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ABSTRACT. - In this paper, we are interested in a stochastic differential

equation which is nonlinear in the following sense : both the diffusion and
the drift coefficients depend locally on the density of the time marginal
of the solution. When the law of the initial data has a smooth density
with respect to Lebesgue measure, we prove existence and uniqueness
for this equation. Under more restrictive assumptions on the density, we
approximate the solution by a system of n moderately interacting diffusion
processes and obtain a trajectorial propagation of chaos result. Finally,
we study the fluctuations associated with the convergence of the empirical
measure of the system to the law of the solution of the nonlinear equation. In
this situation, the convergence rate is different from (c) Elsevier, Paris

RESUME. - Ce travail est consacré à une equation différentielle

stochastique qui est non linéaire au sens suivant : les coefficients de
diffusion et de derive dependent localement des densités des marginales
en temps de la solution par rapport à la mesure de Lebesgue. Lorsque la
loi de la condition initiale possède une densité régulière, nous montrons
l’existence d’une unique solution pour cette equation. Sous des hypotheses
plus restrictives sur la densité, nous approchons la solution à l’aide d’ un
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728 B. JOURDAIN AND S. MELEARD

système de n processus de diffusion en interaction modérée et nous obtenons
un résultat de propagation trajectorielle du chaos. Enfin, nous étudions les
fluctuations associées à la convergence de la mesure empirique du système
vers la loi de la solution de 1’ equation non linéaire. Nous obtenons un taux
de convergence different de © Elsevier, Paris

The first part of this paper is dedicated to the nonlinear stochastic

differential equation

where Xt G (~d, Bt is a d-dimensional Brownian motion, a and bare
smooth and the density fo of the law of ( belongs to the space H2+a
of Cl functions on I~d with second order derivatives Holder continuous
with exponent ~x (0  ~  1). To prove existence and uniqueness for this
problem, we first study the linear stochastic differential equation similar
to (0.1) where p is replaced by a given smooth function q. Our study is
based on results given by Ladyzhenskaya Solonnikov and Ural’ceva in [6]
for linear parabolic partial differential equations. Then we conclude thanks
to results also given in [6] for the quasilinear partial differential equation
satisfied by p.

Considering the propagation of chaos proved by Oelschlager [13] and
generalized by Méléard and Roelly [9] in the case of the identity diffusion
matrix, it is sensible to try to approximate the solution of (0.1) by the
following sequence of moderately interacting particle systems :

where E N* = N B {0} is a sequence of independent Rd-valued
Brownian motions, (2, i E N* is a sequence of random variables IID with
law fo(x)dx independent of the Brownian motions, ~c~ _ ~ ~’.z b i, ~z
denotes the empirical measure and = 1 ~dnV(n ~n) for V a Lipschitz
continuous and bounded probability density on IRd a sequence
of positive numbers converging to 0. In the case of the identity diffusion
matrix, Oelschlager [13] manages to control by direct computations
concerning the particle system. But as our diffusion matrix depends on

we need other techniques to prove the propagation of chaos.

Annales de l’Institut Henri Poisicare - Probabilités et Statistiques



729A MODERATE MODEL

Delocalizing the interaction to enter in the classical McKean-Vlasov

framework (see McKean [8], Sznitman [15] or Leonard [7] for instance),
we obtain existence and uniqueness for the following mollified versions
of (0.1):

Moreover the associated propagation of chaos results imply that if En

converges to zero slowly enough, IX;,n - Yt2’’~ ~ 2 ) = 0.
That is why we study the convergence for n - of to X~

where X i denotes the solution of (0.1) for the Brownian motion B~ and
the initial condition (~. If the norm of f o in the space is small

enough, according to results concerning linear parabolic partial differential
equations given in [6], for any t E [0, T~, Pt is absolutely continuous
with density Pn (t, .). Moreover the sequence pn is bounded in a Holder

space included in Cb’2(~0, T~ x This boundedness property allows us
to prove that ~Xt -- Yt ’~ ~2~ = 0. We conclude that, for
En converging to zero slowly enough,

which implies propagation of chaos for the moderately interacting particle
system (0.2) and proves that the empirical measure Mn provides a stochastic
approximation of the solution of the Cauchy problem

where a denotes the square of o-.

Finally, we study the fluctuations associated with this convergence. For
the sake of simplicity, we limit ourselves to the case d = 1. The rate

of convergence is where En is chosen to minimize the upper-bound
obtained for ( ~s - X s’’~ ~ ‘~ ) . It is much smaller than the rate

obtained in the case of weak interaction. Let P denote the law of the

solution of (0.1). We study the behaviour of rjn = 1 ~2n( n - P) when n goes
to infinity. The leading term is due to the convergence of vn to 03B40 whereas
the martingale part of the decomposition of and the fluctuations related

to the initial conditions, which would have non-trivial limits at rate ~/~,
converge to zero. We follow the approach developped by Fernandez and

Vol. 34, n° 6-1998.



730 B. JOURDAIN AND S. MELEARD

Méléard in [2]. We prove that if rr, b and f o are smooth enough, the laws of
the processes TIn are tight in C([0, T], Wo 4,1 ) (the weighted Sobolev space
4’1 is defined further on) and that these processes converge in L~ to a
deterministic process characterized by a deterministic evolution equation.
Our results are obtained under restrictive assumptions on fa. But, to our

knowledge, the propagation of chaos and the fluctuation results are the
first ones in the case of moderate interaction in the diffusion coefficient.

The fluctuation result provides an example of a non-gaussian limit (since
deterministic) with a rate different from ~/~.

NOTATIONS

We set T > 0, d E N* . Let be the space of functions on [0, T] 
continuous and bounded together with their first derivative with respect to
the time variable (the first one) and their first and second derivatives with

respect to the space variables. We introduce a few other functional spaces.

Holder spaces

Let a E (0,1). For any integer j, is the space of real functions

f on (~d which are continuous together with their partial derivatives up to
order j and admit a finite norm

(where for k _ (k1, ... , 1 ki and Dk f = 
~k f ~xk11...~xkdd)

For any integer j, is the space of real functions f on [0, T] x Rd
which are continuous together with their derivatives = 

for 2r + k ~ j and admit a finite norm

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



731A MODERATE MODEL

Weighted Sobolev spaces
For every integer j, j3 E R+ , let us consider the space of all real functions

g defined on R with derivatives up to order j such that

where denotes the kth derivative of g. Let be the closure of the
set of functions of class CCXJ with compact support for this norm. 
is a separable Hilbert space with norm ~ ‘ - ~ ~ ~, ~ . We will denote by 
its dual space.

Let be the space of functions g with continuous derivatives up
to order j and such that = 0, j. This space is
normed with

Let ~’-~e be the dual space of C~?~.
Let Cl be the space of functions g with continuous and bounded

derivatives up to order j.
We have the following embeddings (See Adams [I], in particular the

proofs of Theorem 5-4 and Theorem 6-53 can be adapted without difficulty
for weighted Sobolev spaces):

We have also

where means that the embedding is of Hilbert-Schmidt type, and

We deduce the following dual embeddings:

Vol. 34, nO 6-1998.



732 B. JOURDAIN AND S. MELEARD

The following lemma, proved in [2], gives estimates of the norm of some
elementary linear operators in a well-chosen weighted Sobolev space.

LEMMA 0.1. - For every fixed x, y G IRd the linear mappings
Dxy, Dx, Hx : ujo ~2 -~ R defined by 
cp(~) ; = are continuous and

HYPOTHESES. - If E is a Borel set, let P(E) denote the set of probability
measures on E.

Let 0 = C( ~0, T ~ , ~d ) endowed with the topology of uniform

convergence, X be the canonical process on SZ. If P E ~(SZ), 
is the set of time marginals of P.

Pt is absolutely continuous with respect to Lebesgue measure}
If P E there is a measurable function p(s, x) on [o, T~ x ~d such
that for any s E [0, ~’~, p(s, .) is a density of Ps with respect to Lebesgue
measure. See for example Meyer [10] pages 193-194. Such a function is
called a measurable version of the densities.

In all the following, we assume that d is a Lipschitz continuous mapping
on R with values in the space of symmetric non-negative d x d matrices
such that :

and that b is a Lipschitz continuous Rd-valued mapping on R. The matrix
is denoted by a.

Let V be a Lipschitz continuous (constant Kv ) and bounded (constant
Mv) probability density on IRd such that  +00 and

xV(x)dx = 0.

Let fo be a probability density on Bt and ( be a d-dimensional
Brownian motion and a random variable on IRd independent of the Brownian
motion with law 

For any integer j > 2, [Hypj] denotes the following hypothesis : 03C3
is (continuously differentiable up to order j + 1 ), b is ~’j and f o
belongs to 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



733A MODERATE MODEL

1. THE NONLINEAR STOCHASTIC
DIFFERENTIAL EQUATION (0.1)

1.1. A linear stochastic differential equation

Let q G ~~+a. With q, we associate the second order operator

The adjoint of this operator is

where

PROPOSITION l.l. - If holds, the law of the unique strong solution
of the stochastic differential equation

belongs to and admits a measurable version of the densities p E
H1+ 2 ~2~a which is the unique solution of the partial differential equation

in ~’b’2. Moreover,

with F2 nondecreasing in its last variable.

If[hypj] holds for some j > 2 and q E then p E and

with Fj nondecreasing in its last variable.

Vol. 34, n° 6-1998.



734 B. JOURDAIN AND S. MELEARD

Proof - The proof consists in bringing together results of Friedman
[3] and Ladyzenskaya Solonnikov and Ural’ceva [6]. It would be possible
to obtain that the law of X belongs to P(O) by the Malliavin calculus
(see for instance Nualart [12] Theorem 2.3.1 p.IIO). But for the sake of
consistency, we do not insist on this approach.
We first suppose the holds. The operator L; is uniformly

parabolic and its coefficients belong to H 2 ~a. By Friedman [3] Chap.6,
there exists a fundamental solution hq (~, t, ~, s ) , 
and for any t E [0, T], the law of Xt has a density with respect to Lebesgue
measure given by p(t, x) = I‘~(~, 

In [6] Chap.IV, Ladyzenskaya, Solonnikov and Ural’ ceva deal with

uniformly parabolic operators of the second order with coefficients in .I~ 2 ~a .
We apply their results to ~q . As f o belongs to H2+a, by equations (14.3)
p.389 and (14.5) p.390 we conclude that p belongs to ~I1+ 2 ~2+a and solves
(1.3). Inequality (5.9) p.320 then implies that ~p ~ ~ 1+ a 52+a  
The proof of (5.9) shows that the constant C depends only on T, on mo-
and on the norm of the coefficients of L; in and increases with this

norm. Hence (1.4) holds.

Uniqueness for equation (1.3) in C’b’2 is an easy consequence of the

maximum principle.
If, for j > 2, [hypj] holds and q E H ~ ~ a e+a , then the coefficients of

L; belong to By Theorem 5.1 p.320 [6],
(1.3) admits a solution in C Cb ’2 . As uniqueness holds for (1.3)
in Cb ’ 2, we deduce that this solution is equal to p. Hence p E 
Inequality (1.5) is like (1.4) a consequence of equation (5.9) p.320..

1.2. Existence and Uniqueness for the
nonlinear stochastic differential equation (0.1)

This section is dedicated to the nonlinear stochastic differential equation
(0.1) :

Let us assume that [Hyp2] holds. We are going to prove existence of a
unique strong solution {X , p) for this equation under a new hypothesis on cr.

If (X,p) is a solution of (0.1), applying Ito’s formula and taking
expectations, we obtain that p is a weak solution of the quasilinear partial

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



735A MODERATE MODEL

differential equation :

As p E Cb’2([o, T] x it is in fact a classical solution. Our existence and

uniqueness result for (0.1) is based on results concerning (1.6) given by
Ladyzenskaya, Solonnikov and Ural’ ceva in [6]. As these authors deal with
equations in divergence form, we put (1.6) in divergence form and obtain :

Like in [6] p.494, it is possible to express the difference of two classical
solutions of (1.7) as the solution of a linear Cauchy problem (with
coefficients depending on both the solutions). If we assume that the leading
matrix (p)p + aij (p) is nonnegative i.e.

then the maximum principle (Theorem 2.5 p.18 [6]) implies that the

difference is equal to zero and that uniqueness holds for (1.7). We deduce
uniqueness for (0.I):

PROPOSITION 1.2. - Under the assumptions and (1.8), the

nonlinear stochastic differential equation (o.1 ) has no more than one

solution.

Proof - We suppose that (XP , p) and (xq, q) are two solutions of (0.1).
Applying Ito’s formula and taking expectations, we obtain that p and q solve
the nonlinear equation (1.6) in the sense of distributions. As p and q belong
to ( [o, T], these functions are in fact classical solutions. Since the

equations (1.6) and (1.7) are equivalent as far as they are considered in
the classical sense, p and q solve (1.7). By the uniqueness result for this
equation, we deduce that p = q. It follows immediately that ~~ = t!

Under a stronger assumption on the leading matrix

applying Theorem 8.1 p.495 [6] to our particular framework, we obtain
existence in ~I1 + ~ ?~+a for the Cauchy problem (1.7). We are now ready
to state the main result of the section.

Vol. 34, n° 6-1998.



736 B. JOURDAIN AND S. MELEARD

PROPOSITION 1.3. - Under the assumptions [HYP2] and (1.9), the

nonlinear stochastic differential equation (o.1 ) admits a unique strong
solution (X , p)

P~oof. - Uniqueness is a consequence of the previous proposition. To
prove existence, we remark that the solution q of (1.7) solves (1.6).
According to Proposition l.l, the law of the unique strong solution of
the linear stochastic differential equation

belongs to and admits the unique solution of the partial differential
equation

in Cb’2(~~, T~ x as a measurable version for its densities. As q solves

this equation, q is a measurable version of the densities for the law of X.
Hence the couple (X, q) solves (0.1)..

2. THE PROPAGATION OF CHAOS RESULT

For j > 2, let [Hypj] mean that [Hypj]  b, 1)
hold. (F2 is defined in (1.4) and for j > 2, Fj is defined in (1.5)).

Remark 2.1. - There exists probability densities on I~d belonging
to with an arbitrary small norm in this space. Indeed

2.1. A McKean-Vlasov model

In this section, we deal with a mollified version of the nonlinear stochastic
differential equation (0.1) :

where W is a probability density on IRd bounded by Mw and Lipschitz
continuous with constant Kw. Although the coefficients are not linear in the
measure, this equation can be treated like in the classical McKean-Vlasov
framework (McKean [8], Sznitman [15] or Leonard [7]).

PROPOSITION 2.2. - There is existence and uniqueness, trajectorial and in
law for (2.1 ). Moreover, if for some j > 2, [Hypj] holds, then the law P of

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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the solution Z belongs to and admits a function p E with

-  1 as a measurable version for its densities. The function p is
a solution of the Cauchy problem

Proof o~f’Proposition 2.2. - The proof for existence and uniqueness is just
a generalization of the one given by Sznitman [15] Theorem 1.1 p.172 and
is based on a fixed point theorem for the which

associates with m the law of the unique strong solution of the stochastic
differential equation

and the topology of weak convergence on which is metrisable for
the Kantorovitch-Rubinstein or Vaserstein metric. The fixed-point of 1jJ is
denoted by P. -

Let us suppose that [Hypj] holds for some j > 2. To obtain the

regularity properties of P, we study a sequence of fixed-point iterations
where m is a probability measure in with time-independent

densities pO(s, x) = h(x) such  1. Clearly, the mapping
~ : : which associates with g the function

~(g) (t, x) = W ~ g(t, .) (x) is nonexpansive. Hence ~ ~ ~(p°) ~ ~  1.

As is the law of the solution of the linear stochastic differential

equation (1.2) for the particular choice q = ~ ( p° ) , by Proposition 1.1, we
conclude that 1jJ ( m) belongs to and admits a measurable version of

the densities p1 E H’ ~a e+a(~0, T~ X with a+a . 
 l.

By induction, for any n E N, belongs to and admits a

measurable version of the densities pn E  1.

Combining Ascoli’s theorem and a diagonal extraction process, we obtain
a subsequence )~~ such that pn converges uniformly on compact sets
together with its derivatives to a function p and its derivatives. Clearly,
p E and ,~+~ ~ l. As (m) converges weakly to P, p
is a measurable version of the densities for P.

Applying Ito’s formula and taking expectations, we obtain that p is

a weak solution of (2.2). As p G this function is actually a
classical solution of (2.2)..

Like in the classical McKean-Vlasov framework, it is possible to construct
a sequence of weakly interacting particle systems that approximate the

Vol. 34, n° 6-1998.



738 B. JOURDAIN AND S. MELEARD

solution of (2.1). Let Bi, i E N* be a sequence of independent Rd-valued
Brownian motions and ~~ , z E N* be a sequence of random variables

IID with law fo(x)dx independent of the Brownian motions. The particle
system of order n is the unique strong solution of

On the same probability space we define Z2 to be the solution of the

nonlinear equation

given by Proposition 2.2.

PROPOSITION 2.3. - For any i E N*, for any n > z,

where C is a real constant independent of W.

Remark 2.4. - These bounds obviously imply propagation of chaos : for
any k E N*, the law of the susbsystem ( Z 1 ~ n , ... , converges weakly
to where P is the law of the solution of (2.1).

Proof of Proposition 2.3. - Our proof is an easy adaptation of the one
given by Sznitman [15] Theorem 1.4 p.174 but as we need to precise the
dependence on W, we present the calculations.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In the following, K and K’ are real constants which may change from
line to line. Using Burkholder inequality, we get that for any t  T,

By exchangeability of the couples Zi), 1  ~  n, we get

When j ~ k, either j ~ i or i. Suppose that j ~ i. As the law of zt
is Pr and this variable is independent of the couple (Z;, 

Hence

Vol. 34, n° 6-1998.
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By Gronwall’s lemma, we conclude

The second inequality in (2.3) is obtained by similar calculations..

2.2. Approximation of the nonlinear stochastic
differential equation (0.1) for regular initial data

In this section, we suppose that holds for some j > 2. We need
this restrictive assumption which implies compactness (as seen in the proof
of Proposition 2.2) to prove the propagation of chaos result. But it also

enables us to obtain a new existence result for (0.1) without hypothesis (1.9).
Let (En)n be a sequence of positive numbers converging to 0. We set

Vn(.) = 1 ~dnV(. ~n). By Proposition 2.2, there is existence and uniqueness
for the nonlinear stochastic differential equations

and Vn, Pn admits a measurable version of the densities pn in Hj+03B1 2,j+03B1
with  1. We set = Yn * ~n(t, .)(~)~

PROPOSITION 2.5. - Under [Hypj] for some j > 2, there is existence for
the nonlinear stochastic differential equation (0.1 ). When (1.8) also holds,
the solution is unique and if it is denoted by X,

where K is a real constant independent of n.
The proof of the proposition is based on the following lemma which

states existence for the Cauchy problem (1.6) under [Hypj] and compares
the solution with pn under the additional assumption (1.8).

LEMMA 2.6. - If [Hypj] holds for some j > 2, then the Cauchy problem
(1.6) admits a solution p E with -  l. If moreover
(1.8) holds, then 

~ ~

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



741A MODERATE MODEL

Proof of Lemma 2.6. - First, under different assumptions on f :

[0,T] x I~, we upper-bound the rate of convergence of 

~~ * .f (t~ ~)(x) to 

If 1, then

If 1, then

As  1, we deduce

Vol. 34, n° 6-1998.
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Combining Ascoli’s theorem and a diagonal extraction process it is possible
to obtain from (pn)n a subsequence (pk)k such that p~ converges uniformly
on compact sets together with its derivatives (the first order time derivative
and the first and second order space derivatives) to a function p and its
derivatives. The norm of this function in is smaller than 1. By
(2.7), we deduce that qk and its first and second order space derivatives

converge to p and its derivatives uniformly on compact sets. As by (2.2),
pk solves the Cauchy problem

taking the limit l~ -~ +00 we obtain that p solves (1.6).
To prove (2.6) we are going to express the difference p - pn as the

solution of a linear partial differential equation (with coefficients depending
on p, pn and qn).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let us modify the four last terms of the right-hand-side in such a way
that the differences (p - (pn - n and 

appear. For instance, we set 
" " 

)

and make the following computation for the fifth term :

The coefficients behind (pn - qn), (p - in the right-
hand-side term are bounded on [0, T] x f~~ uniformly in n.

Treating the fourth, the sixth and the seventh term of the right-hand-side
of (2.8) in the same way, we obtain

where

and the coefficients en and C" are bounded on [0,T] x Rd
uniformly in n.

If (1.8) holds, it is possible to apply Theorem 2.5 p.18 [6], to obtain

Vol. 34, n° 6-1998.



744 B. JOURDAIN AND S. MELEARD

By (2.7), sup[0,T] Rd Ifni (  C(T,03C3,b,V)~03B2n with (3 = 03B1, 1,2 respectively
for j = 2, 3, > 3. Hence (2.6) holds..

Proof of Proposition 2.5. - We suppose that [Hypj] holds for some

j > 2. By Lemma 2.6 the Cauchy problem (1.6) admits a solution p in
x Existence of a solution for the nonlinear equation

(0.1) is deduced like in the proof of Proposition 1.3.

Now, we also assume that (1.8) holds. By Proposition 1.2, we deduce
that (0.1) admits a unique solution. If this solution is denoted by X, using
Burkholder inequality, we get that E(supst|Yns - Xs|4) is less than

As a and b are Lipschitz continuous, for any t  T,

By (2.6) and Gronwall’s lemma, we obtain (2.5)..
We are going to approximate the solution of (0.1) by the moderately

interacting particle systems (0.2) :

We suppose that (1.8) holds and define Xz to be the solution of the

nonlinear equation

given by Proposition 2.5.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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THEOREM 2.7. - Assume that for some j > 2, [hypj] and (1.8) hold. If
En converges to zero slowly enough to ensure that

where the constant C is given by (2.3), then

which implies the propagation of chaos and the convergence in law of the
empirical measures ~cn = n ~i 1 to P, the law of X i.

Proof. - The probability density Yn is bounded by Mv /~dn and admits
I~v /En+1 as a Lipschitz continuity constant. Once this remark is made, it is
enough to associate Proposition 2.3 and Proposition 2.5 to obtain

The conclusion follows obviously.

Remark 2.8. - In a similar way, if we assume that and (1.8)
hold and d = 1, we obtain .

We want to have the best convergence rate as possible for the left-hand-side.
So we choose En to be the unique solution of

Then we obtain

’ 

3. THE FLUCTUATION RESULT

In this part we consider the case of the dimension one (for simplicity).
We assume that (1.8) and [hyp~] hold, that a and b are bounded together

Vol. 34, n° 6-1998.
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with their partial derivatives up to order 4 and that  

i.e. ( admits an eighth order moment.

We are interested in the behaviour of the fluctuations associated with the

convergence in law of the empirical measures of the system to

the law P of We suppose that En solves (2.9). By (2.10), it appears that
the presumed rate of convergence is Let us denote by an the number 2 .
We now study the process ~n defined for every t and every function § by

For each Brownian motion BB z E N*, we consider a nonlinear process
similar to (2.4)

Under our assumptions, Vn, P" admits a measurable version of the densities
p" in H4+03B1 2,4+03B1 with  l.

3.I. A few pathwise estimations

LEMMA 3. I . - Let lF : [0, T] be a function continuous and
bounded together with its first order spatial derivative. We have

where the real constants K1,f3, I~2,~, I~1 and K2 do not depend on n.

Proof - We only prove the second and the forth inequalities. The first and
the third ones are obtained in a similar way but the calculations are easier.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We recall that Vn is bounded by M03C5 ~n and Lipschitz continuous with
constant ~u .E2

as the variables defined in (3.1) are independent and their common
law has a density equal to p. By Proposition 2.3, replacing M~ and Kw
by and in (2.3), we deduce

Taking into account the definition of En (2.9), we conclude

Vol. 34, n° 6-1998.
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By this inequality in the case ~ :== 1 and j3 = 4 and the results given in
Lemma 2.6, we obtain

which puts an end to the proof..
Let us now prove that uniformly in t and n, ~ ( ~ ~ r~t I I 2 2, 2 ) is finite.

PROPOSITION 3.2. -

Proof. - Let us first remark that, as (J and b are bounded and

~«~fg~  +00,

For every function § in Wo’2, we write  r~t , cp >= ~S’t (~) where

Let us consider a complete orthonormal system (~~) in W2,2. Since the
variables (Xt’n, Xt ) are exchangeable,

Annales de l’Institut Henri Poincar-e - Probabilités et Statistiques



749A MODERATE MODEL

By (2.10) and (3.6), we deduce that supn 
+00. Moreover, since the variables Xl are independent with law pt (x)dx,

and

3.2. The tightness result

In order to prove the tightness of the laws of the fluctuation processes r~n,
we study the semimartingale representation of these processes. Applying
Ito’s formula, we obtain that r~n satisfies the following martingale property:
for every § E 

is a real continuous martingale with quadratic variation process

where

PROPOSITION 3.3. - For every integer n, the process is a strongly
corctinuous martingale in Wo 2,2, and a complete orthonormal

system ih 
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which implies that  and that the

C([0, T], W-2,20)-valued variables Mn converge to 0 in L2.

~’roof - be a complete orthonormal system in

W2,20 of C°° functions with compact support. By Doob’s inequality,
is bounded by

By (3.6), we conclude that (3.7) holds.

We still have to prove the continuity of Mn . Let E > 0. By
(3.7), there exists a positive number No (depending on cv) such that

 6 a.s.. Let be a sequence in

[0,T] such that (tm ) tends to t when m tends to infinity.

The majoration of the first term if m is sufficiently large is due to the

continuity of the process li~lt (~~), for every k > 1. Thus the mapping
t ~ M; is continuous in Wo ’ . !N
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To study the drift term we transform where c~ E 

with

PROPOSITION 3.4. - For every s, the operator Ls is a linear continuous

mapping from into Wo ’ 2, and for all 03C6 ~

For every n, sand c,~, the operator Zs is a linear continuous operator from
into and

The constants ~l and K2 are independent of n and s  T.
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Proof. - The upperbound is clear for since p belongs to

H4 2a’4~a(~O, T~ x R), and then to Cb (~0, T~ x R).
For Z~ , we observe that as  (by (0.3)),

By (3.5) and (3.6), we conclude that (3.11 ) holds..

To prove the tightness of r~n in ~’(~0, T~, Wo 4,1), we use the Hilbert
semimartingale decomposition of in 

where (L~ ) * is the adjoint of the operator L~.

LEMMA 3.5. - The integrals and fo Znsds are defined as
Bochner integrals in W-4,10.

Proof - As is separable, following Yosida [16] p. 132, it is

enough to check that :

1) E Wo ’ 1, the mappings s -~  >= > and
s --~  Zr;, cP > are measurable

2) a.s., fo  -I-oo and fo  

Condition 1) is obviously satisfied.

By (3.10) we obtain

By Proposition 3.2, E (T0 ~~ns~2-2,2ds)  +~ which implies that a.s.,

j/ ))q§/ )) -2,2ds  +cxJ. Hence condition 2) holds for the first integral. For
the second integral, we remark that, a.s. j/  +cxJ, as by

~~ ° ~ ~ ~’ ~ ( j/~ 1 ~~) ~ ~ °° .
PROPOSITION 3.6. -

The trajectories of rin are a.s. strongly continuous in Wo ‘~’1.
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Proof - By the semimartingale decomposition of r~n (3.12),

Taking (3.10) and (3.11) into account, we deduce

Propositions 3.2 and 3.3 and the continuous embedding of Wo 2,2 into

Wo ~’1 imply that (3.13) holds.
The Bochner integrals ~o and ~o Zs ds are strongly continuous

in ([16] ] Corollary 1 p.133). Moreover, by Proposition 3.3 and the
continuous embedding from into Wo 4’ 1, the process Mn is a.s.

strongly continuous in Wo 4,1. The decomposition (3.12) of ~n allows to
conclude that this process is a.s. strongly continuous..
We are now able to prove

THEOREM 3.7. - The sequence of the laws of is tight in

C([0, T], W-4,10).
Proof. - By Proposition 3.3 and the continuous embedding from 

into Wo 4’ 1, we know that the processes Mn considered as C ( [0, T], Wo ~,1 )
valued variables converge to 0 in L2 . As C ( [0, T ~ , Wo 4,1 ) endowed with
the sup norm is a Polish space, we deduce that the sequence of the laws of

is tight in C’ ( ~o, T ~ , Wo ‘~,1 ) . Therefore it is enough to prove the
tightness of the laws of the drift terms + + ~0 2s ds
to conclude. Let us now recall the criterion that we will use :

A sequence of (SZn, Fnt)-adapted processes with paths in

C([o, T], H) where H is a Hilbert space is tight if both of the following
conditions hold:

I: There exists a Hilbert space Ho such that Ho ~ H. s. H and such that
for all t  T,
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II: (Aldous condition) For every > 0 there exists &#x26; > 0 and an integer
no such that for every (Fnt)-stopping time Tn  T,

As YT~O 2’2 ~H.S. Wo 4’1 and 2l Il~t 112 2,2 + 
Propositions 3.2 and 3.3 imply that condition I holds for .

Let > 0, 0  6’  b and Tn  T be a stopping time. By Chebychev
inequality,

By Proposition 3.4 and 3.2

The right-hand-side is arbitrarily small uniformly in n for 6 small and
condition II holds which puts an end to the proof..

3.3. Characterization of the limit values

If we consider equation

it appears that as n - +00, it is not possible to close the equation at the
limit in Wo 4,1 because of the unboundedness of the operator Ls in 
But this operator is bounded from to T~o ’ ~ . Therefore, we are going
to obtain a limit equation in 

, /

Ls + As .
Since p E ~-14 ~~ (~0, T~ x I~), we easily prove that:

LEMMA 3.8. - If a- and b belong to then for each s, the operator ,Cs
is continuous from Wo ’ 1 into and its norm is bounded uniformly in
s E ~0, T~. Moreover,

We are now ready to obtain the limit equation :
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THEOREM. - Let us assume that a, b E Then every limit value of the
laws (in ~ ( C ( ~0, T ~ , Wo ’ ) ) ~ is concentrated on the solutions
of the deterministic affine equation

where Gs is defined, for every 03C6 in W60,1 by

Remark 3.10. - Let 03BE E C([0, T], W-4,10), 03C6 E and s, s’ E [0, T].
By Lemma 3.8, we obtain

Hence the mapping s -~ (,~s ) * ~s is continuous in Wo ~ ~ 1 and the integral
is defined as a Riemann integral.

By Schwarz inequality, (3.5) and the continuous embedding of Wo’1
into C2e, ,

Hence Gsds makes sense as a Bochner integral in 
Proof - We consider a subsequence of T/n converging in law and that

we still index by n for simplicity. Let t E ~0., ~’~, r~ be a variable in

C ( ~0, ~’] , WD 4,1 ) distributed according to the limit law and § be a C°°
function with compact support in R.

By Lemma 3.8, the function Fcp : ç E C ( [o, T ~ , Wo ~’ 1 ) --~  >

- J  ~s ~ > ds E ~ is continuous. Hence the sequence 

converges in law to 

We have already seen that the martingale part tends to zero. Hence

converges in law to zero. By the same way, the initial sequence
 ~ > tends to zero, since the fluctuations of initial independent
conditions converge at rate 
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If we prove that fo  > ds - ~o  > ds converges in

law to the deterministic variable ~’o  > ds, by the decomposition

we will deduce that

By continuity, the above equality will hold almost surely for any t E [0, T].
Moreover, choosing cP in a sequence dense in and taking limits,
we will get

which is the conclusion of the theorem.

By an easy computation,  2s , ~ > -  > -  ~s , ~ > is
equal to Tf(s) + T2 ( s ) + T;(s) with

If we show that = =

= 0, then the proof will be finished since these
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limits imply that f o  >  r~s ; > ds converges in L~

to the deterministic variable fo  Gs, cp > ds for any t e [0, T~.

As b’ and (~2 )’ are Lipschitz continuous and (~/ and ~" are bounded

By (3.5), we deduce KTE;. Hence the conclusion holds.
Proof of limn = 0

Let Tn 1 ( s ) and Tn 2 ( s ) denote the terms in the right hand side.
Since ps is in Ct uniformly in s and ~~ zV(z)dz = 0,

The functions b’, (~2 )’, cp’ and cp" being bounded, we deduce

KEn which tends to 0 as n tends to infinity.

The function ~ -~ + ~"2y> (~2)~(~s(~)> is

Lipschitz continuous and bounded. Since, by the propagation of chaos result,
the sequence (dx) ) converges to ps (x) dx in probability, ~ (s) ~ tends
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to zero as n tends to infinity. By Lebesgue’s Theorem, the same is true for

o Hence limn 10 E|T2n(s)|ds = 0.

Proof of limn = 0

For simplicity, let us denote

We set

The function 9 is continuous and bounded together with its first spatial
partial derivative and satisfies the hypothesis made on 03A6 in Lemma 3.1.
Moreover, as vn is bounded and Lipschitz continuous with the same
constants as V n, the proof of Lemma 3.1 shows that (3.2) and (3.3) still

hold when vn is replaced by VB Hence we obtain t~,~ > 0,

By choosing /3 greater than 4, we obtain the convergence to zero of
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As 03C8s is equal to 0 outside a compact set which does not depend on
s ~ [0, T~ ,

By Lemma 2.6 and (3.2) written for 03A6 :== 1 and j3 = 4, we obtain,
K~2n which goes to 0 -I-oo.

For the third term, an easy computation (using Taylor expansion) gives
that

is smaller than Hence

As the function ~/ ~ p~)~(?/) + 2~(~)~(?/) + ~(~)p~(~/) is Lipschitz
continuous and bounded, the convergence in probability of to pg implies
that
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converges to zero. Hence tends to zero as n tends to

infinity.
The proof of Theorem 3.9 is then complete..
The next step consists in proving uniqueness for (3.14). Let 03BE1 and ç2

be two solutions in G’(~0, T~, Wo 4s1 ). The difference ~ _ ~l - ~2 is a

solution of

in Wo 6,1. But the operator (,Cs ) * is not bounded in W-6,10 and Gronwall’s
arguments do not work to prove 03BEt = 0, dt E [0,T]. The trick is to use
the semi-group associated with the second order operator ,Cs to obtain

uniqueness. Our approach is very similar to the one developped by Mitoma
in [11].

We set x) = By (1.8), it is possible to define

In order to ensure that ~ is smooth, we have to assume that

which is exactly property (1.9).
From now on, we suppose that E and that [hypo] and (1.9)

hold. The function p belongs to H92a’9~a(~D,T~ x tR) and the functions Is
and as belong to Cb uniformly for s E [0, T~.

According to Kunita [5] p.227, the flow defines a Cg

diffeomorphism, where (Xst (~) ) is the unique solution of the Ito stochastic
differential equation

denote the derivative of order j for 1 ~ j  8. By [4] p.61,
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Let cp E C;. Ito’s backward formula ([5] p.256) gives

By (3.15), the expectation of the above stochastic integral is equal to 0.
If we define

taking expectations in Ito’s backward formula and using Fubini’s theorem,
we get

For k = 1 or k = 2, the variables 
x~R 

depend continuously

on x and are uniformly integrable by (3.15). Hence it is possible to exchange
expectations and derivations in the right-hand-side of (3.16) to obtain

We are now going to prove that under our assumptions, for 03C6 E C9,0, this
equation holds in the B anach space C° ~ ° .

LEMMA 3.11. - Assume that ~, b E Cb ° and that (1.9) and hold.

The operator ,~t is a linear operator from C8~° into C6~° such that

For any 1  j ~ 8, the operator U(t, s) is a linear operator on Cj~°
such that
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Proof. - Inequality (3.18) is obvious. As p E ~I ~ ~a ,9-f-CY ( ~0, T~ x f~~,
this function and its spatial partial derivatives up to order seven admit a
continuous and bounded first derivative with respect to the time variable.

Inequality (3.19) is easily deduced.
To prove the second part of the Lemma, we set 1  j  8, cP E Cj~o

and 1  I~  j. We have

with integer constants c(~) = c{l, ll, ..., l~). Hence, by (3.15), the

variables 03C6(Xst(x))) xER are uniformly integrable. Since they 
.

depend continuously on x, we deduce that U(t, s)03C6 is in Cb
with derivative of order k given by E (~k ~xk03C6(Xst(x))). By the

boundedness of ~y and ~, P  ~ = 0. Hence

= 0 and E Moreover,

~~~, (U(t, s)~){~) is smaller than

and then bounded by As we

deduce that (3.20) holds.
The proof of (3.21 ) is based on the following estimates given by Mitoma

[ 11 ], Lemma 3

and obtained by computations similar to the previous ones..
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If § E Cg~°, by the previous Lemma, s -~ ,~s (U(t, s)~) is continuous

in ~‘°~° . Hence ; makes sense as a Riemann integral in
C6~°. Using (3.17), we deduce

This equation is the key point in the proof of uniqueness for (3.14).

PROPOSITION 3.12. - Assume that ~, b E and that (1.9) and [hypo]
hold. Then (3.14) has no more than one solution in C(~0, T], Wo 4,~).
Moreover, any such solution ~ is characterized by

REMARK 3.13. - Let 03C6 E C3,0 and s, r E [0, T].

Since p E ’g~a, the first term of the right-hand-side is smaller

than r - For the second term, we remark that the function

~ ~ ps’~~) ~’~~)b~~ps(~)) -~ ~"2~) (~2)’~ps~~)) is bounded by 

and Lipschitz continuous with constant Hence

where dFM denotes the Fortet-Mourier metric on Hence the mapping
s --~ Gs is continuous in C-3~°. By Lemma 3.11, we deduce that

s -~ U(t, is continuous in C-4~°. Hence ~’o t U(t, s)*Gsds makes
sense as a Riemann integral in C-~~°.
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Proof. - Let ~ E C([0, T], Wo ~’ 1 ) satisfy (3.14) and § belong to C9,O.
As ~ by (3.23) we get

As ~ solves (3.14) and E C°~° ~ we have

Hence

Since C°~° is dense in we deduce that t U(t, in C-~~°.
As C~~° is dense in Wo ~’1 we conclude that uniqueness holds for (3.14)
in C([0,T]~~). M
We are now ready to conclude :

THEOREM 3.14. - Assume that a, b E Cb ° and that (1.9) and 
hold. Then the variables E C ( ~0, T], Wo ~’ 1 ) converge in L 1 to the
deterministic process r~ such that the image of r~~ by the continuous

embedding of Wo 4,1 into C-~~° is given by fo U(t, s)*Gsds for any
t E [0, T].
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Proof - By Theorem 3.7 the laws of the processes rin E C(~0, T~, Wo ~’1)
are tight.

Let r~ be a variable distributed according to a limit point. By Theorem 3.9
and Proposition 3.12, ri is the deterministic process such that Vt E [0, T]
the image of r~t by the continuous embedding of Wo 4’1 into C-4~° is

~’o U(t, s )*Gsds.
Since the unique limit point is a Dirac probability measure, the whole

sequence r~n converges in probability to the process r~. As by (3.13),
the variables ~n are uniformly integrable, the convergence takes place in
L1. .

REMARK 3.15. - The normalization an = 1/~2n is too small to obtain the
usual gaussian fluctuations. In jl4J, Oelschläger proves a fluctuation result
for a system of particles with moderate interaction in the drift coefficient but
constant diffusion coefficient. In his work, the sequence (En)n determining
the "intensity " of the moderate interaction is given by En = n-03B2 with 03B2 > 0
and 03B2 not too big. He introduces a deterministic "correction term" cn such
that the corrected fluctuations = pt + c~ ) have a gaussian
limit when n - 

The estimates obtained in the proof of our propagation of chaos result
only authorize a very slow convergence of En to 0. As a consequence, there
is no hope to adapt the approach of Oelschläger unless we prove better
propagation of chaos estimates.
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