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THE PHYSICS OF FLUIDS VOLUME 13, NUMBER 7 JULY 1970 

. 
Propagation of High Current Relativistic Electron Beams* 

D. A. ILuu.mnt AND N. RosTOKER 

Cornell University, Ithaca, New Y&rk 14860 
(Received 25 August 1969; final manuscript received 4 February 1970) 

Theoretical self-consistent relativistic electron beam models are developed which allow the pro
pagation of relativistic electron fluxes in excess of the Alfven- La.wson critical-current limit for a fully 
neutralized beam. Development of a simple, fully relativistic, self-consistent equilibrium is described 
which can carry arbitrarily large currents at or near complete electrostatic neutralization. A discussion 
of a model for magnetic neutralization is presented wherein it is shown that large numbers of electrons 
from a background plasma are counterstreaming slowly within the beam so that the net current 
density in the system, and therefore, the magnetic field, is nearly zero. A solution of an initial-value 
problem for a beam-plasma system is given which indicates that magnetic neutralization can be 
expected to occur for plasma densities that a.re large compared with beam densities. It is found that 
the application of a strong axial magnetic field to a uniform beam allows propagation regardless of 
the magnitude of the beam current. Some comparisons are made with recent experimental data. 

I. INTRODUCTION 

Theoretical interest in relativistic electron beams 

began with Bennett's paper
1 

in which he pointed out 

that electrostatically neutralized high current, elec

tron streams can be magnetically self-focusing. 

Alfven
2 

was motivated to consider charged particle 

beams in order to explain certain observations 

concerning cosmic rays. He derived an upper limit 

to the possible current of cosmic rays that can 

propagate through space in a given direction. His 

model was a cylindrically synunetric, monoenergetic, 

wiiform current density stream of identical particles, 

and he asswned that the ionized matter in inter

stellar space would insure electrical neutralization. 

The current limit, I A• which Alfven derived is due 

to the pinch forces of the self-magnetic field of the 

beam, and is of order given by 

I A ~ 17 000,8-y A, (1) 

where ,8 is the particle stream velocity divided by the 

velocity of light, and -y = (1 - {1
2
)-

112
• Qualitatively, 

it is easy to see how this limit comes about. The uni

form current density assumption implies a magnetic 

field wi.thin the beam proportional to radius, and 

electrostatic neutralization implies that the energy 

is a constant. Therefore, we are able to integrate 

the equations of motion to obtain the particle 
trajectories shown in Fig. 1. (They are drawn for 

particles without angular momentum.) If the net 
current included within the maximum radial position 

of a particle is small compared with I Ai its motion 
is approximately sinusoidal, as shown by trajectory 

a in Fig. 1. As the included current increases, the 
trajectory passes through the beam axis at a greater 

angle (trajectory b) until at an included current of 

,-- ... 
~ .... , ' 

f I ~ 
I I 
\ I 
\ , 
' ' .... ... ......... ..... ----

FIG. 1. Trajectories of particles starting in the z direction 
a.t various distances from the a.xis of a uniform, neutralized 
particle beam (see Ref. 2). Solid (dashed) curves represent 
particle trajectories with net motion forward (backward). 

17 000,8-y A, the particle passes through the axis 

perpendicular to it (trajectory c). If the included 

current is increased still further, net particle motion 

is soon backward, as shown by orbit e, and the 

extreme case of orbit f. Therefore, we cannot have 

currents in excess of about I A under the above 

assumptions. It should be noted that this limit is 

independent of any physical dimensions. The beam 
current can be written 

I= Ne{Jc = 17000v{J, (2) 

where v is the number of electrons per classical 
electron radius (ro = 2.82 X 10-15 m) of beam 
length, 

(3) 

1831 
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current in this model is limited to v ;S 'Y· The 

velocity of light is c, e is the magnitude of the electron 

charge, m is the electron rest mass, and to is the 
pennittivity of free space. 

Lawson
3 

also considered the uniform beam model 

in treating both partially and fully electrostatically 

neutralized electron beams. He arrived at a current 

limit of I_. for a fully neutralized beam by arguments 

similar to Alfven's as well as by simply requiring 

that a beam electron Lannor radius in the .maximum 

self-field of the beam be of the same order as the 

beam radius. For an arbitrary fractional electrostatic 

neutralization f, Lawson obtained a current limit of 

17 000(3
3
-y/({1

2 + f - 1). In principle, then, arbi

trarily large currents could be carried by a unifonn 

beam if one carefully adjusted f to be 1 - {3
2

, or at 

least within the range given by 

R2 2 

J - f32 
- k > f > 1 - fJ2 + -y/3 (4) 

2v 2v ' 

a balancing act which is difficult to do experimentally 

if v h is to be large compared with one. 

Led by Martin and his co-workers of the United 

Kingdom Atomic Energy Authority, a high-voltage 

pulse technology has recently been developed which 

is capable of the production of short (:::; 10-1 
sec) 

bursts of relativistic electrons with currents in 

excess of I,.!- 10 The two most striking experimental 

results to date are the following: (1) At low ambient 

pressure ( ;S 0.01 Torr) in the beam drift region, 

Graybill, Uglam, and Nablo were unable to propa

gate beams with more current than about tl ... 11 

(2) At higher ambient pressures (;::: 0.1 Torr), 

Y onas and Spence12 and Andrews et al. 13 have 

propagated currents well over I ... 
The first observation fits in well with the current 

limits for the neutralized beams of Alfven and 

Lawson. The second result, however, led us to the 

development of theoretical, self-consistent beam 

models which allow the propagation of relativistic 

electron fluxes in excess of I,.. In Sec. II, we present 

and develop a sin1ple, fully relativistic self-consistent 
equilibrium which can carry arbitrarily large currents 

when near or at complete electrostatic neutraliza
tion. A second possible way to propagate arbitrarily 

large currents is if the beam is magnetically neutral

ized as well as electrostatically neutralized. By 
magnetic neutralization, we mean that large numbers 

of electrons from a background plasma are counter
streaming slowly within the beam so that the net 

current density in the system, and, therefore, the 

magnetic field, is nearly zero. 1'here would then be 
no fields acting on the particles of the beam and 

(ignoring the obvious problem of instabilities) they 

would propagate in nearly straight lines. In current 

limit terminology, the limit would be 

17 000,8
3
-y /[f32

(l - f .. ) - (1 - f) ], 

where f m is the fractional magnetic, or current, 

neutralization. This mode of beam propagation has 

been proposed by Yonas and Spence, Andrews et al., 

and others, 14 as the mechanism responsible for the 

second experimental result given above, and experi

mental verification of this has been obtained by 

these workers. In Sec. III, we solve an initial value 

problem for a beam-plasma system which indicates 

that magnetic neutrali.zation as described above can 

be expected to occur for plasma densities large com

pared to beam densities. In Sec. IV, we apply a 

strong axial magnetic field to a uniform beam and 

find that it will then be able to propagate regardless 

of the beam current. 

II. NONUNIFORM BEAM EQUILIBRIUM 

Here we wish to consider a fully relativistic 

equilibrium electron beam solution to the Vlasov 

equation, 

af. + af. (E B) at. 0 - v ·- - e + v>< ·- = at ax ap ' 
(5) 

and the relevant Maxwell's equations, 

(6) 

V·E =.!!... · 
to 

(7) 

The electric field and magnetic induction are E 

and B, respectively, f. is the electron distribution 
function, v, p, and -e are the electron velocity, 

momentum, and charge, respectively, and j and p 

are the current and charge densities. We are using 

mks units so that (µ0 E0) -
112 = c, the free space 

velocity of light. The beam is infinitely long and 

without variation in the z direction, cylindrically 

symmetric, and confined to a finite radius b. We also 
assume an immobile positive ion background which 

partially or fully neutralizes the electron beam 
charge density. There are no external fields. 

The constants of motion for an electron in the 
assumed beam are the Hamiltonian H, the canonical 

axial momentum P., and the angular momentum p,, 
which are given by 

H = -y(r)mc2 
- ecl>(r) 

= c{m
2
c

2 + p2i._ + [P. + eA,(r)]2\
112 

- e<I>(r), (8) 
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P. = 'Ymv. - eA. = p. - eA., (9) p, and fJ integrations, 

p, = 'Ymr
2
w = 'Ym(xv. - yv,). (10) 

il>(r) and A.(r) are the electrostatic and magnetic 

potentials, which are functions only of r, the radial 

position. The electron mass is m, w is its angular 

velocity, and p. and Pi. are the parallel and perpen

dicular (relative to the z a.xis) ordinary momenta of 

the electron, respectively. Any function of these 

constants of the motion is a solution to Eq. (5), so 

we choose the particularly simple, but interesting 

case of monoenergetic electrons having the same 

axial canonical momentum, 

f .(x, p) = f .(r, p) 

n.(O)c2 

= 2 o(H - E.) o(P. - 'YomV,). 
7rE• 

(11) 

Defining A,(r = O) = 0 = il>(r = 0), from Eqs. (8) 

and (9) we have that 'Yo and V. are the values of 'Y 

and v. for an electron at r = 0, and that E. = -y0mc
2

• 

The first two moments of this distribution function 

are 

n,(x) = n,(r) = J dp f .(r, p) 

n.(r) = n.(O)c
2 J .. u du(mca? 6(mc2au - e<I> - t.), 

E• 1 

(14) 

n,(O)c2 j"' d ( V A ) 2 n.(v,) = -- u 'Yom , + e , mca 
E, l 

· 6(mc2cru - eel> - E,), (15) 

where 

(16) 

( -EL)'n u = 1 + 2~ 2 • 
mca 

(17) 

The o functions in these integrations are zero over 

the whole range of the u integration unless eil> + E, ~ 

mc
2 
a. Therefore, we obtain 

J [ e<l>(r)J 
() 

_ n.(O) 1 + - , 
n, r - l E. 

0 , 

r ~ b, 
(18) 

r > b, 

ln.(O)c
2 

n.(v,) = l-E.- [-y0m V, + eA ,(r)], 

0, 

r ~ b, 
(19) 

r > b, 

!.. 1'° 12 

.. = dp, Pi. dpJ. dfJf.(r, p), (12) where b is defined by 
-· 0 0 

n,(v,) = J" dp.1 .. Pi. dpJ. lh dfJf.(r, p) :&. (13) 
_., o o 'Ym 

(Since f. and 'Y are even functions of pi., n.(v .. ) = 0 

and n,(v .. ) = 0.) Because of the o function in P. and 

using Eqs. (8) and (9) these can be rewritten, after 

E. + ecl>(b) = 
1 

mc2a(b) · 
(20) 

We can now obtain the self-fields of the beaJn 

assuming that the background ions provide a charge 

neutralization fraction f, 0 ~ f ~ l. The potential 

equations obtained from Eqs. (6) and (7) are 

( ) 
l
e(f - 1) [ eil>J 

v. E = - V'2<1> = _.!. ~ r c<l> = E n.(O) 1 + --;- ' 
r ar 8r 0 

• 

0, 

r 5 b, 
(21) 

r > b, 

Let 

(V xB). = [V x(V xA)]. = -V'2A, = -~ ('YomV, + eA.), l 
n.(O)e 

T ~ b, 
(22) 

1 n.(O)e2 
2=--
L. EoE. ' 

(23) 

<f?o = 
n.(O)L!e 

Eo 
(24) 

0, 

Ao = 
n.(O)·Yo'rn V,eL! 

T > b. 

_ 'YomV •. 

e 
(25) 

Then, Eqs. (21) and (22) for r ~ b assume the form 

of modified Bessel equations of order zero for depen
dent variables <I> - <l>0 and A, - A 0 • Taking the 
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solution for which <l>(O) = 0 = A,(O) there results 

r S I>, 

{

<1>0[1 - [0(; (1 - 1)
112

)], 

<l>(r) = <1>
0
[1 - 1

0
( ~· (1 - 1)112)] - .!!__ (1 - f)'12 4>ol

1 
[.!!__ (1 - f)' 12 ] ln ~ , 

L, L. L. b 

(26) 

r > b, 

r Sb. 
A,(r) = {Ao[l - lo(~)] , 

A0 [1 - l 0 (i.) J - i. A 0 J 1 (~) ID~, 
(27) 

r > b, 

where I ... is the modified Bessel function of the first 

kind and order m. The solutions for r > b were 

obtained by integrating from r = b. For the electric 

and magnetic fields these give 

E.(r) = L. L. 
r ~ b, 

{

<1>0 (1 - /)11211(2:.c1 - n•12)' 

<l>o b(l r~.1)112 11(L (1 - f)112) ' r > b, 

(28) 

{

Ao I (2:..) 
Be(r) = L. i L, ' 

Ao b I (.!!__) 
rL, 1 T,, ' 

r Sb, 

r > b. 

(29) 

Combining Eqs. (26) and (27) with Eqs. (8), (18), 

and (19), we obtain 

n.(r) = I 
0
(!:__ (l _ f) 112) == 'Y(r) , (30) 

n.(O) L, 'Yo 

v,(r) = V, Io(r/L.) (31) lo[(r/L,)(1 - 1)112
]. 

Thus, since Io(O) = 1, if the beam is neutralized 

(f = 1), the density is uniform, as is-y. However, the 

axial velocity distribution (and, therefore, j,) are far 

from uniform for r/L. » 1, because
16 

e' ( 4n
2 

- 1 ) 
l,.(x) ,...., (2irx) 11z 1 - Sx + · · · for x » 1. 

(32) 

Since v,(b) is limited by c, this means that V. « c. 

The circumstance under which r/L. » 1 is that 

the total current, I, being carried by the beam be 
large compared with I A• as we shall now show. From 

Eq. (29) and Ampere's law, 

I = :
0 

f B·dl l .. b = - 27r Eo?;c
3 

"fo{:J. i. 11(L) · 
(33) 

Defining I A for this nonuniform beam analogously 

to one of Lawson's derivations of it,
3 

we take l A as 

the current for which a beam electron Larmor radius 

RL, in the maximum beam self-magnetic field, is half 

the beam radius: 

R _ -y(b)mv.(b) _ !?_ . 
L - eB

8
(b) - 2 (34) 

Using Eqs. (29)-(31), we readily obtain 

(35) 

where f:J.(b) = v,(b)/c. Therefore, 

I 1 b l 1 (b/ L.) 1 b 1 
- = -----r-.....,1-- - -
IA. 2L,I0(b/L.) 2L. 4' 

(36) 

the asymptotic form being for b/L. » 1. This says 

that arbitrarily large current can be carried within 

a given radius, b, so long as the sheath thickness, L., 
is sufficiently small compared with b-so long as the 

beam can be created with sufficiently high density. 

Note that L. is the usual collisionloos skin depth, 

c/wr>•• where 

w = (n.(O)e2)112 
,,. :f'oEom 

(37) 

is the electron plasma frequency of the beam for 

all r [on account of Eq. (30)). Hence, if I » I Ai 

E, and B, drop off nearly exponentially inside of 

r = b, becoming small compared with their maxima 
inside the depth c/wr>• from r = b. This means that 
the particles which start out at 1· = b with v, = 

V.lo(b/ L,) (for f = 1), leave the region of high 
magnetic field before they have had a chance to turn 

around, as they could in the "uniform beam" case, 

Fig. 1. 

Even though all of the above equations are valid 
for any f we find that it is not possible for the 

equilibrium to exist unless there is a certain mini
mum of neutralization. If we restrict the maximum 

energy that an electron can gain in the electric field 
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to ['Y(b) - l]mc
2

, then we may write 

- -y(b) 
'Yo - lo[(b/L.)(l - f)1n) ;?: 1. 

(38) 

This implies that 

f :?: 1 - ( ~ · 1;1
[-y(b)] y, (39) 

where the symbol !; 1[,,(b)] means the argument, x, 
for which / 0 (x) = -y(b). Therefore, unless 'Y(b) is 

unlimited, if b/L. » 1, f will be limited to very 

near 1. For example, if 'Y(b) = 6 (~2.5 MV of 

lcinetic energy) and I = 200 000 A, then at minimum 

f ho= 1), I/I A~ 12, corresponding to b/L. = 24.5, 

and a minimum f of about 0.981 If we wish to put no 

limit on 'Y(b) the consequences are impractical-/ = 

0.5and-ro = lforb/L. = 24.5gives,,(b)~2X10°. 
Thus, we are reasonably justified in sticking to 

f = 1 in most of what follows. 

Since f = 1 implies a uniform electron density 
within the beam, the quantity v defined in Eq. (3) 

is again useful. Here, it is 

(40) 

This implies that 

(41) 

for a high current beam. Since I, 'Yo, and bare usually 

experimentally measurable, v, Wp., and c/wp~ could 

be calculated and compared with other measure

ments, such as density measurements, or charac

teristic lengths for fields. Another experimentally 

measurable quantity is the propagation velocity for 

the bulk of an electron beam.
12

•
13 

For f = 1, I = 
17 00011P can be used to define such an average 

velocity Pc if the current is known. Using (41) 

and (35), together with P!(bh~ = 'Y~ - 1, we obtain 

for I» IA 

dr 1 
dt = ± { 1 - (ef'Y,,mc2

) [ <I>. - <t(r)]} 

p,.,., 17 000 'Y~ - 1. 
- I 'Yo 

(42) 

Thus, if I ~ 10
6 

A and 'Yo ~ 2, P ~ i, compared 

with P.(b) "'0.86. Finally, for f = 1, 

2 1 1 
'Yo = 1 - .Bi - p; = 1 - ,B~I~(b/L.) ' 

(43) 

where fhc is the radial velocity of an electron at 

r = 0. Consequently, 

so that for a high current beam, ,81 » .B!. 
So far we have learned a great deal about this 

equilibrium without knowing anything about the 

details of electron motion. And it is clear that the 

self-consistent fields given by Eqs. (28) and (29) are 

such that electron orbits will not easily be obtained 

from the equations of motion. In fact, however, it 

is possible to obtain an orbit integral for quite a 

general equilibrium (a/at = 0), infinite cylindrically 

symmetric (o/04> = 0) beam with no axial varia

tion (a/az = 0) using the three constants of the 

motion given by Eqs. (8)-(10). We may even have 

an axial magnetic field, via a vector potential 

component As, if it is a function only of r. In this 

cruie Eq. (10) becomes 

p, = -ymr
2
w - eA,(r)r. (45) 

We merely have to solve 

2 [ 22+ 2 -ymc = c me Pr 

( )
2 ]1/2 

+ 1;: + eA,(r) + [p. + eA.(r)]2 (46) 

for the radial momentum, Pr· If a subscript a implies 

the quantity evaluated at some initial time, ta, we 

obtain 

·{v;
0 
+ r~~! (r2 

- r~) + 2e [(A,(r) - ~A,.) r:wa + V,
0
[A

10 
- A,(r)] - [<l>o - <l>(r)J] 

r -y0 m r r 

(47) 
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We have taken p, - -ymv, = 'Ym(dr/dt) in this 

equation. We, therefore, obtain the quadrature 

l
r dt 

t(r) - ta = ± d-, dr'. 
•• r 

(48) 

The turning points of the radial motion are the zeros 

of dr/dt, so that Eq. (48) is defined only if r is 

between these turning points. The sign to be taken 

is + ( - ) according to whether r is greater (less) 

than r •. The potentials A. and .P must, of course, be 

the self-consistent ones for the beam. For the present 

beam, using .P and A, from Eqs. (26) and (27), 

As = 0, and the constants of the motion, one can 

obtain
16 

__ J' r'dr'l0 [(r' / L .)Q_=._f)
112

] 

t(r) t. - ± '• (c2r' 2 {l~[(r' / £.)(1 - /) 1;z] - (lh~) - f3!I~(r' / L.) I - [p ~/hom)]) 112 (49) 

The remaining components of the motion can be put 

in integral form similarly, 

f l 1· dt z(r) - z. = v.(t') dt' = v.(r') -, dr' , 
'· '• dr 

(50) 

of course, require numerical computation or approx

imations. 

We can also formally determine the distribution of 

angular momentum, F(p,), for the electrons in this 

beam model. By definition 

f l 1' dt O(r) - 80 = w(t') dt' = w(r') -d , dr', 
lo ,.. r (5l) F(p8) = J dx dp f .(x, p) <5[pe - (xp. - yp.)]. (53) 

(52) 

is readily obtained from the constancy of p, together 

with Eq. (30). Hence, formally, we have the electron 

orbits for all allowed values of p,. Useful results, 

r1 and rl are the inner and outer turning points of a 

particle with angular momentum P•· From this we 

can see that p~ can be anything from 0 to p;m.xi the 
maximum of the function 

h(r) = (-r 0 mcr)2[1~({, (1 - /)
112

) - ~~ - f3!I~(~) J. 
(56) 

For large currents and f = 1 it is reasonable to 

obtain the radius, R, at which a particle with p8 ,m 

circulates. By writing ah(r)/iJr = 0 we obtain 

Using 

{32 = ,f~(b) = [I ~ (lb~)] 
' I 0(b/L,) lo(b/L.) 

the asymptotic expansions for [0 and / 1 [Eq. (32)] 

give 

With the substitutions x = r cos cf>, y = r sin cf>, 

p. = pl. cos 0 and p. = pl. sin 0, and using 

i
h . 2 

dO a[pe - pl.r Slll (0 - q,)) = ( 2 2 2)112 I 
o PLT - Ps 

(54) 

~ ,..._, .!. }!_ - ! ln }!_ + .! [.! (2b - ln .!!..)2 - ~]1 1 2 
L. - 2 L. 4 L. 2 4 L. L. 2 

b 1 b ,..._, - - - ln - . (58) 
- L. 2 L. 

For example, if 'Yo = 2 and I = 10
5 

A, then I/I A = 
3.4 so that b/L. = 7.3, and R/L. ~ 6.3. In this 

case, then, a particle with Ptm•• will have a (constant) 

z velocity of about !c, compared with {3(b) ~ 0.865 

and P ~ i found above. 

Returning now to F(ps), comparison of Eqs. (49) 

and (55) reveals that if r(pe) is the time it takes for 

a particle with angular momentum Pe to go from its 
outer turning point-r1 to r 2-then 

F(p ) 
_ 2n.(O) ( ) 

8 - T Ps · 
"tom 

(59) 

The current being carried by particles with angular 

momentum between p8 and p8 + dp8 may be written 

dl(p ) _ F(p ) Z(pe2 d _ _ 2n.(O) Z(p ) 
o - -e s ( ) Ps - o , 

r Pe "tom 
(60) 
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where Z(p8) is the distance a particle ·with angular momentum, p,, travels between turning points. 

From Eq. (50), Z(pe) is given by 

For a low current beam, we will see that Z(po) is a 

constant. However, for I» I ... , it is apparent from 

a numerical computation to follow that the higher p, 

particles contribute more to the current [have a 

greater Z(p,)] than do the low p, particles. 

So far we have mainly discussed I» I .... We now 

take a look at the low current limit. This requires 

that b « L •. Since J 0(x),....., 1 + (!x)2 and11 (x) ~ !x 
for small x, it follows that n.(r) ~ n.(O), -y(r) ~'Yo, 

v.(r) ~ v"' and 

<l>(r) ~ ~ .( O) e (41_ -:_!l r ~ ' r ~ b. (62) 
' fo 

r ~ b, 

r ~ b, (64) 

r ~ b. 

All of these are characteristic of the uniform beam. 

Consequently, it emerges as the self-consistent, fully 

relativistic solution to the V1asov equation for a low 

current beam, I « L. This was obtained by 

Mjolsness, 
17 

and nonrelativistically by Longmire18 

with some nonuniform effects. For f = I, Eq. (57) 

reveals that in the uniform beam, the particle with 

p: ..... circulates at b/ (2)
112

• In the case of uniform 

v. and 'Y, and f = 1, the perpendicular energy avail

able from A, at radius r give..'! 

vmc2{3;(1 - br:) = _El_ + - p: :; · (66) 
2'Yom 2'Yomr-

Hence 

(67) 

and for all p~ up to p: m ax> T1 and r2 are given by 

b2 [ ( 2 )1/2] r;, I = 9 1 ± 1 - -/!!- ' 
~ P JJ m ax 

(68) 

Solving Eq. (66) for p; = 'Y~m 2 (dr/dt) 2 easily gives 

the orbit integral 

(69) 

(61) 

This gives an arcsin, and the orbits obtained by 

Lawson
3 

and others
11

•
19 

result. Under the assump

tions for which Eq. (69) is valid, we obtain for 

IP.el < Pema1 

_ 'll"b _ Z(pe) 
r(pe) - 2[2(vho)J112v. - V, (70) 

and 

'N 
F(p,) = {2p, max ' IPe I 

0 otherwise 

<Poma• 
(71) 

and the beam is indeed, uniform. 

Let us now return to high current beams and look 

at some numerical results. In Fig. 2 we plot h(r) for 

beam parameters appropriate to the beam of 

Andrews et al., 'Yo = 2, I == 10
5 

A, and f = 1. We 

observe that p~ can be anything from 0 to about 

IOI(mcL.)
2
'Yo/4v. For any allowed pe, r1 and r2 can 

be obtained from the graph. A particle with Pe max 

circulates at R/L. ~ 6.27, from the numerical work, 

compared to 6.3 found from Eq. (58). In Fig. 3 

we plot z(r), r(t), and z(t) for several Pe values, and 

find that the higher angular momentum particles go 

somewhat farther in the z direction between radial 

turning points. From Eq. (60), they, therefore, 

contribute more to the current. Note, however, 

from Fig. 3(b) and Eq. (59), that there are more low 

angular momentum particles. 
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Fm. 2. h(r) for f = 1, -y 0 = 2, l = 105 A (fJ. = 0.00386, 
b/L. = 7.3). 
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I ·- ~ ---t ----!- 1 

(a) (b) (c) 

F10. 3. (a) Particle radial position vs axial distance traveled by electrons having p,2 = 0, 50(mcL,)2
, and 90(mcL,)2. (Plot 

runs from r 1 to r2 and back.) (b) r/L, vs cl/L, for electrons with Ps2 = 0, 50(mcL,)2
, 90(mcL,)2

, and Pa2 mu "' lOl (mcL,)2. 
- p8t = 0 (plotted from r = Oto r = I> and back tor = 0);- - p,• =- 50(mcL,)2 (plotted from r1 to r 2 and back to ra); - - p,2 ... 

90(mcL,)2 (plotted from r1 to r 2 and back to r1); -·- P•' =- Pu'm•• (r is a constant). (c) z/ L, vs ct / L, for electrons with p,2 = 0, 
(50mcL,)', 90(mcL,)2, and p8',... • .., lOl(mcL,)2. - p,2 = 0 {plotted from r = 0 to r = I> and back tor = 0); - - Ps2 = 50 
(mcL,)t (plotted from r 1 to r 1 and back to r1); -- p8

2 = 90(mcL,)2 (plotted from r1 to rt and back to r1 ); -·- Ps2 = Ps2rn•• 
(z "" ct/ 3). 

We now suppose that this beam could be set up 

with f = 1 in a. "drift tube" with a perfectly con

ducting wall a.ta ~ b. Then, the sum of the magnetic 

field energy per meter of beam inside and outside 

the beam, U, is 

U 
2K 2 b 

= 'Yo {3. L. 

In this equation, K = 7fEo(mc
2
/ e)

2 
7.28 J / m. 

Suppose the beam source is able to supply W J / m 

(e.g., 2 kJ in a 10 m long beam is 200 J/m). Let 

a,. be defined by 

W = a,.-y~Kf3!I~(~) = a,.Kh~ - 1) . (73) 

Pa.rt of Wis in particle kinetic energy, U,., and the 

rest is in the magnetic field. Let a,, and a, be the field 

and particle contributions to a ... Then 

U,, = { ho - l )mc'n,(r )Zn- dr 

b
2 

2 

= h o - lhoK L! = a,ho - l )K. (74) 

The minimum magnetic field energy occurs when 

a = b, for which a1 = a.,.10: 

b [l1(b/ L,) b ( J~(b / L,))] 
CXm ln = L, l o(b/ L,) - 2£, l - J~ ( b / L ,) • 

(75) 

For the case considered above, 'Yo = 2, I = 10
6 

A 

(b/ L, = 7.3), we obtain a,. = 35.5K and <Xmi• = 

3.13K, for a total minimum necessary energy of 

845 J/ m. Note that this beam is a very efficient 

user of energy-most of it is in particle energy if 
a = b. By contrast, for a uniform beam 

U I ho + 1)
112 

u,, = 17 000 ~- · 
(76) 

Therefore, if it could exist a.t 106 A and 'Yo = 2, the 

uniform beam would have more energy tied up in 
fields than in particle motion. Suppose a > b, but 

(a - b) / b « 1. T hen expanding the logarithm in 

Eq. (72), we obtain 

!l - b ,_, (L.)2 
~tlfdL,) _ L, lo(b/L,) 

b - a, b I;(b/L,) b l1(b/L.) 

_ ~ (I ~ (b / L.) _ 1). 
2L, 1:(b/ L,) 

(77) 

The asymptotic expansions for Io and I 1 in both (7 5) 
and (77) enable us to write 

a - b (L·)2

[ 1 + f,, + (£·) 2

] , ) - b - ~ b b b ,a, - a.,,,. 

1 I~ 
~ 412 (a, - <Xm;n) . {78) 
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Then for b/L. = 7.3, and (a - b)/b = 0.1, a1 = 7.7. 

Thus, a tube radius 10% greater than the beam 

radius results in more than double the field energy 

being required. Up until this point, we have had no 

way to fix the beam radius given the beam current 

and electron energy; I/IA merely fixes b/L •. How

ever, if the beam is in a. drift tube of known radjus, a, 
Eq. (78) enables us to fix b given the source energy. 

For example, if W == 1000 J /m, 'Yo = 2 and I = 10
5 

A, 

then 155 J/m are available for fields outside of 

r = b. This uniquely detennines b at about 0.85 A. 

It also implies that the beam would be hindered from 

pinching to a smaller radius than 0.85 A by lack of 

sufficient energy. In fact, this tendency against 

pinching would be stronger, the higher the current, 

as can be seen by the second approximate equality 

in Eq. (78). 

Although there are many beam models which can 

carry arbitrarily large currents (for example, 

Bennett's
1 

and Benford's
20

), the one we have been 

considering is particularly interesting in that it is 

monoenergetic, and it is confined to a finite radius. 

Both of these are characteristic to some extent of 

most high current beam experiments to date. In 
addition, the current density is confined to a shell 

near the edge of the beam, and Bradley and Ingraham 

have observed high current beams which exhibit 

this characteristic. 
21 

More generally, we could superimpose beams such 

as we have considered with different values of P .. 

An example is the electron distribution function 

c2 

f. = -2 o(H - E.)(n1(0) o(P. - ')'om Vi) 
'lfE, 

+ n2(0) o(P. + 'Yom V2)], (79) 

with n 1(0) « ~(0) and V1 near c. The result would 

be a fast core carrying current below I Ai and a very 

slowly moving "halo" carrying most of the current, 

in which particles without angular momentum would 

be traveling backward over part of their orbits, 

much like trajectory din Fig. 1. 

m. MAGNETIC NEUTRALIZATION 

We now take up the notion of magnetic neutraliza

tion of an electron beam by a background plasma. 

We will develop a model in this chapter which indi
cates that cancellation of the beam current by large 

numbers of slowly counierstreaming electrons from 

a background plasma can be expected to occur. We 

assume the existence of a three-dimensionally in.fi

nite, uniform, charge neutral, field free plasma 

consisting of mobile electrons and immobile ions. 

An electron beam is assumed to be moving through 

the plasma with velocity v0, the magnitude of which 

is large compared with the thermal velocity of the 

background plasma. At initial time, t = 0, the beam 

extends from z' = - ro to z' = 0 (a primed co

ordinate indicating the laboratory frame of reference) 

along the z' axis, and it is neither electrostatically 

nor magnetically neutralized. We require that the 

effect of the beam on the background plasma be small 

so that linear perturbation theory is valid, and then 

we consider the perturbed plasma motion in detail. 

Our results will, therefore, be valid for plasma 

density large compared with the beam density. The 

motion of the beam is assumed to be unaffected by 

the interaction. (We ignore the obvious problem of 

the two stream instability because the experiments 

which we are attempting to explain. do not seem to 

be dominated by it.) 

We solve this problem here with cold plasma two 

mass approximation relativistic fluid equations. This 

method enables us to extract the essential physics 

with a minimum of algebraic complication. It can 

be shown that a kinetic treatment with a two mass 

approximation Maxwellian gives the same result in. 

the cold plasma limit. 16 In the present treatment, 

we will see that the use of the two mass approxima

tion involves dropping terms of order v!/cz, where 

v. is the plasma electron thennal velocity and c is 

the velocity of light. Therefore, retaining the pressure 

term in the momentum conservation equation would 

be in.consistent for beam velocities near c. 

We attack this problem in the rest frame of the 

beam, in which plasma is streaming by the beam with 

velocity -v0e,. (An unprimed coordinate is a beam

at-rest frame coordinate.) In this frame, the beam 

stretches from z = - oo to z = 0 for all time and 

produces no magnetic field. We derive our fluid 

equations from the Vlasov equation with a pheno

menological relaxation term, 

aFw) + v· aF(r>} - e(E + v x B). oF(p) 
at ax ap 

[F(p) - fo(p)] - (on/n)fo(P) 
(80) .,. 

The relaxation term, much like that in the Krook

Bhatnagar-Gross equation, 
22 

is constructed to 

COnBerve particles locally, since on, the perturbed 

plasm.a number density due to the beam-plasma 

interaction, is related to the "total" and unperturbed 

plasma electron mementum distribution functions 

F(p) and fo(p), respectively, by 

On = n J (P(p) - fo(p)] dp. (81) 
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The wiperturbed plasma density is n, and T is a 

phenomenological relaxation time. The first two 

moments of Eq. (80) are, assuming a cold plasma, 

aa~ + v ·NV= o, (82) 

(a ) P - Po - + V · V P = -e(E + V x B) - · at T 
(83) 

N(x, t), V(x, t), and P(x, t) are the electron "fluid" 

density, velocity, and momentum, respectively, and 

E and B are the electric and magnetic fields. The 

electron charge is -e. At t = 0, the electron fluid 

quantities N, V, P, have their unperturbed values n, 

-voe,, and Po = - 'Yomvoe., respectively. The 

electron rest ma..<;s is m and 'Yo = (1 - v~/c
2
)-

112
• 

After t = 0, these quantities suffer perturbations due 

to the interaction with the beam so that N = n + 
on, v = -voe, + ov, and p . = -')'omvoe. + op. 
There are no applied fields, so E and B have only 

perturbation contributions oE, and oB, and only oE 

exists at t = 0 in the beam-at-rest frame. The linear

ized .fluid equations for the perturbed quantities 

are, therefore, 

a on a -- + n V · ov - Vo - On = 0 at az ' (84) 

(
a a) A ~ 
- - Vo - op = - e(oE - Voe, x oB) - - . 
ot & T 

(85) 

We also have Maxwell's equations for the field 

quantities in terms of the plasma quantities: 

. 1 a oE 
V x oB = µ o oJ + CJ at , 

a oB 
~xoE = ---
v at I 

(86) 

(87) 

(88) 

where oj is the background plasma current density 

due to the interaction. In order to close this set of 

equations, we need a relationship between Ov and op. 

The "total" quantities N, V, and P and the perturbed 
quantities on, ov, and op are defined in terms of 

F(p) by 

N = J F(p) dp = n + on, (89) 

NV = j vF'(p) dp, Nov = J (v + v0e,)F(p) dp, 

NP = j pF(p) dp, 

(90) 

Nop = j (p - Po)F(p) dp, 

(91) 

where v and p are the velocity and momentum of an 

individual electron. Thus, 

NV= Nov - Nv0e •. (92) 

But p = ')'mV for each electron, where 

'Y = (l + p2 /m2c2) +112. 

A Taylor expansion of 'Y wider the assumption 

IP - Pol « me enables us to obtain 

NV = J i F(p) dp = _!!._ (P + op - v~ §f·e·) 
')'m 'Yom 0 c 

Therefore, 

which is a statement of the two mass approximation. 

The terms we have dropped from Eq. (93) to get (94) 

are of the same order as the pressure term in the 

momentum equation would have been had we kept it. 

The Fourier-Laplace transform, defined by the 

operator 

f" dt exp (-st) 1_: dx exp (-t1i: ·x), 

of the linearized fluid equations and the last two of 

Maxwell's equations are 

(S - ik,Vo) On + tK 0 OVn = 0 I (95) 

(s - ik.vo + ; ) op = -e( oE - Voe. )( oB) I (96) 

-s oB = tK x oE, 

. soE I 
i"k x oB = µ0 01 + -2 - 2 oE(k, t = 0). 

c c 

(97) 

(98) 

The Laplace and Fourier transform variables are 

sand k, respectively, where k, = k· e •. on, 0v, op, oE, 

and oB are now all functions of k and s, and we have 

used on(t = O) = op(t = 0) = oB(t = O) = 0. The 
plasma response cun·ent oj is related to on, ov, 
and oE by 

oj = - eo(NV) = - e(nov - v0 e. on)= d·oE, (99) 

where d is the response "conductivity" tensor. 

Finally, from the .Fourier transform of Eq. (86) 

evaluated at t = 0, 

t"kph(k) 
oE(k, t = O) = - Eok2 . (100) 

Pb, the charge density of the beam, is the only charge 
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density at t = 0. By our assumptions, it is not a 

function of time in the beam-at-rest frame. The 

magnitude of k is k. 

w;(s - ik,v0) J 
- 'Y~ 2 (s + 1/ r - ik,v0) • 

The 1, 2, and 3 directions are defined by 

(102) 

Equations (94)- (100) constitute a closed set of 

equations, and in the Appendix, we solve them. The 

results for oj and oE in Fourier-Laplace transform 

space are 

A k xe. 
ea=T· (103) 

. [(1 _ v~k!) (e + ~ + w!(s - ik,v0) ) 

c
2k2 c

2 
c

2
(s - ik,v0 + 1/ r) 

(IO Ia) 

oja = 0 = oEa, (lOlc) 

and k.t is the component of k perpendicular to e •. 
oB is easily obtained from Eqs. (101) and (97), 

giving only 0B3 ->= 0. The perturbed charge density, 

op = -eon, is most easily obtained from Eq. (lOla) 

through the Fourier-Laplace transform of the 

charge continuity equation, 

s op + ik oj1 = o. (104) 

We are interested in the behavior of our beam 

plasma system after the initial transients (and 

presumably the effects of our artificial initial condi

tions) have died down. Therefore, we take advantage 

of the final-value theorem of Laplace transform 

theory, which enables us to write for any quantity, 

oQ, 

lim oQ(k, t) = lim oQ(k, s). (105) 
t-m .~o 

To obtain the spatial variation of the quantity, we 

must invert the Fourier transform: 

~E = w!k.tVn (l + ik.voS) (k) 
fJ 2 kc2 D k2 2 Pb , 

Eo • C 
(lOle) 

where 
For Pb• we choose a uniform beam of radius b and 
electron density nb: 

z ~ 0, r ~ b, 

otherwise. 

(107) 

The Fourier inversions of the quantities oj, oE, oB, 

and op for this Pb (x) are obtained in the Appendix. 

These results, in the beam-at-rest frame, valid for a 

weakly collisional plasma (w,,r » 1) are, for z < 0: 

oj, = nbevo 'Yow.,,b sin w.,,z exp (~) 1 Vo I Vo I ' 
{
I (~)K ("'.,,b)l 

vo 'Yovo 2vor 
11

("',,b)K,("'.,,,·)r 
(108) 

Vo Vo I 

[ { 
1 0 (~)K 1 ("' 0 b)l j I (w,;r)K ("',,b)l j 

- nbevo 'Y~ w,,b c c - cos W,7- exp (~)'Y ~ ~ o Vo i Vo , 

C ( b) ( ) · 'YoVo 2vor Vo ( b) ( ) -I, ~ Ko ~ -J
1 
~ Ko w.,;r 

C C v0 V0 J 

oi. = (109) 
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The upper (lower) line is for r < b (r > b), and the 

quantities, oQ, ha.vo arguments (x, t - co). All of 

these quantities are zero for z > 0. I,,. and K,.. are 

modified Bessel functions of the first and second 

kind, respectively, and order m. In these results, a 

contribution to each perturbed quantity of order 

exp (-w,,lzl/c), which is, therefore, significant only 

within c/w,, of z = 0, has been dropped. (Note that 

w,,r » 1 implies c/w,, « 2v0r for v0 near c.) This 

contribution is discussed in the Appendix. In 

addition, as mentioned in the Appendix, we have 

also dropped the collisional damping of the induced 

plasma current, which was pointed out to us by Lee 
and Sudan, 

28 
as it is unimportant in the parameter 

regime of particular interest to us. 

Let us now look at a few of the characteristics of 
this solution in the beam-at-rest frame. Firstly, we 

note that several of the perturbed quantities are 
discontinuous across r = b. This is due to the dis

continuous beam model and the cold plasma assump
tion. {Retaining the strongly damped terms-

0 [exp (-w,, lzl/c)]-would result in all quantities 

being continuous through z = O.} We can easily 
calculate that the net axial current in the entire 

beam-plasma system is 0. For w,,b/c » 1, the current 

density is confined to a sheath of thickness c/ w,, 

around r = b since 
15 

(110) 

(111) 

(112) 

(113) 

1 (~)J( (~) ,.._, c exp [-(w,,/ c) lb - r ll . (ll ) 
0.1 c 0.1 c 2w,,(rb)112 4 

The same thing can be said about the rest of the 

quantities except for op and oE •. We are, therefore, 

led to the following physical interpretation: The 

electron "fluid" flowing in toward the beam from the 

right does not know the beam is there until it reaches 

z = 0 (actually z"' c/w,, had we not dropped the 

strongly damped term). Suddenly encountering the 

beam, the electron fluid expands within the beam 

(that is, the density decreases as plasma electrons 

are thrown out of tho beam) in an attempt to 

neutralize the bulk of the beam charge density. A 

standing wave is set up as a. result of this; this wa.ve 

is simply a damped plasma oscillation in the laborar 

tory frame. When the electron fluid oscillation has 

been damped Clzl > 2vor), the bulk of the beam 
charge density has been neutralized by a net ion 
density of n. having been left behind [the first term 

for r < bin Eq. (113)]. The excess charge has been 
carried off to infinity since the 

211' {" (6p + P•)r dr 

is zero for lzl > 2vor. The ions that have been left 

behind for lzl > 2vor must be contributing a current 
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density of - nbev0 to oj,, the magnitude of which is 

certainly small compared to this everywhere but 

within c/w.,, of r = b. The canceling current is a result 

As before, the upper (lower) line is r < b (r > b), 

and ov, = 0 for z > 0. {In this, we have dropped the 

same contributions as in Eqs. (108)-(113).] It is 

clear that the electron current due to the first pair 

of braces in ov, for r < b is exactly that required to 

cancel the same term in op, leaving only the sheath 

current density in oj,. From Eq. (A20) it is clear 

that oE, is responsible for the acceleration of the 

electron fluid. Finally, we can see that unless 

of a net acceleration in the - z direction of the 

electron fluid within the beam. From the Appendix, 

Eq. (A22), 

z < 0. (115) 

nb « n, ov, and op will not be small compared to the 

unperturbed quantities in the electron plasma. Since 

we have used linear perturbation theory to obtain 

our solution, we must have lov.I «Vo and lop! « ne. 
Therefore, our solution can be valid only for n6 « n. 

We now transform the complete solution into the 

laboratory frame of reference using the appropriate 

relativistic transformation for each quantity. With 

primes denoting laboratory frame quantities, for 

z' - voL' < 0, and large t', there results 

~ ·1 , · w!(z' - v11t') (z' - v11t') ~ 1
• --;;;- K, ~ 

{

w;b (w:,r') (w;b)} 
uJ, ~ nbevo Sill exp -

9
-,- , 

Vo - VoT 'b ( 'b) ( I ') 

(116) 

~l. ~ K
1 

w:; 
Vo Vo Vo 

[r 
'b ( ' ') ( 'b)} ~ I w:; K ~ 

0j~ + {-n£evo} ~ -ntevo C 0 C I C 

O l-~ l.(~)K 0 (~) 

{[ 
'b ( '') ( 'b)]' l- ~ I w:; K ~ 

+ w!(z' - Vn l') (z' - Vol') Vo 
0 

Vo 
1 

Vu j cos exp ----

Vo 2v0
r ' 'b ( 'b) ( , ') ' 

~! 1 ~Ko '!!L 
Vo Vo Vo 

(117) 

(118) 

{ 
(w!r') ('"' L)} ~E' n'eb w;(z' - v0t') (z' - v11t') 1

• ~ K i =:::-
u Ir ~ - - COS • 0Xp ? I 

1 

Eo Vn ~VoT ( 'b) (' ' ') 1 1 ~K. £ 
Vo Vo 

(119) 
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{ 

[ 'b ( I ') ( 'b)]} ~ 1 - ~ I WpT [{ ~ 

oE: ~ _ n£eb sin w;(z' - Vot'l exp (z' - v~t ) w~b Vo o Vo 1 

Vo ' 

Eo Vo 2vor ( 'b) ( / ') 

(120) 

Ii ~K o w;r 
Vu Vo 

-n e cos e. , 

{ 
/ } J w~(z' - Vnt') (?' - Vol')] 

Op' + O ~ ~ -n£e l Vo O xp 2Vor J · (121) 

T he upper (lower) line is again for r < b (r > b). 

Note that to op' and oj~ above, we have added the 

beam charge and current densities; therefore, the 

exhibited quantit ies are the net charge and current 

densities. Since contributions from the strongly 

damped terms have been dropped, all of the above 

quantities are zero for z' - v0t' > 0. 

In this frame it is clear that the net charge is zero 

away from the front of the beam, and that at a 

fixed z' < vot', we have a simple damped plasma 

oscillation. As in the beam frame, for w~b/c » 1, 

the net current density is confined t o a sheath of 

t hickness c / w~ . Therefore, if a beam electron has 

left this sheath before it has gained much perpendi

cular energy-Iv.I » Iv.LI-then we are justified in 

having said that the beam is unaffected by the 

interaction. We would, therefore, want the Larmor 

radius RL of a beam electron in the maximum magne

tic field to be large compared with c/ w;. This is 

Qwrent Density 

ni.·evo 

Net CurNnl 
Den1lly r>b -- ~"""'- · -

ol----~ O~~ --o:;::---,-l~..:::::,,--~ 1.5 .------t 

Net Currellt 
Densit y r(b 

-1. ......... ........... '8iii19·o;n.., DIMity 

o) CUrnnr Dlnlities for ~ • 10 
c 

l.O>l------1--- --il-

Induced Plosmo 
0.5 _ _ _____ - ----- - • k (b Cunwll Density 

· -c~ /r ~ b 

0 
Net Current O..lty r ) b .1.:- =>------'-~ r 

0.5 1.0 1:5 b 

~ -Net Current Density r( b 
-0 .5 f=--~ '='4::: :::::::::::«t _ :..r 

- 1.0 ........... . 

b) current Densities for t.1f>b = I 
.c . 

Fra. 4. Current densi ties relative to nb'W o for z' » 2vor'. 

nearly equivalent to the original n6 « n requirement: 

= 'YorlWo ,....., 'YomVo 2w~b » .£ 
e oB8(r = b) = eµ 0 n~ev 0 b c w; (122) 

or 

(123) 

Approximately the same inequality results from 

consideration of time scales. For the plasma to be 

able to charge and current neutralize the system 

before the beam has expanded significantly, we must 

have w~-
1 « w~~ 1 , w;b being the beam electron plasma 

frequency. Except for the factor 2, relation (123) 

results. Thus, an arbitrarily large total beam current 

can be propagated in this model as long as the beam 

radius is sufficiently large so that n~ « n'. As an 

indication of how the space dependence of the net 

current density changes with w;b/ c, in Fig. 4, \.Ve 

plot the ratio of oj~ to n~ev 0 for w~b / c = 1 and 10. 

If b « c/ w;, the total current within r' = b for 

lz'I > 2v0r' is
15 

(124) 

which is the full beam current. The same magnitude 

net current with the opposite sign is flowing outside 

r' = b. Hence, in this limit, all of the return current 

being supplied by the plasma is outside the beam, 

and no magnetic neutralization occurs. 

For the beam of Andrews et al., a current of 10
5 

A 

at 'Yo = 2 in a radius of 5 cm gives n~ ~ 2 X 10
11 

/ cm
3

• 

An ambient pressure of 0.5 Torr implies about 

2 x l0
16

/ cm
3 

neutral density. The plasma density 

at a point after a length L of beam has passed is 

approximately given by 

(125) 

where no is the neutral density and u1 is the appro

priate effective ionization cross section. From 
u, ~ 2 X 10-•s cm2

,
24 

n' ~ 4 n~ L (126) 
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(L in meters). A pulse duration of 50 nsec implies 

a beam length of order 15 m. Therefore, for purposes 

of our theory, we assume n' ;::: 2 x 10
12 (» nn, so 

that w; > 8 X 10
10

/sec, c/w; < 0.4 cm and bw;/c > 
12. Estimating r' from the formula given by Rose 

and Clark, 25 we ob tain about 1.5 X 10-9 sec, so that 

w;r' >> 1 and 2v0r' ,...., 1 m. From these numbers, we 

see that the case of interest is bw;/c » 1, in which a 
great deal of current neutralization is to be expected. 

[The length characteristic of the collisional damping 

of the return current is estimated
23 

to be of order 

(bw;/ c )22v0r' » 2v0r' . T herefore, collisional damping 

should not dominate the current neutralization over 

most of the beam length in the high current beam 

propagation experiments to date.) 

IV. LONGITUDINAL GUIDE FIELD 

In this section we take up the problem of a unif onn 

electron beam of radius b, infinite in the axial (z) 

direction, in the presence of a tmiform, axial magnetic 

induction B0 = Boe •. We will find that if Bo is much 

larger than the self-magnetic induction of the beam, 

the electron beam can be expected to propagate. 

For this problem, Cartesian coordinates (x, y, z) 

prove to be the most convenient. Therefore, we 

express the self-fields of the beam, Eqs. (64) and (65), 

as 

E" = 
Ne(l - f)x 

E = 
Ne(l - f)y 

(127) 
211'Eob

2 • 211'Eob
2 

_ NeVJL 
B~ = 

NeVx 
(128) B" - 2 2b2 ' - 27rEoC

2b2 1 

?rE ~ C 

where V is the beam propagation velocity and N is 

a.gain the number of electrons per meter of beam. 

W e intend to use these fields, together with Bo, in 

d 
--ymv = -e(E + v xB) 
dt 

(129) 

under the assumptions which make a uniform beam 

self-consistent: 

Iv.L I« v. 

Iv, - VI« V, 

'Y = (1 - tl)- 112 
~ const. 

{J = V / c is assumed near one. 

(130a) 

(130b) 

(130c) 

Under the above assumptions the equations of 

motion for a beam electron reduce approximately to 

...,,;< Ne2[(1 - f) - iS
2
]x ·s 

-y ,,..., ~ 2 b2 - ey o, 
?l"Eo 

(131) 

.. Ne
2
[(l - f) - iS

2
]y + .B 

-ymy ~ 2wEobz ex o • (132) 

-y
3
m.Z ~ 0. (133) 

D ropped terms are of order v.L/c or Iv. - Vl/c. A dot 

represents a time derivative in these equations. 

D efining 

n _ eBn 
o - -ym' (134a) 

r = x + iy, (134c) 

and multiplying Eq. (132) by i and adding it to 

Eq. (131), result.sin 

f = -n2r + iflof- (135) 

Looking for solutions of the form A exp (fut), we 

obtain 

w
2 

- !low - n2 
= o. (136) 

The two roots of this equation are 

If we take initial conditions r(t = 0) = ro and 

f (t = O) = 0, then 

r(t) = ro( w_ exp (fu+l) + . w.. exp (iw_t)). 
w_ - W + w, - w_ 

(138) 

We can find x(t) and y(t) from the real and imaginary 

parts of r(t). 

Consider the limit n~ » 4 ln21. In this case, 

(139) 

and we obtain 

r(t) ~ ro[ (~)
2 

exp (iflot) 

+ (i - ~;)exp (-i ~>) l (140) 

Hence, in the large axial field limit we h ave the sum 

of two rotations-a high-frequency gyration with 

radius lrol (n/no)2 « lrol about a. guiding center 

which slowly rotates around the beam axis with 

radius nearly lrol· These are, of course, superimposed 

on the "uniform" mot ion in the z direct ion with 

velocit y V. 
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The assumption that lv.1.I « V, taking the worst 

case for ltl, yields the requirement 

Bo» !Bl.I (1 - /32 
- f), (141) 

Where IBmul is the maximum value of the self

magnetic field of the beam. This is much stronger 

than the inequality n~ » 4lil2l for a high current 

beam. For f = 1, the relation is Bo» IBmaxl and we 

have a practical limit for neutralized beam current 

in this model since arbitrarily large guide fields are 

expensive. However, in principle, by applying a 

large enough guide field, arbitrarily large currents 

could bo propagated without the occurrence of 

catastrophic pinching due to the self-field of the 

beam. 

In this discussion, we have assumed that the 

axial magnetic induction is uniform. However, the 

analysis should be applicable so long as the change in 

the guide field over a gyrora.dius is small. 

It also should be noticed that the perpendicular 

motion equation, (140), contains only Sl
2

• This means 

that a change in the sign of 1 - f - fJ
2 

only changes 

the direction of the slow rotation. One can, therefore, 

apply it to a totally unneutralized beam (j = 0) as 

well as to a neutralized beam (j = 1). Applicability 

extends to magnetically neutralized beams as well 

with the substitution of 1 - f - /32
(1 - f .. ) for 

1 - f - /32 in 0 2
• In this case, of course, less guide 

field is required since IBm .. I decreases. 

V. DISCUSSION 

In the three preceding sections, we presented 

three models of relativistic electron beams which 

allow the propagation of arbitrarily large currents 

within a finite radius. The three models avoid the 

catastrophic self-magnetic pinch exhibited by elec

trostatically neutralized high current uniform beams 

by three distinct physical mechanisms. T he fully 

relativistic self-consistent equilibrium does it by 

concentrating the current density near the edge of 

the beam so that beam electrons have left high field 

regions before they have a chance to tum around on 

themselves. The initial value problem solution 
suggest.<> that a beam propagating into a high

density background plasma will avoid the self-pinch 

problem by inducing plasma currents which cancel 
out the self-magnetic field of the beam. Finally, 

adding tho strong axial guide field to the uniform 

beam solves tho problem by limiting radial excur
sions by a beam electron to small ones in the form 
of a rotation about the guiding center of the electron 

whose radial position is approximately constant. 

All three of our models serve to explain some 

experimental observations made to date on propa

gating high current relativistic electron beams. 

Experiments with an axial guide field being done by 

Bzura, Andrews, and Fleischmann
28 

with the guide 

field related to the maximum beam self-field by 

IBol > IB ... .,J, at various ambient pressw-es, indicate 

that the guide field does help with beam propagation. 

Relatively slow beam propagation velocities ob

served both by Andrews et al.,13 
and by Yonas and 

Spence, 
12 

and the beams with a shell current density 

observed occasionally by Bradley and Ingraham, 

seem to point to the nonuniform equilibrium. 

Finally, magnetic field measurements made on 

high 11 h beams injected into drift regions at pres

sures above 0.1 Torr indicate that partial magnetic 

neutralization takes place, 
12

• 1
3 as predicted by the 

model of Sec. III. However, none of our models is 

adequate to explain all phenomena observed even 

in a single experiment. Except perhaps those with 

magnetic guide fields, experiments to date have not 

been performed in such a way that we should expect 

complete explanation by one of our physical prin

ciples. For example, no attempt has been made to 
start a high current beam off with a shell current 

density into a background plasma very nearly equal 

to the beam density. Nor has a systematic attempt 

been made to study beams propagating into high

density, quiescent plasmas. Instead, experimental 

groups usually inject beams into neutral gas, and 

they have found that for significant beam propaga

tion, ambient pressures of above 0.1 Torr are neces

sary. As previously mentioned [Eq. (126)], this 

means that the background plasma density, n', is 

continually building up during an experiment accord

ing to n' ~ 4n~L (at an ambient pressure of about 

0.5 Torr of air and with L in meters), where n' is 

the beam den.ciity. Thus, we can expect f > 1 after 

a half-meter of beam has passed and n' ~ 20n' after 
about 5 m. With such a rapid build-up of plasma in 

these experiments the model of Sec. II can at best be 

a state through which the beam-plasma-neutral gas 
system passes early in the interaction, on its way to 

becoming at least partially magnetically neutralized, 
as observed experimentally. This would also account 

for the relatively slow propagation velocities ob

served for the beam front.
12

•
13 

Possibly the lingering 
effects of having the current density concentrated 

in a shell early in the pulse is the explanation of 

the Bradley and Ingraham observations.
21 
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APPENDIX 

Here we wish to take up the solution of Eqs. 

(94)- (100) of Sec. III, and the inverse Fourier 

transformation of the elements of that solution. In 

order to facilitate this solution, we introduce the 

Cartesian coordinate system defined in Eq. 103: 

• k xe, 
e3=T· {Al) 

where kJ.. is the component of k perpendicular to e., 
and k is the magnitude of k. We, therefore, have 

{A2) 

Equations (94), (95), and (99) taken together give 

the components of oj in terms of those of op, and 

Eqs. (96) and (97) combine to give op in terms of oE. 
Putting the resulting two expressions together and 

using oj = d· oE result in the following components 

for d: 

E1w!s[l - (v~jc2)(/c~ / k2) J 

au = (s + l / r - ik,v0)(s - ik,vo) ' 
(A3a) 

E~w!ik J..Vn f 1 + ( ik v.,s/ k
2 
c

2
) l 

u =u = 12 21 
(s - ik,v0 + l/r)(s - ik,vo) ' 

(A3b) 

I 

_ E ~ w!(s - ik.vn) (
1 

_ k J v~[l + (s2/ k
2
c
2
)]) 

u22 
- s(s - ik,v0 + l / r) (s - ik,vo)2 

' 

(A3c) 

E•,w!(s - ik.vn) 
<133 = ( 'k 1/ ) ' SS - '£ ,Vo+ T 

(A3d) 

(A3e) 

The square of the electron plasma frequency is 

2 

2 ne ) w,, = --. (A4 
'Yom·Eo 

The wave equation for oE with the source term is 

obtained by combining Eqs. (97), (98), and (100): 

y. oE = [ ( k2 + ~) 1 - k
2
M1 + Eo:2 d J · oE 

(A5) 

where 8 1 and Y are as defined in this equation, and 1 

is the unit dyadic. Considering Eqs. (A3), (A5) is 

equivalent to 

Fio. 5. The relationship among unit vectors. 

[

Yu Y12 01 0E11 [Sil 
Y21 Y22 0 0E2 = 0 , 

0 0 Y33 I 0E3 0 

(A6) 

which is readily solved for the components of oE: 

(A7a) 

{A7b) 

(A7c) 

oj = d· oE then gives for the components of oj, 

(A8a) 

(A8b) 

{A8c) 

These quantities are given explicitly in Sec. III, 

Eqs. (101). 

We now wish to take the time asymptotic forms 

of oj, oE, oB, and op, obtained from Eqs. (101) 

using Eq. (105), and invert the Fourier transfonns 

in order to obtain the spatial dependence of these 

quantities. From Fig. 5 and Eq. (Al), we obtain the 

coordinate relations 

, ,. k L ( 8) + ~ k L • ( ) , k, e1 = e, k cos a - ~8 Tc sm a - 8 + e, k , 

{A9a) 

... ~ k , ( 8) ... k, . ( 8) + ... kJ. 
e2 = -~. k cos a - - ee k sm a - e, k , 

(A9b) 

e3 = e, sin (a - 8) - es cos (a - 8). (A9c) 

Then from Eq. (106), the spatial dependence of any 
component of 5j, oE, and oB, as well as op, is given by 

r kJ.. akJ.. J.. . 12 
.. 

oQ(x, t ~ co) = .lo (27r)3 _,. dk, 0 dx 

·exp [ikJ..r cos(a - 8) + ik,z] oQ(k, t~ co). {AlO) 



This article is copyrighted as indicated in the article Reuse of AIP content is subject to the terms at: http://scitationnew aip org/termsconditions

1848 D. A. HAMMER AND N. ROSTOKER 

The uniform beam charge density [Eq. (107)] has the Fourier transform 

(k) J1(kJ.b) 1° ( . 
Pb = -27rnbeb kJ. _., dz0 exp -ik,z0), (All) 

where J ... is the Bessel function of the first kind and order m. Therefore, after performing the a integra

tion, we obtain 

(Al2a) 

(A12b) 

(Al2c) 

oE, = _nhebv~ 1 "' kJ. dkJ.J,(kJ.r)J,(kJ.b) l o dzo 1°' dk, exp [ik,(z - z0)J(k;[l + (i/k,v0r)] + (w!/c
2
)} 

1 

Eo o 2?r _., _., Do 
(A12d) 

oE, = nbebv~ 1"' dkJ.Jo(kJ.r)J1(kJ.b) Jo dzo f"' dk, exp [ik ,(z - Zo)]ik,{k![l + (i/k,Vor)] + (w!fc2)1 ' (A12e) 
Eo o 2?r _., -= Do 

~B = n.ebvnW! 1°' kJ. dkJ. J (k )J (k b) 1"' dz 1"' exp [ik,(z - Zo)] dk 
v s c2 2 1 J.r 1 J. o D " 

Eo 0 1r _., _., 0 
(A12f) 

op= _n~ebw!l"'dkJ.Jo(kJ.r)J,(kJ.b)f
0 

dz f°' dk ["k( - )JJ_(e+ w! + 2k2). 
2 2 o , exp i , z Zo D , 2[l + ( "/k )] 'Yo J. 'Yo o 'If _., _., o c i ,V0 r 

Do, obtained by settings = 0 in Eq. (102), can be 

factored exactly, the result being 

v~ 
Do = l + (i/k,vor) (k, - k1)(k. - k2) 

. [k2(1 + _i ) + w;J , (A13) 
k,VoT C 

where 

i ( w! I )
1

'

2 

ki ·2 = - 2v
0
r ± 'Y~! - 4v~r 2 • 

(AI4) 

The arguments of all of these functions are (x, t~ <X) ). 

Since the k. integrals required in oj. ai1d oE. are 

the z derivatives of those required in oj. and oE.; 
respectively, we have only three different k. integra,.. 

tions to do. They are easily done by contour inte

gration and the residue theorem. Restricting 
ourselves to a weakly collisional plasma, we stipulate 

Wp'T » 1 (Al5) 

and drop terms of order I /w.,,r compared with 1. 

However, in k 1 and k 2 we must keep the imaginary 

(A12g) 

parts in order to properly locate these poles and to 

damp the resultant residues. In this case, D 0 has 

roots at k3 and k4 given by 

( 

2)1/2 

ka.• '.::::'. ±i k~ + :; (A16) 

to go with k1 and k2. Since we are concerned only 

with current neutralization, we have dropped a pole 

due to finite "collision" time which, as pointed out 

to us by Lee and Sudan,
23 

results in the slow decay 

of the current neutralization. However, this effect 

occurs on a length scale greater than beam lengths 

in the high current beam experiments to date. (See 

the discussion at the end of Sec. III.) For z - z0 > 0, 

we must complete the contour in the upper half k, 
plane in order to have convergence on the "infinite 

circle." This contour includes only the pole at 
k. = k3 • For z - z0 < 0, the contour must be com

pleted in the lower half k. plane. This contour en
closes the three poles, k. = k 1, k2 , k4 • Dropping terms 

of order 1/w,,r, a typical one of the k. integrations is 

1., dk, exp [ik,(z - zo)J ~ 

-.. Do 

?r exp { - [k~ + (w! / c~) ]1'\z - Zn) l 
[k~ + (w! / c

2

)]
112

[k~ + (w! / v~)] 
z - z0 >0 

,...., 2?r ('YnVo exp [(z - Zn)/ '.?vor] sin (w,,hnvo)(z - zo) _ exp { [ki + (w!/c2)1
112

(z - Zn)} ) 

- v~ w,, k~ + (w! / v~) 2[k~ + (w! / c
2
)]

112
(k~ + (w! / v~)J ' 

Z - Zo < 0. 

(Al7) 
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The z0 integrals can now be done using standard 

fonns (for example, from Dwight
21

), taking care to 

b 
2 ?-a r , - z, 

. ""• - z 

change the integrand for z < 0 at z = z0 as required. 

Dropping terms of order 1/ wpT1 we obtain 

z > 0, 

{

1 a '( ) 

01, = n~evo - , 

Vo 'Y~o sin~ exp (2z )('1': - _21 aa r:(z)) I 

w,, 'YoVo VoT Z 

(A18a) 

z < 0, 

z>O 
oj, = (Al8b) 

z < 0, 

z>O 
oB, = (A18c) 

z < 0, 

z>O 
oE, = (A18d) 

z < 0, 

z> O 
(A18e) 

z < 0, 

· ;~2 r~(-z), 
op = n~eb 

z> O 

{ 

2 

[ 1 - cos w.z exp (-
2

z )](""~ '1'~ + 'Y~i'~) + w~ {};~ - t r ~(z)], 
'YoVo VoT Vo C 

(A18f) 

z < 0. 

r!, :Z!, and '1'! are the k.i. integrals defined by 

r!(±z) = r!(r; b; ±z) 

_ f"' k1. dkJ.(kJ..r)J1(kJ..b) 

= lo [ki + (w!N1
)][ki + (w! / v~)] 

·exp [ =F(ki + :;)
112z], (A19a) 

' _ ''" . b) _ f"' kf dk.i.J.(k.1.r)J,(kJ..b) 
~" = ~.\r, = 10 [ki + (w! / v ~ )][ki + (w! / v~)] ' 

(A19b) 

.T.' ,.., •T•'( . b\ = r• k~ dkJ..J,.(kJ..r)J,(ki.b). (Alge) 
'rn - 'rn r, 1 - lo [ki + (w! / v~] 

The integrals ~! and w! can be done exactly by a 

contour integration method described by Watson. 28 

Note that since 

r!(r; b; O) = ~!(r; b) 

and 

all of the plasma response quantities are continuous 

through z = 0. It can be shown
16 

that each r! is of 

order exp (-w,,lzl/c). Therefore, for lzl > c/w.,, the 

contribution to the response functions from the r!'s 

will be negligibly small. Since w.T » 1 implies 

2voT » c/w.,, we drop the r! contributions as they add 

little to the physics of the problem. However, we do 

lose continuity of our plasma response functions 

through z = 0 in the process. The results to this 

level of approximation are presented in Sec. III, 
Eqs. (108)- (113). 

Finally, we wish to calculate ov •. From Eqs. (94) 
and (96) 

ov = _ _ e_ 8E, (A o~ 
• 'Y ~ m (s - ik,v0 + 1/ T) 

2 1 

This gives the time asymptotic limit 

6v - _ _ e_ ~ (k2 + w! ) (A21) 
• - 'Y~m Eo Do • c2 [l + (i/k,v0r)] • 

Comparing 8v. with oE. and o E, in Eqs. (A12), and 
dropping 0(1/w»T), we obtain 
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hv. 

- tr~ - -y~'l!g[1 - cos w.,;:, exp (
2

z )]} , 
'YoVo . VoT 

z < 0 
(A22) 

* A portion of this paper is taken from a thesis submitted 
by D. A. Hammer to Cornell University in partial fulfillment 
of the requirements for the Ph.D. degree. 
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