 
the boundaries of the cutoff region: 

T--•(lS•iTra for 
\O•n/ 

T = 0 for 

No cutoff region for 

T --• • for 

T = T.• for 

No cutoff region for 

c• co 

C--Ol n 

•s• _< c _• • (23) 
C'--'•n 

c=0 

In deriving (13) we have as a by-product the 
following matrix relation 

Wm(Zm)l •-- Amlp ] Pm(Zra) J 0 

where A• = a,,•...ax 

Furthermore, at the layer midpoints, z.•_•/a, it 
can easily be shown that 

Pra(Zra--!/2) LP0J 
(25) 

where A•_•/: = am_l/aa,•_i ''' al and a,•_l/: 
is of the same form as a• with d• replaced by 
d,•_•/: = d.•/2 and all other quantities remain 
unchanged. 

Rewriting (25) we obtain 

Po 
= ( A•-•/2)1•* (26) 

where w = iw* and p•,.(Zr•-l/a)/po = 
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From the definition of pp• we have 

Pm(Zm-1/2) __ (Am_1/2)22 'Jr- DinOgre * po - (kc) ( Am-1/2)12 

Now defining the r-independent part of p,,(z, r) 
as Pro(z) or p,,(z, r) - •,,(z) Jo(kr), and since 

u(z, = 
I Op,•(z, r) 

we obtain 

am$(Zm--l/2) 1 
-- 

•o cp,• 

I o 
P• 

ß (Am-1/2)•2 .qt_ (kc) (Am-1/2)12* (28) 
where u,,,(z, r) = i a,,*(z) J•(kr). 

The normalized particle velocities and pres- 
sures are given in (26) to (28) at the layer mid- 
points rather than at the layer boundaries in or- 

der to make them correspond more closely to 
the smooth distribution in nature. 

The matrix formulation described above is 

very convenient for numerical calculations; it 
was first used for earthquake surface waves by 

Haskell [1953]. For our computations we pro- 
grammed the dispersion calculation for an IBM 

7090 computer. This program was written in 
Fortran and used for production runs. As an 

independent check on the program, we also 
wrote a program for our small computer, the 
Bendix G-15D. The Fortran program has the 
option of calculating the three models for ter- 

minating the atmosphere discussed above for 

any given layering of the atmosphere. 
The general computational procedure is to 

find the zeros of a function F of phase velocity, 
wave number, and the physical constants of the 

layers. For an atmosphere bounded by an iso- 
thermal half-space, the F function is defined as 

the left-hand side of (21); for an atmosphere 
bounded by a free surface, the left-hand side 
of (16); and for an atmosphere bounded by a 
rigid surface, the left-hand side of (17). 

The flow of the program is similar to that in 

the programs described by Press, Harkrider, and 
Sea/eldt [1961] and Harkrider and Anderson 

[1962]. The zeros of F are determined by ini- 
tially specifying the phase velocity c and a trial 
value of the wave number k. The elements of the 

an matrix are formed at each layer and then 

multiplied by the matrix of the layer above it, 
starting with the layer at the surface. After the 

matrix product for all layers has been calculated, 
the program then combines these numerical 

quantities to obtain a value for F. New trial 

values of k (of increasing or decreasing size 
depending on the sign of the initial F value) 

specified by an input Ak are used to calculate 

new F values until the root is bracketed by a 

change of sign in F. Linear interpolation and 
extrapolation are then repeatedly used to find 

small F values until k's of different F sign are 
within the precision interval desired. The re- 

sulting interpolated value of k is the output 
value given as the root for the input c. 

The program has an additional feature in 

that, as an input option, the first or second 
roots (two smallest k roots) will be found for 

a given c. This is accomplished by starting at 
the smallest k outside the cutoff region (F com- 

plex) and finding either the first or second sign 
change of F. The roots associated with either 

mode are then computed. For all values of c 

in the free and rigid surface models and for 

c _• fin in the isothermal half-space model, this 
initial k is zero. For c • fin in the isothermal 
half-space model, the initial k is determined by 
(22). 

In all models calculated we found that each 

continuous dispersion curve or mode was a 

monotonic decreasing function of c versus k or 

T and always had the same sign change in F 
through the root region. This made it easy to 
track all the roots of a preselected mode. To 

save computer time and to keep from jumping 
modes, the k root for the previous c is used as 
the starting point for the new c. Further de- 

tails about root hunting procedures can be 
found in papers by Press et al. [1961] and Hark- 
rider and Anderson [1962]. 

Once a root is found by the computer, the 
velocity and pressure ratios given by (26), (27), 
and (28) are calculated at the midpoint in 
each layer. The vertical distribution of these ra- 

tios is generally diagnostic of the particular 
mode and provides a check against mode jump- 
ing. The group velocity is computed by nu- 
merical differentiation of the phase velocity 
values. Ac/Ak is obtained by perturbing c 
slightly and then finding a new k root. 

The program has two options for input o.f 
layer constants. The first reads d• and K• ø from 
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data cards. From (6) and (7) we then calculate 

an and p•O, where for calculation purposes p•O 
is given by 

p,, ---- Po • exp -- 2Xi di -- X• d,• 
(20) 

Here po ø and Ko ø are the equilibrium values for 
surface density and •empem•ure, respectively. 
The second inpu• option is •o read in d•, 

and p•o directly. 
From (7) we see •ha• in order •o obtain 

and in •urn (29), we mus• e•eula•e •he layer 

gravity q•. In •he eases given in •his paper •he 
eons•an• gravity in layer m, q•, was chosen •o 
be •he v•ue of graviW for a sphefie• earth 

an altitude equal •o •he layer midpoin• z•_•/•. 

As in previous programs, numbers of the order 

of exp (k z721 are involved in •he calculation 
of F. Therefore, as c decreases and k increases, 

•he larger roo• yahes of k will lead •o machine 
overflow, if •he •o•al number of layers remMns 
constant. •en •his occurs, •he program will 

au•oma•ieMly reduce layers s•ar•ing a• high 
altitudes until F no longer overflows. The 

program •hen recalculates •he roo• for •he 
previous larger c in order •o verify •ha• no loss 
in precision of •he k roo• was caused by layer 
reduction. 

I• can be shown •hat •he determinants of •he 

a• matrices are iden•ieaUy equ• •o u•W for 

all values of (c, k). It follows •ha• •he deter- 

minan• of the produe• ma•hx A is •so equ• •o 
1. Therefore, if loss in sig•fieanee occurs owing 
•o maehne round-off duhng •he matrix mul•i- 

plieahon loop, •he numerical values of •he prod- 
uet matrix determinan• will d•er greatly from 

1. As a cheek on •he validiW of roo•s, •he pro- 

gram calculates and prints •his de•e•nant for 
each roo•. 

From (12) we see that certain matrix elements 

are infinite a• $•: 0. For each layer, $• = 0 

defines a s•raigh• line in the (c, T) plane given 
by T• = 2•c/q•. Since qo • q• • q•, •he 

vanishing $•'s for all layers fall in •he re.on 
bounded by T = 2•c/qo and T = 2•c/q•. This 
region will be sho• on •he dispersion eu•e 
fi•res as a s•ippled wedge s•ar•ing a• (c, T) = 
(0, 0) and extending to •he top of •he figures. 
To keep •he programs from nee•essly reducing 
layers due •o overflow caused by a •hal k being 
dose •o •he zeros of $•, •he computation is 

programmed to keep c and k out of this region. 
As checks on our procedures, we calculated 

several asymptotic expressions for comparison 
with well-known equations. For example, our 
formulas reduce to those for sound waves in 

layered nongravitating liquids and to gravity 
waves in an incompressible ocean over a rigid 
bottom. They also yield the period equation for 
internal gravity waves between two incompres- 

sible liquids. 

I)IGITAL MODELS OF TI-IE ATiVI:OSPI-IERE 

Figure 1 shows the manner in which several 
model atmospheres were represented by iso- 
thermal layers. The standard ARDC atmosphere 
[Wares, Champion, Pond, and Cole, 1960], 
which combines data from all sources, is used as 

our basic model. It is represented by a digital 
model with 39 layers and is terminated with an 

isothermal half-space beginning at a• elevation 
of 220 km. Also shown are the following models: 

an atmosphere terminated with an isothermal 
half-space at 108 km; atmospheres terminated 
with rigid and free surfaces at 220 km. Not 
shown but also studied were several models with 

half-spaces beginning between 108 and 220 km. 
These models are studied to see how the disper- 

sion curves and consequently the theoretical 

25O 

2OO 

ß 

• i,,.5o 
z 

• ioo 

50- 

Fig. 1. ARDC standard atmosphere and 
approximation by isothermal layers. 

500 ,ooo ,500 ooo 

TEMPERATURE M (øK) 

its 
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80 • NO UPPER _ 
• M/N/MUM 
¾ _ 

• 60 - 

• WESTON• 
w -- A TMO SPHERE • -- 

- - NO •OWE• 

20- A•DC• ( I• MINIMUM_ 

Fig. 2. Modifications to the standard atmos- 

phere made in order to study the effec• of different 
zones. 

barograms are affected by the manner in which 

the atmosphere is terminated. Weston's [1961] 

model in which the atmosphere is terminated by 

a half-space with linear temperature gradient is 
also shown. 

Figure 2 shows the ARDC atmosphere to- 
gether with several modifications for which dis- 

persion curves were also computed. These mod- 

els were designed to study the influence of 

different regions of the atmosphere on the char- 
acter of the disturbance. Thus the effect o.f the 

upper or lower channel is studied separately by 

removing these channels entirely, leaving the re- 

malning portions untouched. 

To explore seasonal and geographic influences 

we use other ARI)C models as shown in Figure 

3. We might expect that the models for the 

arctic winter and tropical atmospheres repre- 
sent the limits within which the observations 

should fall in the absence of wind effects. These 

extreme atmospheres were defined to 30 km 

only. Above these elevations we have arbitrarily 

forced them to join the standard ARI)C curve. 

D•srr•Rs•o• CuRvr•s 

In this section we discuss the dispersion curves 
for the various model atmospheres. Phase and 

group velocity curves are presented as a func- 

tion of period for several modes of propagation. 
These curves may be compared with observa- 

tional data in two ways. Group velocity data are 
obtainable from single barograms and can be 
compared directly with these curves. Phase ve- 

locity data may be derived in principle from an 
array of at least three stations or from a single 
station if the initial phase at the source is 
known. Experimental phase velocities are not 
yet available, however. The theoretical curves 

may be used to predict the sequence of wave 
arrivals in the time domain. This can be do.ne 

qualitatively by interpreting the ordinate of 

the group velocity curve as being proportional 
to the reciprocal travel time. It can be done 

more realistically by using phase and group 
velocity curves in a Fourier synthesis to obtain 

a synthetic barogram. Both methods will be 
tried in a later section. 

ARDC standard without gravity. This model 

was designed to enable us to examine the role 

of gravity in the propagation of atmospheric 
waves. By reducing gravity to negligibly small 

values in equation 21, we obtained the disper- 
sion curves of Figure 4 for a nongravitating 

ARDC standard atmosphere. The gravest acous- 
tic mode So and the first acoustic mode S• of the 

120 

100 

8O 

6O 

4O 

2O 

160 200 240 280 520 560 

TEMPERATURE M (OK) 

Fig. 3. Standard and extreme ARDC 
atmospheres. 
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mlOOO, 

•800 
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4OO 

2OO 

0 
0 I0 2o ;5o 40 5o 60 

PERIOD IN MINUTES 

Fig. 4. Phase and group velocity dispersion curves for So and $• modes of nongravitating 
ARDC standard atmosphere with half-space beginning at 220 kin. 

infinite set of modes are plotted. Both exhibit 
a general feature of acoustic wave guides in 
that the high-œrequency limit of phase and 
group velocity of all modes is the sound velocity 
in the channel with smallest velocity. In our 
case, this is the second minimum temperature 
zone at 85 kin. In the $o mode, phase and group 
velocities approach the velocity in the halD 
space at infinitely long periods. If the lower 

boundary were free rather than rigid, a fufite 
long-period cutoff period would occur. Two 

minimal values of group velocity occur at 2 
minutes and 23 minutes and a maximum value 

occurs at 6 to 7 minutes. From the So curve we 

would expect a transient arrival (T approxi- 
mately 6 to 7 rain) at a time corresponding to 
the group velocity maximum of 297 m/sec. This 
would be followed by waves showing both direct 

m4oo 

•560 

A520 

o 

m280 

o240 

m 2000 2 4 6 8 I0 12 14 
PERIOD IN MINUTES 

Fig. 5. Phase and group velocity dispersion curves for So,• and GRo,• modes of ARDC 
standard atmosphere with half-space beginning at 220 kin. Strippling indicates region where 
singular values of F occur. Cutoffs are indicated by hatched region. 
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Fig. 6. Same as Figure 5 with different scale. 

and inverse dispersion. Longer waves (T approxi- 

mately 30 rain) would arrive earlier, but we 
will raise doubts in the next section as to 

whether these waves would be observed. The 

homogeneous wave-guide theory cannot predict 
relative amplitudes but only possible modes of 

propagation. It is interesting that in a general 

way the nongravitating atmosphere predicts a 
barogram not unlike that which is observed. 

Gravity changes the shape of the group velocity 
curve somewhat; it increases the maximum 

group velocity of those waves having periods of 
6 to 7 minutes by about 5 per cent and intro- 

duces new modes whose excitation by near-sur- 

face nuclear explosions is probably small. 
The higher mode S• has a cutoff period at 

about 14 minutes where phase and group ve- 

locity reach the half-space velocity of sound. 

One can infer the dispersive (but not the am- 

plitude) properties of propagation according 
to this mbde in a manner similar to that for So. 

ARDC standard atmosphere. Dispersion 

Fig. 7. 
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Phase and group velocity dispersion. curves for $o,= and GRo,•,2,• modes of ARDC 
standard atmosphere with free surface at 220 km. 

curves are plotted in Figures 5 and 6 for the 

ARDC atmosphere terminated with an isother- 

mal half-space at 220 kin. Figure 7 shows the 
curves for the same model terminated with a 

lower-temperature half-space at 108 km. Figures 
8 and 9 show dispersion curves for this model 

terminated with a free and a rigid surface, re- 
spectively, at 220 km. The hatched areas in 

the upper half and the lower right portions of 
Figures 5 to 7 are the cutoff regions within 
which lossless propagation does not occur be- 

cause of radiation into the half-space. Radiatio,n 
losses do not occur for the models with free and 

rigid surface terminations. The oblique stippled 
band represents a region of singular values of 
F corresponding to 3• -- 0. The program omits 
these regions. 

The dispersion curves are separated into 
modes So and S=, GRo and GR=. The S modes 

are the first two of an infinite set, analogous to 
the corresponding acoustic modes o,f the non- 

gravitating model. This correspondence is based 

Fig. 9. 
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on the similarity in dispersion curves for T less 

than 4 minutes; it also follows from the fact 

that in both cases the pressure-height curve has 
no nodes for So and one node for S•. 

The high-frequency limit of the So and S• 
curves is the sound velocity in the upper chan- 

nel. At infinite period, phase and group veloci- 
ties of So reach values of about 0.75 km/sec. 

S• has a long-period cutoff near 4 minutes, with 
limiting phase and group velocities somewhat 
higher than the half-space sound velocity (Fig- 
ures 5 to 7). For the free surface model (Figure 

8), S• and S• approach infinite phase velocities 
and zero group velocities at long-period cutoffs. 
This is also true for S• in the model with rigid 

upper boundary. However, So for this case is 
characterized by a phase and group velocity 
which reaches 0.65 km/sec at infinite period. 

The modes GRo and GR• are not present for 

the nongravitating model. We shall see later 
that GR.o is characterized by vertical particle 

displacement with no nodes, GR• has one node, 
etc. A large number of GR modes has been 
found, but only a few are plotted. It is unusual 
that with increasing mode number (as defined 

by an increasing number of nodal surfaces) the 
period increases. With decreasing period the 
GR modes are characterized by phase and 

group velocities that reach zero. For increasing 
periods, phase velocity curves run into cutoffs 
for the half-space models. Group velocity maxi- 
mums for GRo and GR, form fiat plateaus at 312 

m/sec. For the models with free and rigid sur- 

face terminations phase and group velocity for 
the GR modes have no long-period cutoffs. 

GRo shows the same plateau in group velocity 
at 312 m/sec. The higher GR modes have pla- 

teaus below this. Dispersion curves correspond- 

ing to GR modes were first shown by Gazaryan 
[1961]. 

These four variations of the ARDC model 

are studied to determine the effect on the dis- 

persion curve of the method of termination of 
the atmosphere. All models have the following 
features in common: (1) phase and group ve- 

locities are essentially the same for So and S• 

modes for periods less than about 33• and 3 
minutes, respectively; (2) between 5 and 15 
minutes broad flat maximums in group velocity 
occur in the So and GR modes, all with the 

value of 312 m/sec. The curves for the various 

models differ for periods greater than 3 to 3• 
minutes in the regions of steeply rising phase 

and group velocity. These portions of the dis- 
persion curves are sensitive to the precise man- 
ner in which the very low density atmosphere 

above 100 km is specified. • We would expect 

therefore that the corresponding waves are not 

likely to be excited by near-ground explosions 

• From st.udies of other cases we find that, for 
termination of the atmosphere above 150 km, 
the steep portions of the So and GRo curves are 
the same for T less than 13 min for these four 

variations of the ARDC model. 

•Fig. 10. 
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Pseudo-dispersion curve formed from segments of ARDC models in Figures 5 to 9 
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Fig. 11. 
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Dispersion curves for modified ARDC model with no upper temperature minimum. 

recorded by ground based detectors. Since am- 

plitudes are proportional to (dU/dT) -•/", there 
is further reason to expect relatively small 
values for the excitation function of these waves. 

The invariant portions of the dispersion curves 
for these ARDC standard models are repro- 
duced in Figure 10. We would expect that most 
of the energy excited by near-surface explosions 
propagates according to these values of phase 
and group velocity. The first-arriving waves 
would correspond to the region of fiat group 
velocity curves for the So and GR modes. Thus 

a transient containing periods of 3 to 10 min- 

utes would arrive at a time corresponding to 
a propagation velocity of 312 m/sec. This would 

be followed by waves of gradually decreasing 
period. At a time corresponding to propagation 
with a velocity of 305 m/sec waves with periods 
of 1% to 2• minutes would become significant. 
These are associated with the maximum group 
velocity of the S• mode and would be superposed 
on the So and GR oscillations. The following 
oscillations would be complicated because they 
would result from a superposition of these and 

Fig. 12. 
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higher modes. Until the excitation functions for 

the several modes have been computed, it will 
be difficult to determine the energy distribution 
with a single mode and among the various 

modes. We shall see that the minimum group 
velocity in So at 2.4 minutes is sensitive to the 

properties of the upper channel. Whether waves 

corresponding to this part of the dispersion 
curve can be excited by near-surface explosions 
is questionable. We note also that although in- 
verse dispersion is predicted in some of the 

models its form also depends on the properties 
of the atmosphere above 100 km. We would ex- 
pect that long, inversely dispersed waves should 

be weakly excited by near-surface explosions. 
If such waves are observed, they would be par- 
ticularly useful in inferring the manner in which 

the upper-atmosphere termination takes place. 
Oksman and Kataja [1961] report disturbance 

of the ionosphere (revealed by vertical-incidence 
ionosonde) which occurred before the arrival of 

pressure waves. These may correspond to the 
long-period waves in the So mode having group 

velocities between 0.312 and 0.75 km/sec (Fig- 

ure 6) which are sensitive to the properties of 
the atmosphere above 100 km. However, hydro- 
magnetic effects, not considered here, would 
probably play an important role in determining 
the character of these waves. 

Weston [1961] raises certain objections to 

isothermal layer models. He points out that, 

despite the fact that the energy is bounded, the 

particle motions diverge with increasing eleva- 
tion in the half-space, thus violating the small- 
motion assumption. By exploring various meth- 

ods of terminating the atmosphere, some of 
which do not contain half-spaces, we have found 
major segments of dispersion curves which are 
independent of the atmosphere above about 100 
km. It seems reasonable to conclude that these 

invariant values of phase and group velocity are 
appropriate for near-surface explosions and de- 
tectors. 

It is interesting that flat segments of phase 
and group velocity of S•, So, GRo, and GR• are 

nearly connected to form a common dispersion 
curve. The steep segments of the dispersion 
curves are similarly related. The character of the 

propagating disturbance at any time is perhaps 
better represented by pseudo dispersion curves 
formed from segments of several modes. The 

segments which form a pseudo mode are 

particularly sensitive to a given region of the 

wave guide. It will be shown that in the sequence 
of maximums in group velocity all are associated 
with the properties of the lower channel of the 
atmosphere. This phenomenon has also been 

observed for multilayered elastic wave guides 
[Tolstoy, 1959]. 

ARDC--no upper minimum. This model 

(Figures 2 and 11) was studied to see how the 

upper channel of the atmosphere affects the dis- 
persion curve. The major changes which occur 
are: (1) very-short-period energy now travels 
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Fig. 13. Diversion cu•es for ARDC tropical atmosphere. 
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Fig. 14. Dispersion curves for ARDC arctic winter atmosphere. 

14 

with sound velocity in the lower channel; (2) 
the minimums in group velocity for the So and 

S• modes shown in Figure 5 almost disappear. 
The time of arrival of the first waves, corre- 
sponding to the group velocity maximums of 

GR•, So, and S•, is almost unchanged and is 

therefore unaffected by the properties of the 
atmo.sphere above 50 km. 

ARDC--no lower minimum. This model 

(Figures 2 and 12) demonstrates that the ar- 

rival time of the first waves is particularly sen- 

sitive to the properties of the lower atmospheric 
channel which occupies the region between 0 

and 50 km. The maximums in group velocity 
associated with the first waves are shifted from 

305 to 312 m/sec to 320 to 335 m/sec. GRo and 

GR• are otherwise unchanged. The minimums 

in group velocity of So and S• are deepened, but 
the short-period limit of phase and group ve- 
locity is unchanged. 

ARDC seasonal and geographic models. Re- 

sults for ARDC models of tropical, arctic win- 
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Fig. 15. Dispersion curves for ARDC arctic summer atmosphere. 
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Fig. 16. Vertical distribution of normalized particle velocities and pressure for So, GRo. 

ter, and arctic summer atmospheres (Figure 3) 
are presented in Figures 13 to 15. In these 

models the properties of the atmosphere below 
40 or 50 km are varied. As might be expected 

from the preceding sections, the major change 
introduced by these variations on the ARDC 
standard is in the arrival time of the first waves. 

The character of the following waves is almost 

unchanged. The velocity range of the first ar- 
rivals is between 302 and 315 m/sec, correspond- 

ing to the arctic winter and tropical models, 

respectively. Excluding effects of winds, we 
would expect that the observed seasonal and 

geographic variations in arrival times of at- 

mo.spherie waves would correspond to this ve- 

locity range. A rough estimate of the effect of 

winds will be obtained later by comparing this 

range with observed variations in the velocity 
of the first arrivals. 

VERTICAL DISTRIBUTION OF [PRESSURE AND 

[PARTICLE VELOCITY 

The particle velocities diverge with increasing 
heights in the half-space; pressure and energy 

converge to zero. The distribution of nodes is 

the same for horizontal particle velocity and 
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pressure. The vertical distributions of these pa- 

rameters normalized to surface pressure are 

given in Figures 16 and 17 for several modes. 

In general, pressure has n nodes for mode S•, 
whereas vertical particle velocity has n + 1 

nodes. For the GR• modes, pressure has n -]- 1 

nodes and vertical velocity has n nodes. Here 

nodes are defined as a zero value of the param- 

eter which reverses a trend in sign which has 

persisted over many layers. On occasion, where 
near-zero values of a parameter occur, a re- 

versal in sign may occur in association with a 

given layer. 

COMPARISON WITH EXPERIMENTAL DATA 

Comparison in the/requency domain. Group 

velocities can be determined experimentally 

from barograms. All that is required is a knowl- 

edge of the origin time and the distance of the 

source. The waves A• travel the direct path to 

the detector, A, follow the long path through 

the antipodes, and A8 represent the return of 
A• after a complete circuit of the earth. 

Group velocity data are given in Figures 18 

and 19, together with theoretical curves for the 
ARDC standard atmosphere and the two ex- 

treme cases of arctic winter and tropical atmos- 

pheres. For reasons given earlier, the data 

should be compared primarily with the plateaus 
and maximums in group velocity. Thus we 

would expect that the early portion of the 
barogram would correspond to a superposition 

of waves propagating according to the group 

velocity maximums of the GR• and S• modes. 

The group velocities labeled 1 to 8 in Figure 18 

are taken from the paper by Donn and Ewing 

[1962]. These represent world-wide observations 

for a single explosion (Novaya Zemlya, Octo- 

ber 30, 1961), and they indicate a geographic 
variation of velocity. This variation lies out- 

side the velocity range for the extreme atmos- 

pheric models and thus supports the suggestion 
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Ewing [ 1962 ]. 
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Zemlya explosions. Data curves I to 4 from Donn and Ewing [1962]. 

of Donn and Ewing and of Wexler and Hass 

[1962] that winds significantly affect the prop.a- 
gation of A• waves. Donn and Ewing's data 
probably do not correspond to propagation ac- 
cording to a single mode (as these authors 

imply) but to superposition of modes GRo,,, So, 
and S•. It is not easy to separate modes when 
the period change between modes is small. How- 

ever, several of the records published by Donn 

and Ewing seem to show an abrupt amplitude 
change that would be expected from the maxi- 
mum group velocity of S•. 

Also plotted in Figure 18 are group velocity 

data for California and Nevada stations (Pasa- 

dena, Claremont, Mercury) for a number of 
Soviet explosions detonated between September 

10, 1961, and October 30, 1961. These data rep- 

resent almost identical paths; the variations, 

therefore, are indicative of atmospheric changes. 
Although the spread of data falls within the 
limits of the theoretical curves for the extreme 

atmospheres, we believe that this variation rep- 
resents an effect of winds and not of seasonal 

changes in temperature. The time spread is less 

than two months, and the data do not show the 

systematic velocity decrease from September 

to October which would be expected were sea- 

sonal temperature changes involved. 

The experimental data in Figure 19 for A2 
and A3 waves show much less scatter. The world- 

wide observations of Donn and Ewing for the 

October 30, 1961, event (labeled 1-4) as well as 
the seasonal observations in southern California 

and Nevada for the period September 10, 1961, 
to October 30, 1961, fall within the range of the 
theoretical curves. We agree with Donn and 

Ewing that the reduced scatter found for A2 

and A• waves is a consequence of the averaging 

out of wind, seasonal, and geographic effects 
for these longer paths. The data for A, and A3 
plotted in Figure 19 imply that modes higher 
than So are absent. 

Donn and Ewing believe that they have ob- 

served inverse dispersion for periods longer 

than about 6 minutes. Waves exhibiting such 

dispersion would be difficult to detect, as these 
authors note. The details of inverse dispersion 
would be sensitive to the structure of the at- 

mosphere above 100 km. Indeed, we have seen 

that the portions of the theoretical group ve- 
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locity curves co. rresponding to inverse disper- 
sion differ according to the way in which the 
atmospheric model is terminated. Inverse dis- 

persion data could be quite useful in resolving 

this problem. We take no position on the reality 
of the inverse dispersion data other than to 

note as before that the corresponding waves 

would probably have relatively small ampli- 
tudes for near-surface explosions and surface 
detectors. 

Comparison in the time domain. Given phase 
and group velo. city curves, it is possible to con- 

struct synthetic barograms for comparison with 
actual barograms to see if the major features of 

the actual barograms are explainable. Since the 
homogeneous wave-guide approach used in this 

paper does not give excitation funclio.ns, the 
synthetic barograms will represent only the ef- 
fects of phase distortion of the wave guide. 

The pressure response p(t) of the atmosphere 
can be expressed by the Fourier integral 

p(t) - f;,, G(co) exp (toot) dco (30) 
G(•o) includes the transform o.f the source func- 

tion, the amplitude and phase response of the 

excitation function, and the instrumental re- 

sponse. We assume that G((o) -- F(•o) exp 

[-- i½((o)] and that F(•o) is even in •o and has 
significant values in the frequency range •o, < 
< •O.o. Under these conditions (30) takes the form 

p(t) = - &o 

where the phase response is •(•o),__-- (•or/c) 
•, and •o includes instrumental phase distortion 

as well as initial phase of the source. Aki 

has shown how (31) can be evaluated using the 

approximation 

p(t)- 2 • F(o•,) 
i --1 •O•i 

(t-t3 

ß (o,t - 

In this evaluation the frequency interval 
to •2 is divided into consecutive bands A• with 

center frequency •o•, and it is assumed that 
F(•o•) is constant over the elementary bands. 

•, is the phase delay •((o,)/(o,; t, _-- •-, q- 
(Or/O•o)• is the group delay. t• is obtained from 
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Fig. 20. Comparison of experimental and theo,- 

retical barograms of Ax waves. Arrows show com- 
mon fiducial time. 

the distance, the group velocity, and the instru- 
mental group delay. 

We have programmed equation 32 for com- 

putation and automatic plotting on an elec- 
tronic computer. In practice we used 22 fre- 

quency bands and group delays sufficient to 

encompass between 1 and 2 hours of pressure- 
time record. 

In Figure 20 the first two traces are theo- 

retical barograms for the (So + GRo) and S• 
modes, respectively, for the ARDC model ter- 

minated with the half-space at 220 km. The 

third trace is the sum of the first two, with the 
arbitrary weighting So + GRo + 0.4S•. F(•o,) 
was taken to be the instrumental response in 
these calculations, and the excitation function 

was assumed to be constant over the range (o• 
to •o2. The fourth and fifth traces are Pasadena 

recordings of A• waves from the Soviet nuclear 

explosions in Novaya Zemlya on October 4 and 
6, 1961. The experimental and theoretical records 

have been aligned on the time scale for the 
best fit. The arrows indicate where a fiducial 

time would fall on each record. Comparison o.f 
the traces reveals the following: (1) The two 
experimental records agree in phase and group 
characteristics only for the first few oscillations. 

Thereafter they agree in group frequency only? 
(2) The third theoretical trace roughly agrees 
in a similar fashion with the two experimental 
records, whereas the first two traces do not. 
From this we infer that the characteristic 

features of the Pasadena barogram are due to 

a •perposition of the modes GRo, So, and S•. 
(3) The difference in arrival times between 

theoretical and experimental records is 8 min- 

utes and 11 minutes, which times correspond to 

• By group-frequency agreement we mean that 
the frequencies present at a given time are in 
general agreement. 
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OCT 4, /961 

OCT 6, 1961 

Fig. 21. Comparison of seismic surface waves 
recorded in Pasadena from the Soviet explosions 

of October 4 and 6, 1961. 

discrepancies of the order of 2 to 3 per cent. 
Winds and the use of the standard rather than 

the arctic atmospheric model can account for 

this. The differences in the two experimental 

recordings for explosions separated by only two 
days are of interest. These differences are due 

to changes in the structure of the atmospheric 

wave guide rather than to changes in the prop- 
erties of the source. This can be demonstrated 

by noting the complete phase and group agree- 

ment of the corresponding records of seismic 

surface waves from thes'e events (Figure 21). 

If the atmosphere can change properties within 
a time interval of the order of the travel time 

for a complete circuit of the earth, we might 

expect that free oscillations of the atmosphere 
would be characterized by broad spectral peaks 

in contradistinction to the sharp peaks of the 
free oscillations of the solid earth. 

Theoretical and experimental barograms for 
A• waves recorded in Pasadena are shown in 

Figure 22. In the second trace an arbitrary 12- 
db/octave base boost has been inserted..Only 
GRo and So modes are needed in the theoretical 

model to give reasonably good group-frequency 

agreement. This suggests greater attenuation of 

the S• mode over the longer A• path. The arrows 
indicate almost perfect prediction of the arrival 
time. 

The reasonably good agreement in general fea- 
tures between the actual barograms and the 

synthetic barograms of A• and A• on the basis 
of the homogeneous wave guide theow suggests 

to us that the primary characteristics of atmos- 

pheric waves are determined by the dispersion 

So GRo THEORETICAL PASADENA 

--•10 MIN • 
12 db /octo ve • 
BASS BOOST / • Ix 

Fig. 22. Comparison of experimental and theo- 
retical barograms of A• waves. Arrows show com- 
mon fiducial time. 

curves. In a following paper the second author 

will compare actual barograms with synthetic 
ones on the basis of the more complete in- 

homogeneous theory in which source and exci- 
tation functions are taken into account. Ampli- 

tude as well as group-frequency characteristics 
will be compared. 

APPENDIX. LIST or SYMBOLS NOT DEFINED 

IN TEXT 

m, subscript indicating ruth-layer constants. 
e•, layer sound velocity. 

g, gravitational constant. 

•, angular frequency. 

k, wave number in horizontal direction. 
c __-- •o/k, horizontal phase velocity. 
r, horizontal cylindrical coordinate. 

'/,= C•/C•, specific heat ratio. 
R*, universal gas constant. 

Mo, molecular weight at ground. 
R __-- R*/Mo. 

K*, real kinetic temperature in degrees Kelvin. 
K - (Mo/M)K •, molecular scale temperature. 

u, horizontal particle velocity perturbation. 
w, vertical particle velocity perturbation. 
p, pressure perturbation. 

p, density perturbation. 
ø, superscript denoting the static equilibrium 

quantity. 

z•, the altitude at the top of the mth layer. 
d• -- z• -- Z•_l, layer thicknes's. 

•, time variable. 
T = 2=/kc, period. 
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