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The authors develop a plane­wave­based transfer matrix method in curvilinear coordinates to study 
the guided modes in curved nanoribbon waveguides. The problem of a curved structure is 
transformed into an equivalent one of a straight structure with spatially dependent tensors of 
dielectric constant and magnetic permeability. The authors investigate the coupling between the 
eigenmodes of the straight part and those of the curved part when the waveguide is bent. 

Semiconductor nanowires and nanoribbons have many 
promising optoelectronic applications such as waveguides,1'" 
lasers,"" optical switches, and sensors.' Nanowaveguides are 
especially important as links between optoelectronic ele­

ments. While straight waveguides have been widely studied, 
it is much more complicated to study a waveguide and its 
eigenmode properties when it is bent into various shapes. 
The guided modes in a bent waveguide present different 
propagation properties from a straight one. In a recent work, 
Law et al. found strong regular oscillations in the output 
spectrum when light is traveling in a curved nanoribbon 
waveguide. The largest amplitude of oscillations is about 
50% of the maximum output intensity. 

The plane­wave­based transfer matrix method7'*5 (TMM) 
is a powerful analytical tool to understand straight 
waveguides.9 However, current TMM is for Euclidian coor­

dinate (x,y,z) system only and cannot deal with curved 
waveguides. In this letter, we develop a new TMM in curvi­

linear coordinate system to study curved nanoribbon 
waveguides. We show that curved sections in waveguides 
can result in strong regular oscillations in the transmission 
spectrum similar to those in Ref. 1. 

We start by considering an arc structure characterized by 
the radius of curvature R and span length .? [as shown in 
Figs. 1(a) and 1(b)]. A bent nanoribbon waveguide of any 
general shape can be approximated by a series of arcs with 
different curvatures and spans. Following a previous work,10 

we introduce curvilinear coordinates (x',y',s) [Fig. 1(b)] 
and in this coordinate system Maxwell's equations can be 
written in terms of differential equations relating to the trans­

verse components of fields: 
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So the arc structure can be viewed as a straight one with 
effective e and /x tensors depending on the transverse coor­

dinate x'\ 
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Equations (5)­(7) have almost the same form as in Sacks' 
uniaxial perfectly matched layer (UPML), i.e., no reflection 
occurs at a plane interface between two media with the same 
(e,/i) but different a in Eqs. (5)­(7).n The difference lies in 
that a of PML is a complex constant which can give an 
absorption. Here a is a real number and varies with x'. The 
curved part of the waveguide is perfectly matched with 
the straight part in the s direction, but not in the x' and y' 
directions. 
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FIG. 1. Structure of an arc nanoribbon waveguide on substrate, (a) 3D view, 
(b) top view with curvilinear coordinates (x',y',s), and (c) cross­section 
illustration with size and material parameter set. 

When the curved waveguide is effectively considered as 
a straight one with (e(x), /£(*)) given by Eqs. (5)­(7), we can 
apply the well­developed plane wave TMM (Refs. 7­9) to 
calculate the dispersion relations and eigenmode profiles in 
the curved waveguide in the same way as in a straight 
waveguide.'" In the following, we consider a nanoribbon 
with a cross section of 360 nm (x') X 250 nm (y') on a sub­

strate, where the refractive indices n0=1.0, a,=2.1, n2=1.5 
[see Fig. 1(c), these parameters are close to the ones in 
Ref. 1]. 

Figures 2(a) and 2(b) show respectively the dispersion 
relations for a straight waveguide and an arc one with 
R=2 /im; the insets give the \EX\ (\Ey\) distribution of the 
first (second) eigenmode with Ex (Ey) polarization at 
600 nm. The guided modes move downwards for a bent 
waveguide and the modal field shifts outwards from the cen­

ter of curvature (~x' direction).L>'14 The first and fourth 
modes are Ex polarized, and the second and third modes are 
Ey polarized. Modes after the fifth mode are not as highly 
polarized as the first four modes. 

We consider the transmission coefficients for a curved 
waveguide joint between two straight waveguides. The trans­

mission and reflection coefficients can be computed follow­

ing the steps in Refs. 7­9. Here we only present the 
self­transmission coefficients of guided eigenmode ;' 
( i '= l ,2 , . . . ) , which are defined as the ratio of the transmis­

sion energy flux particular mode i and the incident energy 
flux (only mode ;' incident). The reason for doing this is that 
in propagation along the straight waveguide, we expect that 
some guided modes are much more sensitive to waveguide 
imperfections (such as sidewall roughness) than others. 
These sensitive modes are much more likely to disappear 
during propagation. 

We start from a simple "U" shape structure, made of two 
semi­infinite straight waveguides connected by a semicircu­

lar waveguide [see the inset in Fig. 3(a)]. First we set R to be 
10 jtim. The self­transmission of the first six guided eigen­

modes is shown in Fig. 3(a). One can see regular fluctuations 
in transmission like in Ref. 1 but with much weaker ampli­

tude. Our calculation shows that the reflection is very small 
(<10~4, not shown here). That agrees well with the UPML 
form of e and Jx in Eqs. (5)­(7), which indicates little reflec­

tion if the bend is not very sharp. Then we try a "L" struc­

ture, made of two semi­infinite straight waveguides con­

nected by a quarter­circular waveguide with R-20 /xm. The 
result is shown in Fig. 3(b). The amplitude of transmission 
fluctuation is even weaker, but the position of the transmis­

FIG. 2. (Color online) Dispersions of guided modes for (a) a straight wave­
guide and (b) a curved waveguide with /?=2 ,u,m. Here a is the supercell 
constant and a=\ /xm. The dashed line is the light line in substrate: 
k,=n2k0 (£0=2ir/X). The left (right) insets are \EX\ (|£v|) distribution of the 
first (second) mode at \=600 nm. 

sion peaks and bottoms of the first four modes are about the 
same compared to Fig. 3(a). It is interesting that the first two 
£t­polarized modes (the first and fourth modes) have almost 
the same period, and the first two £¥­polarized modes (the 
second and third modes) also do so. We tested structures with 
different curvatures and different span lengths. We found that 
(i) the amplitude of transmission fluctuation decreases as R is 
increased and (ii) the period of transmission fluctuation is 
only related to the span length of the arc part and decreases 
as we extend the arc part. The first rule is natural to under­

stand. Smaller radius of curvature enlarges the perturbation 
to the system, causing the transmission to fluctuate more 
intensively [see Fig. 3(c), where R is set to be 4 /mm]. The 
second rule can be explained by mode conversion. Let us 
begin from a simple model. Suppose there are two modes in 
the waveguide marked i and j for the straight part and V and 
j ' for the curved part. If the arc part has length L, we can 
write down the self­transmission of mode i when the reflec­

tion is very small: 
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.. ..,, ■u-,ti't,tijt,tj>i are the conversion coeffi­

cients from mode i to i\ V to i, i to / , j ' to i, respectively, 
and t;!,=t.,;, tjj, = t.,r Because Lk' is not very sensitive to R, 
the period of transmission fluctuation is mainly related to the 
span length L of the arc part. The conversion between modes 
with the same polarization is much stronger than that be­

tween different polarization modes. So the first and fourth 





FIG. 3. Self­transmission of the first six modes for: (a) a "U" structure of 
R=\0 ixm, (b) an "L" structure of /?=20 /xm, and (c) a "U" structure of 
R=4 /itn. 

modes have similar self­transmission periods and the second 
and third modes also have similar periods. However, higher 
order modes are not highly polarized in either the x or the y 
direction. The conversion rates between different polarized 
modes are not small. So their self­transmissions do not show 
fluctuations as regular as the first four modes [see the bottom 
plots of Figs. 3(a) and 3(b)]. 

Our numerical results suggest a possible explanation for 
the strong regular oscillation in the output spectrum observed 
by Law et al. The observed oscillations can be caused by 
a rippling section of nanoribbon (as shown in the inset of 
Fig. 4), which has a small bending radius for the curved part. 
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FIG. 4. Self­transmission of the first six modes for the structure in the inset 
but of two periods of fluctuation, when R=3 p.m, L, = l p.m, and 
L2=5 fim. Inset: Illustration of a waveguide containing a rippling section. 

We calculate the structure in the inset of Fig. 4 for different 
parameters, and one of the results is shown in Fig. 4. The 
parameters are R=3 /j,m, L{=\ fim, L2=5 LUXI, and two pe­

riods of fluctuations (the inset of Fig. 4 only shows one pe­

riod). The self­transmission diagram exhibits similar strong 
oscillations in the third, fourth, and fifth modes as in Ref. 1. 

In summary, we have developed an improved TMM 
method in curvilinear coordinates to study curved nanorib­

bon waveguides. Our method can be applied to any shape of 
curved waveguides. From our results we can extract and ex­

plain two rules concerning the period and amplitude of the 
transmission fluctuations. We finish by calculating a rippling 
waveguide structure and obtain oscillations in transmission 
similar to those observed in experiments. 
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