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Abstract 

A novel paradigm was developed to study the behavior of groups of networked people searching a 

problem space. We examined how different network structures affect the propagation of information in 

laboratory-created groups. Participants made numerical guesses and received scores that were also made 

available to their neighbors in the network. The networks were compared on speed of discovery and 

convergence on the optimal solution. One experiment showed that individuals within a group tend to 

converge on similar solutions even when there is an equally valid alternate solution.  Two additional 

studies demonstrated that the optimal network structure depends on the problem space being explored, 

with networks that incorporate spatially-based cliques having an advantage for problems that benefit 

from broad exploration, and networks with greater long-range connectivity having an advantage for 

problems requiring less exploration. 
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 Diffusion of Information and Innovations 

Humans are uniquely adept at adopting one others’ innovations. While imitation is commonly 

thought to be the last resort for dull and dim-witted individuals, cases of true imitation are rare among 

non-human animals (Blackmore, 1999), requiring complex cognitive processes of perception, analogical 

reasoning, and action preparation.  This is because true imitation requires understanding the intentions of 

the model, rather than simply the behaviors.  Gergely, Bekkering, and Király (2002), replicating a study 

by Melztoff (1988), showed that infants can infer the intentions of an adult model rather than simply 

copying the behavior. This capacity for imitation has been termed “no-trial learning” by Bandura (1965), 

who stressed that, by imitating one another, people perform behaviors that they would not have 

otherwise considered.  When combined with variation and adaptation based on reinforcement, imitation 

is one of the most powerful methods for quick and effective learning. Cultural identity is largely due to 

the dissemination of concepts, beliefs, and artifacts across people. The tendency for humans to imitate is 

so ubiquitous that Meltzoff (1988) has even suggested that humans be called “Homo imitans.” 

This tendency is also evident in conformity in social groups. One famous experiment on 

conformity is Asch’s (1956) line judgment experiment, in which a series of confederates announced that 

a pair of lines was the same length, even though they differed by several inches.  When the participants 

had to make their judgment, roughly one-third conformed to the group and declared the same pair of 

lines to be equal. There are several reasons why the participants may have conformed to the objectively 

incorrect judgment.  Influences can be classified into two types (Deutsch & Gerard, 1955): normative 

influence, when people are influenced because they desire to obtain social approval from others, and 

informational influences, when people are influenced because they believe others possess additional or 

more accurate information. Cialdini and Goldstein (2001) note that having an affiliation goal, making 

one susceptible to normative influence, and having an accuracy goal, making one susceptible to 

informational influence, are both subsumed by a general goal of maintaining one’s self-concept.  The 
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different kinds of influence affect the stability of the influence.  With normative influence, people are 

less likely to conform to the group’s opinion when responding privately than when responding publicly 

(Deutsch & Gerard, 1955).  However, when the influence is informational (e.g., Sherif, 1935), people 

are more likely to continue to conform to the group’s opinion privately. At a broader level, the “I’ll do it 

if you do it” mentality can lead to situations in which a small number of people can initiate a positive 

feedback cycle, an effect that has been popularized as the notion of “tipping points,” (Gladwell, 2000).  

This effect is viscerally apparent if you have ever witnessed a single person start a chant at a stadium 

that catches on until everyone in the stadium is participating in the chant. 

The spread of a chant in a stadium, though operating through a process of conformity, behaves in 

a manner very similar to disease contagion. In fact, the spread of affect in a population has been 

described as “mood contagion,” (Neumann & Strack, 2000), and the spread of attitudes and beliefs 

through a population has been modeled as a similar process.  Nowak, Szamrej, and Latané (1990) used a 

computational model to study the dynamic impact of social influence. Friedkin and Johnsen (1999) 

developed a comparable mathematical model of influence with two components, the social process and 

the social influence structure.  The first is the way in which people modify their opinions in response to 

influence, and the second is the structure of communications channels and the strength of influence 

between people in a group.  These influence models provide a more specific and formal description of 

conformity processes within a group. 

Laughlin and Ellis (1986) describe a continuum between intellective and judgmental issues.  

Where an issue falls on this continuum depends on the demonstrability of the correctness of solutions.  

A math problem, which has accepted means for showing the correctness of a solution would be 

considered an intellective task, whereas which flavor of ice cream tastes better would be judgmental. 

However, many problems fall in between this continuum, such as who to hire as a job candidate.  While 

there are objective and accepted means of showing the advantage of one candidate over another on 
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certain dimensions, such as the number of publications, there can be differences of opinion as to the 

quality of the publications or even which dimensions are most important for hiring a candidate.  Kaplan 

and Miller (1987) looked at the difference in conformity for intellective and judgmental issues with 

normative and informational influence.  Their somewhat intuitive conclusion was that intellective issues 

led to more informational influence while judgmental issues led to more normative influence.  

The dissemination of innovations in a population is also the result of social influence and 

conformity and so can manifest the same bandwagon behavior.  An innovation may spread because it is 

clearly better than the alternatives, so the conformity is due to the informational influence of others.  

Innovations may also function more like opinions when it is more difficult to determine if the innovation 

is better than current practice, or in other words, when the advantage of the innovation is less 

demonstrable and therefore is less of an intellective issue. If there is no inherent difference, or when the 

benefits of adopting an innovation are largely due to others using it (e.g., Macintosh vs. IBM or 

BetaMax vs. VHS), the innovation is even more like a judgmental issue.   

So innovations can spread in the same manner as crowd chants, affect, and attitudes. This spread 

of innovations has been studied from many different perspectives beginning with Gabriel Tarde (1903), 

a sociologist who noted that the number of people adopting an innovation over time produces a 

sigmoidal curve for many different kinds of innovation, with slow adoption at first, then a sudden 

increase that levels off once the innovation has almost fully saturated the population. Ryan and Gross 

(1943) studied the adoption of hybrid-corn use by Iowa farmers, focusing on individual differences in 

time of adoption.  Bass (1969) borrowed differential equations from physics to model the population-

level change in the number of people choosing to use an innovation, and reproduced the S-shaped curve 

suggested by Tarde.  This diffusion model is so popular that it is commonly referred to as the “Bass 

model,” and the term “diffusion of innovation” has become ubiquitous in the field.  For a good review of 
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the literataure on the adoption of innovations, see Rogers (1962, 1995), and more recently, Wejnert 

(2002).  

The choice between relying on information from others and obtaining information on one’s own 

involves a tradeoff of costs and benefits.  Seeking out information on one’s own requires time and 

energy, but is often more trustworthy and individually tailored than information learned by word-of-

mouth. On the other hand, choosing to use information provided by others can be cost-effective, 

especially if past experience suggests that the source is reliable. These two choices have been 

characterized as exploration and exploitation (Holland, 1975), and March (1991) presented a detailed 

analysis of the tradeoff between the two with respect to organizations.  In those cases, organizations that 

rely mostly on exploitation of competitor’s innovations benefit in the short run by saving costs on 

research and development, but lose out in the long run because they never lead the pack. 

Granovetter (1978) suggested that people act as though they have a threshold number of friends 

(or neighbors) that must adopt a solution before they will also adopt the solution themselves, and found 

that the people who were early in adopting a solution (those with a low threshold) were most influential 

in causing bandwagoning in a population.  Michael Chwe (1999) extended this threshold model and 

found that the network position of an individual could be more important than their threshold with 

respect to causing other people to follow the crowd. Valente and Davis (1999) also noted that opinion 

leaders, those individuals who are most central in a communication network, are the most influential in 

starting a bandwagoning process.  This highlights the importance of another factor in the diffusion of 

information and innovations -- the social network structure.  

Social Network Analysis 

The properties of network topologies have been studied in many different arenas, including 

neural networks, actor collaboration networks, power grids (Watts & Strogatz, 1998), scholarly citation 

links (Newman, 2001), metabolic networks (Jeong, Tombor, Albert, Oltvai, & Barabasi, 2000), Web 
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links (Albert, Jeong, & Barabasi, 1999), and many more.  A wide range of statistics has been developed 

to describe the global properties of these networks.  These properties are usually defined in terms of the 

nodes, which are the units or actors in a network, and edges, the connections between them. 

First, the degree of a node is the number of edges connecting that node to other nodes.  The degree of a 

network is the average degree of all nodes. Second, the geodesic path length is the smallest number of 

nodes a message needs to go through to link two nodes. Average shortest path lengths in networks, even 

large, randomly connected networks, are often times surprisingly short.  This property has been 

popularized as the notion of “six degrees of separation” connecting any two people in the world, and has 

been experimentally supported (Milgram, 1967).  The clustering coefficient is the proportion of directly 

connected neighbors of a node that are themselves directly connected with each other (in other words, 

forming a triangle), which can be thought of as the “cliquishness” of a network. The actual values of 

these measures for the networks in Study 1 are shown in Table 1.  

Erdös & Rényi (1959) were the first to thoroughly describe the properties of random networks, in 

which edges between nodes are generated such that Node i and Node j are connected with some 

probability p.  When a family draws names from a hat to decide who will exchange gifts with whom, 

they create a random “giving” network.  Random networks tend to have a small average geodesic path 

length. More formally, the average path length connecting two randomly selected nodes in a random 

network is ln(N)/ln(K) where N is the number of nodes and K is the degree of each node. With a large 

number of nodes random networks tend to have a small clustering coefficient, although with fewer 

nodes the probability of three nodes forming a triangle is higher, and so the clustering coefficient tends 

to be higher.  

Another useful network structure is a completely regular network, such as a lattice or a ring, in 

which the arrangement of edges can be construed as following a spatial structure solely made up of local 

connections. Messages passed in the game of “telephone” travel through a ring network, which is a kind 
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of regular network.  In regular lattices, the average shortest path required to connect two individuals 

requires going through N/2K other individuals. Thus, the paths connecting people are much longer, on 

average, for lattice than random networks.  Additionally, in lattice networks nodes that are spatially 

close tend to be connected to each other, so the clustering coefficient tends to be high. 

Watts and Strogatz (1998) demonstrated that by starting with a regular structure such as a lattice 

and randomly rewiring a small number of connections, the resulting “small-world” network has a low 

average path length but still maintains a mostly regular structure.  This is because nodes that are 

connected to the same node tend to be spatially close themselves, but the rewired connections act as 

shortcuts.  From an information processing perspective, then, these are attractive networks because the 

spatial structure of the networks allows information search to proceed systematically, and the short-cut 

paths allow the search to proceed quickly (Kleinberg, 2000).   

Allen Wilhite (2001) compared market trading over various network structures. In one condition, 

all agents were allowed to negotiate trade with any other agent.  In another, agents could only trade 

locally, in small cliques.  In a third condition, most agents could only trade locally, but a few could trade 

globally (i.e., outside of the local clique).  In this latter small-world network, the market reached Pareto 

equilibrium (the state where no more trades that mutually benefit both traders can be made) even faster 

than the condition where everyone could trade with everyone.  Although the agents made more trades in 

the small-world network, their search space was constrained, minimizing the time it took to find the 

optimal trading partner.  This is further evidence that small-world networks have advantageous features 

for the dissemination of information.  

There are few studies that use actual human behavior in groups while manipulating the 

communication network. Latané and colleagues (Latané & Bourgeois, 1996; Latané & L’Herrou, 1996) 

have studied the spread of influence through groups passing information over email.  Like Friedkin & 

Johnsen’s (1999) work, the influence in these studies flow through a social network.  Unlike their work, 
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however, Latané and colleagues’ work focuses almost exclusively on judgmental issues, and none of 

their work uses networks that have been analyzed using traditional network measures such as clustering 

and path length. 

Research on group problem solving dates back to Shaw (1932), but Leavitt (1951) and Bavelas 

(1950) were some of the first to study group performance in networks, noting that the communication 

structure of a group could aid or inhibit the ability of the group to find a solution to a problem.  In the 

tasks they studied the group was working cooperatively on a problem.  With innovations, however, each 

individual is trying to find their own best solution to a problem, and then subsequent individuals imitate 

good solutions.  The group can then be evaluated with respect to how quickly the innovation spreads.  

As in March’s (1991) and Wilhite’s (2001) studies, there is a tradeoff with respect to the amount of 

individual exploration versus the exploitation of good solutions by imitation. 

There is excellent work studying the diffusion of innovation in real groups (e.g., Ryan & Gross, 

1943; Rogers, 1962, 1995), social psychological research on how individuals use information provided 

by others (Sherif, 1935; Cialdini & Goldstein, 2004), as well as computational models of information 

transmission (Nowak, Szamrej, & Latané, 1990; Axelrod, 1997; Kennedy, Eberhart, & Shi, 2001).  The 

studies reported in this paper tie together these diverse areas by exploring the diffusion of innovative 

ideas among a group of networked participants, each of whom is trying to individually find the best 

solution to a search problem.  This provides a unique and novel method for studying the effect of 

network structure on group performance with respect to innovation diffusion in different formally 

defined problem spaces using actual human behavior. 

Our Paradigm 

In choosing a paradigm for studying information dissemination, we sought to find a case with: 1) 

a problem to solve with answers that varied continuously on a quantitative measure of quality, 2) a 

problem search space that was sufficiently large that no individual could cover it all in a reasonable 
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amount of time, and 3) simple communications between participants that would be amenable to 

computational modeling.  We settled upon a minimal search task in which participants guess numbers 

between 0 – 100 and the computer tells them how many points were obtained from the guess. There was 

a continuous function that related the guesses to the points earned, but this function was not revealed to 

the participants.  Additionally, random noise was added to the points earned, so that repeated sampling 

was necessary to accurately determine the underlying points obtainable from a guess.  The participants 

received information on their own guesses and earned points, as well as obtained information on their 

neighbors’ guesses and outcomes.  In this manner, participants could choose to imitate high-scoring 

guesses from their peers. 

Examples for a group of 10 participants in each of the network structures that we compared are 

shown in Figure 1.  Circles indicate participants and lines connect participants that directly exchange 

information. Notice that three of the networks have a total of 12 connections between participants. 

 Thus, if there is a difference in information dissemination in these networks, then it must be due to the 

topology, not density, of the connections. In addition to these three network structures, we also used a 

fully connected network (also called a “complete graph” in graph theory), in which everyone had access 

to the guesses and scores of everyone else.  

In a series of three experiments, we compared the different network structures’ performance on 

different kinds of problem spaces. In the first study, we present participants with two equally good 

solutions and examine the amount of bandwagoning in the different networks.  In the following two 

studies, we focus on the ability of the groups to find the best solution in problem spaces that varied in 

difficulty. We hypothesize that the most efficient network structure will depend on the difficulty of 

finding the best solution because of the different information diffusion properties of the different 

networks.  
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We examined several measures of search performance to compare the different network 

structures on the different payout functions.  The functions we used in all studies were normal functions 

or combinations of normal functions, so that approximations to the best solution earned close to the best 

payouts. We decided that a person guessing within half a standard deviation of the best solution could be 

considered close enough to be “within” the maximum.  To illustrate, in a unimodal payout function with 

a maximum of 40 and standard deviation of 12, a participant can be said to have reached the maximum 

if they guessed between 37 and 43.  Based on this criterion of success, we could then look at how 

quickly group members found the best solution, the average proportion of participants guessing in the 

maximum, and (for Study 1, described later) the amount of bandwagoning in the various networks.  We 

also were interested in how tightly clustered the group members’ guesses were, as an indication of 

whether participants were guessing close together, and how volatile the group members’ guesses were, 

as an indication of how much participants were exploring. The measures we used and their purposes are 

listed in Table 2.  

Study 1 

Before comparing the effect of network structure on group performance, it seems reasonable to 

consider how much conformity would be evidenced independent of the quality of solutions.  As 

previously mentioned, bandwagon behavior has been observed even where there is no objective 

difference between solutions. In this study we created a bimodal payout function with two equal maxima 

(see Figure 2) to see if and when participants would converge on the same solution even though there is 

no advantage for either maximum over the other. We expect the most bandwagoning to happen with 

networks that allow rapid dissemination of information. These are the networks with the shortest 

average path length -- the fully-connected network, followed by the small-world and random networks. 

Naturally, as group size increases we expect the effects of the network structure to increase, as the 

topological differences between the networks become greater. 
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Method 

Fifty-six groups of Indiana University undergraduate students ranging in size from 5 – 18 people 

with a median of 12 people per group participated for partial course credit, for a total of 679 participants.  

Five groups had to be dropped due to data logging error, but this did not affect the distribution of group 

sizes.  Each session was run in a computer lab with 20 client computers used by the participants and one 

server operated by the experimenter.  Participants signed onto the computer and gave themselves a 

handle or were assigned an ID.  Once all participants had signed onto the computer, the experimenter 

started the session and the following instructions appeared to each of the participants: 

 

Thank you for participating in this experiment on how ideas move from person to person in a 

social group.  Your task is to try to accumulate as many points as possible.  On each trial, you 

will type in a number between 0 and 100, and the computer will tell you how many points your 

number receives.  There is a systematic relationship between the number you put in, and the 

points you receive, but the relationship will often be difficult for you to understand.  Every time 

you type in the same number, it will be worth about the same number of points, but there may 

also be a bit of randomness added in to the earned points.  Usually, numbers that are close to 

each other will receive similar points. At the end of each block of trials, you will be told how 

many points you earned, and how many points people earned in general. 

In addition to telling you how many points your guess was worth, after each round of guesses, 

the computer will show you what numbers other people guessed, and how many points those 

guesses earned.  You can use this information to help you decide what number to guess on the 

next round.  Other people will also see the number that you entered, and how many points you 

received. 
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After participants read this, the controlling program created the network structure for the first of 

8 problems. Each problem consisted of 15 rounds in which participants had 20 seconds each round to 

guess a number between 0 - 100.  When a round ended, the guesses were sent to the server, which would 

calculate each participant’s score (which was always between 0 and 50), add normally-distributed noise 

with a variance of 25, and return the feedback.  This began the next round, and participants now had 

available their guess and score as well as a list of their neighbors’ IDs, guesses, and scores while they 

decided on their next guess (see Figure 3).  At the end of the 15
th

 round, participants were given 

feedback on their score and a message indicating the next problem would begin shortly.  After 15 

seconds, the server created a new network structure and began the next problem.  There were two fixed 

random orderings of 8 payout functions (including the functions used in Study 2) and network structures 

that were counterbalanced between groups.  There were no significant effects of order, so this factor will 

not be included in any future analyses.  The positions of the maxima were different for each of the 8 

problems (for information on how the payout functions were generated, see Appendix).  The network 

structure for each problem was either full, lattice, small-world, or random, similar to those in Figure 1, 

but constructed for the different sized groups as explained below.  

To create a network, the server takes all of the client computers and treats each as a node.  For 

the random network, the server creates a number of edges equal to 1.3 times the number of nodes.  

These edges connect randomly selected nodes under the constraint that a path exists between every node 

(i.e., that the graph is connected). This is conceptually equivalent to the algorithm proposed by Malloy 

and Reed (1995) for generating random networks with a pre-defined degree distribution. For the lattice 

network, the server connects the clients in a ring and then randomly picks 30% of the nodes and 

connects each of these nodes to a neighbor two steps away.  For the small-world network, the server 

begins by placing the clients in a ring and then picks 30% of the nodes randomly and adds a connection 

to another random node under the restriction that the connected nodes are at least 3 nodes apart 
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following the lattice path. These probabilities ensure that the average degree is equivalent for all of these 

network structures.  For the fully-connected network, the server created edges to connect each of the 

nodes to all other nodes, for a total of N(N-1)/2 edges.  Therefore each participant had access to more 

information in the fully connected network than the other three networks.   

Our small-world networks are comparable to those generated in Ahmed and Abdusalam’s (2000) 

study of percolation in networks. Unlike traditional small-world networks (e.g., Watts & Strogatz, 1998) 

our method for generating the small-world networks caused the clustering coefficient to be low because 

neighbors of a node were not more likely to be neighbors of each other.  However, they still had a small 

average geodesic path length and maintained the regularity of the lattice network.  This regularity is 

evidenced by the similarly small variance in the degree (the number of neighbors each node has) in the 

small-world (SD = 0.68) and lattice networks (SD = 0.74) relative to the variance in the random 

networks (SD = 1.12). 

The size of the groups varied depending on how many participants signed up for the various 

sessions, so we could not strictly control group size.  As a result, the distribution of group sizes was very 

inhomogenous and non-normal, so for our analysis we used quartile splits to break group size into four 

approximately equally sized categories.   In these studies, the unit of analysis is the group, not the 

participants within the group.  Therefore each newly constructed network constitutes a new group.  This 

makes the experiment a 4 (network structure) x 4 (group size)  between-subjects (or rather, between-

groups) design.  All analyses, unless otherwise reported, were full factorial univariate ANOVAs. 

Results 

We examined several measures of search performance to compare the bandwagoning of different 

network structures.  First, we compared the relative entropies to see how clustered the guesses were. To 

measure how clustered the guesses were, we used the relative entropy statistic (or Kullback-Leibler
1
) to 

compare the spread of guesses to a uniform distribution. The less the guesses are uniformly spread 
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across the total possible range of guesses, the higher the relative entropy.  Presumably if there were 

more bandwagoning, the guesses would be more clustered around one of the two global maximum, and 

thus would have higher relative entropy.  All of the network structures had a high relative entropy, 

although the small-world network was significantly smaller (M = 1.67, SD = 0.57), indicating less 

clustering in the guesses than the other three networks (Full = 1.84, SD = 0.55; Lattice = 1.85, SD = 

0.57; Random = 1.88, SD = 0.64), F(3, 749) = 8.816, MSE = 0.121, p < 0.001.  The variances in entropy 

between the networks were inhomogeneous (p < 0.05), so Games-Howell post-hoc tests were used.  

They confirmed that the small-world networks were significantly less clustered than the other three 

networks (p < 0.001), and there were no significant differences between the other three.  Interestingly, as 

group size increased, the clustering decreased significantly (F(3,749) = 99.674, p < 0.001), indicating 

less bandwagoning.  The interaction with network type was also significant (F(9,749) = 6.978, p < 

0.001), as the amount of clustering stayed relatively high in the fully-connected network regardless of 

group size. 

To see if participants were remaining in one peak or were flipping between the two peaks, we 

looked at the volatility of the guesses, which we define to be the average difference in guesses between 

rounds for each participant.  Higher volatility indicates more exploration, so as bandwagoning increases, 

volatility is expected to decrease.  Supporting the analysis of relative entropy, the small world network 

had the highest volatility (M = 5.85, SD = 5.48) compared to the other three networks (Full = 5.22, SD = 

5.90; Lattice = 4.15, SD = 4.26; Random = 4.40, SD = 4.68), and the difference between networks was 

significant, F(3, 749) = 5.172, MSE = 26.037, p < 0.005. The only significant pair-wise comparison 

revealed by post-hoc tests was between the small-world and lattice networks, p < 0.001.  As group size 

increased, volatility decreased, indicating less exploration.  This main effect was significant (F(3, 749) = 

3.550, p < 0.05), and so was the interaction with network type, F(9,749) = 2.740, p < 0.005.  The fully-
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connected networks saw a much greater decrease in volatility as group size increased than did the other 

three networks. 

Another good measure of bandwagoning is the difference in the number of participants within 

one-half standard deviation of each of the maxima. This difference was normalized by the percentage of 

people guessing within either of the peaks, because it was significantly different across networks, 

F(3,761) = 4.141, MSE = 0.094, p < 0.01.  With this measure of bandwagoning if there were an equal 

number of participants in each of the maxima, the difference would be zero.  However, if participants 

were following the crowd and mostly guessing in one of the maxima, this statistic would be close to one. 

As might be expected, the fully connected network had a much higher degree of bandwagoning (M= 

0.76, SD = 0.29) than the other networks (Lattice = 0.59, SD = 0.34; Random = 0.56, SD = 0.38; Small-

World = 0.51, SD = 0.33), and the differences between networks was significant, F(3, 746) = 14.413, p 

< 0.001.  Post-hoc tests revealed that only the comparisons between the fully-connected networks and 

the other networks were significant (p < 0.001).   In support of the anlysis of relative entropy, the 

proportion of bandwagoning decreased significantly as group size increased (F(3,746) = 22.439, p < 

0.001), and the interaction with network type was also significant (F(9,746) = 7.712, p < 0.001), again 

because the fully-connected network did not show much of a decrease in bandwagoning as the group 

size increased. 

Discussion 

There are many reasons why participants would converge on the same maximum when there are 

other equivalent solutions.  People could be conforming due to normative pressures (Deutsch & Gerard, 

1955), although this experimental paradigm minimizes their influence, especially in the sparse network 

structures in which participants only received feedback from a few neighbors.  In this case, participants 

most likely latched onto each other’s solutions because of the perceived advantage.  Once one of the two 

maxima had a number of participants in it, the probability increased that one of the participants would 
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get a higher score due to noise, so other participants were more likely to see that high score and imitate 

the solution.  In the full network, when people converged rapidly, this meant a steady pull toward 

whatever solution was found first.  For the small-world network, the highly regular spatial structure and 

short path lengths more often led to at least one subgroup in each of the maxima. The random noise 

added to the scores on each guess led to more switching between the solutions for the small-world 

network because the occasional higher score from another subgroup could quickly pass to another 

subgroup. 

As group size increased, the amount of bandwagoning in the lattice, small-world, and random 

networks decreased.  This is likely a result of the greater possibility for two clusters to form as more 

participants are guessing.  It is possible that if there were more rounds of guessing, these networks 

would also end up converging on a single maximum.  For the fully connected network, however, the 

informational influence was greater (as there was more information for each participant), so group size 

had little to no effect on the amount of bandwagoning behavior observed. 

Study 2 

In this experiment, we compared two payout functions.  The unimodal function has a single best 

solution that could be found with a hill-climbing method (for example, see Figure 4a).  This is like 

searching for the best guitar to buy in a town with only one guitar shop.  The multi-modal function 

increased the difficulty of the search and introduced local maxima.  A local maximum is a solution that 

is better than all of its immediate neighboring solutions, yet is not the best solution possible. Thus, a 

simple hill-climbing method might not find the best possible solution. In a town with more than one 

guitar shop, one might find the best guitar in one of the stores, but there might be another shop that has 

an even better guitar.  Figure 4b shows one of the multi-modal functions used, which has three peaks, 

but one of the peaks is somewhat higher than the other two.   
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The basic prediction is that the tradeoff in exploration and exploitation will predict which 

network will be optimal for which problem space.  In the unimodal problem space there is no benefit to 

increased exploration, so those networks that have the fastest dissemination of information will perform 

best.  These are the ones with the shortest path length, and are the ones that would show the most 

bandwagoning – the fully-connected network, followed by the small-world and random networks.  

However, in the multimodal problem space, bandwagoning behavior could cause premature 

convergence on a local maximum.  For this reason we predict the small-world networks will be best fit 

to this type of problem space, as they have fast transmission of information, but also local structure that 

encourages hill-climbing search and prevents the bandwagoning behavior observed in the fully-

connected networks in Study 1. 

Method  

The procedure was the same as study 1, only using the unimodal and multimodal problem 

spaces.  These were included in the two fixed random orders of problems spaces described in Study 1, so 

the participants in this study were the same as those in Study 1.  As mentioned previously, there were no 

significant order effects.  Three groups in the unimodal problem space and two groups in the multimodal 

problem space had to be dropped due to data logging error, but this did not affect the distribution of 

group sizes.  Again, the distribution of group sizes was very inhomogenous and non-normal, so we used 

quartile splits to break group size into four approximately equally sized categories.  As in Study 1, the 

experiment was a 4 (network structure) x 4 (group size) between-subjects design.  All analyses were full 

factorial univariate ANOVAs unless otherwise reported. 

 

Results 

 Unimodal 
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In this section we analyze the groups’ performances in the unimodal payout function.  A full 

factorial between-groups ANOVA on each group’s speed of convergence in the unimodal function 

revealed a significant difference between the network types, F(3, 37) = 3.405, MSE = 3.341, p < 0.05.  

The fastest convergence occurred in the fully-connected network, in which participants on average took 

2.95 rounds (SD = 0.93) to reach the maximum.  The second fastest was the small-world network (M = 

4.0, SD = 1.46), followed by the lattice network (M = 4.92, SD = 2.19) and the random network (M = 

5.21, SD = 2.07).  The variances of the rate of convergence for the networks were significantly 

inhomogeneous (p < 0.05), so a Games-Howell post-hoc comparison was used, which revealed that the 

fully-connected network was significantly faster than the random network (p < 0.001) and marginally 

faster than the lattice network (p < 0.1).  No other comparisons were significant.  There were no 

significant effects of, or interactions with, group size. 

An analysis of the percent of participants in each group guessing within the global maximum 

over all 15 rounds showed a significant main effect for network type, F(3,779) = 38.284, MSE = 0.083, 

p < 0.001.  Averaged over all groups and rounds, the fully-connected networks had 73.31 percent of 

participants guessing in the maximum (SD = 20.94), compared to 68.78 (SD = 26.7) for the small-world 

network, 54.89 (SD = 29.53) for the lattice network, and 45.04 (SD = 35.29) for the random network.  

Post-hoc comparisons using the Games-Howell test revealed that the fully-connected and small-world 

networks had significantly more convergence than the lattice and random networks (p < 0.001), and the 

lattice networks had significantly more than the random networks (p < 0.001).  Group size also had a 

significant main effect, such that larger groups had a higher proportion of participants guessing in the 

maximum (F(3, 779) = 10.729, p < 0.001).  There was also a significant interaction (F(9, 779) = 3.933, p 

< 0.001), such that the lattice and random networks  show a stronger effect of group size, with low 

convergence in the smaller group sizes and more convergence in the larger networks. 
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A helpful visualization of these results is the average proportion of participants guessing within 

the maximum over the 15 rounds.  As can be seen in Figure 5a, the fully connected networks quickly 

find the maximum and roughly 80 percent of group members continue to guess in the maximum for the 

remaining rounds.  The small-world network does not find the maximum as quickly as the fully-

connected network, but attains the same amount of convergence.  The lattice and random networks 

converge more slowly on the maximum and never reach this level of convergence, with the lattice 

having at most 71.86 percent of participants guessing in the maximum and the random having at most 

53.21 percent.      

The lattice network had a low average relative entropy (M = 1.43, SD = 0.42) compared to all of 

the other networks (full: M = 1.71, SD = 0.36; small: M = 1.61, SD = 0.45; random: M = 1.71, SD = 

0.41) indicating that the distribution of guesses in the lattice network was typically less clustered than 

for the other networks (F(3, 791) = 17.259, MSE = 0.169, p < 0.001).   Additionally, the lattice network 

had the highest volatility, with an average difference in guesses between rounds of 6.59 (SD = 7.78), 

while the fully-connected networks had the lowest volatility (M = 3.71, SD = 3.71).  Volatility was 

significantly different between networks (F(3, 791) = 7.367, MSE = 33.642, p < 0.001).  Games-Howell 

post hoc tests revealed that the lattice had significantly more volatility than the fully connected networks  

(p < 0.01) and the random networks (M = 4.71, SD = 5.41), p < 0.05.  The small-world networks (M = 

5.64, SD = 6.12) also had significantly more volatility than the fully connected networks, p < 0.01. 

Multimodal 

In the multimodal landscape we again expect shorter path lengths to correspond with faster 

convergence on the global maximum, but we anticipate that lack of spatial structure could lead to less 

exploration, and thus early convergence on a local maxima and a slower convergence on the global 

maximum. As predicted, the average number of steps for the first person to reach the global maximum 

was less in the small-world network (M = 5.07, SD = 1.43) than even the fully-connected network (M = 
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6.12, SD = 2.09).  The main effect of network type was significant (F(3,38) = 4.787, MSE = 5.292, p < 

0.01), and while Games-Howell post-hoc tests did not show that the difference between the small-world 

and fully-connect networks was significant, only the small-world networks were significantly faster than 

the lattice (M = 8.77, SD = 3.75; p < 0.05) and the random (M = 7.92, SD = 2.53; p < 0.005) networks.  

There was a main effect for group size (F(3,38) = 4.207, p < 0.05), and post hoc analyses show that the 

largest groups found the global maximum marginally faster than the smallest groups, p < 0.07.  There 

was no significant interaction between network type and group size.   

The small-world network also had the greatest convergence on the global maximum across all 

rounds (M = 0.519, SD = 0.27), again closely followed by the fully-connected network (M = 0.481, SD 

= 0.3), with the lattice (M = 0.341, SD = 0.3) and the random networks (M = 0.29, SD = 0.26) showing 

very little convergence on the global maximum.  The differences between the networks were significant,  

F(3, 794) = 28.239, MSE = 0.068, p < 0.001, and post-hoc tests showed that the fully-connected and 

small-world networks differed significantly from the lattice and random networks (p < 0.001) and not 

from each other.    Group size also had a significant main effect (F(3,794) = 24.656, p < 0.001), with 

increasing group size leading to greater overall convergence on the global maximum.  The interaction 

between group size and network was also significant (F(9,794) = 4.246, p < 0.001), although the effect 

appears to mostly driven by the very large difference in convergence between the small sized lattice 

networks (M = 0.1, SD = 0.15) and the larger sized lattice networks (M = 0.48, SD = 0.29). 

An examination of the percentage of participants within the global maximum on each round 

highlights the advantage of the small-world network.  As can be seen in Figure 5b, the small-world 

network consistently dominates the other network structures until round 11, when the network with full 

information finally catches up, while the other networks never reach the small-world networks’ 

convergence.  The hypothesis that the fully connected networks prematurely converge on the local 

maximum is supported by comparing the percentage of group members guessing in either of the two 
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local maxima.  This was significantly different between network types (F(3,806) = 35.75, MSE = 0.055, 

p < 0.001), and post-hoc tests revealed that the fully-connected networks did indeed have significantly 

more participants guessing in the local maxima than the small-world networks, p < 0.001.  

Unlike the unimodal payout function, with the multimodal function the fully-connected networks 

had the highest volatility (M = 6.1, SD = 5.49), and the difference between network types was 

significant (F(3, 806) = 2.66, MSE = 25.201, p < 0.05.  Since the fully-connected networks did not tend 

to find the global maximum early, this high volatility could be due to fluctuations of exploration and 

convergence.  Similar to the unimodal function, the lattice network had the lowest entropy (M = 1.28, 

SD = 0.41), indicating the least amount of clustering in the distribution of guesses.  The difference 

between networks was significant (F(3, 806) = 3.06, MSE = 0.167, p < 0.05), and Games-Howell post-

hoc tests confirmed the only significant pairwise comparison was the lattice network to the fully-

connected network (M = 1.39, SD = 0.41), p < 0.05.  

Discussion 

When there was only one good solution – when the payout function was unimodal – there was a 

direct relationship between the average shortest path length and the speed with which the group 

converged on the best solution.  In this case, the fully connected network converged faster than the other 

three networks.  The lattice network took longer to converge on the best solution because the 

advantageous innovations had to work their way through longer chains of people, and only about half of 

the group members converged on the maximum on average.  Unexpectedly, the random networks found 

the maximum the slowest on average, and had the least amount of convergence overall.  Despite the 

short average path lengths in random networks, the fact that information was traveling randomly through 

the network could have caused more instances of conflicting information reaching participants 

simultaneously, causing uncertainty in the decision making process.  In contrast, the other networks had 

a spatial structure that is more conducive to a systematic search of a problem space.   
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Group size generally had the expected effects.  As groups became larger, more participants were 

available to search the problem space, so convergence on the maxima was faster and the proportion 

converging was higher as group sizes increased.  The expected interaction, such that greater group sizes 

led to increased differences between the network types, was not consistently found, and the differences 

found typically occurred in the lattice networks.  This makes sense, as the biggest difference in 

topological measures such as average path length for different sized networks will be in lattice networks.  

It is possible that the interaction between network type and group size would be evident with much 

larger groups. 

When the problem space had good solutions that were nonetheless sub-optimal, as with the 

multimodal payout function, the story was different.  In this case the small-world network groups found 

the best solution faster and converged on the global maximum more than every other network, even the 

fully connected network in which everyone had complete information about every other participants’ 

guesses and scores.  We expect that the decision making processes of the individuals in each group 

would not differ between the network types, as the information presented to them was essentially the 

same.  Therefore, differences between the network types must solely be due to the information 

transmission properties of the networks.  The advantage of the small-world over the fully connected 

networks is like a novel group-based form of the “less-is-more” effect reported in individual decision 

making literature (Gigerenzer & Todd, 1999). 

This somewhat counter-intuitive result, that limiting the available information might actually 

improve a group’s performance, is a result of the way the groups were searching the problem space. In 

the fully-connected network, participants would often latch onto the first good solution that was found, 

and this was only the best solution one third of the time.  When the group converged prematurely on a 

local maximum, it took them longer for an adventurous (or bored) participant to explore and find the 

globally best solution. In the small-world network, however, the participants were segregated into 
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different spatial regions, but the information could travel quickly through “short-cuts,” allowing for 

different locally connected groups to explore different regions of the problem space.  Thus, while one 

locally connected group might latch onto a local maximum, the small-world topology decreases the 

probability that everyone will follow their lead before another sub-group finds the global maximum.  

Study 3 

In Study 2, the global maximum was just as easy to find as either of the two local maxima. 

However, in some cases the best solution is harder to find than other solutions.  For instance, the most 

exclusive and best restaurant might not be located near any other restaurants or even have a sign outside! 

In these cases, prolonged exploration of the problem space can result in a higher payoff than rapid 

convergence on an easy-to-find but suboptimal solution.  Like the multimodal payout function, networks 

with a well-defined spatial structure will allow continued exploration.  However, with a very hard-to-

find problem, even more exploration may be necessary before groups converge, and so networks with 

long path lengths (such as the lattice networks) may be more successful in finding the best solution than 

the other networks.  To examine this situation, we created a bimodal payout function (hereafter referred 

to as the “needle” function) with one wide local maximum and one thin, hard-to-find global maximum 

(see Figure 6). 

Method 

Forty-eight groups of Indiana University undergraduate students ranging in size from 7 – 19 

people with a median of 12.5 people per group participated for partial course credit, for a total of 628 

participants.  The procedure was the same as Study 2, only using the needle payout function instead of 

the unimodal or multimodal functions. 

The distribution of group sizes was again very inhomogenous and non-normal, so we used 

quartile splits to break group size into four approximately equally sized categories.  As in Study 1 and 2, 
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the experiment was a 4 (network structure) x 4 (group size) between-subjects design.  All analyses were 

full factorial univariate ANOVAs unless otherwise reported. 

 

Results 

In the needle payout function, the global maximum has a small range, so the longer participants 

explore, the more likely one of them is to find it.  Thus we predicted that the more spatially segregated 

networks would be more likely to find the “needle.” There were no significant differences in the average 

number of steps it took for a participant to guess the global maximum (i.e., the “needle”).  Nonetheless, 

the average fraction of participants in the global maximum over all rounds was significantly higher with 

the lattice network (M = 0.241, SD = 0.346) than the other three network structures (Full = 0.155 

(0.267); Small-world = 0.118 (0.203); Random = 0.114 (0.243), F(3,704) = 8.027, MSE = 0.06, p < 

0.005.  A Games-Howell post-hoc analysis confirms this, as the lattice network was significantly greater 

than the fully-connected (p < 0.05) and the other two networks (p < 0.001). As can be seen in Figure 7a, 

the average number of participants in the lattice networks guessing in the global maximum increases at a 

faster rate than any of the other network structures.  This is in contrast to the average fraction of 

participants that guessed within the local maximum.  After round 5, the fraction of participants in the 

local maximum drops for the lattice network but plateaus or continues to increase for the other network 

structures (see Figure 7b).  

Group size also had a significant main effect (F(3,704) = 16.14, p < 0.001) on the proportion 

guessing in the needle, and this had an interesting inverse U-shaped curve, such that the smallest and 

largest group sizes did not typically find the needle, while the middle-sized groups did.  This could be 

because the smallest sized groups were unable to find the maximum at all while the largest groups did 

less exploring.  This is supported by the fact that while the type of network did not have an effect on the 

average volatility over all rounds, group size did (F(3,716) = 3.418, MSE = 30.544, p < 0.05).  Games-
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Howell post-hoc tests confirmed that the largest groups had significantly less volatility than the two 

smallest group sizes, p < 0.05.  There was also an interaction effect of group size x network for overall 

convergence, (F(9, 704) = 5.047, p < 0.001).  The small-world and random networks never found the 

needle in the smallest and largest groups, and the lattice networks had the inverse U-shaped curve, but 

the fully-connected network converged on the needle in the largest groups more than the lattice 

networks.  The advantage of large, fully-connected networks is likely a result of greater sampling of the 

problem space at the outset.   

The Kullback-Leibler measure of relative entropy supports the hypothesis that increased 

exploration improved the groups’ ability to find the needle. As before, we divided the range of guesses 

into 20 “bins.”  In this case the four network types differed significantly from one another, F(3, 716) = 

34.198, MSE = 0.259, p< 0.001.  As can be seen from Figure 8, the full and lattice networks were both 

higher than the small-world and random networks, and post-hoc tests revealed that the full and lattice 

networks did not differ from each other and both differed significantly from the small-world and random 

networks (p < 0.001).  However, as can be seen by the difference in where the groups were guessing, the 

participants in the lattice network tended to cluster in the range of the “needle,” while the full network 

typically clustered in the local maximum. 

Discussion 

The payout function used in Study 3 is meant to represent situations in which a problem has a 

precise best solution that is not easily approximated, and a lesser solution that is easy to roughly imitate.  

In our study, the group of people connected in a regular, lattice network were best able to find the 

optimal solution.  Given that there were no significant differences in how quickly participants found the 

needle on average, it seems that the advantage the lattice had over the other networks was based on how 

often the needle was found.  This is most likely due to the increased exploration engendered by the long 

path lengths and local, spatial neighborhoods preserved in the lattice networks. 
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General Discussion 

In these studies, participants searched a problem space as a group, sharing information about 

solutions by way of various social network structures.  The work reported here provides additional 

evidence that diffusion of innovation in groups is strongly affected by the structure of the 

communication channels available to members of the group.  More importantly, it showed that different 

network structures are best fit to different problem spaces. 

As expected from previous research, participants tended to converge on a single solution in a 

problem space with two equally good solutions, indicating a tendency to bandwagon even when there is 

no objectively correct solution.  This bandwagoning behavior occurs even when normative influence is 

minimized.  This effect was moderated by the network types, as fully connected networks had the most 

bandwagoning and small-world networks had the least.   

In a unimodal problem space, where there is a single best solution that is better than all similar 

solutions, the best network structure is one in which information about good solutions travels as quickly 

as possible in a systematic way.  Among the networks we studied, this was achieved to the greatest 

extent the fully connected networks, followed by the small-world networks. 

The “needle” problem space, in which there are two locally optimal solutions, one of which is 

easy to find but not as good as the other, more difficult-to-find solution, showed a different pattern. In 

this case, a high degree of exploration of the problem space is beneficial, because it increases the 

chances that some individual in the group will find the needle.  The network structure with a long 

average geodesic path length and highly regular structure will be slowest to converge on a group-wide 

solution and therefore will continue to have group members exploring the problem space.  In our studies, 

the lattice network was most likely to converge on the needle and therefore outperformed the other 

networks with this payout function. 
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In a multimodal problem space, however, neither the lattice nor the fully-connected network 

performed optimally.  In these problem spaces, there were three solutions that were better than all 

similar solutions, but only one was globally the best.  In this case, very rapid convergence as seen in the 

fully connected network can lead to a locally good but globally suboptimal solution, but prolonged 

exploration as found in the lattice network only reduces the speed and extent of convergence of the 

group.  In this case, the best performance was found by the small-world network which possesses both 

preserved spatial neighborhoods and long-distances connections. 

From our results so far, it appears as though the fit between a given network structure and a 

problem space depends on the amount of exploration required by the network.  For the network 

structures we studied, the lattice promotes the most exploration, followed by the small-world, and the 

random networks, with the fully connected network producing the least exploration.  The needle payout 

function requires the most exploration to find the global maximum, followed by the multimodal, and 

then the unimodal,. Since there is a tradeoff between the exploration of a problem space and the 

exploitation of good solutions (Holland, 1975; March, 1991), this tradeoff seems to be highly relevant to 

the ability of a group to succeed at our task. 

Recently, Lazer and Friedman (2005) used an agent-based computational model to compare the 

performance of various networks when group members are searching different problem spaces for the 

globally optimal solution.  In this case, the agents are searching an “NK” problem space, in which each 

digit in a string of N numbers is dependent on K other digits for computing the contribution of that digit 

to the score of the string.  In this way, by varying K relative to N, the “ruggedness” of the problem space 

can be manipulated. When K is 0, the problem space has a single maximum.  When K = N-1, the 

performance of any single solution offers no information about adjacent solutions.  In between, there is a 

gradient between adjacent solutions, but the entire problem space has local maxima as well as a global 

maximum.  In their simulation, agents started out with a random string, and either imitated their 
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neighbors in the network if their neighbor’s score was better, or mutated their string by a digit if the 

mutation resulted in a higher score. 

Lazer and Friedman (2005) then compared the performance of the group as whole, with respect 

to convergence on the global maximum, varying the communication network structure between agents 

and the ruggedness of the problem space.  As expected, they found that on simple problem spaces with 

little or no local maxima, networks with smaller average path lengths, such as fully connected networks 

and small-world networks, converged on the globally optimum solution faster than the lattice networks.  

However, they also found that networks with slow transmission of information, such as lattice networks, 

engendered more exploration and therefore in the long run ended up outperforming the fully-connected 

and small-world networks by finding and converging on a better solution, supporting our conclusions.  

One possible extension of this work is to model the decision strategies that individuals within the 

groups are using when approaching the task.  We expect that participants have essentially four pieces of 

information that could be influencing their guesses: their last guess, their best guess, their neighbors’ last 

best guess, and their neighbors’ best guess.  By categorizing participants’ guesses as falling within a 

certain range of each of these sources of information, we can estimate the relative influence of each of 

these sources, and when a guess falls outside of the range of any of these sources of influence, we can 

say the participant is exploring. Unfortunately, however, there is also ambiguity in the data, as a single 

guess may be categorized as influenced by multiple sources of information, which makes it difficult to 

differentiate between the strategies. Nonetheless, a preliminary analysis shows that, as would be 

expected, the amount of exploring decreases as time proceeds, and this varies according to the network 

and problem space.  Future computational modeling could have agents using these different strategies in 

different networks to compare against the observed distribution of guesses and performance of the 

networks in the different problem spaces. 
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Research on the benefits of network structure on the flow of information has often focused on the 

positive properties of small-world networks, such as the spatial structure and short path-lengths 

(Kleinberg, 2000; Wilhite, 2001). The results of our research cast this view in the wider perspective of 

fit between network structure and problem space, highlighting the importance of exploration vs. 

imitation.  Broadly speaking, these results have implications for many different areas of study.  For 

research on group performance and organizational psychology, this highlights the importance of the 

communication patterns within a group with respect to the type of problem being approached by the 

group.  Research and development programs in organizations may benefit by limiting the 

communication between researchers.  For sociology and cultural psychology, the different amount of 

bandwagoning with respect to network structure and size is important.  Additionally the results speak 

loosely to the advantages and disadvantages inherent in the increased information transmission afforded 

by the internet.  While good ideas may spread quickly through the broad internet network, it may result 

in too little diversity in ideas, or in the rapid spread of suboptimal ideas. 

Ultimately, the paradigm developed here can be used to study the problem-solving abilities of 

groups under a wide range of conditions.  For instance, different communication structures could be 

tested, such as scale-free networks (which are increasingly observed in a wide range of real networks; 

Barabasi & Albert, 1999), or hierarchies, which are interesting because they are a typical organizational 

structure.  Additionally, different problem spaces remain to be explored, including multidimensional and 

dynamically evolving problem spaces.  It seems reasonable to predict that a network structure that 

permits a group to quickly converge upon a solution may be less fit when the problem space changes. 
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Footnotes 

 

1
The Kullback-Liebler is  

pi log(
pi

qi

)
i= 0

N

�  

where pi is the actual  frequency and qi is the expected frequency of guesses in each “bin” 

summed from i = 0 to N, the number of bins that segment the range of guesses.  For our purposes we 

divided the range of guesses from 0 – 100 into 20 bins of 5 points each.  Thus, if one participant guesses 

in each of the 20 bins, the relative entropy will be minimized.  If all of the participants guess in one bin, 

the relative entropy will be maximized.
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Table 1 

Average Geodesic Path Length and Clustering Coefficient for the Networks Used in Study 1 

Network Path Length Clustering 

Full 1.00 1.00 

Lattice 3.08 0.36 

Small-World 2.61 0.09 

Random 2.57 0.37 
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Table 2 

Dependent measures used and meaning 

Dependent measure Meaning 

Average steps to guess 

in global maximum 
Average speed of finding best solution 

Average percent of 

group guessing in 

global maximum 

Overall convergence on best solution 

Relative Entropy 

(Kullback-Leibler) 
Clustering of guesses over range 

Volatility Amount of exploration 
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Figure Caption 

 

Figure 1. Examples of the different network structures for groups of 10 participants.  Circles represent 

participants and lines indicate communication channels.  

 

Figure 2. Study 1: An example of the equal bimodal payout function 

 

Figure 3. Participant’s view of the experiment after making a guess  

 

Figure 4. Study 2: Examples of the a) unimodal and b) multimodal payout functions  

 

Figure 5. Study 2: Percent of participants within 1 standard deviation of the global maximum on each 

round in the a) unimodal and b) multimodal payout function. 

 

Figure 6. Study 3: An example of the “needle” payout function 

 

Figure 7. Study 3: Percent of participants within ½ SD of a) the global maximum (the “needle”) and b) 

the local maximum 

 

Figure 8.  Study 3: Relative entropy (Kullback-Liebler) of the participants’ guesses for the different 

network types 
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QuickTime™ and a
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QuickTime™ and a
TIFF (LZW) decompressor
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Appendix 

Functions Used to Transform Participants’ Guesses Into Corresponding Scores 

 

Payout 

Function 
Network Equation 

Full 50e-(0.07(x – 40))
2

 

Lattice 50e-(0.07(x – 65))
2

 

Small-

World 
50e-(0.07(x – 15))

2

 
Unimodal 

Random 50e-(0.07(x – 15))
2

 

Full 
40e-(0.07(x – 15))

2

 + 40e-(0.07(x – 40))
2

 + 50e-(0.07(x – 

70))
2

 

Lattice 
40e-(0.07(x – 20))

2

 + 40e-(0.07(x – 45))
2

 + 50e-(0.07(x – 

70))
2

 

Small-

World 
40e-(0.07(x – 35))

2

 + 50e-(0.07(x – 60))
2

 + 40e-(0.07(x – 

85))
2

 

Multimodal 

Random 
50e-(0.07(x – 30))

2

 + 40e-(0.07(x – 55))
2

 + 40e-(0.07(x – 

80))
2

 
Full 70e-(0.9(x – 32))

2

 + 30e-(0.07(x – 83))
2

 

Lattice 30e-(0.07(x – 26))
2

 + 70e-(0.9(x – 67))
2

 

Small-

World 
70e-(0.9(x – 17))

2

 + 30e-(0.07(x – 78))
2

 
Needle 

Random 30e-(0.07(x – 38))
2

 + 70e-(0.9(x – 72))
2

 

Full 50e-(0.07(x – 15))
2

 + 50e-(0.07(x – 55))
2

 

Lattice 50e-(0.07(x – 25))
2

 + 50e-(0.07(x – 65))
2

 

Small-

World 
50e-(0.07(x – 45))

2

 + 50e-(0.07(x – 85))
2

 
Equal 

Random 50e-(0.07(x – 35))
2

 + 50e-(0.07(x – 75))
2

 

 

 




