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Abstract: 24 
Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is 25 
generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is 26 
considered to be devoid of internal connections and organized as a collection of parallel inputs to the 27 
cortex. Here, we provide evidence that “open-loop” intrathalamic connections involving the thalamic 28 
reticular nucleus (TRN) can support propagation of oscillatory activity across the cortex. Recent studies 29 
support the existence of open-loop thalamo-reticulo-thalamic (TC-TRN-TC) synaptic motifs in addition 30 
to traditional closed-loop architectures. We hypothesized that open-loop structural modules, when 31 
connected in series, might underlie thalamic and, therefore cortical, signal propagation. Using a 32 
supercomputing platform to simulate thousands of permutations of a thalamo-reticular-cortical network 33 
and allowing select synapses to vary both by class and individually, we evaluated the relative capacities 34 
of closed- and open-loop TC-TRN-TC synaptic configurations to support both propagation and 35 
oscillation. We observed that 1) signal propagation was best supported in networks possessing strong 36 
open-loop TC-TRN-TC connectivity; 2) intrareticular synapses were neither primary substrates of 37 
propagation nor oscillation; and 3) heterogeneous synaptic networks supported more robust propagation 38 
of oscillation than their homogeneous counterparts. These findings suggest that open-loop heterogeneous 39 
intrathalamic architectures complement direct intracortical connectivity to facilitate cortical signal 40 
propagation. 41 
 42 
Significance Statement:  43 
Interactions between the dorsal thalamus and thalamic reticular nucleus (TRN) are speculated to 44 
contribute to phenomena such as arousal, attention, sleep, and seizures. Despite the importance of the 45 
TRN, the synaptic microarchitectures forming the basis for dorsal thalamus-TRN interactions are not fully 46 
understood. The computational neural model we present incorporates “open-loop” thalamo-reticular-47 
thalamic (TC-TRN-TC) synaptic motifs, which have been experimentally observed. We elucidate how 48 
open-loop motifs possess the capacity to shape the propagative properties of signals intrinsic to the 49 
thalamus and evaluate the wave dynamics they support relative to closed-loop TC-TRN-TC pathways and 50 
intrareticular synaptic connections. Our model also generates predictions regarding how different spatial 51 
distributions of reticulothalamic and intrareticular synapses affect these signaling properties. 52 
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Introduction: 53 
Propagation of activity across the cerebral cortex is thought to underlie multiple cognitive processes, as 54 
well as pathological processes such as epilepsy and migraine (1-4). Cortical regions are highly 55 
interconnected via direct axonal projections as well as via polysynaptic pathways involving the basal 56 
ganglia and thalamus (5, 6). Cortical signal propagation is generally thought to be mediated via direct 57 
cortical connections (7, 8), but recent evidence suggests that the thalamus serves as a control point to 58 
modify cortical activity during cognitive processes such as attentional shifting (9). An advantage of a 59 
thalamic mode of signal propagation is the efficiency by which modulatory influences may control 60 
thalamic, and therefore cortical, propagation. The thalamus, however, is generally thought to have limited 61 
internal connectivity and therefore limited capacity to serve as a substrate for signal propagation. 62 
 63 
A major intermediary allowing for communication between thalamocortical neurons, the thalamic 64 
reticular nucleus (TRN), is a sheet of GABAergic neurons that partially envelops the dorsal thalamus 65 
(10). It has been speculated to participate in phenomena ranging from selective attention (11-13) to sleep 66 
and arousal (12-15) and fear responses (16), and may play a role in generating absence seizures (17-21), 67 
symptoms of neurodevelopmental disorders (22, 23), and schizophrenia (24). The TRN projects 68 
exclusively to TC neurons, while receiving reciprocal, glutamatergic thalamoreticular (TC-TRN) 69 
connections (25). 70 
 71 
The structural microarchitecture of bidirectional pathways connecting the dorsal thalamus and TRN has 72 
been the subject of ongoing debate. It was originally assumed that thalamo-reticulo-thalamic (TC-TRN-73 
TC) pathways were reciprocal, forming “closed loops” of recurrent inhibition delivered to TC neurons 74 
(Fig. 1A, left) (10, 15, 26-28). While closed disynaptic loops have indeed been confirmed, they were only 75 
identified in a minority of examined TC-TRN pairs (10, 29-33). Another connectional scheme between 76 
the dorsal thalamus and TRN is the so-called “open-loop” TC-TRN-TC pathway, wherein a TC neuron is 77 
not reciprocally inhibited by the TRN neuron it excites (Fig. 1A, right). Open-loop configurations have 78 
been inferred from recordings in rodent thalamic slice preparations (34-38) and confirmed in anatomical 79 
studies (32, 39, 40). Furthermore, open-loop pathway variants in the form of X-TRN-TC are also known 80 
to exist, with X representing indirect sources of modulation to the sensory thalamus via the TRN, such as 81 
monoaminergic and cholinergic brainstem nuclei, nuclei of the basal forebrain, amygdala, and prefrontal 82 
cortex (9, 41-45).  83 
 84 
We previously observed through a computational model that the open-loop TC-TRN-TC pathway, rather 85 
than uniformly depressing thalamic (and consequently cortical) activity, paradoxically enhanced 86 
thalamocortical output over a range of TC and TRN input frequencies (46). This finding demonstrated the 87 
capacity of an open-loop system to function as a tunable filter of thalamocortical transmission, subject to 88 
the temporal dynamics of input to the TRN, whether from other, non-reciprocally connected TC neurons 89 
or extrinsic sources. In both our previous model and earlier models built on closed-loop TC-TRN-TC 90 
synaptic motifs, the post-inhibitory rebound exhibited by TC neurons, as mediated by T-type Ca2+ 91 
channels and driven by inhibition from the TRN, served as a catalyst of signal propagation within the 92 
networks (9, 46-55).  93 
 94 
Based on previous studies of open-loop TC-TRN-TC synaptic organization, we hypothesized that these 95 
synaptic modules might underlie intrathalamic and therefore intracortical signal propagation. 96 
Accordingly, we sought here to evaluate the efficacy of open-loop pathways relative to other potential 97 
synaptic configurations in mediating signal transmission across the thalamus and cortex. To this end, we 98 
constructed a model network based on that of (46) by connecting in series three thalamo-reticulo-layer-4-99 
cortical (TC-TRN-L4) pathways, potentially featuring both closed- and/or open-loop TC-TRN-TC motifs, 100 
with the latter constituting one mode of connectivity between parallel TC-TRN-L4 pathways. 101 
Intrareticular synapses represented the other structural connections between pathways, based on the 102 
identification of both GABAergic (56-62) and electrical synapses (61-65) between TRN neurons. Thus, 103 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 16, 2019. ; https://doi.org/10.1101/574178doi: bioRxiv preprint 

https://doi.org/10.1101/574178
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

we included three different polysynaptic configurations between vertical pathways in our network (Fig. 104 
1B, from left to right): 1) those with a chemical intrareticular synapse; 2) those with anelectrical 105 
intrareticular synapse; and 3) open-loop TC-TRN-TC pathways. To analyze how each variety of inter-106 
pathway connection contributed to network dynamics, permutations of the baseline network were 107 
generated by varying three properties associated with each of the inter-pathway synaptic motifs. We 108 
quantified network dynamics as a function of variable TC-TRN-TC and intrareticular synaptic 109 
architectures by defining and measuring two properties inherent to stimulus-evoked responses in each 110 
network variant: propagation and oscillation, with the latter included in light of the fact that many 111 
characterized thalamic waveforms both oscillate and propagate through the thalamus and cortex (25).  112 
 113 
Network architecture and simulations: 114 
We constructed a neuronal network comprising three interconnected thalamo-reticulo-cortical pathways 115 
(Fig. 1C). Thalamic, reticular, and cortical cell layers were aligned topographically, such that TCA 116 
projected to both TRNA and L4A (10, 25, 52, 66, 67).  117 
 118 
In the case of homogeneously varied synaptic network permutations, the synaptic parameters associated 119 
with three inter-pathway motifs varied as a class, with all external, TC-TRN, and TC-L4 synaptic 120 
conductances held constant: 1) GABAergic intrareticular (TRN-TRNGABA) synapses ranged in 121 
conductance between 0 and 450 nS; 2) electrical intrareticular (TRN-TRNElec) synapses ranged in 122 
coupling coefficient between 0 and 0.36; and 3) a TC-TRN-TC “openness” coefficient, defined as the 123 
weight distribution of lateral (open-loop, comprising 2 synapses of the form TRNiàTCi+1) vs. recurrent 124 
(closed-loop, comprising 3 synapses of the form TRNiàTCi) reticulothalamic connectivity, varied 125 
between 0 (completely closed-loop) and 1.0 (completely open-loop) and with a baseline TRN-TC 126 
conductance of 80 nS.  127 
 128 
For the heterogeneously varied synaptic network variants, all TRN-TRN and TRN-TC synapses were 129 
allowed to vary independently. Domains for each of the synaptic variables were selected to include the 130 
range of conductance or coupling strengths reported in physiological measurements and/or used in similar 131 
neural models (19, 49, 52, 54, 63, 64, 67).  132 
 133 
Ongoing afferent synaptic input was delivered to every TC neuron in the model as Poisson-modulated 134 
spike trains centered at 40 Hz. An additional 200-Hz pulse train was applied to neuron TCA between 135 
t=0.400 and t=1.500 s during every network simulation run. This high-frequency stimulus was modeled 136 
on those used to elicit spindle-like waves in a ferret thalamoreticular slice preparation (18, 68). A given 137 
network’s output was compiled by assembling spike histograms (10-ms bins) averaging 1,000 simulations 138 
for every L4 neuron (Fig. 1D). Network properties were quantified in the most downstream element of the 139 
cortical output layer, L4C. Propagation across a network was quantified as the amplitude of the initial 140 
stimulus-evoked response in the detrended L4C histogram. The degree of oscillation supported by each 141 
network permutation was defined as the amplitude of the first off-center peak in the normalized 142 
autocorrelogram of post-stimulation activity (Fig. 1D). Both propagation and oscillation scores are 143 
reported as normalized to the maximum scores tabulated for each property. Given the high prevalence of 144 
propagating oscillatory waves in the cerebral cortex [reviewed in (69)], we furthermore defined a 145 
composite “optimization” (Op) metric to measure the capacity of networks to simultaneously support and 146 
balance between propagation (Pr) and oscillation (Os): 147 

              !" = √%&' + !)' − |%& − !)|                                                    (1) 148 
   149 
Results: 150 
Homogeneously varied synaptic models 151 
Stimulus-evoked responses propagated linearly across the length of homogeneous synaptic networks, 152 
occurring at average fixed intervals of 93.31 ± 0.35 ms (mean ± standard error of the mean; range, 60-110 153 
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ms) between adjacent TC-TRN-L4 pathways, across all model permutations and with a mean velocity of 154 
0.54 mm/s, assuming a 50 µm separation between adjacent neurons in each network layer. All 770 155 
homogeneous network variants were ranked according to their cortical propagation scores (Fig. 2A, top). 156 
Linear regression analysis (R2=0.793, root-mean-square-error or RMSE=0.047, p<0.0001) demonstrated a 157 
strong positive correlation between the TC-TRN-TC openness coefficient and propagation score 158 
(normalized regression coefficient or NRC=1.000). By contrast, chemical and electrical TRN-TRN 159 
synaptic connectivity tended to modestly diminish propagation (NRC=-0.173 and NRC=-0.136, 160 
respectively; Table S1). Further, other excitatory connectivity, such as cortico-cortical or corticothalamic 161 
connectivity, often postulated as being important for cortical signal propagation (5, 7, 8), was not 162 
necessary. Thus, the homogeneously varied synaptic network permutations that best accommodated 163 
signal propagation were generally ones with weak or absent synapses between TRN neurons and strong 164 
open-loop TC-TRN-TC connections. For example, Network a, which epitomizes this architecture, 165 
exhibited robust signal propagation in response to a fixed stimulus delivered to TCA; a representative 166 
simulation of this network is shown in Fig. 2B, left, and its position in Fig. 2C is labeled. Stimulus-167 
evoked activity in this network tended to propagate efficiently from L4A to L4C: near-synchronous 168 
propagation cascades were elicited in both the TRN and L4 layers of the model, having been stimulated 169 
by propagating activity in upstream TC neurons. Smooth, linear propagation of action potentials across 170 
the network depended on the synchronous induction of inhibitory postsynaptic potentials (IPSPs) and the 171 
ensuing post-inhibitory rebound spikes in TC neurons, which occurred reliably and at fixed intervals in 172 
Network a.  173 
 174 
A 2° multiple regression model of propagation as a function of all three synaptic class variables 175 
(R2=0.842, RMSE=0.041, p<0.0001; Table S1) revealed modestly negative interaction term between 176 
TRN-TRNElec synapses and TC-TRN-TC openness (NRC=-0.365), indicating that in networks where both 177 
electrical synapses were strong and TC-TRN-TC openness high, the extent of supported propagation 178 
diminished nonlinearly; a smaller negative interaction between TRN-TRNGABA synapses and TC-TRN-TC 179 
openness was also observed (NRC=-0.152). Together, these terms suggested that propagation was more 180 
significantly affected by connections in the TRN layer as a function of increasing open-loop TC-TRN-TC 181 
architecture. This relationship is evident in Fig. 2C, as propagation scores conspicuously decreased in 182 
network variants with an openness coefficient of 1.0 as either chemical or electrical synapses increase in 183 
weight.  184 
 185 
Oscillatory responses recurred in L4C neurons at a mean frequency of 9.07 ± 0.2 Hz (range, 7.14-12.50 186 
Hz) across all homogeneous model permutations. Propagation and oscillation scores across all 770 187 
homogeneous networks were strongly anticorrelated (Pearson’s r=-0.671, p<0.0001). Accordingly, 188 
oscillation was best accommodated in network permutations exhibiting strongly closed-loop connectivity 189 
(Fig. 2A, bottom), however the capacity to support oscillation was neither markedly linear nor 190 
monotonically decreasing as a function of increasing openness coefficient (Fig. 2D). Rather, a one-way 191 
analysis of variance (ANOVA) with Tukey’s tests revealed that, on average, oscillation scores peaked and 192 
remained statistically indistinguishable from one another across the subset of network permutations with 193 
openness coefficients between 0 and 0.4, with scores then decreasing in a roughly linear fashion with 194 
increasing TC-TRN-TC openness [F(10,759)=137.8, p<0.0001]. These data suggest that networks with 195 
mixed open- and closed-loop connectivity (which is likely close to physiological reality) can support the 196 
coexistence of oscillation and propagation (see Heterogeneously varied synaptic models, below).  197 
 198 
The predominant mechanism by which oscillation arose in L4C was through post-inhibitory rebound in 199 
TCC, as engendered by the strong recurrent inhibition found in network permutations exhibiting primarily 200 
closed-loop TC-TRN-TC connectivity. This mode of oscillation was exemplified by Network b, a 201 
strongly closed-loop network variant. In the simulation shown of this network (Fig. 2B, right), oscillatory 202 
activity was enabled by a single epoch of signal propagation. Notably, neither the presence of strong 203 
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GABAergic nor electrical intrareticular synapses in Network b exerted much effect on its ability to 204 
support oscillation, as predicted by the regression models.  205 
  206 
Heterogeneously varied synaptic models 207 
Recent studies have highlighted heterogeneity in TRN neuronal connectivity, synaptic physiology and 208 
chemical identities (70-72). We therefore examined the impact of allowing all synaptic connections 209 
involving the TRN to be independently varied. We constructed circuit-level schematics of linear 210 
regression models for propagation (Fig. 3A, top) and oscillation (Fig. 3A, bottom) as functions of the 14 211 
synaptic variables in heterogeneous networks.  212 
 213 
Propagation in heterogeneously varied synaptic networks increased chiefly as a function of increasing the 214 
strength of the more downstream of the two laterally inhibitory TRN-TC synapses, TRNBàTCC: the 215 
corresponding term in a linear regression model of propagation (R2=0.742, RMSE=0.069, p<0.0001; 216 
Table S2) possessed an NRC of 1.000 (Fig. 3A, top). Propagation scores also scaled to a lesser extent 217 
with the more upstream laterally inhibitory reticulothalamic synapse, TRNAàTCB (NRC=0.608). The 218 
two inhibitory intrareticular synapses originating at the rightmost end of the model network, 219 
TRNCàTRNA and TRNCàTRNB, both exerted a small negative effect on propagation (NRC=-0.087 and 220 
NRC=-0.084, respectively). Additionally, two TRN-TRNElec synapses, TRNA=TRNB and TRNA=TRNC 221 
(where the “=” denotes an electrical synapses), marginally decremented propagation in heterogeneous 222 
networks, with NRCs of -0.051 and -0.072, respectively. These findings at an individual synaptic level 223 
comported with the observation that strong TRN-TRN interactions, whether chemical or electrical, tended 224 
to impede signal propagation in homogeneous network variants.  225 
 226 
A 2° regression model (R2=0.857, RMSE=0.051, p<0.0001; Table S2) disclosed a large, propagation-227 
enhancing interaction between the two laterally inhibitory synapses (NRC=0.753), underscoring the same 228 
dependence of propagation on strong open-loop TC-TRN-TC connectivity as seen in homogeneously 229 
synaptic networks, but additionally demonstrating that propagation scores increased nonlinearly as a 230 
function of simultaneously increasing the weights of TRNAàTCB and TRNBàTCC. Interactions between 231 
TRN-TRN synapses of either variety and TRN-TC synapses tended diminish propagation, as did those 232 
between recurrent and lateral inhibitory TRN-TC synapses. Taken together, the linear and 2° regression 233 
models indicated that heterogeneous network permutations with strong laterally inhibitory TRN-TC 234 
synapses tended to best support propagation. Consistent response propagation across the length of the 235 
network was epitomized by Network a’, in which TRNAàTCB and TRNBàTCC were both relatively 236 
strong and those synapses impeding propagation relatively weak (Fig. 3B, left).  237 
 238 
Comparisons between homogeneously and heterogeneously varied synaptic architectures 239 
In contrast to the homogeneous models, there was a very small negative correlation between the 240 
propagation and oscillation scores of these networks (r=-0.0296, p=0.0008), suggesting that propagation 241 
and oscillation more easily coexist in heterogeneous than homogeneous models. This supposition was 242 
confirmed through a 2° regression analysis (R2=0.388, RMSE=0.118, p<0.0001), which suggested that 243 
interactions between recurrently and laterally inhibitory TRN-TC synapses (NRCs ranging between 0.345 244 
and 0.669) facilitated the propagation of oscillation, a mechanism typified by Network b’ (Fig. 3B, right). 245 
Two intrareticular synapses, TRNA-TRNC and TRNA=TRNC, tended to contribute modestly to oscillation 246 
(NRCs of 0.115 and 0.117, respectively, in the linear regression model, R2=0.253, RMSE=0.131, 247 
p<0.0001; Fig. 3A, bottom), while, in their individual capacities, TRNAàTCB and TRNBàTCC 248 
diminished oscillation (NRCs of -1.000 and -0.892, respectively).   249 
 250 
We analyzed the relative capacities of homogeneously and heterogeneously varied synaptic networks to 251 
support propagation, oscillation, and optimization by comparing the 20 highest scores achieved by 252 
homogeneous and heterogeneous network permutations with respect to each performance metric. No 253 
significant differences in mean propagation scores between top-performing homogeneous and 254 
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heterogeneous networks were disclosed [unpaired t-test, t(38)=0.46, p=0.647; Fig. 4]. We attributed this 255 
lack of differences to the fact that network permutations in which the synapses TRNAàTCB and 256 
TRNBàTCC were both maximally weighted would be equally capable of supporting robust signal 257 
propagation, regardless of whether these synapses were varied homogeneously or heterogeneously. By 258 
contrast, top-scoring heterogeneous network variants better supported both oscillation [t(38)=13.88, 259 
p<0.0001] and optimization [t(38)=18.04, p<0.0001] than their homogeneous counterparts. Because 260 
networks supporting the propagation of oscillatory activity would, by definition, score high with respect 261 
to optimization, these results not only confirmed that heterogeneous networks were more likely than 262 
homogenous networks to accommodate this oscillatory mechanism, but furthermore that propagation of 263 
oscillation across the thalamocortical network was associated with higher oscillation scores than post-264 
inhibitory-driven oscillation in TCC, the predominant form of oscillation observed in homogeneous 265 
networks.   266 
 267 
Discussion:  268 
The simulations presented here suggest that open-loop TC-TRN-TC synaptic motifs (Fig. 1B, right) could 269 
function as a substrate for signal propagation across cortical networks without the need for direct cortico-270 
cortical, intra-reticular or corticothalamic connectivity. Post-inhibitory rebound mediated by T-type 271 
calcium channels served as a substrate for both propagation and oscillation in the simulated networks. 272 
TRN-TRN connections, either chemical or electrical (Fig. 1B, left and middle), diminished horizontal 273 
propagation by disrupting the precise timing relationships required to propagate a signal across the 274 
network. Models with heterogeneously varied TRN synapses outperformed those whose synapses varied 275 
as a class with respect to the propagation of oscillatory activity, consistent with the emerging literature 276 
documenting cellular and synaptic heterogeneity in the TRN (70-72). These data suggest that widespread 277 
propagating cortical activity, under both pathological and physiological conditions, may be mediated, at 278 
least in part, by intrathalamic connections. The model makes strong predictions that can be tested 279 
physiologically. Finally, the approach used here, which employed supercomputing applications to search 280 
through a very large parameter space, serves as model for future computational models with large 281 
parameter spaces.   282 
 283 
Like most of the thalamic (19, 47-50) and thalamocortical models (52, 53, 55) that inspired our model, we 284 
utilized single-compartment, Hodgkin-Huxley neurons. While these model cells contribute to the 285 
computational parsimony and practicality of network models, particularly where the analysis of network 286 
dynamics is prioritized, they neglect the intrinsic cable properties of real neurons and, relatedly, the 287 
spatially disparate nature of synaptic integration and heterogeneous expression of intrinsic and synaptic 288 
conductances (73, 74). Such considerations are particularly relevant here relative to dendritic distributions 289 
of T- and H-currents in TC neurons (52, 54, 75, 76) and TRN neurons (54, 77-79). Although 290 
multicompartment neuronal models incorporating such details could conceivably alter the network 291 
dynamics being studied, they were not necessary to simulate the propagation of oscillatory waves seen 292 
physiologically (18, 19, 48-50). 293 
 294 
Additionally, the present model omitted explicit corticothalamic and corticoreticular synapses, both of 295 
which have been identified and physiologically characterized to varying degrees (80-86), though the 296 
former were effectively amalgamated with both feedforward sensory and modulatory projections to the 297 
thalamus in the form of the Poisson-modulated external input we delivered to individual TC neurons. 298 
Both forms of feedback have been implicated in the spread of spindle waves and in the maintenance of 299 
their synchronization over large distance scales (on the order of the length of the mammalian forebrain) 300 
and are furthermore known to drive spindle wave formation and propagation in vivo by polysynaptically 301 
recruiting TC neurons via TRN-mediated post-inhibitory rebound (80, 83, 86-91). It should be noted, 302 
however, that short-range coherence of spindle waves, which can be elicited in isolated thalamic slice 303 
preparations (18, 68), is preserved following decortication, both in vivo and in silico (52, 83, 88). By 304 
extension, it is reasonable to assume that the dynamics of the spindle-like waveforms generated in our 305 
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small-scale, broadly feedforward model, in which the cortex served solely as an output layer, would not 306 
be qualitatively altered by corticothalamic or corticoreticular feedback.  307 
 308 
Comparison to related computational models and physiological data 309 
Although the production of spindle waves was not an explicit objective of our study, some of the wave 310 
dynamics arising in our networks were nevertheless consistent with those inherent to spindle or spindle-311 
like waves. Despite possessing higher degrees of TCàTRN and TRNàTC synaptic divergence and 312 
lacking the exclusively open-loop TC-TRN-TC architecture characterizing a subset of our network 313 
variants, other isolated thalamic models allowing for longitudinal wave propagation similarly 314 
accommodated this propagation along the lattice of interconnected TC and TRN neurons by way of 315 
laterally inhibitory TRN-TC synapses (19, 48, 50, 92); at short ranges, this mechanism of signal 316 
propagation also prevailed in larger-scale thalamo-reticulo-cortical models, while corticothalamic 317 
projections acted to propagate activity to more distal sites [(52); see (93), for a schematic illustrating 318 
short- and long-range thalamocortical wave propagation]. Comparably, recurrently inhibitory TRN-TC 319 
synapses have been documented to play a vital role in the generation of oscillatory behavior in the 320 
thalamus (17, 93). The temporal parameters of propagating and oscillation signals in our model also 321 
matched some of those previously reported: the mean signal propagation velocity and oscillation 322 
frequency measured across homogeneous networks fell within the ranges of spindle wave propagation 323 
velocities and intraspindle spike frequencies reported in both physiological and computational spindle 324 
wave studies (19, 48, 68, 94, 95).   325 
 326 
Several key structural elements of our set of network models and the range of phenomena they produced 327 
distinguish them from previous thalamic and thalamocortical models. One particularly notable point of 328 
departure relative to similar network models was the extent to which thalamoreticular, reticulothalamic, 329 
and thalamocortical synapses diverged. Although all three classes of synapses are known to diverge 330 
significantly and have been observed to target neuronal somata hundreds of microns from their origins 331 
(25, 32, 58, 96-100), the TC-TRN, TRN-TC, and TC-L4 synapses in our model were constrained to 332 
remain strictly local and minimally divergent (or non-divergent, in the case of TC-TRN and TC-L4 333 
synapses). With respect to the first two classes of synapses, this constraint was imposed to probe the 334 
impact the disynaptic TC-TRN-TC open-loop motifs characterizing a subset of network permutations, 335 
which constituted one of the foci of our study, and analyze the signal propagation they may support. This 336 
neuroanatomical scheme contrasted with previous computational models featuring parallel, 337 
interconnected thalamoreticular pathways, in which both TC and TRN synapsed bidirectionally with 338 
several neighboring TRN and TC cells, respectively, within a radius of several hundred microns (e.g., 19, 339 
48-50, 52-54, 67, 101). It is highly likely that if more divergent synaptic connections were used in the 340 
current model, even greater propagation would have been observed. 341 
 342 
The functional implications open-loop thalamo-reticulo-thalamic synaptic motifs 343 
The spread of activity from one cortical region to another is a foundational concept at the core of our 344 
understanding of sensory processing, higher order-cognitive functions such as attention and language, 345 
sleep-related oscillatory phenomena, and pathological findings such as propagation of ictal discharges and 346 
migraine. Despite the importance of communication between cortical regions, its underlying substrates 347 
are not well understood. It has long been speculated that the TRN could serve as a control point for large-348 
scale cortical signal processing given its central location, the high degree of convergence of projections 349 
involved in attention, arousal and emotion onto the TRN and the TRN’s particularly strong control over 350 
TC firing properties (11-13, 102-104). Although the anatomical bases of open-loop TC-TRN-TC motifs 351 
have been partially characterized, their functional significance in the brain lingers as a subject of 352 
continued speculation. Here we show that open-loop TC-TRN-TC architectures can support at least short-353 
range cortical signal propagation. Within the thalamus, these configurations have thus far been observed 354 
both within and across individual thalamic nuclei and are thought to serve as pathways for intra- and 355 
cross-modal modulation, respectively (32, 34-40); as has been previously surmised, these synaptic 356 
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pathways could also plausibly lend themselves to sensory enhancement, multisensory integration, and 357 
attentional mechanisms (10, 35, 46, 105). At a minimum, and as inferred from physiological studies, 358 
open-loop pathways should be fully capable of supporting signaling propagation from one thalamic relay 359 
neuron to another through a limited number of intervening synapses (with a disynaptic pathway serving as 360 
the shortest such configuration). Moreover, interference with thalamoreticular transmission should cause 361 
a breakdown in some forms of cortical signal propagation. Recent work has established that stimulation of 362 
the TRN in vivo can induce propagating rhythmic activity across the cortex (106-108). These data suggest 363 
that abnormal cortical signal propagation seen in seizures, migraines or hallucinations may be disrupted 364 
by targeted therapeutics applied to the TRN. Both forthcoming physiological investigation and future 365 
modeling studies will be able to evaluate these predictions and help provide a full accounting of the role 366 
of the various modes of connectivity between cortical regions.   367 
 368 
Methods:  369 
Intrinsic neuronal models 370 
Our network model was directly based on an earlier incarnation published by our research group (46). 371 
Single-compartment TC, TRN, and L4 model neurons obeyed Hodgkin-Huxley kinetics, with membrane 372 
potentials V varying according to the first-order differential equation 373 

            , -.
-/
= −01(3 − 41) − ∑ 077 (3)(3 − 47)                        (2) 374 

where C is the membrane capacitance, gL and EL are the leakage conductance and reversal potential, 375 
respectively, and gi(V) and Ei are the dynamic conductance and reversal potential, respectively, of the ith 376 
voltage-gated, ligand-gated (chemical synaptic), or electrical synaptic conductance (for electrical synaptic 377 
conductances, the effective reversal potential is equal to the presynaptic membrane potential; see 378 
Equation 3a). All three varieties of model neurons expressed both the standard transient sodium (INa) and 379 
delayed-rectifier potassium (IK) currents, as reported by (46). TC and TRN neurons additionally included 380 
a T-type calcium conductance (T-current; IT) and hyperpolarization-activated cation current (H-current; 381 
IH), following the TC model of (109). Both TRN and L4 cells expressed a slow, non-inactivating 382 
potassium conductance (IM), following the modeling of (110), which accounts for the spike-frequency 383 
adaptation previously reported in physiological recordings from these neurons (46, 111). A list of intrinsic 384 
model cell parameters, including current conductances, reversal potentials, selected gating kinetics, and 385 
membrane capacitance, can be found in Table S3.  386 
 387 
Synaptic models 388 
The kinetics of chemical synapses in our model network conformed to the synaptic depression model of 389 
(112), following our previous computational network model (46). This model presupposes a finite 390 
quantity of “resources,” akin to synaptic vesicles, capable of being released by the presynaptic neuron; 391 
these resources can exist in an active, inactive, or recovered state. A parameter USE characterizes the 392 
fraction of recovered resources that can be converted to an active state (i.e., for release by the presynaptic 393 
neuron) following action potential induction in the presynaptic axon terminal(s). Following resource 394 
activation, synapses inactivate according to the time constant 8inact; resources become available again for 395 
activation after a recovery period described by the time constant 8recov. These parameters, along with the 396 
neurotransmitters, postsynaptic conductances, and reversal potentials characterizing all of the chemical 397 
synapses in our model, are given in Table S4.      398 
 399 
Glutamatergic thalamoreticular and thalamocortical (TC-L4) and baseline GABAergic reticulothalamic 400 
synaptic parameters matched those of our earlier model (46), with the latter synapses allowed to vary in 401 
conductance. TRN-TC signaling was mediated exclusively through GABAA receptors, mirroring other 402 
thalamic and thalamocortical models in which the slower TRN-TC GABAB conductance was omitted (51, 403 
54, 55). Both GABAergic (TRN-TRNGABA) and electrical synapses (TRN-TRNElec) were included 404 
between TRN neurons; as with TRN-TC synapses, both varieties of TRN-TRN synapses were allowed to 405 
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vary in strength. Although evidence has been presented challenging the existence of GABAergic 406 
intrareticular synapses in certain mammalian species and age groups (10, 63, 113-115), our model 407 
avoided making assumptions regarding their presence, strength, or spatial distribution by allowing the 408 
associated synaptic conductances to vary over a range of physiological values, including zero, and in 409 
distribution. The reversal potential, conductance, and kinetics of the external synapses projecting to the 410 
TC neurons were directly based on retinogeniculate synapses (116), although the generic nature of the 411 
external inputs in our model allows them to represent not only immediately upstream sensory input but 412 
also brainstem modulation (e.g., serotonergic, adrenergic) known to act on thalamic nuclei (117).   413 
 414 
Electrical synapses between TRN neurons were based on the Cx36-dependent intrareticular gap junctions 415 
first identified by (58). For TRN neurons, the sum of electrical synaptic currents (IElec) entering any 416 
postsynaptic neuron j from presynaptic neurons i was included in the rightmost term from Equation 1 and 417 
calculated as  418 

     9:;<=(>) = ∑ 07>7 ?3> − 37@           (3a) 419 

 where gij was itself calculated as  420 

            07> = A(B)
CDEF

G
HHI 	K	G

                                                            (3b) 421 

where CC was the electrical coupling coefficient between TRN neurons i and j, ggap is the gap junction 422 
conductance (set at 5 nS), and D(x) was a scaling factor that depended on the physical distance between 423 
the coupled TRN neurons (54, 73, 118). TRN-TRNElec synapses were symmetrical (non-rectifying), such 424 
that Gij=Gji. 425 
 426 
We extrapolated the attenuation of intrareticular synaptic strength as a function of intracellular distance 427 
based on mappings of intrinsic connections within the TRN along a horizontal (anteroposterior) plane 428 
assembled by (61). Assuming 1) an intracellular distance of 50 µm between adjacent TRN neurons, 2) a 429 
distance x (in multiples of 50 µm) between non-adjacent neurons, and 3) a Gaussian falloff in synaptic 430 
strength (119), the baseline (adjacent-neuron) conductances of TRN-TRNGABA and TRN-TRNElec 431 
synapses were scaled for non-adjacent synapses using the function 432 

              A(B) = LK
MN

NON             (4)  433 
where λGABA=531 µm and λElec=130 µm.  434 
 435 
Given the small spatial scale of our model, synaptic delays associated with finite axonal conductance 436 
times within the TRN and between the TRN and dorsal thalamus were disregarded, mirroring the 437 
simplification incorporated into previous thalamic and thalamocortical models simulating synaptic 438 
interactions on the order of 100 microns (48, 54). Although small (~1 ms) thalamocortical delays were 439 
inserted into the network model of (54), these were likewise omitted on the basis of the cortex functioning 440 
solely as an output layer in our model.  441 
 442 
Computations and statistics 443 
Our model was coded, simulated, and analyzed in MATLAB R2018b (MathWorks), utilizing both a Dell 444 
Inspiron 3847 and Hewlett-Packard Z840 running Windows 10 and nodes on the Illinois Campus Cluster 445 
(National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign). 446 
Simulations employed 0.1-ms time steps, with temporal integration based on the hybrid analytic-numeral 447 
integration method of (120), which optimizes between accurate solutions to Hodgkin-Huxley and synaptic 448 
models and computational efficiency. All simulations commenced with a 200-ms equilibration period, 449 
during which no external stimulation was delivered to TC neurons; this allowed all network elements to 450 
attain steady-state conditions. Statistical analysis was performed in both MATLAB and R (121), with the 451 
glmnet package (122) utilized within the latter platform to perform regression analyses. Multiple linear 452 
regression was employed to establish rudimentary relationships between synaptic classes (homogeneously 453 
synaptic networks) or individual synapses (heterogeneously synaptic networks) and each of the two 454 
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studied network properties, even in instances where these relationships deviated from linearity. 2° 455 
regression models with interaction terms elucidated how synaptic interactions and nonlinearities affected 456 
these network properties. Regressions were optimized using elastic net regularization, with the specific 457 
regularization hyperparameter a selected to minimize each regression model’s root-mean-square error. To 458 
convey the relative influence of different synaptic classes or individual synapses on dynamic network 459 
properties, all regression coefficients are reported here as normalized to the coefficient with the largest 460 
absolute value; the effects corresponding to NRCs with absolute values of less than 0.05 were disregarded 461 
as negligibly influential on network dynamics. Both unpaired Student t-tests and one-way ANOVA 462 
models were used to compare the mean property scores between different sets of networks, with Tukey’s 463 
honestly significant difference tests used to ascertain pairwise difference between groups in the latter. 464 
Kolmogorov-Smirnov and Levene’s tests were employed to confirm normality and homogeneity of 465 
variance, respectively, when utilizing parametric mean-comparison tests; data were log-transformed as 466 
needed to conform to these prerequisites.   467 
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Figure Legends: 866 
Figure 1. Pathways and properties of thalamocortical signaling. A: Closed- vs. open-loop thalamo-867 
reticulo-thalamic configurations. B: Three possible pathways through which a signal might propagate 868 
from one thalamocortical (TC) neuron to another via the thalamic reticular nucleus (TRN). C: Baseline 869 
thalamo-reticulo-cortical model network. Broken-line synapses were allowed to vary either as a class 870 
(homogeneously) or independently of one another (heterogeneously). D: Sample L4 spike histograms 871 
(detrended) in a network permutation responding to a fixed, sustained stimulus delivered to TCA (yellow 872 
arrow). The propagation score assigned to any network permutation was quantified as the amplitude of 873 
the initial stimulus-evoked response in the detrended L4c histogram; response propagation across the L4 874 
subnetwork (orange arrow) was consistently linear, and thus the initial response in L4C was observed at a 875 
fixed interval relative to the onset of stimulation. Oscillation intrinsic to any network variant was 876 
quantified as the amplitude of the first off-center peak in the normalized autocorrelogram (right) of post-877 
stimulation activity in the detrended L4C histogram (within broken black box). The initial 400 ms of 878 
activity preceding the fixed stimulus (in grey) is shown here for each histogram but was not included in 879 
the calculations of either propagation or oscillation. Note that the bin heights in the L4A histogram shown 880 
here were truncated in order to maintain identical vertical scaling across all three L4 histograms. 881 
 882 
Figure 2. Propagation and oscillation in homogeneously varied synaptic networks (N=770). A: Ordinal 883 
heat maps ranking homogeneously varied synaptic network permutations according to the extent of 884 
supported signal propagation and oscillation. The network property ranks and synaptic makeups of two 885 
selected networks, Networks a and b, are indicated. B: Representative simulations and circuit diagrams 886 
depicting the normalized synaptic makeups for the two selected networks. The yellow arrow indicates 887 
when the fixed stimulus was delivered to TCA in each simulation. Orange highlighting indicates epochs of 888 
linear propagation, while circles are placed above spikes occurring during periods of oscillatory activity. 889 
C: A heat map displaying propagation scores in TRN-TRN synaptic parameter space for the 70 fully 890 
open-loop networks (openness coefficient=1.0), with Network a highlighted. D: Mean oscillation scores 891 
for networks varied nonlinearly as a function of their openness coefficients, with networks possessing 892 
openness coefficients of 0 and 0.4 supporting oscillation to equal extents (one-way ANOVA with Tukey 893 
post-hoc tests, F(10,759)=137.8, p<0.0001). Error bars indicate standard errors of the mean; N.S.=not 894 
significant. 895 
 896 
Figure 3. Propagation and oscillation in heterogeneously varied synaptic networks (N=12,681). A: 897 
Network regression models illustrating how propagation (top) and oscillation (bottom) varied as a 898 
function of individual synaptic weights across simulated heterogeneously synaptic network permutations. 899 
Gray synapses are either non-variable or associated with normalized regression coefficients with absolute 900 
values under 0.05. Synapses with positive and negative coefficients in the regression models are depicted 901 
separately in the left- and right-sided circuit diagrams, respectively. B: Representative simulations for two 902 
selected heterogeneous networks, whose normalized synaptic weights are depicted in the circuit diagrams. 903 
Networks a’ and b’ respectively illustrate propagation and propagation of oscillation from Column A to 904 
Column C. 905 
 906 
Figure 4. Propagation, as measured in those network permutations scoring highest with respect to the 907 
property, was equally supported in networks where synaptic weights varied independently of one another 908 
(heterogeneously; red) as in networks where synaptic strength varied homogeneously (blue) by class 909 
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[unpaired t-test, t(38)=0.46, p=0.647]. By contrast, oscillation and optimization scores were significantly 910 
higher in top-performing heterogeneous networks than their homogeneous counterparts [oscillation: 911 
t(38)=13.88, p<0.0001; optimization: t(38)=18.04, p<0.0001]. Each bar corresponds to a mean of the top 912 
20 network propagation or oscillation scores within each synaptic architecture group; error bars indicate 913 
standard errors of the mean. ****=p<0.0001; N.S.=not significant.  914 
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Table S1. Normalized linear and second-order regression coefficients for propagation and oscillation in homogeneously varied 

synaptic networks. 
 

 

• The regressions include 1°, 2°, and interaction terms corresponding to TRN-TRNGABA, TRN-TRNElec, and open-loop TC-TRN-TC 

synapses/pathways. Terms associated with regression coefficients of absolute values < 0.05 are omitted. Positive and negative terms are 

highlighted in red and blue, respectively. Linear regression for propagation, R2=0.793, RMSE=0.047, p<0.0001; second-order regression for 
propagation, R2=0.842, RMSE=0.041, p<0.0001; linear regression for oscillation, R2=0.526, RMSE=0.145, p<0.0001; second-order regression for 

oscillation, R2=0.630, RMSE=0.128, p<0.0001. 
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Table S2. Normalized linear and second-order regression coefficients for propagation and oscillation in heterogeneously varied synaptic 

networks. 

 

 

• The regressions include 1°, 2°, and interaction terms corresponding to the 14 variable synapses in the networks. Equal signs denote gap 

junctions. Linear regression for propagation, R2=0.742, RMSE=0.069, p<0.0001; second-order regression for propagation, R2=0.857, 
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RMSE=0.051, p<0.0001; linear regression for oscillation, R2=0.253, RMSE=0.131, p<0.0001; second-order regression for oscillation, R2=0.388, 

RMSE=0.118, p<0.0001. 

  

https://doi.org/10.1101/574178
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Table S3. Intrinsic model cellular parameters. 
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Table S4. Model synaptic parameters. 
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