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Abstract
This article investigates the propagation of chaos property for weakly interacting mild solu-
tions to semilinear stochastic partial differential equations whose coefficients might not
satisfy Lipschitz conditions. Furthermore, we establish existence and uniqueness results for
mild solutions to SPDEs with distribution dependent coefficients, so-called McKean–Vlasov
SPDEs.
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1 Introduction

A system of particles can bemodeled as interacting stochastic processes.When the number N
of particles gets large the process level usually contains too much information for a statistical
description and it is interesting to change the point of view by passing to the macroscopic
picture which means looking at the system on an average level. More specifically, the idea
is to consider the empirical distribution of the particles and to study its limiting behavior
when the number of particles tends to infinity. Under suitable assumptions on the system it
is often possible to describe the limit via a so-called McKean–Vlasov (MKV) equation. The
macroscopic behavior is also closely related to the so-called propagation of chaos property,
which roughly speaking means that an asymptotic i.i.d. property of the initial distributions
propagates to later times.
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1.1 Contributions of the Article

In this paper we study two questions related to MKV limits of interacting stochastic partial
differential equations (SPDEs). First, we consider an N -particle system X N ,1, . . . , X N ,N

given by the weakly interacting SPDEs

d X N ,i
t = AX N ,i

t dt + μ(t, X N ,i
t ,X N

t )dt + σ(t, X N ,i
t ,X N

t )dW i
t , i = 1, . . . , N ,

where

X N
t � 1

N

N∑

i=1

δX N ,i
t

, t ∈ R+,

are the empirical distributions, A is the generator of a C0-semigroup S = (St )t≥0 and
W 1, . . . , W N are independent standard cylindrical Brownian motions. The natural candidate
for a MKV limit of this particle system is the law of the MKV SPDE

d Xt = AXt dt + μ(t, Xt , P X
t )dt + σ(t, Xt , P X

t )dWt , (1.1)

where P X
t denotes the law of Xt and W is a standard cylindrical Brownian motion. Under

certain assumptions on the initial distribution, compactness of S, and linear growth and
continuity assumptions on the coefficientsμ and σ , the first main contribution (Theorem 3.4)
of this paper is the following:

If the MKV SPDE (1.1) satisfies uniqueness in law, then a unique law X 0 exists and
X N → X 0 in mean where X N and X 0 are considered as random variables with values
in a Wasserstein space of probability measures on C([0, T ], E), where T > 0 is an arbitrary
finite time horizon and E is the state space of the particles. Furthermore, we provide a
propagation of chaos result and we derive similar results (Theorem 3.6) under Lipschitz
conditions without a compactness assumption on the semigroup S.

Besides interacting SPDEs we also investigate weak existence, pathwise uniqueness and
uniqueness in law for the MKV SPDE as given in (1.1). More precisely, in Theorem 2.5 we
prove weak existence under a continuity (using the weak topology for the measure variable)
and a linear growth assumption onμ and σ and a compactness condition on the semigroup S.
For suitably integrable initial data, we replace theweak topology in the continuity assumption
by a Wasserstein topology and we also relax the linear growth conditions, see Theorem 2.8.
Furthermore, in Theorem 2.11 we establish pathwise uniqueness and uniqueness in law
under a modified Lipschitz condition. Finally, in Theorem 2.12 we provide an existence
and uniqueness result under a classical Lipschitz condition which requires no additional
assumptions on the semigroup S.

1.2 Comments on Related Literature

Convergence to the MKV limit for finite dimensional equations was systematically studied
in [14]. For weakly interacting one-dimensional stochastic heat equations with Lipschitz
coefficients which are linear in the measure variable, propagation of chaos was proved in
[27]. The heat equation is included in our framework, see Example 2.6. Using our notation
from above, convergence to the MKV limit for coefficients of the type

μ(t, x, ν) ≡ μ1(t, x) +
∫

μ2(x, y)ν(dy), σ (t, x, ν) ≡ σ(t, x), (1.2)
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was proved in [2, Theorem 5.3] under assumptions on the initial distributions which are
similar to ours (see Condition (I) below and Eq. (3.10) in [2]), certain assumptions on A,
and linear growth and Lipschitz conditions on μ1, μ2 and σ , see Remark 2.4 for comments.
Notice that the diffusion coefficient in (1.2) is independent of the measure variable and that
the drift coefficient depends linearly on it. In this paper we present results for coefficients
with a more general structure. In particular, in our main Theorem 3.4 we impose no Lipschitz
conditions. For i.i.d. initial data the propagation of chaos result [2, Theorem 5.3] is covered
by Theorem 3.6, whose proof appears to us more straightforward. More precisely, it adapts
a coupling argument from the finite dimensional case [24]. Compared to [2], we establish
stronger convergence results in the sense that we prove convergence in mean for random
variables in a Wasserstein space, while convergence in probability and the weak topology
are used in [2]. The basic structure of the proof for [2, Theorem 5.3] is similar to those of
Theorem 3.4 in the sense that we also prove tightness and then use a martingale problem
argument. The proof for tightness in [2] is an adaption of Kolmogorov’s tightness criterion,
while we use the compactness method from [15]. In addition, we prove tightness for random
variables with values in a suitable Wasserstein space which is not done in [2]. On a technical
level, also our martingale problem argument distinguishes from those in [2], as we work
under different assumptions on the coefficients.

Various existence and uniqueness results for MKV SPDEs were proved in [1, 2, 17, 18,
31]. With the exception of [18], the conditions in these references are of Lipschitz type.
Theorem 2.5 is closely related to [18, Theorem 2.1], which is an existence result for MKV
SPDEs with uniformly bounded continuous coefficients (where the weak topology is used
for the measure variable). Compared to this theorem, we require less assumptions on the
parameters A, μ and σ (see Remark 2.4 for some comments). Furthermore, Theorem 2.8
extends [18, Theorem 2.1] in the direction that it only requires a continuity assumption for
a Wasserstein instead of the weak topology. Thanks to this extension our result covers for
instance linear (in the measure variable) coefficients of the type

μ(t, x, ν) ≡
∫

μ◦(t, x, y)ν(dy)

for unbounded μ◦. Similar to those of [18, Theorem 2.1], the proof of Theorem 2.5 relies on
an approximation scheme and the compactness method from [15]. In contrast to [18], we use
a martingale problem argument to identify the limit and we establish moment estimates to
reduce assumptions onμ and σ . Themartingale problem argument is robust w.r.t. the linearity
A, while the argument in [18] uses some properties of A. When compared to existence results
for classical SPDEs, Theorem 2.5 can be viewed as an extension of the main results from [15]
to a McKean–Vlasov framework. For finite dimensional MKV equations, general existence
and uniqueness results were proved in [13]. Our uniqueness result extends a theorem from
[13] and we also adapt the basic proof strategy to our infinite dimensional setting.

1.3 Structure of the Article and Comments on Notation

The article is structured as follows: In Sect. 2 we introduce our setting and present existence
and uniqueness results for MKV SPDEs. The convergence of the particle system to its MKV
limit and the propagation of chaos property are discussed in Sect. 3. In the remaining sections
we present the proofs for our results.

Before we turn to the main body of this paper, let us also comment on notation and
terminology. In general, we follow the seminal monograph of Da Prato and Zabczyk [9]. We
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also refer to this monograph for background information on stochastic integration in infinite
dimensions. Further standard references on infinite dimensional stochastic analysis are the
monographs [16, 26].

Convention If not indicated otherwise, C > 0 denotes a generic constant which is allowed
to depend on all fixed parameters in the respective context. We also use the convention that
C might change from line to line.

2 Existence and Uniqueness Results for McKean–Vlasov SPDEs

Let E = (E, 〈·, ·〉E , ‖ · ‖E ) and H = (H , 〈·, ·〉H , ‖ · ‖H ) be separable real Hilbert spaces,
denote the space of linear bounded operators H → E by L(H , E) and the space of Hilbert–
Schmidt operators H → E by L2(H , E). Let Mc(E) be the space of probability measures on
(E,B(E)) endowed with the weak topology, i.e. the topology of convergence in distribution.
For p ≥ 1 let M p

w(E) be the set of all ν ∈ Mc(E) such that

‖ν‖p �
( ∫

‖y‖p
Eν(dy)

)1/p
< ∞.

We endow M p
w(E) with the p-Wasserstein topology ([5, Section 5.1]), which turns M p

w(E)

into a Polish space. Next, we introduce a quadruple (A, μ, σ, η) of coefficients.

(i) Let A : D(A) ⊆ E → E be the generator of a C0-semigroup S = (St )t≥0 on E and
denote its adjoint by A∗ : D(A∗) ⊆ E → E .

(ii) Let μ : R+ × E × Mc(E) → E and σ : R+ × E × Mc(E) → L(H , E) be Borel
functions. To be precise, for σ we mean that for every h ∈ H the E-valued function
σh is Borel.

(iii) Let η ∈ Mc(E).

In the following we use the notation P X
t � P ◦ X−1

t for t ∈ R+.

Definition 2.1 We call a triplet (B, W , X) a martingale solution to the MKV SPDE with
coefficients (A, μ, σ, η) ifB is a filtered probability spacewith right-continuous and complete
filtration which supports a standard cylindrical Brownian motion W and a continuous E-
valued adapted process X such that the following hold:

(i) X0 ∼ η, i.e. X0 has law η.
(ii) Almost surely for all t ∈ R+

∫ t

0
‖St−sμ(s, Xs , P X

s )‖E ds +
∫ t

0
‖St−sσ(s, Xs, P X

s )‖2L2(H ,E)ds < ∞.

(iii) Almost surely for all t ∈ R+

Xt = St X0 +
∫ t

0
St−sμ(s, Xs , P X

s )ds +
∫ t

0
St−sσ(s, Xs, P X

s )dWs .

We call X a solution process and its law, seen as a Borel probability measure on C(R+, E)

endowed with the local uniform topology, a solution measure. The pair (B, W ) is called a
driving system. Furthermore, for p ≥ 1 we call the solution measure a p-solution measure
if P X

t ∈ M p
w(E) for all t ∈ R+ and (t �→ P X

t ) ∈ C(R+, M p
w(E)). In the same manner, we

say that X is a p-solution process if its law is a p-solution measure and in this case we call
(B, W , X) a p-martingale solution.
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Remark 2.2 In case one is only interested in p-martingale solutions it suffices that μ and σ

are defined onR+× E × M p
w(E). Of course, in this case also the initial law η has to be taken

from M p
w(E).

From now on we fix

0 < α < 1/2 and p′ > 1/α.

Let (A, μ, σ, η) be coefficients for a MKV SPDE. We formulate the following conditions:

(A1) A generates a compact C0-semigroup S = (St )t≥0, i.e. St is compact for all t > 0.
(A2) For all y∗ ∈ D(A∗) and t > 0 the maps 〈μ(t, ·, ·), y∗〉E and ‖σ ∗(t, ·, ·)y∗‖H are

continuous on E × Mc(E).
(A3) For every T > 0 there exists a Borel function f = fT : (0, T ] → [0,∞] and a constant

CT > 0 such that
∫ T

0

[ f(s)
sα

]2
ds < ∞,

and

‖Stσ(s, x, ν)‖L2(H ,E) ≤ f(t)
(
1+ ‖x‖E

)
,

and

‖μ(s, x, ν)‖E + ‖σ(s, x, ν)‖L(H ,E) ≤ CT
(
1+ ‖x‖E

)
, (2.1)

for all 0 < t, s ≤ T , x ∈ E and ν ∈ Mc(E).

Remark 2.3 In (A3) the dependence of the function f on a time horizon T > 0 localizes the
time variable of the coefficient σ .

Condition (A3) is closely connected to the factorization method of Da Prato, Kwapien, and
Zabczyk [10], which we also use in our proofs. In the following remark we relate (A3) to
some conditions appearing in the literature on MKV SPDEs.

Remark 2.4 (i) In case the linear growth condition (2.1) holds, (A1) and (A3) are implied
by

∫ t

0

‖Ss‖2L2(E)ds

s2α
< ∞, ∀t > 0, (2.2)

which is a classical condition appearing for instance in [8, 15] for SPDEswithoutmeasure
dependence.
Suppose that A is a negative definite self-adjoint operator1 and that there exists a δ ∈ (0, 1)
such that

∞∑

k=1

λ−1+δ
k < ∞, (2.3)

where 0 < λ1 ≤ λ2 ≤ · · · are all eigenvalues of −A, counting multiplicities, with
−Aek = λkek for an orthonormal basis (ek)k∈N of E . This assumption appears as (a1)
in [18]. If it is in force, (2.2) holds with α = δ/2, since

∫ t

0

‖Ss‖2L2(E)ds

sδ
=

∞∑

k=1

∫ t

0

e−2λk sds

sδ
≤

∫ ∞

0

e−2zdz

zδ

∞∑

k=1

λ−1+δ
k < ∞, t > 0.

1 A negative definite self-adjoint operator generates a contraction semigroup, see [32, Proposition 6.14].
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In the paper [2] the linearity A is also assumed to be negative definite and self-adjoint2

but only a weaker form of (2.3) is imposed. Let us compare the linear growth assumptions
on the diffusion coefficient from [2] to our linear growth condition (A3). The article [2]
works with a finite time horizon T > 0 and the diffusion coefficient σ(t, x, ν) ≡ σ(t, x)

is presumed to be independent of themeasure variable and such that there are non-negative
numbers b1, b2, . . . such that

‖σ ∗(t, x)ek‖2H ≤ b2k
(
1+ ‖x‖2E

)
, t ∈ [0, T ], k = 1, 2, . . . ,

and
∞∑

k=1

b2kλ
−θ
k < ∞

for some θ ∈ (0, 1), cf. Eq. (2.44) in [2]. Under this condition the first part of (A3) holds
with

f(t) = fT (t) � C
( ∞∑

k=1

e−2λk t b2k

)1/2
, t ∈ (0, T ],

and α � (1− θ)/2 ∈ (0, 1/2), since

‖Stσ(s, x)‖2L2(H ,E) =
∞∑

k=1

‖σ ∗(s, x)St ek‖2H ≤
∞∑

k=1

e−2λk t b2k (1+ ‖x‖2E ),

for 0 < t, s ≤ T , x ∈ E , and
∫ t

0

[ f(s)
sα

]2
ds = C

∞∑

k=1

∫ t

0

e−2λk sb2k ds

s1−θ
≤ C

∫ ∞

0

e−2zdz

z1−θ

∞∑

k=1

b2kλ
−θ
k < ∞

for t ∈ [0, T ]. The linear growth condition for the drift coefficient in [2] is of the
same type as those for the diffusion coefficient (but the drift can depend on the measure
variable). In particular, an interaction with the semigroup S is allowed. This feature is not
included in (A3). Via Condition (L1) below, we also introduce a condition which allows
an interaction of the drift coefficient μ and the semigroup S.
As pointed out in [8, Remark 5.10], (2.2) is very close to the necessary condition for
the existence of solutions to Cauchy problems. More precisely, the stochastic Cauchy
problem

d Xt = AXt dt + dWt

has a mild solution (with not necessarily continuous paths) if and only if
∫ t

0
‖St‖2L2(E)dt < ∞, t > 0, (2.4)

see [34, Theorem 7.1]. Moreover, if A is self-adjoint, negative definite and has a discrete
spectrum, then [19, Theorem 1] implies that (2.4) is sufficient for the existence of a mild
solution with continuous paths, see also [8, Proposition 9.30] and [32, Proposition 5.12].

2 More precisely, S is assumed to be a contraction semigroup such that (−A)−1 exists as a bounded self-
adjoint operator with discrete spectrum. By virtue of [23, Theorem 5.30, p. 169], the second part implies that
A is self-adjoint and hence, so is S by [32, Proposition 6.13]. Then, as S is a contraction semigroup, A is
negative definite by [32, Proposition 6.14].
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(ii) Another classical type of linear growth condition is the following: For every T > 0 there
exists a constant CT > 0 such that

‖μ(s, x, ν)‖E + ‖σ(s, x, ν)‖L2(H ,E) ≤ CT
(
1+ ‖x‖E

)
(2.5)

for all s ∈ [0, T ], x ∈ E and ν ∈ Mc(E). Compared to (2.1), this condition uses the
Hilbert–Schmidt norm instead of the operator norm. Under this condition, (A3) holds
with f(t) = ‖St‖L(E) for t > 0, as there are constants M ≥ 1 and ω ∈ R+ such that
‖St‖L(E) ≤ Meωt for all t > 0.

Our first main result is the following:

Theorem 2.5 Suppose that (A1), (A2) and (A3) hold. Then, for every η ∈ Mc(E) there exists
a martingale solution to the MKV SPDE with coefficients (A, μ, σ, η).

The proof of Theorem 2.5 is given in Sect. 4. Let us mention two typical situations where
the above theorem can be applied.

Example 2.6 [15] LetO be a bounded region inRd with smooth boundary and set E � L2(O).
If A is a strongly elliptic operator of order 2m > d (with Dirichlet boundary conditions),
then there exists an α such that (2.2) holds, see [15, Example 3]. Thus, by virtue of part (i) of
Remark 2.4, Theorem 2.5 shows that for d = 1 the McKean–Vlasov stochastic heat equation

d Xt = 
Xt dt + μ(t, Xt , P X
t )dt + σ(t, Xt , P X

t )dWt , (2.6)

driven by a cylindrical standard Brownian motion W , has a martingale solution in case μ

and σ satisfy the continuity condition (A2) and the linear growth condition (2.1), which only
depends on the operator norm.

Example 2.7 Let E = L2(O) be as in Example 2.6. If A is a strongly elliptic second order
operator (with Dirichlet boundary conditions), then (A1) holds, see [15, Remark 1] and [9,
Appendix A.5.2]. Thus, by virtue of part (ii) of Remark 2.4, Theorem 2.5 shows that the
McKean–Vlasov stochastic heat equation (2.6), driven by a standard cylindrical Brownian
motion W , has a martingale solution in caseμ and σ satisfy the continuity condition (A2) and
the linear growth condition (2.5). This observation is independent of the dimension d (recall
thatO ⊂ R

d ). Compared to the result mentioned in Example 2.6, the linear growth condition
(2.5) entails the Hilbert–Schmidt norm while (2.1) only depends on the operator norm. In
case the driving noise W from (2.6) is a Brownian motion with a trace class covariance
operator Q, Theorem 2.5 implies that (2.6) has a martingale solution under (A2) and (2.1),
again independently of the dimension d . To see this, notice that in this situation the equation
(2.6) can be written as

d Xt = 
Xt dt + μ(t, Xt , P X
t )dt + σ(t, Xt , P X

t )Q1/2d Bt ,

where B is a cylindrical standard Brownian motion, and that its diffusion coefficient σ Q1/2

satisfies a linear growth condition for the Hilbert–Schmidt norm once σ satisfies a corre-
sponding condition for the operator norm.

Provided the initial value satisfies a suitable integrability condition, we can relax the
continuity assumptions on μ and σ in the measure variable by replacing the weak with a
Wasserstein topology. Furthermore, we can strengthen the linear growth condition. Take
1 ≤ p◦ < p′.
(A4) For all y∗ ∈ D(A∗) and t > 0 the maps 〈μ(t, ·, ·), y∗〉E and ‖σ ∗(t, ·, ·)y∗‖H are

continuous on E × M p◦
w (E).
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(A5) For every T > 0 there exists a Borel function f = fT : (0, T ] → [0,∞] and a constant
CT > 0 such that

∫ T

0

[ f(s)
sα

]2
ds < ∞,

and

‖Stσ(s, x, ν)‖L2(H ,E) ≤ f(t)
(
1+ ‖x‖E + ‖ν‖p′

)
,

‖μ(t, x, ν)‖E + ‖σ(t, x, ν)‖L(H ,E) ≤ CT
(
1+ ‖x‖E + ‖ν‖p′

)
, (2.7)

for all 0 < t, s ≤ T , x ∈ E and ν ∈ M p′
w (E).

Theorem 2.8 Suppose that η ∈ M p′
w (E) and that μ and σ are only defined on R+ ×

E × M p◦
w (E). Furthermore, assume that (A1), (A4) and (A5) hold. Then, the MKV SPDE

(A, μ, σ, η) has a p′-martingale solution.

Theorem 2.8 can be proved similar to Theorem 2.5 and we outline the necessary changes
in Sect. 5.

Remark 2.9 Replacing Mc(E) by M p◦
w (E) for the continuity assumptions on the coefficients

μ and σ is a useful generalization. For instance, consider the coefficient

μ(t, x, ν) ≡
∫

μ∗(s, x, y)ν(dy)

for a measurable function μ∗. This coefficient is well-defined for all ν ∈ Mc(E) only if
y �→ μ∗(t, x, y) is bounded. However, if we restrict our attention to ν ∈ M p

w(E) for some
p ≥ 1, we can allow unboundedμ∗ under a suitable growth assumption on y �→ μ∗(t, x, y).

Next, we also provide a uniqueness result for MKV SPDEs. We fix p ≥ 2 and we assume
that μ and σ are defined on R+ × E × M p

w(E).

Definition 2.10 Let η ∈ M p
w(E).

(i) We say that the MKV SPDE (A, μ, σ, η) satisfies p-uniqueness in law if there is at most
one p-solution measure.

(ii) We say that the MKV SPDE (A, μ, σ, η) satisfies p-pathwise uniqueness if for any two
p-martingale solutions (B, W , X) and (B, W , Y ) we have a.s. X = Y .

Let wp be the p-Wasserstein metric, i.e. for ν, η ∈ M p
w(E) set

wp(ν, η) � inf
F∈�(ν,η)

( ∫
‖x − y‖p

E F(dx, dy)
)1/p

,

where �(ν, η) is the set of Borel probability measures F on E × E such that F(dx × E) =
ν(dx) and F(E × dx) = η(dx).

(U1) For every T , m > 0 there are two Borel functions f = fT ,m : (0, T ] → [0,∞] and
g = gT ,m : (0, T ] → [0,∞] such that

∫ T

0

([ f(s)
sα

]2 + [
g(s)

]p/(p−1)
)

ds < ∞,
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and an increasing continuous function κ = κT ,m : R+ → R+ with κ(0) = 0, k(x) >

0 for x > 0, and

∀ε > 0
∫ ε

0

dx

|κ(x1/p)|p
= ∞,

such that

‖St (σ (s, x, ν) − σ(t, y, η))‖L2(H ,E) ≤ f(t)
(‖x − y‖E + κ(wp(ν, η))

)
,

‖St (μ(s, x, ν) − μ(t, y, η))‖E ≤ g(t)
(‖x − y‖E + κ(wp(ν, η))

)
,

and

‖Stσ(s, x, ν)‖L2(H ,E) ≤ f(t)
(
1+ ‖x‖E

)
,

‖Stμ(s, x, ν)‖E ≤ g(t)
(
1+ ‖x‖E

)
,

for all 0 < t, s ≤ T , x, y ∈ E and ν, η ∈ M p
w(E) with ‖ν‖p, ‖η‖p ≤ m.

Irrespective of p, the identity κ(x) = x is a possible choice for κ and hence (U1) can be seen
as a generalized Lipschitz condition.

Below we use (U1) together with the condition that p > 1/α, which excludes the case
p = 2. The following condition includes the case p = 2.

(U2) For every T , m > 0 there exists a constant C = CT ,m > 0 and an increasing
continuous function κ = κT ,m : R+ → R+ with κ(0) = 0, k(x) > 0 for x > 0, and

∀ε > 0
∫ ε

0

dx

|κ(x1/p)|p
= ∞,

such that

‖μ(s, x, ν) − μ(t, y, η)‖E + ‖σ(s, x, ν) − σ(t, y, η)‖L2(H ,E)

≤ C
(‖x − y‖E + κ(wp(ν, η))

)
,

and

‖μ(s, x, ν)‖E + ‖σ(s, x, ν)‖L2(H ,E) ≤ C
(
1+ ‖x‖E

)
,

for all 0 < t, s ≤ T , x, y ∈ E and ν, η ∈ M p
w(E) with ‖ν‖p, ‖η‖p ≤ m.

Our next main result is the following:

Theorem 2.11 Suppose that either p > 1/α and (U1) hold, or that p ≥ 2 and (U2) hold.
Then, for every η ∈ M p

w(E) the MKV SPDE (A, μ, σ, η) satisfies p-uniqueness in law and
p-pathwise uniqueness.

A different uniqueness result was established in [18]. We prove Theorem 2.11 in Sect. 6.
The Theorems 2.8 and 2.11 can be combined to an existence and uniqueness statement.
However, for the existence part we always require that A generates a compact semigroup.
We now also provide a more classical existence and uniqueness result for equations with
Lipschitz coefficients which needs no compactness assumption.

(L1) For every T > 0 there are two Borel functions f = fT : (0, T ] → [0,∞] and g =
gT : (0, T ] → [0,∞] such that

∫ T

0

([ f(s)
sα

]2 + [
g(s)

]p/(p−1)
)

ds < ∞,
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and

‖St (σ (s, x, ν) − σ(s, y, η))‖L2(H ,E) ≤ f(t)
(‖x − y‖E + wp(ν, η)

)
,

‖St (μ(s, x, ν) − μ(s, y, η))‖E ≤ g(t)
(‖x − y‖E + wp(ν, η)

)
,

and

‖Stσ(s, x, ν)‖L2(H ,E) ≤ f(t)
(
1+ ‖x‖E + ‖ν‖p

)
,

‖Stμ(s, x, ν)‖E ≤ g(t)
(
1+ ‖x‖E + ‖ν‖p

)
,

for all 0 < t, s ≤ T , x, y ∈ E and ν, η ∈ M p
w(E).

Belowwe use (L1) together with the condition that p > 1/α, which excludes the case p = 2.
The following Lipschitz condition includes the case p = 2.

(L2) For every T > 0 there exists a constant C = CT > 0 such that

‖μ(t, x, ν) − μ(t, y, η)‖E + ‖σ(t, x, ν) − σ(t, y, η)‖L2(H ,E)

≤ C
(‖x − y‖E + wp(ν, η)

)
,

for all 0 < t ≤ T , x, y ∈ E and ν, η ∈ M p
w(E). Moreover, the functions

‖μ(·, 0, δ0)‖E and ‖σ(·, 0, δ0)‖L2(H ,E) are bounded on compact subsets of R+.

Recall that S is called a generalized contraction semigroup if there exists an ω ∈ R such that
‖St‖L(E) ≤ eωt for all t ∈ R+.

Theorem 2.12 Suppose that η ∈ M p
w(E) and that either p > 1/α and (L1) hold, or that

p ≥ 2, that (L2) holds and that S is a generalized contraction. Then, the MKV SPDE
(A, μ, σ, η) has a p-martingale solution and it satisfies p-uniqueness in law and p-pathwise
uniqueness. Moreover, the MKV SPDE can be realized on any driving system (B, W ).

Theorem 2.12 can be seen as a version of [5, Theorem 4.21] for an infinite dimensional
setting and its proof is similar. For completeness we provide it in Appendix B.

For negative definite self-adjoint A satisfying a (generalized) variant of (2.2), a related
existence and uniqueness result is given by [31, Theorem 3.1]. Notice that any semigroup
with negative definite self-adjoint generator is a contraction ([32, Proposition 6.14]).

3 Propagation of Chaos for Weakly Interacting SPDEs

In this section we discuss the chaotic property of weakly interacting particles which are
modeled as mild solutions to SPDEs. The section is split into two parts. In the first we derive
a result under a continuity condition on the coefficients and a uniqueness assumption on
the law of the limiting MKV SPDE. In the second part we provide a result under Lipschitz
conditions on the coefficients.

3.1 The Chaotic Property Under Continuity and Uniqueness Assumptions

To fix our setting, we assume that α, p′, A, μ and σ are as in Sect. 2 with the important
exception that μ and σ are only defined on R+ × E × M p◦

w (E) for some 1 ≤ p◦ < p′. For
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N ∈ N we define a map L N : E⊗N → Mc(E) by

L N (x1, . . . , xN ) � 1

N

N∑

i=1

δxi , (x1, . . . , xN ) ∈ E⊗N .

Let us start with a condition for the initial laws:

(I) Let ηN ∈ Mc(E⊗N ) be symmetric3 such that there exists a measure η ∈ Mc(E) with

ηN ◦ (L N )−1 −→ δη (3.1)

weakly4 as N → ∞. Moreover,

sup
N∈N

∫
‖XN

1 (x)‖p′
E ηN (dx) < ∞,

where XN
1 : E⊗N → E denotes the projection to the first coordinate.

Remark 3.1 According to [33, Proposition I.2.2], (3.1) holds if and only if the sequence
η1, η2, . . . is η-chaotic, i.e. for every k ∈ N and φ1, φ2, . . . , φk ∈ Cb(E)

∫

E⊗N

k∏

i=1

φi (XN
i (x))ηN (dx) →

k∏

i=1

∫

E
φi (x)η(dx), N → ∞.

Moreover, it is also equivalent to the above for k = 2.

The following condition deals with the existence of weakly interacting particles whose
chaotic behavior we investigate in the remainder of this section.

(EUP) For N ∈ N there exists a filtered probability spaceBN with right-continuous and com-
plete filtration which supports independent standard cylindrical Brownian motions
W 1 ≡ W N ,1, . . . , W N ≡ W N ,N and mild solution processes X N ,1, . . . , X N ,N to
the SPDE

d X N ,i
t = AX N ,i

t dt + μ(t, X N ,i
t ,X N

t )dt + σ(t, X N ,i
t ,X N

t )dW i
t ,

with (X N ,1
0 , . . . , X N ,N

0 ) ∼ ηN and

X N
t � 1

N

N∑

i=1

δX N ,i
t

= L N (X N ,1
t , . . . , X N ,N

t ), t ∈ R+.

Moreover, the SPDE

dYt =
[ N⊕

i=1

A
]
Yt dt +

[ N⊕

i=1

μ(t, Yt , L N (Yt ))
]
dt +

[ N⊕

i=1

σ(t, Yt , L N (Yt ))
]
dWt ,

(3.2)

satisfies uniqueness in law. Here,
⊕N

i=1 denotes the Hilbert space direct sum.

3 Let�N be the set of all perturbations of {1, . . . , N }. A probability measure η on (E⊗N ,B(E⊗N )) is called
symmetric if η(π(B)) = η(B) for every B ∈ B(E⊗N ) andπ ∈ �N . Here, π(B) � {(eπ(1), . . . , eπ(N )) : e ∈
B}.
4 Notice that the probability measures in (3.1) are elements of Mc(Mc(E)) and that the weak topology refers
to the topology of convergences in distribution on the space Mc(Mc(E)).
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Remark 3.2 Together with the symmetry assumption for ηN from (I), the uniqueness in law
assumption for (3.2) from (EUP) implies that the law of (X N ,1, . . . , X N ,N ) is symmetric.

Conditions for (EUP) can be deduce from the Theorems 2.5 and A.1. More conditions for
existence and (pathwise) uniqueness can be found in Part II of the monograph [9]. Pathwise
uniqueness entails uniqueness in law by the Yamada–Watanabe theorem [28, Theorem 2].
Many results for uniqueness in law require more regular coefficients than its counterparts for
existence. One approach to relax such regularity assumptions is based onGirsanov’s theorem.
For instance, it can be used to deduce existence and uniqueness in law for equations of the
type

d Xt = (AXt + μ(Xt ))dt + dWt

from the corresponding properties of

d Xt = AXt dt + dWt .

We refer to Appendix I from [26] for a detailed application of this method.

Next, we formulate a uniqueness condition for the limiting MKV SPDE.

(UL) The MKV SPDE with coefficients (A, μ, σ, η) satisfies p′-uniqueness in law.

Finally, we also formulate a version of (A4) from Sect. 2.

(C) For all y∗ ∈ D(A∗) and t > 0 the maps 〈μ(t, ·, ·), y∗〉E and ‖σ ∗(t, ·, ·)y∗‖H are
continuous on E × M p◦

w (E), and the maps 〈μ, y∗〉E and ‖σ ∗y∗‖H are bounded on
compact subsets of R+ × E × M p◦

w (E).

Remark 3.3 The final local boundedness condition from (C) is not implied by the linear

growth condition (A5), because M p′
w (E) ⊂ M p◦

w (E) since p◦ < p′.

For T > 0 let wp◦
T be the p◦-Wasserstein metric on M p◦

w (C([0, T ], E)) where
C([0, T ], E) is endowed with the uniform topology. The following theorem is the main
result in this section. It formalizes the chaotic behavior of the weakly interacting SPDEs
from (EUP).

Theorem 3.4 Suppose that (A1), (A5), (I), (EUP), (UL) and (C) hold. Then, the MKV SPDE
with coefficients (A, μ, σ, η) has a p′-martingale solution with unique law X 0. Moreover,
for all T > 0

lim
N→∞ E

[∣∣wp◦
T (X N ,X 0)

∣∣p◦] = 0, (3.3)

and the particles X N ,i are X 0-chaotic, i.e. for every k ∈ N we have

(X N ,1, . . . , X N ,k) → (Y 1, . . . , Y k) (3.4)

weakly as N → ∞, where Y 1, . . . , Y k are i.i.d. with Y 1 ∼ X 0.

The proof of Theorem 3.4 is given in Sect. 7. Equation (3.4) means that the particles
X N ,i become asymptotically i.i.d. as N → ∞. In the proof of Theorem 3.4 we establish the
existence part without invoking results from Sect. 2. Theorem 2.11 provides some conditions
for (UL). More conditions for (UL) can be found in [18].
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3.2 The Chaotic Property Under Lipschitz Conditions

In this section we discuss the chaotic behavior for weakly interacting SPDEs with Lipschitz
coefficients.

Let A, μ andσ be as inSect. 2 butμ andσ needonly be definedonR+×E×M p
w(E). Take a

filtered probability space B = (�,F , (Ft )t≥0, P) which supports a sequence W 1, W 2, . . .

of independent standard cylindrical Brownian motions and a sequence ξ10 , ξ20 , . . . of F0-
measurable i.i.d. random variables with ξ10 ∼ η ∈ M p

w(E). The following proposition shows
that (EUP) is implied by the global Lipschitz condition (L1).

Proposition 3.5 Assume that (L1) holds. For N ∈ N and i = 1, . . . , N, on B there exists a
unique (up to indistinguishability) mild solution process X N ,i to the SPDE

d X N ,i
t = AX N ,i

t dt + μ(t, X N ,i
t ,X N

t )dt + σ(t, X N ,i
t ,X N

t )dW i
t , X N ,i = ξ i

0,

with

X N
t � 1

N

N∑

i=1

δX N ,i
t

, t ∈ R+.

Proposition 3.5 follows from Theorem A.1. For completeness we give a proof in
Appendix C. The following theorem is a version of Theorem 3.4 for the present setting.
Compared to Theorem 3.4 its scope is slightly different as the semigroup S needs not to be
compact but the coefficients have to be Lipschitz.

For T > 0 recall that wp
T is the p-Wasserstein metric on M p

w(C([0, T ], E)) where
C([0, T ], E) is endowed with the uniform topology. In case p > 1/α and (L1) holds, or
p ≥ 2, (L2) holds and that S is a generalized contraction, Theorem 2.12 implies the exis-
tence of a p-martingale solution to the MKV SPDE (A, μ, σ, η) with a unique law X 0.

Theorem 3.6 Assume that either p > 1/α and that (L1) hold, or that p ≥ 2, (L2) holds and
that S is a generalized contraction. For every T > 0 it holds that

lim
N→∞ E

[∣∣wp
T (X N ,X 0)

∣∣p
]
= 0. (3.5)

Moreover, the particles X N ,i are X 0-chaotic, see Theorem 3.4 for this terminology.

Theorem 3.6 can be proved as its finite dimensional counterpart [24, Theorem 3.3]. For
completeness we give a proof in Appendix D. Except of our assumption that we use i.i.d.
initial data, Theorem 3.6 generalizes [2, Theorem 5.3] to more general particle systems. In
particular, the convergence in Theorem 3.6 is stronger. In the following section we comment
in some detail on the proofs of Theorems 3.4 and 3.6.

3.3 Comments on the Proofs of Theorems 3.4 and 3.6

Thanks to the i.i.d. initial conditions and the Lipschitz assumptions on the coefficients,
Theorem 3.6 can be proved by a coupling argument with independent solutions to MKV
SPDEs. To sketch the idea (cf. [24] for bibliographic notes), assume that the coefficients μ

and σ satisfy Lipschitz conditions as in (L1) and consider the particle system X N ,i from
Proposition 3.5 with i.i.d. initial conditions. On the same probability space that supports
the particle system, let Y 1, Y 2, . . . be independent solution processes to the MKV SPDE
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(A, μ, σ, η), where Y i is driven by the same noise W i as the particle X N ,i . The existence
of the sequence Y 1, Y 2, . . . is guaranteed by the Lipschitz conditions via Theorem 2.12.
Using a Gronwall argument that hinges on the Lipschitz assumptions, we prove for any fixed
number k ∈ N and any time T > 0 that

E
[

max
i=1,...,k

sup
s∈[0,T ]

‖X N ,i
s − Y i

s ‖p
E

]
→ 0, N → ∞, (3.6)

see Appendix D for details. This implies propagation of chaos.
The Lipschitz assumptions are used to realize Y 1, Y 2, . . . on the same probability space as

the particles and to couple them via the same driving noise. Further, the Gronwall argument
for (3.6) relies on them.

To prove Theorem 3.4, which provides propagation of chaos for less regular than Lipschitz
coefficients, we use a technique based on tightness and martingale problem arguments. A
similar strategy was used in [2]. We refer to Sect. 1.2 for comments on the relation of our
results and proofs to those from [2].

In infinite dimensional settings tightness is often more difficult to establish than in finite
dimensional cases, as moment estimates are less easy to use, because balls are not compact in
infinite dimensional normed spaces.We adapt the compactnessmethod from [15] to overcome
this difficulty. Further, to use our continuity assumption for the Wasserstein topology in the
martingale problem argument, we extend the tightness result to a suitable Wasserstein space
with the help of moment estimates.

Notice that the empirical distributions {X N : N ∈ N} are probability measures on a
Wasserstein space that consists itself of probability measures (on a path space). Using a
general martingale problem for MKV SPDEs, we prove that almost all realizations of any
accumulation point X ∗ are solution measures to the MKV SPDE (A, μ, σ, η). Here, it is
important to reduce the martingale problem to a countable set of test functions. As we assume
that theMKVSPDE (A, μ, σ, η) has a unique solutionmeasure (that is our assumption (UL)),
we can conclude that X ∗ is almost surely constant. From this we deduce X N → X ∗ in
probability and, with a suitable moment estimate, also convergence in mean.

4 Proof of Theorem 2.5

The proof is split into several steps. In Step 0 we recall the factorization formula from [10]
and prepare some estimates. Then, in Step 1 we define an approximation sequence, in Step 2
we establish some moment estimates, in Step 3 we verify tightness of the approximation
sequence and in Step 4 we investigate a martingale problem. In the fifth and final step we use
a representation theorem for cylindrical continuous local martingales to complete the proof.
Step 0: A short recap of the factorization formula. Fix a finite time horizon T > 0. For
p′ > 1, 1/p′ < λ ≤ 1 and h ∈ L p′([0, T ], E) we set

Rλh(t) �
∫ t

0
(t − s)λ−1St−sh(s)ds, t ∈ [0, T ].

Notice that Rλ is indeed well-defined, as
∫ t

0
(t − s)λ−1‖St−sh(s)‖E ds

≤
( ∫ T

0
s p′(λ−1)/(p′−1)‖Ss‖p′/(p′−1)

L(E) ds
)(p′−1)/p′( ∫ t

0
‖h(s)‖p′

E ds
)1/p′

,

(4.1)
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by Hölder’s inequality. The first integral is finite as p′(λ−1)/(p′ −1) > −1 ⇐⇒ λ > 1/p′.
The inequality (4.1) implies that

‖Rλh(t)‖E ≤
( ∫ T

0
s p′(λ−1)/(p′−1)‖Ss‖p′/(p′−1)

L(E) ds
)(p′−1)/p′( ∫ t

0
‖h(s)‖p′

E ds
)1/p′

, (4.2)

which shows that Rλ is a bounded linear operator on L p′([0, T ], E).

Lemma 4.1 [15, Proposition 1] For any 1/p′ < λ ≤ 1, Rλ is a bounded linear operator
from L p′([0, T ], E) into C([0, T ], E). Moreover, if the semigroup S is compact, then Rλ is
compact.

Next, take some 0 < α < 1/2 and p′ > 2 large enough such that 1/p′ < α. Moreover,
let f : (0, T ] → [0,∞] be a Borel function such that

∫ T

0

[ f(s)
sα

]2
ds < ∞,

let φ be a predictable L(H , E)-valued process and ψ a predictable real-valued process such
that

‖Stφs‖L2(H ,E) ≤ f(t)|ψs |
for all 0 < t, s ≤ T , and

E
[ ∫ T

0
|ψs |p′ds

]
< ∞.

Set γ � p′/(p′ −1). Then, using Hölder’s inequality in the second and last line, and Young’s
inequality in the third line, we obtain

∫ T

0
(T − t)α−1

(
E

[ ∫ t

0
(t − s)−2α‖St−sφs‖2L2(H ,E)ds

])1/2
dt

≤
( ∫ T

0
sγ (α−1)ds

)1/γ ( ∫ T

0

( ∫ T

0

[ f(t − s)

(t − s)α

]2
E

[|ψs |2
]
ds

)p′/2
dt

)1/p′

≤
( ∫ T

0
sγ (α−1)ds

)1/γ ( ∫ T

0

[ f(s)
sα

]2
ds

)1/2( ∫ T

0
E

[|ψs |2
]p′/2

ds
)1/p′

≤
( ∫ T

0
sγ (α−1)ds

)1/γ ( ∫ T

0

[ f(s)
sα

]2
ds

)1/2(
E

[ ∫ T

0
|ψs |p′ds

])1/p′
.

Since γ (α − 1) > −1 ⇐⇒ α > 1
p′ , the term in the last line is finite and the factorization

formula [9, Theorem 5.10] yields that
∫ t

0
St−sφsdWs = sin(πα)

π
RαY (t), t ∈ [0, T ], (4.3)

with

Yt �
∫ t

0
(t − s)−α St−sφsdWs,

where W is a standard cylindrical Brownian motion. In this formula the process Y has
to be understood in the sense of the stochastic Fubini theorem ([9, Theorem 4.33] or [28,
Proposition 6.1]). In particular, the latter yields that the stochastic convolution

∫ t
0 St−sφsdWs

is well-defined.
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At the beginning of this stepwe defined Rα on L p′([0, T ], E).We now show that a.a. paths
of Y are in L p′([0, T ], E). Then, we can also conclude from Lemma 4.1 that the stochastic
convolution has a continuous version. For every t ∈ [0, T ], we estimate

E
[ ∫ t

0
‖Ys‖p′

E ds
]
≤ cp′

∫ t

0
E

[( ∫ s

0
(s − r)−2α‖Ss−rφr‖2L2(H ,E)dr

)p′/2]
ds

≤ cp′ E
[ ∫ t

0

( ∫ s

0

[ f(s − r)

(s − r)α

]2|ψr |2dr
)p′/2

ds
]

≤ cp′
( ∫ t

0

[ f(s)
sα

]2
ds

)p′/2
E

[ ∫ t

0
|ψs |p′ds

]
,

(4.4)

where we use Burkholder’s inequality (with constant cp′ ) in the first and Young’s inequality
in the last line. We conclude that the stochastic convolution

∫ ·
0 S·−sφsdWs has a continuous

version. Let us summarize the above observations.

Lemma 4.2 Suppose that α, p′, f, φ and ψ are as above. Then, the stochastic convolution

t �→
∫ t

0
St−sφsdWs

is well-defined and continuous. Furthermore, there exists a constant C depending on
‖S‖L(E), α, p′, T and f such that for every t ∈ [0, T ]

E
[

sup
s∈[0,t]

∥∥∥
∫ s

0
Ss−rφr dWr

∥∥∥
p′

E

]
≤ C E

[ ∫ t

0
|ψs |p′ds

]
. (4.5)

Proof Except for (4.5), all claims were proved before. We now establish (4.5). Set r �
p′(λ − 1)/(p′ − 1) and q � p′/(p′ − 1). Using the factorization formula (4.3) for the first
equality, (4.2) for the first inequality, and (4.4) for the final inequality, we obtain

E
[

sup
s∈[0,t]

∥∥∥
∫ s

0
Ss−rφr dWr

∥∥∥
p′

E

]

=
( sin(πα)

π

)p′
E

[
sup

s∈[0,t]
∥∥RαY (s)

∥∥p′
E

]

≤
( sin(πα)

π

)p′( ∫ T

0
sr‖Ss‖q

L(E)ds
)p′−1

E
[ ∫ t

0
‖Ys‖p′

E ds
]

≤ cp′
( sin(πα)

π

)p′( ∫ T

0
sr‖Ss‖q

L(E)ds
)p′−1( ∫ T

0

[ f(s)
sα

]2
ds

)p′/2
E

[ ∫ t

0
|ψs |p′ds

]
.

This completes the proof. ��
It seems that there is no estimate of the type (4.5) in the monograph [9]. However, a related

one can be found in its first edition, namely [8, Proposition 7.9].
Step 1: Definition of the Approximation Sequence. Let 0 < α < 1/2 and p′ > 1/α be as in
Sect. 2. Let (�,F , (Ft )t≥0, P) be a filtered probability space (with right-continuous and
complete filtration) which supports a standard cylindrical Brownian motion W and an F0-
measurable random variable ξ0 with distribution η. Take n ∈ N and define a process Xn as
follows: Xn

0 � ξ0I‖ξ0‖E≤n and for k ∈ Z+ and k2−n < t ≤ (k +1)2−n we define inductively

Xn
t � St−k2−n Xn

k2−n +
∫ t

k2−n
St−sμ(s, Xn

k2−n , P Xn

k2−n )ds
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+
∫ t

k2−n
St−sσ(s, Xn

k2−n , P Xn

k2−n )dWs,

and

νn
t � P Xn

k2−n , μn(t, ω, ν) � μ(t, ω(k2−n), ν), σ n(t, ω, ν) � σ(t, ω(k2−n), ν), (4.6)

where (ω, ν) ∈ C(R+, E) × Mc(E). At this point, recall the notation P X
t = P ◦ X−1

t .
Let us explain the induction procedure in more detail: Suppose that k ∈ Z+ is such that

Xn is well-defined on [0, k2−n] and
E

[
sup

s∈[0,k2−n ]
‖Xn

s ‖p′
E

]
< ∞.

Then, Lemma 4.2 and the linear growth assumption (A3) yield that Xn is also well-defined
on [0, (k + 1)2−n] and we also have

E
[

sup
s∈[0,(k+1)2−n ]

‖Xn
s ‖p′

E

]
< ∞.

The construction based on the factorization method yields that Xn has continuous paths. The
following lemma collects our observations and further provides the dynamics of Xn .

Lemma 4.3 The process Xn has a.s. continuous paths, for all T > 0 it holds that

E
[

sup
s∈[0,T ]

‖Xn
s ‖p′

]
< ∞,

and the dynamics of Xn are given by

Xn
t = St Xn

0 +
∫ t

0
St−sμ

n(s, Xn, νn
s )ds +

∫ t

0
St−sσ

n(s, Xn, νn
s )dWs, t ∈ R+.

Proof It is only left to prove the formula for the dynamics. We use induction. Suppose that
Xn has the claimed dynamics on [0, k2−n]. Then, for k2−n < t ≤ (k + 1)2−n we obtain

Xn
t = St−k2−n

(
Sk2−n Xn

0 +
∫ k2−n

0
Sk2−n−sμ

n(s, Xn, νn
s )ds

+
∫ k2−n

0
Sk2−n−sσ

n(s, Xn, νn
s )dWs

)

+
∫ t

k2−n
St−sμ

n(s, Xn, νn
s )ds +

∫ t

k2−n
St−sσ

n(s, Xn, νn
s )dWs

= St Xn
0 +

∫ t

0
St−sμ

n(s, Xn, νn
s )ds +

∫ t

0
St−sσ

n(s, Xn, νn
s )dWs .

Consequently, the proof is complete. ��
Step 2: Uniform moment bound. In this step we derive a moment estimate which is useful to
establish tightness of the family {Xn : n ∈ N}.
Lemma 4.4 For every T > 0 and every bounded set K ⊂ E we have

sup
n∈N

E
[

sup
s∈[0,T ]

‖Xn
s ‖p′

E IXn
0∈K

]
< ∞.
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Proof UsingLemmata 4.2 and 4.3 togetherwith the linear growth assumption (A3), we obtain

E
[

sup
s∈[0,t]

‖Xn
s ‖p′

E IXn
0∈K

]
≤ 3p′+1

(
sup
x∈K

sup
s∈[0,t]

‖Ss x‖p′
E + E

[( ∫ t

0
‖μn(s, Xn, νn

s )‖E ds
)p′

IXn
0∈K

]

+ E
[

sup
s∈[0,t]

∥∥∥
∫ t

0
St−sσ

n(s, Xn, νn
s )IXn

0∈K dWs

∥∥∥
p′

E

])

≤ C
(
1+ E

[( ∫ t

0

(
1+ sup

r∈[0,s]
‖Xn

r ‖E

)
ds

)p′
IXn

0∈K

]

+ E
[ ∫ t

0

(
1+ sup

r∈[0,s]
‖Xn

r ‖E IXn
0∈K

)p′
ds

])

≤ C
(
1+

∫ t

0
E

[
sup

r∈[0,s]
‖Xn

r ‖p′
E IXn

0∈K

]
ds

)

for all t ∈ [0, T ]. As E[supr∈[0,T ] ‖Xn
r ‖p′

E ] < ∞ by Lemma 4.3, the claim follows from
Gronwall’s lemma ([25, Lemma 4.4.15]). ��
Step 3: Tightness of {Xn : n ∈ N}. By the Arzelà–Ascoli characterization of tightness ([21,
Theorem 23.4]), it suffices to prove that for every T > 0 the family {Xn |[0,T ] : n ∈ N} is
tight when seen as Borel probability measures on C([0, T ], E) endowed with the uniform
topology. We adapt the compactness method from [15].

The equality (4.3) and Lemma 4.3 yield that

Xn = SXn
0 + R1μ

n + sin(πα)
π

RαY n, (4.7)

where μn ≡ (s �→ μn(s, Xn, νn
s )) and

Y n
t �

∫ t

0
(t − s)−α St−sσ

n(s, Xn, νn
s )dWs, t ∈ [0, T ].

Fix ε > 0. Since a.s. Xn
0 = ξ0I‖ξ0‖E≤n → ξ0, we have Xn

0 → η weakly, which implies that
{Xn

0 : n ∈ N} is tight. Consequently, there exists a compact set K ⊂ E such that

sup
n∈N

P(Xn
0 /∈ K ) ≤ ε

2
.

Now, we define

K R �
{
ω ∈ C([0, T ], E) : ω = Sx0 + R1ψ + sin(πα)

π
Rαφ,

x0 ∈ K , φ, ψ ∈ L p′([0, T ], E) with
∫ T

0
‖ψ(s)‖p′

E ds ≤ R,

∫ T

0
‖φ(s)‖p′

E ds ≤ R
}
.

For every t ∈ [0, T ] the set {St x : x ∈ K } is compact by the compactness of the semigroup
(and the compactness of K for t = 0). By [11, Lemma I.5.2], the map

[0, T ] × K � (t, x) �→ St x ∈ E

is uniformly continuous. Thus, the Arzelà–Ascoli theorem ([21, Theorem A.5.2]) yields that
the set {Sx |[0,T ] : x ∈ K } is relatively compact in C([0, T ], E), and we conclude from
Lemma 4.1 that K R is relatively compact in C([0, T ], E). Due to (4.7) and Chebyshev’s
inequality, we have

P(Xn |[0,T ] ∈ K R) ≥ 1− P(Xn
0 /∈ K ) − P

( ∫ T

0
‖μn(s, Xn, νn

s )‖p′
E IXn

0∈K ds > R
)
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− P
( ∫ T

0
‖Y n

s ‖p′
E IXn

0∈K ds > R
)

≥ 1− ε

2
− 1

R

(
E

[ ∫ T

0
‖μn(s, Xn, νn

s )‖p′
E IXn

0∈K ds
]

+ E
[ ∫ T

0
‖Y n

s ‖p′
E IXn

0∈K ds
])

.

By virtue of (4.4), (A3) and Lemma 4.4, there exists an R independent of n such that

P(Xn |[0,T ] ∈ K R) ≥ 1− ε,

which implies the tightness of the family {Xn |[0,T ] : n ∈ N}. Consequently, the family
{Xn : n ∈ N} is tight, too.
Step 4: The cylindrical martingale problem. By Step 3, we can extract a weakly convergent
subsequence from the family {Xn : n ∈ N}. For simplicity, we ignore this subsequence in
our notation and assume that Xn → X weakly. With little abuse of notation, we write P X

t
for the law of Xt .

We now study the martingale property of a certain class of test processes. Take g ∈
C2

c (R), f ∈ Cc(R) and y∗ ∈ D(A∗). The coordinate process on C(R+, E) is denoted by X.
We define

Z � f (‖X0‖E )
(

g(〈X, y∗〉E ) − g(〈X0, y∗〉E ) −
∫ ·

0
L (s)ds

)
,

where

L (s) �
(〈Xs, A∗y∗〉E + 〈μ(s,Xs , P X

s ), y∗〉E
)
g′(〈Xs, y∗〉E )

+ 1
2‖σ ∗(s,Xs , P X

s )y∗‖2H g′′(〈Xs, y∗〉E ).

In the following we show that Z is a P ◦ X−1-martingale (for the natural filtration of X).
For each n ∈ N we write σ n,∗ for the adjoint of σ n and we define

Zn � f (‖Xn
0‖E )

(
g(〈Xn, y∗〉E ) − g(〈Xn

0 , y∗〉E ) −
∫ ·

0
L n(s)ds

)
,

where

L n(s) �
(〈Xn

s , A∗y∗〉E + 〈μn(s, Xn, νn
s ), y∗〉E

)
g′(〈Xn

s , y∗〉E )

+ 1
2‖σ n,∗(s, Xn, νn

s )y∗‖2H g′′(〈Xn
s , y∗〉E ).

Recall the mild dynamics of Xn as given in Lemma 4.3. Thanks to [28, Theorem 13], where
we use the second part of (A3), we can pass to its analytically weak dynamics, i.e. we have

〈Xn, y∗〉E = 〈Xn
0 , y∗〉E +

∫ ·

0

(〈Xn
s , A∗y∗〉E + 〈μn(s, Xn, νn

s ), y∗〉E
)
ds

+
∫ ·

0
〈σ n,∗(s, Xn, νn

s )y∗, dWs〉H .

By virtue of these dynamics, Itô’s formula yields that

Zn = f (‖Xn
0‖E )

∫ ·

0
g′(〈Xn

s , y∗〉E )〈σ n,∗(s, Xn, νn
s )y∗, dWs〉H .
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In particular, Zn is a local martingale. Let m > 0 be such that f (x) = 0 for |x | ≥ m. We
denote the quadratic variation process by [·, ·] and we deduce from (A3) that for all T > 0

E
[[Zn, Zn]T

] = E
[ ∫ T

0
| f (‖Xn

0‖E )g′(〈Xn
s , y∗〉E )|2‖σ n,∗(s, Xn, νn

s )y∗‖2H ds
]

≤ C
∫ T

0
E

[‖σ n(s, Xn, νn
s )‖2L(H ,E)I‖Xn

0‖E≤m
]
ds

≤ C
∫ T

0
E

[‖σ n(s, Xn, νn
s )‖p′

L(H ,E)I‖Xn
0‖E≤m

]2/p′
ds

≤ C
(
1+ sup

s∈[0,T ]
E

[‖Xn
s ‖p′

E I‖Xn
0‖E≤m

]2/p′)
.

(4.8)

Hence, Zn is even a true martingale. Furthermore, using this estimate in combination with
Burkholder’s inequality, we obtain, again for all T > 0, that

sup
n∈N

sup
s∈[0,T ]

E
[|Zn

s |2
] ≤ C

(
1+ sup

n∈N
sup

s∈[0,T ]
E

[‖Xn
s ‖p′

E I‖Xn
0‖≤m

]2/p′)
.

As the r.h.s. is finite thanks to Lemma 4.4, the family {Zn
t : t ∈ [0, T ], n ∈ N} is uniformly

integrable for every T > 0. By assumption (A2), the map ω �→ Zt (ω) is continuous (on
C(R+, E) endowed by the local uniform topology) for every t > 0. Thanks to [20, Proposi-
tion IX.1.12], we can conclude that Z is a martingale once we show that

P(|Zn
t − Zt (Xn)| ≥ ε) → 0, ε, t > 0. (4.9)

The probability P(|Zn
t −Zt (Xn)| ≥ ε) only depends on the law of Xn . Thus, to establish (4.9)

we can use Skorokhod’s coupling theorem and assume that X and X1, X2, . . . are defined on
the same probability space and that Xn → X almost surely (in the local uniform topology).
Evidently, we have

|Zn − Z(Xn)| ≤ ‖ f ‖∞
∫ ·

0
|L n(s) −L (Xn)(s)|ds.

In the following we show that a.s. for all t > 0
∫ t

0
|L n(s) −L (Xn)(s)|ds → 0. (4.10)

We have a.s. for every t > 0

‖Xn
�t2n�2−n − Xt‖E ≤ ‖Xn

�t2n�2−n − X�t2n�2−n‖E + ‖X�t2n�2−n − Xt‖E

≤ sup
s∈[0,t]

‖Xn
s − Xs‖E + ‖X�t2n�2−n − Xt‖E → 0.

Hence, for every φ ∈ Cb(E) and t > 0, the dominated convergence theorem yields that
∫

φ(y)νn
t (dy) = E

[
φ(Xn

�t2n�2−n )
] → E

[
φ(Xt )

] =
∫

φ(y)P X
t (dy),

which implies that νn
t → P X

t weakly. Take ω,ω1, ω2, . . . ∈ C(R+, E) such that ωn → ω in
the local uniform topology and fix t > 0, T > t and ε > 0. By the Arzelà–Ascoli theorem
([21, Theorem A.5.2]), there exists a compact set K ⊂ E such that ωn(s) ∈ K for all
s ∈ [0, T ] and n ∈ N, and

sup
n∈N

sup
{‖ωn(s) − ωn(r)‖E : s, r ∈ [0, T ], |s − r | ≤ h

} → 0 as h ↘ 0. (4.11)
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Let dc be a metric which induces the topology on Mc(E), i.e. the topology of convergence in
distribution. By (A2), the function 〈μ(t, ·, ·), y∗〉E is uniformly continuous on the compact
set G � K × {P X

t , ν1t , ν2t , . . . } with respect to the product metric (x, y) × (ν, η) �→ ‖x −
y‖E + dc(ν, η). Thus, there exists a δ > 0 such that

(x, ν), (y, η) ∈ G, ‖x − y‖E + dc(ν, η) ≤ δ

�⇒ |〈μ(t, x, ν) − μ(t, y, η), y∗〉E | ≤ ε.

As νn
t → P X

t weakly, there exists an N ∈ N such that dc(ν
n
t , P X

t ) ≤ δ
2 for all n ≥ N .

Furthermore, thanks to (4.11), there exists an M ∈ N such that for all n ≥ M

‖ωn(�t2n�2−n) − ωn(t)‖E ≤ δ
2 .

Thus, for all n ≥ N ∨ M we have

|〈μ(t, ωn(�t2n�2−n), νn
t ) − μ(t, ωn(t), P X

t ), y∗〉E | ≤ ε.

Using that a.s. Xn → X in the local uniform topology, and recalling the definition of μn as
given in (4.6), we conclude that a.s. for all s > 0

|〈μn(s, Xn, νn
s ) − μ(s, Xn

s , P X
s ), y∗〉E | → 0.

By the same reasoning, using again (A2) and (4.6), we obtain that a.s. for all s > 0

|‖σ n,∗(s, Xn, νn
s )y∗‖2H − ‖σ ∗(s, Xn

s , P X
s )y∗‖2H | → 0.

Consequently, as g′ and g′′ are bounded, we conclude that a.s. for all s > 0

|L n(s) −L (Xn)(s)| → 0. (4.12)

Finally, it remains to deduce (4.10) from this observation and the dominated convergence
theorem. By (A3), more precisely (2.1), we have for all n ∈ N, T > 0 and s ∈ [0, T ]
|L n(s) −L (Xn)(s)| ≤ C

(‖g′‖∞‖y∗‖E + 1
2‖g′′‖∞‖y∗‖2E

)(
1+ sup

m∈N
sup

t∈[0,T ]
‖Xm

t ‖2E
)
,

(4.13)

where the r.h.s. is a.s. finite once again by the Arzelà–Ascoli theorem and the fact that
Xn → X a.s. in the local uniform topology. Thus, we deduce from (4.12) and the dominated
convergence theorem (applied to the Lebesgue integral) that (4.10) holds a.s. for all t > 0.
This implies (4.9) and hence, we conclude that Z is a P ◦ X−1-martingale.
Step 5: Conclusion. We are in the position to complete the proof. Take y∗ ∈ D(A∗) and
define

UN � inf(t ∈ R+ : |〈Xt , y∗〉E | ≥ N ),

SN �
{
0, ‖X0‖E > N ,

+∞, ‖X0‖E ≤ N ,

TN � UN ∧ SN ,

for N ∈ N. Clearly, by the continuous paths of X, TN is a stopping time for the filtration
generated by X. Using Step 4 with g ∈ C2

c (R) such that g(x) = x for all |x | ≤ N and
f ∈ Cc(R) such that f (x) = 1 for all |x | ≤ N yields that the process

〈X·∧TN , y∗〉E − 〈X0, y∗〉E −
∫ ·∧TN

0

(〈Xs, A∗y∗〉E + 〈μ(s,Xs , P X
s ), y∗〉E

)
ds
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is a P ◦ X−1-martingale. Consequently, since TN ↗ ∞ as N → ∞, the process

〈X, y∗〉E − 〈X0, y∗〉E −
∫ ·

0

(〈Xs, A∗y∗〉E + 〈μ(s,Xs , P X
s ), y∗〉E

)
ds

is a local P ◦ X−1-martingale. By virtue of the proof of [22, Proposition 5.4.6], using in
addition the same argument with g ∈ C2

c (R) such that g(x) = x2 for |x | ≤ N yields that its
quadratic variation process is given by

∫ ·
0 ‖σ ∗(s,Xs , P X

s )y∗‖2H ds. Recall that y∗ ∈ D(A∗)
was arbitrary.As D(A∗) separates points, the representation theorem [29, Theorem3.1] yields
the existence of a standard cylindrical Brownian motion B defined on a standard extension
of (C(R+, E),B(C(R+, E)), P ◦ X−1) with the canonical filtration generated by X such
that

〈X, y∗〉E − 〈X0, y∗〉E −
∫ ·

0

(〈Xs, A∗y∗〉E + 〈μ(s,Xs , P X
s ), y∗〉E

)
ds

=
∫ ·

0
〈σ ∗(s,Xs, P X

s )y∗, d Bs〉H

for all y∗ ∈ D(A∗).
Finally, noting that the initial value X0 is distributed according to η under the probability

measure P ◦ X−1, we conclude that X is an analytically weak solution process to the MKV
SPDE with coefficients (A, μ, σ, η). By [28, Theorem 13] it is also a mild solution process
and the existence of a martingale solution is proved. ��

5 Proof of Theorem 2.8

Theorem 2.8 can be proved similar to Theorem 2.5. In the following, we outline the necessary

changes, using the notation from Sect. 4. In case η ∈ M p′
w (E), Lemma 4.4 holds for K = E

and therefore, νn
t → P X

t in M p◦
w (E) by [5, Theorem 5.5] as p◦ < p′. Let X1, X2, . . . be the

approximation sequence as in Step 1 from the proof of Theorem 2.5 and suppose that X is a
weak accumulation point. To keep the notation simple, assume that Xn → X weakly. Then,

E
[

sup
s∈[0,T ]

‖Xs‖p′
E

]
≤ lim inf

n→∞ E
[

sup
s∈[0,T ]

‖Xn
s ‖p′

E

]
≤ sup

n∈N
E

[
sup

s∈[0,T ]
‖Xn

s ‖p′
E

]
< ∞. (5.1)

In Step 4 from the proof of Theorem 2.5, the processes Z and Zn can be defined with f ≡ 1
and the estimate (4.8) should be replaced by

E
[[Zn, Zn]T

] ≤ C
(
1+ E

[
sup

s∈[0,T ]
‖Xn

s ‖p′
E

]2/p′)
,

where we use (2.7) from (A5). Here, the r.h.s. is finite as Lemma 4.4 holds for K = E .
Recalling that νn

t → P X
t in M p◦

w (E) and taking the continuity condition (A4) into account,
the convergence from (4.12) follows as in the proof of Theorem 2.8. Moreover, using again
(2.7) from (A5) instead of (2.1) from (A3), and taking (5.1) into account, the inequality (4.13)
can be replaced by

|L n(s) −L (Xn)(s)| ≤ C
(‖g′‖∞‖y∗‖E + 1

2‖g′′‖∞‖y∗‖2E
)

(
1+ sup

m∈N
E

[
sup

t∈[0,T ]
‖Xm

t ‖p′
]2/p′ + sup

m∈N
sup

t∈[0,T ]
‖Xm

t ‖2E
)
,
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where the expectation term is finite as Lemma 4.4 holds for K = E . By virtue of this
bound, (4.9) follows from (4.12) and the dominated convergence theorem. Step 5 requires
no modification, but we note that it is not necessary to introduce the stopping time SN .

Finally, we explain why (t �→ P X
t ) ∈ C(R+, M p′

w (E)). Since a.s. ‖Xs‖p′
E → ‖Xt‖p′

E for
s → t by the continuous paths of X , (5.1) and the dominated convergence theorem show

that (t �→ P X
t ) ∈ C(R+, M p′

w (E)). ��

6 Proof of Theorem 2.11

The strategy of proof is borrowed from [13, Theorem 3.1]. Let γ ∈ C(R+, M p
w(E)). We now

define solutions to a certain class of classical SPDEs.

Definition 6.1 Wecall a triplet (B, W , X) amartingale solution to the SPDEwith coefficients
(A, μ, σ, γ, η) ifB is a filtered probability spacewith right-continuous and complete filtration
which supports a standard cylindricalBrownianmotionW and a continuous E-valued adapted
process X such that the following hold:

(i) X0 ∼ η.
(ii) Almost surely for all t ∈ R+

∫ t

0
‖St−sμ(s, Xs , γ (s))‖E ds +

∫ t

0
‖St−sσ(s, Xs, γ (s))‖2L2(H ,E)ds < ∞.

(iii) Almost surely for all t ∈ R+

Xt = St X0 +
∫ t

0
St−sμ(s, Xs , γ (s))ds +

∫ t

0
St−sσ(s, Xs, γ (s))dWs .

The proof of the following lemma is postponed to the end of this section.

Lemma 6.2 For i = 1, 2, let (Bi , W i , Xi ) be a martingale solution to the SPDE with coeffi-
cients (A, μ, σ, γ i , η) and let ui (t) be the law of Xi

t for t ∈ R+. Furthermore, assume that
ui ∈ C(R+, M p

w(E)) for i = 1, 2. Then, for every T > 0 and m > 0 such that

max
i=1,2

sup
s∈[0,T ]

‖γ i (s)‖p ≤ m,

there exists a constant C = C(p, T , S, m) > 0 such that

|wp(u
1(s), u2(s))|p ≤ C

∫ s

0
|κ(wp(γ

1(r), γ 2(r)))|pdr , s ∈ [0, T ],
where κ = κT ,m is as in (U1) or (U2), respectively.

In the following we prove Theorem 2.11. For contradiction, let (Bi , W i , Xi ), i = 1, 2,
be two p-martingale solutions to the MKV SPDE (A, μ, σ, η) such that P1 ◦ (X1)−1  =
P2 ◦ (X2)−1. We define ui (t) � Pi ◦ (Xi

t )
−1 for t ∈ R+ and i = 1, 2. By definition of a

p-martingale solution, we have ui ∈ C(R+, M p
w(E)) for i = 1, 2.

Lemma 6.3 s � inf(t ∈ R+ : u1(t)  = u2(t)) < ∞.

Proof For contradiction, assume that s = ∞, i.e. u1 = u2 ≡ u. Then, (Bi , W i , Xi ) are both
martingale solutions to theSPDE (A, μ, σ, u, η). Thanks toTheoremA.1 (under p > 1/α and
(U1)) or [9, Theorem 7.2] (under p ≥ 2 and (U2)), this SPDE has a pathwise unique solution.
By the Yamada–Watanabe theorem [28, Theorem 2], the SPDE also satisfies uniqueness in
law. This contradicts P1 ◦ (X1)−1  = P2 ◦ (X2)−1 and the claim follows. ��
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Remark 6.4 The conclusion of Lemma 6.3 might be compared to [12, Theorem 4.4.2] which
shows that two solutions of certain (time-homogeneous) martingale problems have the same
law already if they have the same one-dimensional distributions.

Lemma 6.2 yields that

|wp(u
1(s), u2(s))|p ≤ C

∫ s

0
|κ(wp(u

1(r), u2(r)))|pdr , s ∈ [0, s+ 1],

where κ depends on s, u1 and u2. Hence, recalling the properties of κ , Bihari’s lemma ([26,
Lemma 5.2.8]) implies that u1 = u2 on [0, s+ 1]. However, as this contradicts the definition
of s, we can conclude that the MKV SPDE satisfies p-uniqueness in law.

Finally, let (B, W , X) and (B, W , Y ) be two p-martingale solutions to the MKV SPDE
(A, μ, σ, η). By the previous part of the proof, we know that X and Y have the same law.
We write γ (t) � P X

t = PY
t for t ∈ R+. Now, (B, W , X) and (B, W , Y ) both are martingale

solutions to the SPDE (A, μ, σ, γ, η). Consequently, as this SPDE satisfies pathwise unique-
ness by Theorem A.1 or [9, Theorem 7.2], we have a.s. X = Y . The proof of Theorem 2.11
is complete. ��
It remains to prove Lemma 6.2.

Proof of Lemma 6.2 Thanks to TheoremA.1 or [9, Theorem 7.2], the SPDE can be realized on
any driving system, and, thanks to theYamada–Watanabe theorem [28, Theorem2], it satisfies
uniqueness in law. Consequently, we can w.l.o.g. assume that (B1, W 1) = (B2, W 2) ≡
(B, W ). Take T , m > 0 such that sups∈[0,T ] ‖γ i (s)‖p ≤ m. For t ∈ [0, T ] we have

E
[‖X1

s − X2
s ‖p

E

] ≤ 2p−1E
[∥∥∥

∫ s

0
Ss−r (μ(r , X1

r , γ 1(r)) − μ(r , X2
r , γ 2(r)))dr

∥∥∥
p

E

]

+ 2p−1E
[∥∥∥

∫ s

0
Ss−r (σ (r , X1

r , γ 1(r)) − σ(r , X2
r , γ 2(r)))dWr

∥∥∥
p

E

]
.

We now estimate each of the latter terms separately, starting with the second term. In case
p > 1/α and (U1) hold, using Lemma 4.2 yields that

E
[∥∥∥

∫ t

0
St−r (σ (r , X1

r , γ 1(r)) − σ(r , X2
r , γ 2(r)))dWr

∥∥∥
p

E

]

≤ C E
[ ∫ t

0

(‖X1
r − X2

r ‖p
E + |κ(wp(γ

2(r), γ 2(r)))|p)dr
]
.

Using Burkholder’s inequality instead of Lemma 4.2, the same inequality holds in case p ≥ 2
and (U2) hold. Using Hölder’s inequlity and (U1), we also get that

E
[∥∥∥

∫ t

0
St−r (μ(r , X1

r , γ 1(r)) − μ(r , X2
r , γ 2(r)))dr

∥∥∥
p

E

]

≤ E
[( ∫ t

0
‖St−r (μ(r , X1

r , γ 1(r)) − μ(r , X2
r , γ 2(r)))‖E dr

)p]

≤ E
[( ∫ t

0
g(t − r)

(‖X1
r − X2

r ‖E + κ(w(γ 1(r), γ 2(r)))
)
dr

)p]

≤
( ∫ T

0

[
g(s)

]p/(p−1)
ds

)p−1
E

[ ∫ t

0

(‖X1
r − X2

r ‖E + κ(w(γ 1(r), γ 2(r)))
)p

dr
]

≤ C E
[ ∫ t

0

(‖X1
r − X2

r ‖p
E + |κ(wp(γ

1(r), γ 2(r)))|p)dr
]
,
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with g = gT ,m as in (U1). A similar computation gives the inequality

E
[∥∥∥

∫ t

0
St−r (μ(r , X1

r , γ 1(r)) − μ(r , X2
r , γ 2(r)))dr

∥∥∥
p

E

]

≤ C E
[ ∫ t

0

(‖X1
r − X2

r ‖p
E + |κ(wp(γ

1(r), γ 2(r)))|p)dr
]

under (U2). Putting these estimates together, we obtain for all t ∈ [0, T ]

E
[‖X1

t − X2
t ‖p

E

] ≤ C
( ∫ t

0
E

[‖X1
s − X2

s ‖p
E

]
ds +

∫ t

0
|κ(wp(γ

1(r), γ 2(r)))|pdr
)
.

As t �→ E[‖X1
t − X2

t ‖p
E ] is locally bounded, we deduce from Gronwall’s lemma that

E
[‖X1

t − X2
t ‖p

E

] ≤ CeCT
∫ t

0
|κ(wp(γ

1(r), γ 2(r)))|pdr

for all t ∈ [0, T ]. Finally, the claim follows from the observation that

|wp(u
1(t), u2(t))|p ≤ E

[‖X1
t − X2

t ‖p
E

]
, t ∈ [0, T ].

The proof is complete. ��

7 Proof of Theorem 3.4

Throughout this section we fix a finite time horizon T > 0. Except in the final step, all
processes in the following are meant to be defined on the finite time interval [0, T ].
Step 1: Tightness in Mc(Mc(C([0, T ], E))). We adapt the argument from Step 3 in the proof
of Theorem 2.5. In the first part of this step we establish a uniform moment bound. Recall
that

L N (x) = 1

N

N∑

i=1

δxi , x = (x1, . . . , xN ) ∈ E⊗N .

By virtue of (A5), for all 0 < s, t ≤ T , x = (x1, . . . , xN ) ∈ E⊗N and i = 1, . . . , N we
have

‖μ(t, xi , L N (x))‖p′
E ≤ C

(
1+ ‖xi‖p′

E + ‖L N (x)‖p′
p′

)

= C
(
1+ ‖xi‖p′

E + 1

N

N∑

j=1

‖x j‖p′
E

)
.

(7.1)

Let

Tm � inf
(

t ∈ [0, T ] : 1

N

N∑

i=1

‖X N ,i
t ‖p′

E ≥ m
)
, m > 0.
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By virtue of (A5) and Lemma 4.2, we obtain that

E
[

sup
s∈[0,t∧Tm ]

∥∥∥
∫ s

0
Ss−rσ(r , X N ,i

r ,X N
r )dW i

r

∥∥∥
p′

E

]

≤ E
[

sup
s∈[0,t]

∥∥∥
∫ s

0
Ss−rσ(r , X N ,i

r∧Tm
, L N (X N ,1

r∧Tm
, . . . , X N ,N

r∧Tm
))dW i

r

∥∥∥
p′

E

]

≤ C E
[ ∫ t

0

(
1+ ‖X N ,i

s∧Tm
‖p′

E + 1

N

N∑

j=1

‖X N , j
s∧Tm

‖p′
E

)
ds

]
.

(7.2)

Now, thanks to (7.1), (7.2) and the uniform moment bound on the initial values from (I), for
all t ∈ [0, T ] we obtain

E
[

sup
s∈[0,t∧Tm ]

1

N

N∑

i=1

‖X N ,i
s ‖p′

E

]
≤ 1

N

N∑

i=1

E
[

sup
s∈[0,t∧Tm ]

‖X N ,i
s ‖p′

E

]

≤ 1

N

N∑

i=1

C
(
1+ E

[ ∫ t

0

(
‖X N ,i

s∧Tm
‖p′

E + 1

N

N∑

j=1

‖X N , j
s∧Tm

‖p′
E

)
ds

])

= C
(
1+ 2E

[ ∫ t

0

1

N

N∑

i=1

‖X N ,i
s∧Tm

‖p′
E ds

])

≤ C
(
1+

∫ t

0
E

[
sup

r∈[0,s∧Tm ]
1

N

N∑

i=1

‖X N ,i
r ‖p′

E

]
ds

)
.

As, by definition of Tm , for all t ∈ [0, T ]

E
[

sup
s∈[0,t∧Tm ]

1

N

N∑

i=1

‖X N ,i
s ‖p′

E

]
≤ 1

N

N∑

i=1

E
[‖X N ,i

0 ‖p′
E

] + m

≤ sup
n∈N

∫
‖XN

1 (x)‖p′
E ηn(dx) + m,

we deduce from Gronwall’s lemma that

E
[

sup
s∈[0,T∧Tm ]

1

N

N∑

i=1

‖X N ,i
s ‖p′

E

]
≤ C .

Hence, letting m → ∞ and using Fatou’s lemma, we get that

E
[

sup
s∈[0,T ]

‖X N ,1
s ‖p′

E

]
≤ E

[
sup

s∈[0,T ]

N∑

i=1

‖X N ,i
s ‖p′

E

]
≤ C N .

Next, using that X N ,i and X N , j have the same law for all i, j ≤ N by the symmetry part of
(I) and the uniqueness part of (EUP), and the uniform moment bound on the initial values
from (I), arguing as above, we get for all t ∈ [0, T ] that

E
[

sup
s∈[0,t]

‖X N ,1
s ‖p′

E

]
≤ C

(
1+

∫ t

0
E

[
sup

r∈[0,s]
‖X N ,1

r ‖p′
E

]
ds

)
.
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Thus, as E
[
sups∈[0,T ] ‖X N ,1

s ‖p′
E

]
< ∞, we can apply Gronwall’s lemma again and obtain

that

sup
N∈N

E
[

sup
s∈[0,T ]

‖X N ,1
s ‖p′

E

]
≤ C . (7.3)

We are in the position to deduce tightness. Fix ε > 0. As the empirical distributionsX N
0

converge weakly as N → ∞ by assumption (I), [33, Proposition I.2.2] yields that the family
{X N ,1

0 : N ∈ N} is tight. Thus, there exists a compact set K ⊂ E such that

sup
N∈N

P
(
X N ,1
0 /∈ K

) ≤ ε

2
. (7.4)

Recalling the notation from Step 0 in the proof of Theorem 2.5, (4.3) yields that

X N ,1 = SX0 + R1μ
N + sin(πα)

π
RαY N ,

where μN ≡ (s �→ μ(s, X N ,1
s ,X N

s )) and

Y N
t �

∫ t

0
(t − s)−α St−sσ(s, X N ,1,X N

s )dW 1
s , t ∈ [0, T ].

Now, we define

K R �
{
ω ∈ C([0, T ], E) : ω = Sx0 + R1ψ + sin(πα)

π
Rαφ,

x0 ∈ K , φ, ψ ∈ L p′([0, T ], E) with
∫ T

0
‖ψ(s)‖p′

E ds ≤ R,

∫ T

0
‖φ(s)‖p′

E ds ≤ R
}
.

Thanks to Lemma 4.1 and the compactness of the semigroup S, the set K R is relatively
compact in C([0, T ], E). Using (4.4), (A5) and the assumption that X N ,i and X N , j have the
same law for all i, j ≤ N , we estimate

E
[ ∫ T

0
‖Y N

s ‖p′
E ds

]
≤ C

(
1+ sup

N∈N
sup

s∈[0,T ]
E

[‖X N ,1
s ‖p′

E

])
. (7.5)

Similarly, thanks to (7.1), we obtain that

E
[ ∫ T

0
‖μ(s, X N ,1

s ,X N
s )‖p′

E ds
]
≤ C

(
1+ sup

N∈N
sup

s∈[0,T ]
E

[‖X N ,1
s ‖p′

E

])
. (7.6)

In summary, using Chebyshev’s inequality and (7.4), (7.5) and (7.6), for every ε > 0 we can
take R = R(ε) > 0 large enough such that

P
(
X N ,1 ∈ K R

) ≥ 1− ε.

Consequently, the family {X N ,1 : N ∈ N} is tight.
Step 2: Tightness in Mc(M p◦

w (C([0, T ], E))). Let dT be the uniform metric on C([0, T ], E),
i.e.

dT (ω, α) � sup
s∈[0,T ]

‖ω(s) − α(s)‖E , ω, α ∈ C([0, T ], E).

In the following we consider X 1,X 2, . . . as random variables with values in M p◦
w

(C([0, T ], E)). Next, we show that {X N : N ∈ N} is tight.
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Fix ε > 0 and define

an � n1/(p′−p◦)2n/(p′−p◦), bn � εn
/[

sup
m∈N

E
[

sup
s∈[0,T ]

‖Xm,1
s ‖p′

E

]
∨ 1

]
,

and

Kε �
⋂

n∈N

{
ν ∈ M p◦

w (C([0, T ], E)) :
∫

dT (ω, 0)p◦
IdT (ω,0)≥an ν(dω) <

1

bn

}
. (7.7)

For every N ∈ N we obtain

P
(
X N /∈ Kε

) ≤
∞∑

n=1

P
( 1

N

N∑

i=1

dT (X N ,i , 0)p◦
IdT (X N ,i ,0)≥an

≥ 1

bn

)

≤
∞∑

n=1

bn

N

N∑

i=1

E
[
dT (X N ,i , 0)p◦

IdT (X N ,i ,0)≥an

]

≤
∞∑

n=1

bn

a p′−p◦
n

E
[

sup
s∈[0,T ]

‖X N ,1
s ‖p′

E

]

≤ ε.

By [33, Proposition I.2.2], Step 1 implies that the family {X N : N ∈ N}, seen as
random variables in Mc(C([0, T ], E)), is tight. Consequently, as {X N : N ∈ N} ⊂
M p◦

w (C([0, T ], E)), there exists a set Gε ⊂ M p◦
w (C([0, T ], E)) which is relatively com-

pact in Mc(C([0, T ], E)) such that

sup
N∈N

P
(
X N /∈ Gε

) ≤ ε.

Let Kε be as in (7.7). Then, we have for all N ∈ N

P
(
X N /∈ Gε ∩ Kε

) ≤ P
(
X N /∈ Gε

) + P
(
X N /∈ Kε

) ≤ 2ε.

Using that the set Gε ∩ Kε is relatively compact in M p◦
w (C([0, T ], E)) by [5, Corol-

lary 5.6], we can conclude that the family {X N : N ∈ N} is tight when seen as random
variables with values in M p◦

w (C([0, T ], E)). From now on we assume that X N → X

in Mc(M p◦
w (C([0, T ], E))), i.e that the laws of X N , which are considered as elements of

Mc(M p◦
w (C([0, T ], E))), converge weakly to the law of X ∈ M p◦

w (C([0, T ], E)). We note
that

E
[ ∫

dT (ω, 0)p′X (dω)
]
≤ lim inf

N→∞ E
[ ∫

dT (ω, 0)p′X N (dω)
]

= lim inf
N→∞

1

N

N∑

i=1

E
[

sup
s∈[0,T ]

‖X N ,i
s ‖p′

E

]

= lim inf
N→∞ E

[
sup

s∈[0,T ]
‖X N ,1

s ‖p′
E

]

≤ sup
N∈N

E
[

sup
s∈[0,T ]

‖X N ,1
s ‖p′

E

]
< ∞.

(7.8)

Thus, a.s. X ∈ M p′
w (C([0, T ], E)) ⊂ M p◦

w (C([0, T ], E)).
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Step 3: Convergence of test processes.Take0 ≤ s < t ≤ T , t1, . . . , tm ∈ [0, s], h1, . . . , hm ∈
Cb(E), g ∈ C2

c (R) and y∗ ∈ D(A∗). For (ω, ν) ∈ C([0, T ], E) × M p◦
w (C([0, T ], E)) we

define

Mr (ω, ν) � g(〈ω(r), y∗〉E ) − g(〈ω(0), y∗〉E ) −
∫ r

0
Lu(ω, ν)du, r ∈ [0, T ],

where

Lu(ω, ν) �
(〈ω(u), A∗y∗〉E + 〈μ(u, ω(u), ν ◦ X−1

u ), y∗〉E
)
g′(〈ω(u), y∗〉E )

+ 1
2‖σ ∗(u, ω(u), ν ◦ X−1

u )y∗‖2H g′′(〈ω(u), y∗〉E ),

and

V (ω, ν) �
(
Mt (ω, ν) − Ms(ω, ν)

) m∏

i=1

hi (ω(ti )).

For all ν ∈ M p◦
w (C([0, T ], E)) and k > 0 we define

Zk(ν) �
∫ [

(−k) ∨ V (ω, ν) ∧ k
]
ν(dω), Z(ν) � lim inf

k→∞ Zk(ν).

If νn → ν in M p◦
w (C([0, T ], E)), then (r �→ νn ◦ X−1

r ) → (r �→ ν ◦ X−1
r ) in

C([0, T ], M p◦
w (E)), which follows from the inequality

sup
r∈[0,T ]

wp◦(νn ◦ X−1
r , ν ◦ X−1

r ) ≤ wp◦
T (νn, ν),

wherewp◦
T is the p◦-Wassersteinmetric on M p◦

w (C([0, T ], E)). By the continuity assumption
(C) and the dominated convergence theorem (which is applicable due to the local boundede-
ness part in (C)), V is continuous. Thus, [3, Theorem 8.10.61] yields that Zk is continuous.
In particular, Z is Borel measurable.

For all (ω, ν) ∈ C([0, T ], E) × M p′
w (C([0, T ], E)) we have

∣∣V (ω, ν)
∣∣p′/2 ≤ C

(
1+

∫ t

s

(‖ω(r)‖p′
E + ‖ν ◦ X−1

r ‖p′
p′

)
dr

)
, (7.9)

where we use (A5). Since a.s. X ,X N ∈ M p′
w (C([0, T ], E)), we have a.s.

Z(X N ) =
∫

V (ω,X N )X N (dω) = 1

N

N∑

i=1

V (X N ,i ,X N ),

Z(X ) =
∫

V (ω,X )X (dω).

Our next aim is to show that a.s. Z(X ) = 0. Together with a monotone class argument, this
implies that a.a. realizations ofX are p′-solution measures to the MKV SPDE (A, μ, σ, η).

Lemma 7.1 E
[|Z(X N )|] → E

[|Z(X )|] as N → ∞.

Proof The triangle inequality yields that
∣∣E

[|Z(X N )|] − E
[|Z(X )|]∣∣ ≤ ∣∣E

[|Z(X N )|] − E
[|Zk(X

N )|]∣∣
+ ∣∣E

[|Zk(X
N )|] − E

[|Zk(X )|]∣∣
+ ∣∣E

[|Zk(X )|] − E
[|Z(X )|]∣∣.

(7.10)

123



114 Page 30 of 40 D. Criens

Using (7.9), we estimate

E
[∣∣Z(X N ) − Zk(X

N )
∣∣] ≤ 1

N

N∑

i=1

E
[∣∣V (X N ,i ,X N ) − [

(−k) ∨ V (X N ,i ,X N ) ∧ k
]∣∣]

≤ 1

N

N∑

i=1

E
[∣∣V (X N ,i ,X N )

∣∣I|V (X N ,i ,X N )|>k

]

≤ 1

k p′/2−1

1

N

N∑

i=1

E
[∣∣V (X N ,i ,X N )

∣∣p′/2]

≤ C

k p′/2−1

(
1+ sup

n∈N
sup

r∈[0,t]
E

[‖Xn,1
r ‖p′

E

])
,

where the constant C is independent of k and N . By virtue of (7.3), this bound shows that
the first term on the r.h.s. of (7.10) converges to zero as k → ∞ uniformly in N . A similar
computation shows the same claim for the final term. Finally, the second term on the r.h.s. of
(7.10) convergences to zero as N → ∞ because Zk ∈ Cb(M p◦

w (C([0, T ], E))). The proof
is complete. ��
Lemma 7.2 E

[(
Z(X N )

)2] → 0 as N → ∞.

Proof We compute

E
[(

Z(X N )
)2] = E

[( ∫
V (ω,X N )X N (dω)

)2]

= 1

N 2

N∑

i, j=1

E
[
V (X N ,i ,X N )V (X N , j ,X N )

]
.

Passing to the analytically weak formulation of X N ,i and using Itô’s formula, we get that

M(X N ,i ,X N ) =
∫ ·

0
g′(〈X N ,i

s , y∗〉E )〈σ ∗(s, X N ,i
s ,X N

t )y∗, dW i
s 〉H ,

see Step 4 in the proof of Theorem 2.5 for more details. We obtain

[M(X N ,i ,X N ), M(X N ,i ,X N )] =
∫ ·

0

(
g′(〈X N ,i

s , y∗〉E )
)2‖σ ∗(s, X N ,i

s ,X N
s )y∗‖2H ds

≤ ‖g′‖2∞‖y∗‖2E
∫ ·

0
‖σ(s, X N ,i

s ,X N
s )‖2L(H ,E)ds,

where [·, ·] denotes the quadratic variation process. Taking expectation and using (A5), we
further get

E
[[M(X N ,i ,X N ), M(X N ,i ,X N )]T

] ≤ C
(
1+ E

[
sup

r∈[0,T ]
‖X N ,1

r ‖p′
]2/p′)

< ∞. (7.11)

Consequently, M(X N ,i ,X N ) is a square-integrable martingale. Therefore, we obtain that

E
[

Mt (X N ,i ,X N )Ms(X N , j ,X N )

N∏

k=1

hk(X N ,i
tk )hk(X N , j

tk )
]

= E
[

Ms(X N ,i ,X N )Ms(X N , j ,X N )

N∏

k=1

hk(X N ,i
tk )hk(X N , j

tk )
]
.

(7.12)
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For i  = j , as W i and W j are independent, [7, Proposition A.3] yields that
[ ∫ ·

0
〈σ ∗(t, X N ,i

t ,X N
t )y∗, dW i

t 〉H ,

∫ ·

0
〈σ ∗(t, X N , j

t ,X N
t )y∗, dW j

t 〉H

]
= 0,

which implies that

[M(X N ,i ,X N ), M(X N , j ,X N )] = 0.

Consequently, the product M(X N ,i ,X N )M(X N , j ,X N ) is a martingale for i  = j (see [20,
Proposition I.4.50]). We therefore obtain for i  = j that

E
[

Mt (X N ,i ,X N )Mt (X N , j ,X N )

N∏

k=1

hk(X N ,i
tk )hk(X N , j

tk )
]

= E
[

Ms(X N ,i ,X N )Ms(X N , j ,X N )

N∏

k=1

hk(X N ,i
tk )hk(X N , j

tk )
]
.

Together with (7.12), we deduce that

E
[
V (X N ,i ,X N )V (X N , j ,X N )

] = 0, i  = j .

In summary, using also (7.11) and Burkholder’s inequality, we obtain

1

N 2

N∑

i, j=1

E
[
V (X N ,i ,X N )V (X N , j ,X N )

] = 1

N 2

N∑

i=1

E
[(

V (X N ,i ,X N )
)2]

≤ C

N

(
1+ sup

n∈N
E

[
sup

r∈[0,t]
‖Xn,1

r ‖p′
]2/p′)

.

As the final term converges to zero as N → ∞, the claim of the lemma follows. ��
Combining Lemmas 7.1 and 7.2, we obtain that

E
[∣∣Z(X )

∣∣] = lim
N→∞ E

[∣∣Z(X N )
∣∣] ≤ lim

N→∞ E
[(

Z(X N )
)2]1/2 = 0,

which implies that a.s. Z(X ) = 0.
Step 4: Identifying the limit. We are now in the position to identify the limit X . However,
to use our assumption (UL) we first have to adjust our setting to the infinite time horizon.
By Step 1 and [21, Theorem 23.4], the family {X N : N ∈ N} is tight when considered as
random variables in Mc(C(R+, E)). LetX ∗ be an accumulation point of {X N : N ∈ N}. In
the followingwe show that a.s.X ∗ = X 0 whereX 0 denotes the unique law of a p′-solution
process of the MVK SPDE (A, μ, σ, η), see assumption (UL). Together with the tightness in
Mc(M p◦

w (C([0, T ], E))), this then implies that X N |[0,T ] → X 0|[0,T ] in probabilty when

seen as random variables in M p◦
w (C([0, T ], E)). The final claim of the theorem will then

follow from Vitali’s theorem.

Lemma 7.3 There exists a countable set D ⊂ D(A∗) such that for every y∗ ∈ D(A∗) there
exists a sequence y∗1 , y∗2 , · · · ∈ D with y∗n → y∗ and A∗y∗n → A∗y∗.

Proof As E is assumed to be separable, there exists a countable dense subset F . As A
generates a C0-semigroup, there exists a λ > 0 in the resolvent set of A and hence also in
the resolvent set of A∗, see [30, Theorem 1.5.3, Lemma 1.10.2]. Now, set

D �
{
(λ − A∗)−1x : x ∈ F

} ⊂ D(A∗).
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Obviously, D is countable. Let y∗ ∈ D(A∗) and set x � λy∗ − A∗y∗ = (λ − A∗)y∗.
As F is dense, there exists a sequence x1, x2, · · · ∈ F such that xn → x . Now, set y∗n �
(λ − A∗)−1xn ∈ D for n ∈ N. We have y∗n → (λ − A∗)−1x = y∗ as (λ − A∗)−1 ∈ L(E).
Furthermore, −A∗y∗n = (λ− A∗)y∗n − λy∗n = xn − λy∗n → x − λy∗ = −A∗y∗. This shows
the claim. ��

LetC ⊂ Cb(E) be a countable set which is measure determining ([12, Proposition 3.4.2]).
Let G � {gn

1 , gn
2 : n ∈ N}, where gn

1 , gn
2 ∈ C2

c (R) are such that gn
1 (x) = x and gn

2 (x) = x2

for |x | ≤ n.
We realizeX ∗ on a probability space (�,F , P). Let G be the set of all ω ∈ � such that

X ∗|[0,M](ω) ∈ M p′
w (C([0, M], E)) for all M ∈ N, X ∗

0 (ω) = η and Z(X ∗(ω)) = 0 for all
s, t ∈ Q+, s < t, y∗ ∈ D, g ∈ G , m ∈ N, t1, . . . , tm ∈ [0, s] ∩Q+ and h1, . . . , hm ∈ C .

Lemma 7.4 P(G) = 1.

Proof Notice that a.s. X ∗
0 = η thanks to assumption (I). Fix M ∈ N and suppose that

X Nm → X ∗ in Mc(Mc(C(R+, E))) as m → ∞. Recalling (7.8), we get a.s. X ∗|[0,M] ∈
M p′

w (C([0, M], E)). By Step 2, there exists a subsequence of {X Nm |[0,M] : m ∈ N} which
converges to a limit X ◦ in Mc(M p◦

w (C([0, M], E))) and we have X ∗|[0,M] = X ◦ in law.
Now, for Z defined with T = M , Step 3 yields that a.s. Z(X ◦) = 0. As X ∗|[0,M] = X ◦
in law, it follows that a.s. Z(X ∗) = 0. In summary, G is the intersection of countably many
full sets and therefore a full set by itself. This is the claim. ��

Take ω ∈ G. For every y∗ ∈ D, a monotone class argument and similar considerations as
in Step 5 of the proof for Theorem 2.5 show that

〈X, y∗〉E − 〈X0, y∗〉E −
∫ ·

0

(〈Xs, A∗y∗〉E + 〈μ(s,Xs ,X
∗

s (ω)), y∗〉E
)
ds

is a local X ∗(ω)-martingale (on the space C(R+, E) endowed with the natural filtration
generatedby the coordinate processX)with quadratic variationprocess

∫ ·
0 ‖σ ∗(s,Xs ,X

∗
s (ω))

y∗‖2H ds.Using Lemma 7.3 and the fact that ucp (uniformly on compacts in probability) limits
of continuous localmartingales are again continuous localmartingales (see [6, LemmaB.11]),
we can conclude that the same holds for all y∗ ∈ D(A∗). As D(A∗) separates points,
the representation theorem [29, Theorem 3.1] and the equivalence of the weak and mild
formulation as given by [28, Theorem 13] yield that X ∗(ω) is a p′-solution measure of the
MKV SPDE (A, μ, σ, η).

Consequently, by assumption (UL), a.s. X ∗ = X 0. Using that {X N |[0,T ] : N ∈ N}
is tight in Mc(M p◦

w (C([0, T ], E))) by Step 3, we conclude that X N |[0,T ] → X 0|[0,T ] in
Mc(M p◦

w (C([0, T ], E))) as N → ∞. AsX 0 is deterministic, we also getwp◦
T (X N ,X 0) →

0 in probability, where wp◦
T denotes the p◦-Wasserstein metric on M p◦

w (C([0, T ], E)).

Finally, we show that the family {|wp◦
T (X N ,X 0)|p◦ : N ∈ N} is uniformly integrable.

In this case, (3.3) follows from Vitali’s theorem. We estimate

E
[(∣∣wp◦

T (X N , δ0)
∣∣p◦)(p′/p◦)] = E

[( 1

N

N∑

i=1

sup
s∈[0,T ]

‖X N ,i
s ‖p◦

E

)p′/p◦]

≤ E
[ 1

N

N∑

i=1

sup
s∈[0,T ]

‖X N ,i
s ‖p′

E

]
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= E
[

sup
s∈[0,T ]

‖X N ,1
s ‖p′

E

]
,

where we use Hölder’s inequality in the second line. Since p′/p◦ > 1 and X 0 ∈
M p′

w (C([0, T ], E)), (7.3) yields that the family {|wp◦
T (X N ,X 0)|p◦ : N ∈ N} is uniformly

integrable. Consequently, (3.3) holds. Finally, the chaotic property follows from [33, Propo-
sition I.2.2]. ��
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Appendix A: An Existence and Uniqueness Result for classical SPDEs

Let μ : R+ × E → E and σ : R+ × E → L(H , E) be Borel functions, and take a constant
0 < α < 1/2. The following theorem should be compared to [8, Theorem 7.6]. Its proof
follows the standard path but for completeness we outline the argument.

Theorem A.1 Assume that for every T > 0 there exist Borel functions f = fT : (0, T ] →
[0,∞] and g = gT : (0, T ] → [0,∞] such that

∫ T

0

([ f(s)
sα

]2 + [
g(s)

]p/(p−1)
)

ds < ∞,

and

‖St (σ (s, x) − σ(s, y))‖L2(H ,E) ≤ f(t)‖x − y‖E ,

‖St (μ(s, x) − μ(s, y))‖E ≤ g(t)‖x − y‖E ,

‖Stσ(s, x)‖L2(H ,E) ≤ f(t)(1+ ‖x‖E ),

‖Stμ(s, x)‖E ≤ g(t)(1+ ‖x‖E ),

for all 0 < t, s ≤ T and x, y ∈ E. Then, for any η ∈ Mc(η), on any driving system (B, W )

there exists a unique, up to indistinguishability, continuous mild solution process X to the
SPDE

d Xt = AXt dt + μ(t, Xt )dt + σ(t, Xt )dWt , X0 ∼ η.

Moreover, for every p > 1/α, T > 0 and η ∈ M p
w(E),

E
[

sup
s∈[0,T ]

‖Xs‖p
E

]
< ∞.

Here, a mild solution is meant to be defined in the usual sense, i.e. similar to Definition 6.1
without the coefficient γ .

123

http://creativecommons.org/licenses/by/4.0/


114 Page 34 of 40 D. Criens

Sketch of Proof We start by proving the second part of the theorem. Let p > 1/α and assume
that η ∈ M p

w(E). Take a completed filtered probability space (�,F , (Ft )t≥0, P)which sup-
ports a cylindrical Brownian motion W and anF0-measurable ξ such that ξ ∼ η. Moreover,
let H p be the space of continuous E-valued processes Y = (Yt )t≥0 such that

E
[

sup
s∈[0,T ]

‖Ys‖p
E

]
< ∞, ∀T > 0.

Define a map I : H p → H p by

I (Y )(t) � Stξ +
∫ t

0
St−sμ(s, Ys)ds +

∫ t

0
St−sσ(s, Ys)dWs, t ∈ R+.

Let us elaborate in more detail that I (H p) ⊂ H p . First of all,

E
[

sup
s∈[0,T ]

‖I (Y )(s)‖p
E

]
< ∞, ∀T > 0,

follows from the linear growth assumptions, Lemma 4.2 and the estimate

E
[

sup
t∈[0,T ]

∥∥∥
∫ t

0
St−sμ(s, Ys)ds

∥∥∥
p

E

]
≤ E

[
sup

t∈[0,T ]

( ∫ t

0
g(t − s)(1+ ‖Ys‖E )ds

)p]

≤ E
[( ∫ T

0

[
g(s)

]p/(p−1)
ds

)p−1
∫ T

0
(1+ ‖Ys‖E )pds

]

≤
( ∫ T

0

[
g(s)

]p/(p−1)
ds

)p−1
2p+1T

(
1+ E

[
sup

s∈[0,T ]
‖Ys‖p

E

])
,

which uses Hölder’s inequality. While the first two terms in the definition of I (Y ) are clearly
continuous ([26, Lemma 6.2.9]), the last integral is continuous thanks to Lemma 4.2. This
shows that I (H p) ⊂ H p . Next, for Y , Z ∈ H p and T > 0 set

�T (Y , Z) � E
[

sup
s∈[0,T ]

‖Ys − Zs‖p
E

]
.

For every T > 0, using the Lipschitz hypothesis and similar arguments as above, we obtain

�T (I (Y ), I (Z)) ≤ C
∫ T

0
E

[‖Ys − Zs‖p
E

]
ds ≤ C

∫ T

0
�s(Y , Z)ds, (A.1)

where the constant depends on T , g = gT and f = fT . Define now inductively a sequence
X0, X1, X2, . . . such that X0 � Sξ and Xn � I (Xn−1) for n = 1, 2, . . . . It follows from
(A.1) and induction that

�T (Xn−1, Xn) ≤ CnT n

n! �T (X0, X1), n = 1, 2, . . . , T > 0.

Consequently, by a Borel–Cantelli argument ([22, Theorem 5.2.9]), we deduce that the
sequence X1, X2, . . . converges a.s. in the local uniform topology to a continuous process
X . Furthermore, we obtain that

E
[
sup
n∈N

sup
s∈[0,T ]

‖Xn
s − ξ‖p

E

]
≤

∞∑

n=1

n p+1E
[

sup
s∈[0,T ]

‖Xn
s − Xn−1

s ‖p
E

]

≤
∞∑

n=1

n p+1 CnT n

n! �T (X0, X1) < ∞.
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Thus, X ∈ H p and the dominated convergence theorem together with (A.1) yield that

�T (I (X), X) = lim
n→∞�T (I (X), Xn) ≤ lim

n→∞ C
∫ T

0
�s(X , Xn)ds = 0.

We conclude that a.s. I (X) = X , which shows that X is a continuous mild solution process.
Furthermore, (A.1) and Gronwall’s lemma yield uniqueness up to indistinguishability.

Finally, let us comment on the general case where η ∈ Mc(E). For m = 1, 2, . . . , let
Xm be a solution as constructed above for the initial value ξm � ξI‖ξ‖E≤m . Then, a.s.
Xn = Xn+1 on {‖ξ‖E ≤ n}, n = 1, 2, . . . . Consequently, limn→∞ Xn is a.s. well-defined
and a continuousmild solution. To prove the uniqueness statement, let Y be a solution process
on the same driving system as X1, X2, . . . . For every m ∈ N, notice that

X̄m �
{

Y , on {‖ξ‖E ≤ m},
Xm, otherwise,

is a solution to the SPDE with initial value ξI‖ξ‖E≤m . Hence, by the above uniqueness
statement, we get that a.s. X̄m = Xm and therefore a.s. Xm = Y on {‖ξ‖E ≤ m}. This yields
the claimed uniqueness. ��

Appendix B: Proof of Theorem 2.12

By virtue of Theorem 2.11, it suffices to prove the existence of a p-solution process on any
given driving system (B, W ). We use a classical argument based on a fixed point theorem
(see [5, Theorem 4.21] for the argument in finite dimensions with finite time horizon). In
the following we show existence on a finite time interval [0, T ] with a random initial value
ξ0 ∼ η. The existence of a global solution follows from the local result by pasting. Let
γ ∈ C([0, T ], M p

w(E)). By Theorem A.1 (in case p > 1/α and (L1) holds) and [16,
Theorem 3.3] (in case p ≥ 2, (L2) holds and S is a generalized contraction), there exists a
continuous mild solution process X (γ ) to the SPDE

d Xt = AXt dt + μ(t, Xt , γt )dt + σ(t, Xt , γt )dWt , X0 = ξ0,

such that

E
[

sup
s∈[0,T ]

‖X (γ )
s ‖p

E

]
< ∞.

Furthermore, by the Yamada–Watanabe theorem [28, Theorem 2], the law of X (γ ) is
fully characterized by A, μ, σ, η and γ . We now define a map � : C([0, T ], M p

w(E)) →
C([0, T ], M p

w(E)) by

�(γ )(t) = P ◦ (X (γ )
t )−1, t ∈ [0, T ].

Let γ, γ ′ ∈ C([0, T ], M p
w(E)). As in the proof of Lemma 6.2, we obtain the estimate

E
[‖X (γ )

t − X (γ ′)
t ‖p

E

] ≤ C
( ∫ t

0
E

[‖X (γ )
s − X (γ ′)

s ‖p
E

]
ds +

∫ t

0
|wp(γ (s), γ ′(s))|pds

)
, t ∈ [0, T ].

Thus, Gronwall’s lemma yields that

|wp(�(γ )(t),�(γ ′)(t))|p ≤ E
[‖X (γ )

t − X (γ ′)
t ‖p

E

] ≤ C
∫ t

0
|wp(γ (s), γ ′(s))|pds.
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Using Induction we get for every k ∈ N that

sup
s∈[0,T ]

|wp(�
k(γ )(s),�k(γ ′)(s))|p ≤ Ck

∫ T

0

(T − s)(k−1)

(k − 1)! |wp(γ (s), γ ′(s))|pds

≤ Ck T k

k! sup
s∈[0,T ]

|wp(γ (s), γ ′(s))|p.

Thus, there exists an N ∈ N such that �k is a contraction on the Polish space
C([0, T ], M p

w(E)) for all k ≥ N . Thanks to the theorem in [4], this yields that � has a
fixed point and consequently, restricted to the time interval [0, T ], that there exists a solution
process to the MKV SPDE with coefficients (A, μ, σ, η).

Finally, the existence of a global solution process, i.e. a solution process defined on the
infinite time interval R+, follows by pasting: Set X0 � ξ0. For n ∈ N, let Xn be a solution
process with coefficients μ(· + n − 1, ·, ·), σ (· + n − 1, ·, ·), initial value Xn−1

n−1 and driving

noise W n � W·+n−1 − Wn−1. Finally, define

Xt �
∞∑

k=1

Xk
t−(k−1)Ik−1≤t<k, t ∈ R+.

For k < t ≤ k + 1 we compute that

Xt = St−k Xk
k +

∫ t−k

0
St−k−sμ(s + k, Xk+1

s , P Xk+1

s )ds

+
∫ t−k

0
St−k−sσ(s + k, Xk+1

s , P Xk+1

s )dW k+1
s

= St−k Xk
k +

∫ t

k
St−sμ(s, Xk+1

s−k , P Xk+1

s−k )ds +
∫ t

k
St−sσ(s, Xk+1

s−k , P Xk+1

s−k )dWs

= St−k Xk
k +

∫ t

k
St−sμ(s, Xs , P X

s )ds +
∫ t

k
St−sσ(s, Xs, P X

s )dWs .

Thus, by induction, X is a solution process to the MKV SPDE with coefficients
(A, μ, σ, η). ��

Appendix C: Proof of Proposition 3.5

Fix N ∈ N and consider the (separable) Hilbert spaces Ẽ �
⊕N

i=1 E and H̃ �
⊕N

i=1 H .

Here, recall that
⊕N

i=1 denotes the Hilbert space direct sum. Moreover, for t ∈ R+ and
e = (e1, . . . , eN ) ∈ Ẽ we set

L(e) � 1

N

N∑

i=1

δei ,

μ̃(t, e) �
N⊕

i=1

μ(t, ei , L(e)) ∈ Ẽ,

σ̃ (t, e) �
N⊕

i=1

σ(t, ei , L(e)) ∈ L(H̃ , Ẽ).
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It is not hard to check that the process W̃ �
⊕N

i=1 W i is a standard cylindrical Brownian
motion. The system of SPDEs associated to the processes X N ,1, . . . , X N ,N can now be
written as

d X̃t = Ã X̃t dt + μ̃(t, X̃t )dt + σ̃ (t, X̃t )dW̃t , Ã �
N⊕

i=1

A,

where Ã generates the C0-semigroup S̃ �
⊕N

i=1 S on Ẽ . Thus, by virtue of Theorem A.1,
the claim of the proposition follows in case μ̃ and σ̃ satisfy suitable Lipschitz and linear
growth conditions, which we check in the following. Take T > 0 and let f = fT be as in
(L1). Then, for all 0 < t, s ≤ T and e = (e1, . . . , eN ) ∈ Ẽ we get

‖S̃t σ̃ (s, e, L(e))‖2
L2(H̃ ,Ẽ)

=
N∑

i=1

‖Stσ(s, ei , L(e))‖2L2(E,H)

≤ [
f(t)

]2
N∑

i=1

C
(
1+ ‖ei‖2E + ‖L(e)‖2p

)

≤ [
f(t)

]2
C N

(
1+ ‖e‖2

Ẽ

)
.

Similarly, we obtain for all 0 < t, s ≤ T and e = (e1, . . . , eN ), f = ( f 1, . . . , f N ) ∈ Ẽ that

‖S̃t (̃σ (s, e, L(e)) − σ̃ (t, f , L( f )))‖2
L2(H̃ ,s Ẽ)

≤ [
f(t)

]2(
C‖e − f ‖2

Ẽ
+ C N |wp(L(e), L( f ))|2).

We now estimate wp(L(e), L( f )). Set

F � 1

N

N∑

i=1

δ(ei , f i ).

Then, F(dx × E) = L(e)(dx), F(E × dx) = L( f )(dx) and

( ∫∫
‖x − y‖p

E F(dx, dy)
)1/p =

( 1

N

N∑

i=1

‖ei − f i‖p
E

)1/p ≤ 1

N 1/p
‖e − f ‖Ẽ .

Hence, we obtain

|wp(L(e), L( f ))|2 ≤ ‖e − f ‖2
Ẽ
,

and finally,

‖S̃t (̃σ (s, e, L(e)) − σ̃ (t, f , L( f )))‖2
L2(H̃ ,Ẽ)

≤ [
f(t)

]2
C N‖e − f ‖2

Ẽ
.

We conclude that the coefficient σ̃ satisfies the linear growth and Lipschitz conditions from
TheoremA.1. Similar computations show the same for the coefficient μ̃. We omit the remain-
ing details. ��

Appendix D: Proof of Theorem 3.6

We borrow the main idea from the proof of [24, Theorem 3.3]. By virtue of Theorem 2.12,
let Y i be a p-solution process to the MKV SPDE (A, μ, σ, η) on the driving system (B, W i )
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with initial value ξ i
0. Take T > 0 and denote byX 0

t the projection ofX 0 to the time t value.
By virtue of the proof of Lemma 6.2, using Lemma 4.2 (in case p > 1/α and (L1) holds) and
part (b) of [16, Lemma 3.3] (in case p ≥ 2, (L2) holds and S is a generalized contraction),
for all t ∈ [0, T ] we obtain that

E
[

sup
s∈[0,t]

‖X N ,i
s − Y i

s ‖p
E

]
≤ C E

[ ∫ t

0

(‖X N ,i
s − Y i

s ‖p
E + |wp(X

N
s ,X 0

s )|p)ds
]

≤ C E
[ ∫ t

0

(
sup

r∈[0,s]
‖X N ,i

r − Y i
r ‖p

E + |wp(X
N

s ,X 0
s )|p

)
ds

]
.

Thus, Gronwall’s lemma yields that

E
[

sup
s∈[0,t]

‖X N ,i
s − Y i

s ‖p
E

]
≤ C

∫ t

0
E

[|wp(X
N

s ,X 0
s )|p]ds, t ∈ [0, T ]. (D.1)

We set

Y N � 1

N

N∑

i=1

δY i .

Using the coupling 1
N

∑N
i=1 δ(X N ,i ,Y i ), we obtain that

|wp
t (X N ,Y N )|p ≤ 1

N

N∑

i=1

sup
s∈[0,t]

‖X N ,i
s − Y i

s ‖p
E .

Hence, for all t ∈ [0, T ]
E

[|wp
t (X N ,X 0)|p] ≤ C

(
E

[|wp
t (X N ,Y N )|p] + E

[|wp
t (Y N ,X 0)|p])

≤ C
( ∫ t

0
E

[|wp(X
N

s ,X 0
s )|p]ds + E

[|wp
t (Y N ,X 0)|p])

≤ C
( ∫ t

0
E

[|wp
s (X N ,X 0)|p]ds + E

[|wp
t (Y N ,X 0)|p]).

Using Gronwall’s lemma once again, we conclude that

E
[|wp

T (X N ,X 0)|p] ≤ C E
[|wp

T (Y N ,X 0)|p].

The r.h.s. converges to zero as N → ∞ by [24, Corollary 2.14], as W 1, W 2, . . . and the
initial values are i.i.d. and so are Y 1, Y 2, . . . . Thus, (3.5) is proved.

Let us now show the second claim, namely (3.4). We deduce from (3.5) and (D.1) that

E
[

max
i=1,...,k

sup
s∈[0,T ]

‖X N ,i
s − Y i

s ‖p
E

]
≤ Ck E

[|wp
T (X N ,X 0)|p] → 0

as N → ∞. This immediately implies (3.4). The proof is complete. ��
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