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Abstract: We explore the propagation of the cylindrical vector beams (CVB) in turbid tissue-like

scattering medium in comparison with the conventional Gaussian laser beam. The study of

propagation of CVB and Gaussian laser beams in the medium is performed utilizing the unified

electric field Monte Carlo model. The implemented Monte Carlo model is a part of a generalized

on-line computational tool and utilizes parallel computing, executed on the NVIDIA Graphics

Processing Units (GPUs) supporting Compute Unified Device Architecture (CUDA). Using extensive

computational studies, we demonstrate that after propagation through the turbid tissue-like scattering

medium, the degree of fringe contrast for CVB becomes at least twice higher in comparison to the

conventional linearly polarized Gaussian beam. The results of simulations agree with the results of

experimental studies. Both experimental and theoretical results suggest that there is a high potential

of the application of CVB in the diagnosis of biological tissues.

Keywords: complex vector beams; structured light; light scattering; polarized light; Monte Carlo

method; tissue diagnosis

1. Introduction

For a number of years, considerable attention has been given to the probing of biological tissues

with photonic-based imaging and optical diagnostic techniques [1]. The interdisciplinary field of

biomedical optical diagnosis aims to use light-based tools for non-invasive assessment of structural

alterations in biological tissues and changes in their physiological and subsurface scattering properties

(e.g., due to cancers, wounds, specific conditions, etc.) [1]. Photonic-based modalities provide strong
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advantages such as the ability to perform diagnostic procedures non-invasively on bio-tissues in vivo.

Optical diagnostic systems utilize different types of illumination of biological tissues with visible, UV

or infrared light, and attempt to analyze detected reflected, scattered, emitted or otherwise modulated

optical radiation [2]. A number of prominent methods based on optical spectroscopy to measure

tissue properties such as oxygenation and blood content have been developed since the 1930s [1].

In the seminal works, measurement of the fluorescence spectra has been utilized to differentiate

between cancerous and normal tissues [3,4]. Subsequently, Raman spectroscopy was introduced as a

robust detection tool for cancers in breast tissues [5] forming the basis for the so-called Raman ’optical

biopsy’ [6] that later underwent several considerable practical improvements [7–9].

On the other hand, polarization or spin angular momentum (SAM) are the light’s quite salient

features along with the spectral or coherence properties. Multiple aspects of polarized light scattering

and interaction with biological tissues, as well as other turbid media have been extensively studied

in the past [10–13]. A large proportion of these studies associated with polarized light are focused

on non-invasive characterization of biological tissues with the special attention to earlier detection of

malignancies [14]. Recently, it has been demonstrated that polarization and SAM are able to distinguish

different grades of cancer [15].

In fact, the structure of light can be more complex, i.e., light beams can be radially or azimuthally

polarized, related to their spatial structure (shown in Figure 1) [16]. It has been demonstrated,

that arbitrary vector vortex beams can be generated and detected at longer distances and show

substantially lower scintillation comparing to traditional scalar beams while propagating in scattering

environments [17,18]. The non-separability of Vector beams were suggested to be used to encode

information in optical communication [19]. In recent studies, the propagation of complex vector

laser beams (known as the Laguerre–Gaussian (LG) beams) in mouse brain tissue was investigated

demonstrating varying transmission in the different functional areas of the brain [20]. A higher-order

Poincare sphere (HOPS) concept was specifically introduced for quantitative assessment of the Stokes

vectors distribution [21,22].

Figure 1. Schematic presentation of the cross-section of the cylindrical vector laser beams (CVB)

with different polarization distribution, defined by l and σ. Here, left: l = +1, σ = −1, middle:

l = +2, σ = −1 and right: l = +3, σ = −1, respectively.

Owing to the fact that the transformation of polarization of probing light during its transfer

through the turbid tissue-like scattering medium is independent of the state of polarization of incident

light [23], further improvements of the SAM-based techniques are required, especially for screening of

superficial biological tissues. The development and practical implementation of complex vector laser

beams, such as CVB and LG beams, in diagnostic practice, as well as interpretation and quantitative

analysis of the experimental results, require extensive modelling in order to provide an ultimate

understanding of their propagation in a random tissue-like scattering medium. Due to the complex and

highly inhomogeneous multi-layered structure of biological tissues, no practical analytical solutions

describing radiative transfer therein exists. Fortunately, a stochastic alternative, such as the Monte

Carlo (MC) method, is well suited for simulation of the effects of multiple scattering and polarized light

propagation in turbid tissue-like scattering media [24]. Numerous MC models have been developed in

the past to simulate the propagation of polarized light [25–32].
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In the current paper, within the framework of a further development of a unified MC modeling

platform [33] we present a computational model for imitation of CVB’s propagation through a turbid

tissue-like scattering media with a primary aim to prove the concept of applicability of CVB in

biomedical optical diagnosis. The MC model utilizes an analogue to Jones formalism, specially

adapted for the online object oriented MC approach developed earlier [33,34]. The model takes

into account the wave properties of light, including temporal coherence, polarization memory [35],

interference and reflection/refraction at the medium boundary. To access quantitatively the degree of

randomization of the probing light along its scattering trajectory within the medium the conventional

metrics, known as depolarization ratio (DR) is utilized.

2. Online GPU-Accelerated Monte Carlo Modeling of Photon Migration in Scattering Media

MC modeling of energy transfer through the medium has been widely studied and its principles

are described in detail elsewhere [36]. Several practical implementations of the MC approach for

simulation of light propagation in turbid tissue-like scattering medium have been developed [28,37–40]

and used extensively in biophotonics and biomedical optics [41]. These models are based on the

so-called ’scalar’ approach, i.e., when the incident light is assumed to be incoherent and non-polarized.

In analogy to these MC techniques mentioned above in our MC model a photon packet is assigned with

an initial statistical weight and injected into a semi-infinite medium. Subsequently, the photon packet

undergoes a sequence of events representing light–tissue interaction such as scattering, absorption,

reflection/refraction at the medium boundary, until it is either fully absorbed or leaves the medium.

At each event, the position of photon packets are updated and its statistical weight is reduced by a

factor e−(µa+µs)L. A new scattering direction of the photon packet is chosen using Henyey–Greenstein

phase function [42]:

FHG(θ) =
1

2

1 − g2

(1 + g2 − 2g cos θ)3/2
(1)

where θ is the polar scattering angle (θ ∈ [0, π]) and g is the anisotropy factor, defined as the average

〈cos θ〉 =
∫ 1
−1 cos θ FHG (cos θ) d cos θ for any given phase function (g ∈ [−1, 1]).

The MC method of the photon migration through turbid tissue-like scattering medium is based

on a simulation of a large number of photon packet trajectories (∼106–109) consisting of N scattering

events (N ∼ 102–103). Depending on the computational performance of the available facilities this

procedure could be extremely time-consuming and might take hours or even several days to complete.

We demonstrated that the MC approach can be effectively sped up allowing obtaining the results nearly

in real-time [33,34] using General-purpose computing on graphics processing units (GPGPU). This was

achieved by utilizing the Compute Unified Device Architecture (CUDA) parallel computing platform

created by NVIDIA Corporation for its hardware, allowing simultaneous execution of thousands of

lightweight parallel threads [43].

The block diagram showing the memory allocation scheme for storing photon packet trajectories

and the calculation of final intensities is shown in Figure 2. Each photon trajectory is represented by a

linearized 1D-array of structures and is stored in the GPU’s global memory. A lightweight parallel

thread is responsible for simulating the propagation of one photon trajectory in the scattering medium.

A photon trajectory consists of a set of points in 3D Cartesian coordinate space defined by three floating

point numbers r(i) = Xi, Yi, Zi corresponding to coordinates at the i-th scattering event. The length of

the trajectory is limited by the maximum number of scattering events N, which is in our case 103, and

depending on the particular task can be extended to 104–105.

Certain sets of parameters of the photon packets, such as the number of scattering events Ni,

path length Li, polarization vector
−→
P i, scattering angle θ, angle of detection αi, etc. are saved for the

subsequent processing of the detected spatial distribution of the intensity of simulated light. Therefore,

a two-pass MC simulation of photon packet propagation in scattering medium is used. In the first

pass, the MC code generates photon packet trajectories satisfying the detection conditions, e.g., size

and position of the detector, numerical aperture, etc. The trajectories are stored in the GPU’s global
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memory and used in the second pass to calculate the resulting intensity of scattered light, as presented

in Figure 2, left. The generation of photon trajectories repeats until the maximum number of photon

packets have been reached in a pixel of the detector (typically, 105 or more). The pixels are arranged

in a 3D dynamic array [x × y × Nph] to mimic a real detector (e.g., CCD camera). The x and y are

the indices of the array corresponding to an individual pixel bins (calculated from the r(Ns) of the

photon packet trajectory) at the detecting area, Nph is the total number of detected photon packets that

defines the unique index corresponding to the trajectories preserved at the pixel for further calculation.

In the current scenario, the amount of GPU memory required for storing these generated trajectories is

∼3 Gb in case of single floating point performance (FPP), and ∼6 Gb for double FPP. This two-step

MC approach permits the ’recycling’ of the same trajectories for calculating various quantities of

light scattered in the medium, including polarization, phase shift and others. It also avoids a need to

re-generate photon packet trajectories which is the most time consuming procedure of MC modeling.

Figure 2. The block-diagram showing the principles of GPU-based computations of the resulting

intensity of scattered light and its spatial distribution at the detector area (left). Front screen of the

online MC tool where each icon is associated with a particular application (right), available online

at http://www.lighttransport.net/.

By integrating fast parallel computations on graphics cards with modern web technologies, such

as HTML5 and JavaScript, a computational platform for simulations of light transport in turbid media

has been developed [33,34]. The key idea behind this computational platform is the creation of a

universal tool to imitate the results of typical experiments utilized in major applications in biomedical

optics. A recently updated version of the user interface of the tool where an application that can be

selected by clicking on a particular icon is shown in Figure 2, right. The platform is available to the

worldwide community through the cloud-based interface at http://www.lighttransport.net/.

To describe and track polarization changes, Jones [44,45] and/or Stokes–Mueller [46,47] formalism

are required. In the current study, in frame of further development of a unified MC model, the

Jones-analogues-based formalism is adopted to handle propagation of each partial component of

CVB traveling through a turbid tissue-like scattering medium. The concept of iterative procedure

of the solution of Bethe–Salpeter equation [48] is used to describes the transfer of a pair of two

complex-conjugated fields, incident into the point of source RS(x, y) with the wave vector ki and

outgoing in the detecting point RD(x, y) with the wave vector kD. Thus, the propagation of polarized

light through the turbid medium is presented in terms of scattering orders, as a a sequence of geometric

transformations after each scattering event. Here, the trajectories of the photon packet are weighted

(W) in accordance with the polarization state, and the polarization vector of the scattered wave
−→
P i is

transformed upon the i-th scattering event, defined as [24]:

−→
P i = −−→e i × [−→e i ×

−→
P i−1] = [ Î −−→e i ⊗

−→e i]
−→
P i−1, (2)

http://www.lighttransport.net/
http://www.lighttransport.net/
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where −→e i is the unit vector aligned along the trajectory element of a photon packet after the ith

scattering event. Thus, tensor Ûi = [ Î −−→e i ⊗
−→e i] is presented as:

Ûi =







1 − e2
iX −eiXeiY −eiXeiZ

−eiXeiY 1 − e2
iY −eiYeiZ

−eiXeiZ eiXeiZ 1 − e2
iZ






, (3)

and, thus, the chain of projection operators Ûi transforms the initial polarization
−→
P 0 upon a sequence

of n scattering events to the final polarization
−→
P n, i.e.,

−→
P n = ÛnÛn−1...Û1

−→
P 0. (4)

Consequently, propagation of co- and cross-polarized components of the electromagnetic field in

the medium is described along the same trajectories obtained for the scalar field. To link the scalar and

vector nature of electromagnetic fields according to the optical theorem [49,50] the Rayleigh factor is

taken into account at every scattering event for electromagnetic field [24,51]:

Γ = 2(1 + cos2 θ)−1. (5)

The reflection and/or refraction at the medium boundary is taken into account by splitting

the photon packet into the transmitted and reflected parts [52]. Thus, the statistical weight of the

detected photon packet for the Transverse Magnetic (TM) and Transverse Electric (TE) components is

defined as:

WTM = W0

(

1 − RTM0
(αi)

)

[

M−1

∏
j=1

RTMj
(αi)

]

×
(

1 − RTMM
(αi)

)

,

WTE = W0

(

1 − RTE0
(αi)

)

[

M−1

∏
j=1

RTEj
(αi)

]

×
(

1 − RTEM
(αi)

)

,

(6)

where RTM(αi) and RTE(αi) are the Fresnel coefficients, M is the number of reflections on the

medium boundary.

Finally, the co- I‖ and cross- I⊥ polarized intensities of scattered light at the detection point (2D

array indexes) are counted as a superposition of all polarization states detected at the pixel (x, y):

I‖(x, y) = 1
Nph

Nph

∑
i=1

(

WTMi
P2

xi
Γ

Ni
R exp (−µaLi)

)

,

I⊥(x, y) = 1
Nph

Nph

∑
i=1

(

WTEi
P2

yi
Γ

Ni
R exp (−µaLi)

)

,

(7)

where N is the number of scattering events experienced by i-th photon packet along its trajectory L

within the medium.

In our study the Stokes formalism is applied for definition of the degree of polarization DR [53]:

DR =
(S1 + S2 + S3)

1/2

S0
, (8)

where S0, S1, S2 and S3 are the Stokes vector components. As the co- I‖ and cross- I⊥ polarized

components are, respectively, oriented along X and Y axes of the Cartesian system that associated with

the scattering medium, for the horizontal/vertical linearly polarized light both S2 and S3 are 0. Thus,

the spatial distribution of DR(x, y) at the surface of the medium can be presented as:
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DR(x, y) =
S1(x, y)

S0(x, y)
=

I‖(x, y)− I⊥(x, y)

Itot(x, y)
, (9)

where Itot(x, y) = I‖(x, y) + I⊥(x, y). Thus, the DR can be considered as an analogy of fringe contrast,

which is typically used as a measure of the visibility quality in the interference measurements [54],

known also as interference visibility and/or fringe visibility.

3. Results and Discussion

Figure 3 shows the results of simulation of the spatial distribution of co- I‖, cross- I⊥ polarized

components, and DR for CVB propagated through the scattering medium of various optical density.

As one can see for the highly optically dense medium, the CVBs is almost totally depolarized.

Figure 3. The results of simulation of Itot, co- I‖ and cross- I⊥ polarized components of a CVB with

l = +1, σ = −1, transmitted through the scattering medium of various optical densities (OD): 1.08,

1.56, 2.00, 2.40, 2.73.

The developed MC model has been verified by a direct comparison of the results of modeling of

CVB and Gaussian beam propagation through the turbid scattering medium. In terms of accuracy of

the modelling, we emphasize that early, it has been shown that MC approach is able to imitate the

results of actual experiment [55]. The obtained results are also in a good agreement with the results of

alternative studies of deep transmission of LG vortex beams through the turbid media in comparison

with the Gaussian beam [56].

As one can see, the range of the degree of fringe contrast (DR) for CVB becomes at least twice

higher compared to the conventional linearly polarized Gaussian beam (see Figure 4). In addition, the

modeling of polarization transfer through the scattering medium was verified against the results of

exact analytical solution and alternative MC models, presented in Table 1.

Table 1. A comparison of the results of MC modeling of I‖ and I⊥ components changing due to

scattering with the results obtained with the exact solution by Milne and the results of alternative

modeling [57–60].

References I‖ I⊥ I‖/I⊥

Milne solution [57,58] 3.025 1.563 1.935
Kuzmin et al. [59,60] 3.029 1.570 1.929

Our MC model 3.023 1.565 1.931
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Figure 4. The results of MC simulation of co- I‖ and cross- I⊥ polarized components, and DR for a

Gaussian (left, supplementary video S1) and CVB (right, supplementary video S2) with l = +1, σ =

−1, transmitted through a turbid medium, with two sets of optical properties: g = 0.0, µs = 1–30 mm−1,

g = 0.9, µs = 10–300 mm−1, in both cases thickness is 100 µm.

The exact Milne solution for the Rayleigh (g = 0), non-coherent (temporal coherence length of

laser radiation lc = 0) scattering gives I‖/I⊥ ≈ 1.92 [57–60], and DR = 0.31 [57–60], while the results

of MC modelling suggests I‖/I⊥ = 1.93 and DR = 0.3172; a similar value of DR = 0.33 has been

obtained elsewhere [25].

To confirm the results of the theoretical predictions, we built an experimental setup for the

generation of CVB that is based on the design of previous developments [61] and depicted in Figure 5.

A collimated 690 nm laser beam, produced by Crystalaser (DL690-030 with nominal coherence length

less than 10 m) propagates through a half wave plate (HW) to obtain horizontal polarization, a pinhole

for mode cleaning and then passes through a 50:50 beam splitter (BS) reaching the Pluto NIR II

reflecting spacial light modulator (SLM) from Holoeye (see Figure 5). The SLM imprints the phase

(ei(lφ) + e−i(lφ+t)) in the wave front, where l is the topological charge associated with the beam and t is

a prism phase that separates spatially both contrary topological charges. The beam resultant from this

prism phase is reflected in M3 and its polarization is rotated 90 degrees with respect to the beam that

is reflected from the BS. Both beams are recombined in the polarizing beams splitter (PBS), and then

go through a quarter wave plate resulting in the superposition of two contrary circular and topological

polarizations, which results in the desired CVB.

Figure 5. Schematic representation of the experiment setup to generate the desired CVB with the

opposite charge.

A telescopic system (TS) is used to expand the beam at the sample, which consist of a square

cross-section quartz cuvette (4 × 1 × 1 cm3) containing water with polystyrene microspheres (by
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Kisker Biotech) of 3 µm diameter. The beam then goes to a lens for a 2X magnification and then

to a CMOS camera for visualization purposes. A combination of a quarter waveplate (QW), a HW

and a PBS are used for polarization analysis. Figure 6 shows the measurements results for a CVBs

transmitting through turbid tissue-like phantom scattering media. For the medium with isotropic

scattering, the CVBs is almost immediately depolarized. On the contrary strong forward scattering

preserves polarization within the tissue. When scattering is highly anisotropic, which is common for

many biological tissues [1], CVBs can be detected and analyzed at larger distances from the light source.

Figure 6. The results of experimental measurements of Itot, co- I‖ and cross- I⊥ polarized components

of a CVB beam with l = +1, σ = −1 transmitted through a cuvette containing different concentrations

of polystyrene microspheres solutions of various OD: 1.08, 1.56, 2.00, 2.40, 2.73.

Figure 7 shows the results of experimental measurements of CVB propagation through the turbid

medium of various OD. Both the experimental and modelling results are presented in terms of

fringe contrast for the media with different OD (OD = µs(1 − g)d), where d is the thickness of the

medium/cuvette. To variate scattering properties/OD of the medium the solutions of micro-spheres

in water of different concentration were used. As one can see the modeling results are well agreed

with the results of experimental measurements. The MC model has been compiled, tested and proven

to work on Windows 10/Ubuntu GNU Linux 18.04 LTS platforms. The time required to simulate

109 photon packet trajectories is dependent on the parameters of the scattering medium, which are in a

range from µs = 30 mm−1, g = 0.9, n = 1.4 to µa = 0.001 mm−1, and takes approximately 20 min for

the optical density of 1.08.

Figure 7. The results of experimental measurements of fringe contrast for CVB propagated through the

turbid scattering media in comparison to the results of MC modeling performed for the turbid media

with the same optical properties.
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4. Summary and Conclusions

In the current study, we have introduced the electric field MC approach specifically developed for

the fast modeling of propagation of the complex structured light through a turbid tissue-like scattering

medium. The model takes into account the coherent properties of light, the influence of total reflection

and refraction at the medium boundary, and mutual interference of polarization components of the

wave front of CVB due to the scattering in the medium. We show that after propagation through the

turbid tissue-like scattering medium, the degree of fringe contrast for CVB becomes at least double in

comparison to the conventional linearly polarized Gaussian beam. The results of simulations agree

with the results of experimental studies. Both experimental and theoretical results suggest that there

is a high potential in application of CVB in the diagnosis of biological tissues. The developed MC

approach is extremely flexible to operate with different optical properties of the medium, including

scattering, absorption, refractive index, and anisotropy of scattering, as well as with different laser

beam structures and complexity of the medium composition. The presented MC approach is part of

the online model, and can be easily extended to model propagation of complex structured light with

angular momentum in random, optically active and/or birefringent scattering media, and potentially

quantum entanglements therein.

Supplementary Materials: The following are available at http://www.mdpi.com/2304-6732/6/2/56/s1,
Video S1: Gaussian, Video S2: CVB.
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