
AMERICAN INSTITUTE OF ELECTRICAL
ElNGINEERS.

MarCh 22n1d, 1899.
The 133rd meeting, of the INSTITUTE was held this date at 12

West 31st street and was called to order by President Ken-
nelly at 8:25 P. M.
THE PRESIDENT :-The Secretary will read the announce-

ments for the evening.
THE SECRETARY:-At the meeting of Council this afternoon

the followinig associate members were elected.

Name. Address. Endorsed by

GREGG, TOm HOWARD Supt. Electrical Construction, U.S. Leroy Clarke, Jr.
Light House Board, Tompkins- 0. R. Roberson.
ville, S. I., N. Y., residence, New J. D. Bishop.
Brighton, S. I.

HORN, HAROLD J. Electrical Engiineer, Johin A. J. H. Klinck.
Roebling's Sons' Co., residence, H. S. Webb.
36 W. State St., Trenton, N. J. W. S. Franklin.

JOHINSON, HOWARD S. Engineer and Sales Agent, Morgan- Fred'k Bedell.
Gardner Electric Co., residence, Harris J. Ryan.
70 Jefferson Ave, Columbus, 0. H. S. Rogers.

MILLER, HERBERT S. Electrical Engineer, Diehl Mfg. E. H. Bennett.
Co., residence, 1025 E. Jersey St., Philip Diehl.
Elizabeth, N. J. Ralph W. Pope.

POMEROY, WILLIAM D. Electrician, Akron Electric Mfg. H. J. Ryan.
Co., 1106 So. Main St., Akron, 0. Chas. S. Brown.

F. W. Phisterer.
WHITTED, Tiaos. BYRD Electrical Tester, The General A. L. Rohrer

Electric Co , residence, 211 State C. P. Steinmetz.
St., Schenectady, N. Y. Theo. Stebbins.

Total 6.

The Council, in accordance with the Constitution, canvassed
the returns from nominations and selected the following Council
nominees for the coining election.
FOR PRESIDENT:--Dr. Arthur E. Kennelly.
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FOR VICE-PRESIDENTS:-J. W. Liel), Jr., Charles F. Scott, and
L. B. Stillwell.
FOR MTANAGERS:-C. 0. Mailloux, S. Daila Greene, 0. s.

Bradley, W. D. Weaver; and in place of W. F. C. Hasson of
San Francisco, who has resigned on account of reinoving to tie
Hawaiian Islands, Dr. F. A. C. Perrine has been appointed by
Council to fill out the unexpired term of one year.
FoR TREASURER:-George A. Hamilton.
FOR SECRETARY :-iRalph W. Pope.
The following Local ilonorary Secretaries were appointed:
For Great Britain, 11. F. Parshall, London; for Australasia,

J. S. Fitzmaurice, Sydney, N. S. W.; for Canada, Prof. R. B.
Owens, Montreal.
THE PRESIDENT:-The business of the evening will be the

consideration of a paper by Prof. Pupini on the "Propagatioln of
Long Electric Waves." Wo-e have the pleasure of Prof. Pupin's
presence and will ask him to come forward and present the
paper.



A tag5er fresented at the i 73d AMeeting
of the American Institute of Electrical
Engineers, New York, March 22, 1899.
President Kennelly in the Chair.

PROPAGATION OF LONG ELECTRICAL W AVES.

BY Ml. I. PUPIN.

INTRODUCTION.
This paper describes an experimental method of investiga-

ting the propagation of long electrical waves and discusses the
mathematical theory bearing upon the sarne.
The study of the propagation of electrical waves received a

powerful impulse by Hertz's discovery of a miiethod of producing
waves the length of which could be conveniently measured
within the space of a laboratory. The oscillations which emit
suich waves are of very high frequenicy, in the vicinity Qf a
thousand million vibrations per second.

In telephony, telegraphy, and long-distanee tranismission of
)ower, oscillations of only several huindr-ed vibrations per
second, or even less than one hlulndred are errmployed. The
waves accompanying these slow vibrations are huindreds of myiles
long. fIt seems, tlherefore, a hopeless task to uindertake to devise
an experimnental mnethrod wlhieh will do for these excessively long
waves wlhat the Tlertzian rnethod lhas done for slhort waves, tl-he so-
called I-Iertzian waves. This explains the singuilar fact that
whiereas there is an extensive mass of experim,enital facts which
throw munch liglht upon the mathematical thleory of the Hertzian
waves there 9A to-laty seareely a single experimiient which. can throw
any light icponi the mnathematiectl thleory qf longy electrical waves.
The experimrlents described in Section III. of this paper are,
therefore, tlle first experiments of this kind on record.

It appears at first siglht as if there shouild be no difference be-
tween the inathematical theory of short waves and that of long
waves, and that whatever throws light upon one should illumin-
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ate the other also. But this difference does exist, and it is due
to the fact that the Hertzian waves are waves emitted by
free oscillations, whereas the long waves emnployed in teleg-
raphy, telephony, and long-distanee transmission of power,
are due to forced electrical oscillations. The one theory deals,
therefore, with free, and the other principally with forced elec-
trical oscillations. Besides, these long waves proceed generally
fromn a terminal apparatus of large impedance and the principal
object in transmitting thein is to have them absorbed in a re-
ceiving apparatus of large impedance. The question: Hew
rnuch of the energy transmitted at one end is received at the
other end ? is the principal question in the mathematical tlheory
of long waves. The experimnental researches wlhich have done
so miuclh for our clear understanding of the propagation of the
Hertzian waves can. therefore, help us but little in the advance-
ment of our knowvledge of the mathematical theory of propaga-
tion of electrical energy for telegraphy, telephony, and long-
distance transmission of power.
The shortness of the wave-length makes the HIertzian oscilla-

tions manageable, the excessive wave-length makes, apparently,
the experimnentalinvestigation of tlhe propagation of slowly alterna-
ting electrical vibrations a practical impossibility. But does a long
period necessarily mean a long wave? The wave-length of sodium
light, for instance, is shiorter in glass than it is in vacuumn, because
light travels more slowly in glass than it does in vacu-um. If we
could inerease the ind(ex of refraction of glass to anything wve please,
we could correspondinglv dimYlinislh the wave-length. It is all a
question of velocity of propagation. Now the simplest. manner of
viewing this velocity is that devised by Fresnel. Ile constructed
over the same base in the b)oundary surface between the two media
under confsideration two cvlinders parallel to the ray, one cylinder
extending into the vaciuum and the other into the glass. Let the
heights of these two cylinders be each equal to the velocity of
propagation in the two media, then whatever radiant energy was
in one of the cylinders at anly given momneint will be in the other
after the lapse of one second. The velocity of propagation is,
therefore, proportional to the amount of energy which the
mediulm stores up per unit length of the rectilinear path of the
ray, when a given stress is propagated through it. If in place of
glass we interposed in the path of tile ray a substance which could
store up oue million times as much energy per u-Dit length of
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rectilinear path as the vacuuim can when the same ray is pro-
pagated througlh them then we shotuld have the velocity and there-
fore the wave-length also one million times srrmaller in this medium
than in vacuum.

This very thing can be done in the case of electrical waves.
Consider a coil represented in Fig. 6.

It consists of a certain number of layers of copper wire wound
in the following way:-After winding a layer of wire, a sheet of
tinfoil is wrapped around this layer; the next layer is then wound
anid again a sheet of tinfoil wrapped, and so on. The tinfoil
layers are connected in series to each other and tlhen grounded
through c. Everything is adjusted in sucl) a way that the coil when
completed has the same coefficient of self-induction, the samne
capacity, and the same resistance, as a first-class telephone wire
ten miles in length. The distance between the faces of the
coil is three inches. Such a coil iscapable of storing upasmuch of
the energy of a given electric wave as a long-distance telephone
wire 10 miles in length can, hence interposing such a coil in the
path of an electric wave will maake the wave advance through a dis-
tance of three inches only in the same tine during which it would
pass over ten miles on the telephone wire. Connecting 24 such
coils in series we have a loop which is in every particular equiva-
lent to a loop of long-distance telephone wire 240 miles in length.
An electrical wave will be propagated along it in just the same
way as along the telephone line, with no other modification except
that which a ray of light experiences in passing from a vacuum to a
denser medium, and that is, a smaller velocity and therefore a
shorter wave-length. A wave-length of, roughlv, 140 miles cor-
resonds to a frequiency of about 1,000 periods per second when the
wave advances along the telephone line now in use betweenNew
York aid Chicago. Now 140 miles of a telephone air line corres-
pond to 14 coils and therefore the sanme wave advancing through
the coils would develop its whole wave-length within these 14
coils. The wave takes a spiral path. The axis of the spiral
equals the length of the 14 coils, that is three anid a-half feet.
The rectilinear velocity of the wave and therefore its rectilinear
wave-length have been reduLced over two hundred thousand
times.
Such a slow-speed conductor is an exact representation of a

medium possessing an excessively high index of refraction
and offers a new and convenient method of producing short
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waves even for verv long periods of oscillation. It brings,
therefore, the phenomena of propagation of long electrical
waves within the reach of 1laboratory investigation. Such,
briefly stated, is the new experimnental mnethod which forms the
subject of this paper. The matter is discussed fullv in Section
III.
The scientific interest attached to experinmental investigations of

this kind needs no further commnentary. Their practical ntility will
be evident wh-en one considers that very many practical problems
in telegraphy, telephony, and long-distanice transmission of
power depend on experimiental investigations of this sort.
Muirhead's artificial cables have helped muLlch to advance the art
and the science of sul)marine telegraphy; the slow-speed con-
duietor described in this paper will, it is lhoped, do for land lines
as miuclh as Mulirhead's artificial cables have done for submiarine
cables.
The slow-speed conductor just described was construieted

over four years ago in the electro-mechanaical laboratory of
Columbia University. It was a homne-made affair and although
adjusted with the greatest care it developed a certain objection-
able feature which those skilled in the art of myianufacturing
condensers coujld h-iave foretold with certainty. Its capacity and
leakage constant varied considerably and it couild not stand a
high voltage, not higher thanr 300 volts. To overcome this diffi-
culty a new forim of slow-speed conductor represented in
Figs. 10 and 11 was constructed. This forin is called a loaded
conducto-r. In how far the matlhemnatical theory of eleetrical pro-
pagation given in Sect. I is applicable to such a conductor hiad to be
shown, This is done in Section II, where two arrangetncnts are
discIlssed and it is shown that a conductor of this kind consist-
inig of 400 sections, each section havinig the samne eQefficient of self-
induction, the same capacity, and the same resistance as a long-
distance telephone wire of 2± miles in length is equivallent to a
loo) of such a wire of 1,000 miles in length for all frequencies
which are of any importance in telegraphy, telephony, and long-
distance trans-mission of power by nachinery designed to gener-
ate electromotive -forces of freqiuencies whill are now generally
employed. This part of the mathematical theory contained in
this paper is believed to be new. The other part, contained in
Section I, is, of course, not altogether new. That which is coni-
sidered novel and ii portant should be stated here briefly, for
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the purpose of elucidating beforehand the plan of this somewhat
lengthy essay.
The most essential elements in the mathematical theory of

electrical wave propagationi are contained in the answers to the
following two questions:

First Question.-What variation does the wave energy undergo
during its propagation from the transmitting to the receiving
apparatus?
The mathematical theory given in Section I. of this paper an-

swers this question by constructing the mean electro kinetic
energy curve for two most important, and, at the same timne,
most genieral cases. In the first case the effect of the transmitting
apparatus alone is considered, in the second case the effects of
both the transmitting and the receiving apparatus are talen into
consideration. In the first case the mrean electro-kinetic energy
curve (Fig. 2) consists of the superpositionl of a simple harnmonic
upon a catenary, in tne second case Fig. 3 this curve consists
of the superposition of a double harmonic upon a double catenary.
The mechanical illustrationi of this result is extremely simple and
seems to have escaped the niotice of previous mnathemnatical in-
vestigations. In the first case the curve can be illustrated by
the forced vibration of a heavy string which is stretched by a
certain tension between two points on the sarne horizontal line.
In the second case the mean electro-kinietic energy curve finds
a striking illustration in the forced vibration of a heavy string
stretched by a certain tension between two points on the same
h-orizontal line and carrying a weight at its middle point. An ex-
perimental investigation described in Section I:II. led to the
conclusion that this is one of the most striking features of the
propagation of long electrical waves and the theory in Section I.
as formulated in such a way as to give a strong emphasis to this
interesting feature. This is one of the elements which is con-
sidered important and novel in the mathemnatical theory of
Section 1.
Second Question. -What are the means which the theory

suggests for measuring the wave-length and the velocity of pro-
pagation of long electrical waves which accompany forced elec-
trical oscillations?
The mathematical theory given in Section I. answers this

question. It shows that having plotted the mean electro-kinetic
energy curve by ineasuirements which involve the uise of an
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ordinary ammeter or voltmeter the wave-lengtlh can be deter-
mined from this curve by measuring the distance between two
sharply defined mninimna. Fromn the wave-length and the
known period the velocity of propagationi can be calculated.
This experimental methiod is essentially the same as the one
whichl Hertz employed for rapid oscillations. It could not
convenien-tly be applied to ordinary telegraph and tele-
phone lines, but applied to a "slow-speed conductor" it en-
ables us to measure the quiantities just mentioned with
as high a degree of accuracy as may be desired, in fact thle method
becomnes with such a conduietor more direct than, and at least as
accurate as, the Hertzian mnethod, provided, of course, that one
has an accurately constructed slow-speed coniductor at his dis-
posal. This is the second element which is considered import-
ant and novel in the matlhematical theory of Section I.
There are two more motives whiclh influenced the formulation of

the mathematical theory of Section F. and which should now be
mentioned. The less important one will be mentioned first. It
is clear that equation (6) of this-section is the mnost comprehensive
mathematical statement of this tlheory. It is the general solu-
tion of tl-he equation of propagation. Fromn it the forced as well
as the free oscillations are deduced in this paper. This gen-
eral solution was stated in that p)articular forii, because the
general solution of the differential equiatioins of electrical oscil-
lations on a "1 slow-speed loaded conductor" discussed in Section
II, is of the same fornm, so that a comparison of the two cases
can be readilv made.
The second motive concerns wlhat may be called the physical

aspect of the mnatlhemnatical theory of wave propagation along con-
ducting wires Most of the mathemiiatical investigations dealing
witlh this subject are purely symbolic. MAr. Oliver Heaviside
has done much to introduce the living language of physics in
place of the sign languagre of mathemnatical analysis. But Mr.
Heaviside's English is often much clearer than his Arithmetic,
such at any rate seems to be the general impressiorn, so that much
remains yet to be done even after Mr. Ileaviside's mnost brilliant
epoel of intense activity and radical refo-rms in the field of long
wave propagationi. That whichl remains to he done is not so
muclh on the purely matlhematical side of it, for that is pretty
well understood now, and has beemm so ever since the time of La-
grange and Fourier. It is the physical side of the theory which



1899.] PUPIN ONLOVG ELECTRICAL WAVES. i9

needs cultivation. The time seems to be ripe for looking upon
the problems of electrical wave propagation somewhat in the same
manner in wlhich the physical theory of light views the phe-
nomena of radiation, reflection, initerference, and absorption.
Aceording to this view the transmitting apparatus is a source of
radiation, the receiving apparatus is a boundary of secondary
radiation duie to reflection of the wave energy which arrives
there; the wave on the line conductor is an interference wave,
the components of which are the direct wave from the trans-
mitting end and the reflected wave of the receiving end. The
power absorbed by the reeeiving end is equal to the differenee of
the wave energy which arrives there and the energy which is
reflected per uinit of timne. Tlhen again there is energy absorbed
all along tlle line which interferes with the efficienev of trains-
rnission. To reduce this absorption to a minimurm without in-
creasing the cost of the line beyond prohibitory limnts is the
ultima thule oflong-distance electrical transmnission engineeriny.
This problem contains the most essential point in the whole theory
of electrical wave propagation for telephlony, telegraphy, and other
purposes. A mere mnathemnatical solution of the equation of propa-
gation does not shed much light upon this side of our theory; a care-
ful physical consideration of the rnatter will supply the deficiency.
Thus, the power absorbed in any element of the line depends upon
the angle of lag between the current, and the potential gradient or
electromotive intensity in that element. Such is the physical
view of propagation of light thirough absorbing media. This
angle depends uponi the ratio of reactance to resistance of the
elemnent and we lhave at onice the si?nple rule thIat an efficient
transmrnission requires a line in whict tkte reactanceper unit length
should be large in comparison to the resistance. In other words
the power factor of the line should be as simall as possible. The
ideal line acts like a perfectly transparent medium. At every
point of such a mediuim the electric force and the magnetic force
differ in phase by a quarter period. The introduction of these
elemrlernts into the tlheory of Section I. forms anotlher novel
feature of this section, and this introduction seemiis to sirnplify
bothi the nmathlemxatical formn and the plhysical aspect of the
theory very much.
To bring this theory within the reach of those who mostly need

it, and that is telegraph and telephone engineers, is one of the
principal aims of this paper. Hence its somewvhiat didactieform.
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SECTION I.'

ELECTRICAL OSCILLATIONS ON A LINEAR CONDUCTOR OF UNIFORMLY
DISTRIBUTED CAPACITY, SVLF-INDUCTION, AND RESISTANCE.

The conductor is a loop of wire A B (Fig. 1). At one point of
the loop is a transmitting apparatus A, at the diametrically opposite
point is a receiving apparatus B. The distance between A andB is 1,
equal to one-half the length of the whole loop. The distance of
any element ds froM A is denoted by s.

ds
A B

FIG. 1.

GENERAL SOLIUTION OF TFHE PROBLEM.
§1. Let L, R, C, be the coefficient of self-induction, the

ohmic resistance, and tlhe capacity, respectively, per unit leingth
of the line. Let y be the current anid. Vthe potential at any
element ds, then by putting the sum of reactions in ds equal to
zero, in accordarlce with the law of equality of action and re-
action, we obtain

( d+R y+))d O (1)

An observation should now be made which is usually over-
looked. In forming this equation the dissipative reactions set
uip in the neighboring conductors have been neglected. The in-
accuracy thus introduced is small for air lines. In the case of
suibmariyne cables the errors arising from this may be con-
siderable.

If x be the displacement etrrent, then

= CdV_ _' (2)dt(2
From (1) and (2) we obtain the equation of propagation

L + dY (3)cit2 dt C d8 (3)

The currenit is propagated in form of a plane wave. The

1. This section read before the American Mathematical Society, February
meeting, 1896.
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velocity of propagation V, neglecting the effect of the resistance
R, is given by

1
-

/X-

Arbitrary conditioons:-The equation of propagation was de-
duced from (1). This last equation is a mathematical expression
of the law of equality of action and reaction at any point of the
line where the uniformity of the line is not disturbed by the in-
terposition of transmitting or receiving apparatus. But at points
where such apparatus exists the mathematical expression for the
law of equality of action and reaction is different from (1) and
has to be determined from physicalconsiderationsineachparticu-
lar case. At such points the equation of propagation will be
modified. There are evidently as many of these subsidiary
equations as there are poirnts of discontinuity on the line.
They are said to express the boundary conditions at these points.
The mathematical function for the current y will have to
satisfy not only (3) but also every one of the boundary equations.
The conductor discussed here has two such points, A and B. The
arbitrary conditions entering into our problem wiLl De completely
specified if we know the manner in which the electromotive force
generated at A is impressed upon the line and if, in addition, the
constants of the circuit in the transmitting and in the receiving
apparatus are given. This will be done now.

Generator at A impresses an electromotive force

e=f(t)
wheref (t) is some analytical function of t.
The electro-magnetic constants of the circuit at A and B are

as follows:-
lbo Rol CO, and Ll, RB, C1, are the effective co-efficient of self-

induction, the effective resistance, and the capacity of the trans-
mitting and of the receiving apparatus, respectively.

This fixes the arbitrary conditions and we can proceed now to
deduce the equations, which express the boundary conditions.

Let VO be the potential at s 0

1~~~~~ 2'e " " " S 2

Let {T'/T " "S
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Where F1 is the potential at that terminal of the receiving ap.
paratus whicll is nearest to point s- 0 and PV is the potential
at the other terminal.

Let PO be the potential difference in condenser C0.
Let PI " " " " i"g CO

Stating the law of equality of action and reaction for the
terminals of A and -u we obtain the following two equations ex-
pressing the so-called boundary conditions:

[L1 d.y + t + Po + vo Jf,]_=0

dt __ J 1(4)'LI Y + RI y + PI + vli VI o
It should be observed here that we infer from purely physical

considerations that the potential Fis discontinuous at s = 0 and
s = 1. In a symmetrical system, like the one before us, the dis-
continuity amounts to this:

V7 - V21

In other words

where V is the potential at any point between s = 0 and s= I
and V' " " " " kg s =- I and s=2 I

It is also a matter of purely physical considerations which leads'
us to assume that y is a function which is continuous all along
the line.
The physical meaning of the problem suggests the following

solution:

y= (K cos m + K sin m ) ek1 (5)

where I= 8 and the origin of co-ordinates is thus transferred
to the point where the receiviing apparatus is located.

This will satisfy (3) provided that

m 2 = ki C(k L + R)
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Solution (4) contains three arbitrary constants. K1, K2, and k1,
as many as the number of existing arbitrary conditions.

These constants are selected so as to satisfy (4). This is done
by inserting the value of y froom (5) into (4) and determining F1
12 and k1 so as to satisfy this equation. It is evident that k

kB- Ic1.
To calculate -A., and K2 introduce the following abbreviations:-

Ao = lo + k
k' Co

ho= k CC(k O + Ro)

hl k C (k A1+ R1)

DDo k C E.

The following values for F1 and K2 are obtained from the
two boundary equations:-

K hr,-Do

-h2 F

where

F (ho Al - 4 i2) sin m I + 2 m (ho + h1) cos m I

and equation (4) can now be written

y = [2 ncos m +hA sin mi, Doe (6)
F

This is the most general solution of our problem. It inieludes
both forced and free oscillations.

FORCED HARMONIC OSCILLATIONS.

§. 2 Harmonic oscillations mriaintained by the action of an
alternator impressing a simnple harmonic E.[.F. upon the line are
of universal interest and will be considered here. They are
employed in experimnental investigations and in industrial arts. In
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this case the impressed E.M.F. is the real part of F elPt and the
current will be the real part of y in (6). We shall have now

-m2= +(±iP)2 = ipC(ipl+R)

2a-
, 12--+ 2+-pL]

N/+ 2 [ 4/P9~1X + WI' -_pl
Three distinct cases arise which will be discussed in turn. It

is well to state here that the discussion will be conducted in all
cases in accordance with the following programme :

First, we shall inquire how the available energy varies during
its propagationi between the transmitting and the receiving end;
secondly, what is the -wave-length and the velocity of propagation;
and thirdly, does the theory indicate a practicable method of
measuring the wave-length and the velocity of propagation.
These are evidently the essential elements which enter into the
description of wave propagation.

First case.- lhe imipedanee of the transmitting and of the
receiving apparatus is negligibly small :-This is the simplest
case and is generally conisidered in elementary treatises.
We have

ho = h= 0

Hence
F= - 4 qn2 sin m l

i_p CE cosm eplt
2m sin m

Remembering that

I`-2 X p~s'-cos m = [ (e2 + e cos a -i(e -e ) sin a$]

sin m [(e + e )sin a +i(e e cos a$

We shall have for the real part of y the following

1-JEj1 [(e'X-e %)sinatcos(pt-c-b)-( e ) .b)]

4-V L+ 2Vee2Pl+e-2pl_2cos2al
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A[esj3 (p t $-a + e-_Xsi(_p t +a
where

tan y6 = el Isin (a Z-9)±+e1 sin (a l+ (9)

e1cos(a l-9) -eR cos (a + SO)
a

tan y9- a

Let A = wave-length, then evidently

2 7r

a

If T is the period of the impressed E.M.F., then denoting by v

the velocity of propagation we shall have

2 7rvI- 2-=
a

On account of this relation a should be called the " veloc'ity
constant." If we could measure 2 we could calculate v. On this
point more will be said in the discussion of the next case.
An experimental exploration of the current along the line

would necessarily measure the mean square of the current.
There are no instruments which indicate the iinstantaneous value
of a variable current or potential. Besides, this mean square
measures the mean value of the available electro-kinetic energy
at the point under consideration. Hence it is a most important
quantity and its iuitroduction into the propagation theory seems to
simplifv the apparent complexity of this branch of electro-
mechanics.

Let M (a2) denote the mean square of the current at anay point
on the line, then since

T

,9(T2 f_2 dt
0

we shall obtain from (7)

E2pC[e2P +eP +2 cos 2at]
A/222 22)-289
_p2_2+J2 [e2 +e -2cos2al]

The physical meaning of this formula will be discussed in con-
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nection with the corresponding expression whiclh will be obtained
in the next case.

Second case The inmpedance of the receiving a_pparatus,
only, is negltgibly small.

In this case

Al = 0

F= --4 n2 sin m I + 2 n ho cos m I

The current is equal to the real part of

D eiPt cos mn

-2mim+hcs t(9)2 m siiinm I + ho cos n I 9

It is evident that

D
-2m, sin mn + hocos m I

measures the initial ainplitude of the wave but does not affect
its subsequent variation during its propagation from the trans-
mitting apparatus along the line. Since this variation is the real
object of our sttudy, it is superfluous to perform here the actual
calculations of the initial amplitude in terms of a, ,B, 1, and t0.
Those interested in the design and installation of telegraph and
telephone lines will have no difficulty in performning this task.
Much confusion is avoided by keeping these somnewhat lengthy
and tedious calculations out of the main body of the nathemati-
cal analysis of wave propagation. They are not essential and
should not be allowed to obscure the view of those elements of
the theory which are of fundamental importance.
The amplitude can be written

D _ De
p+i VP2+±Q

Hence (9) assumes the formi

Dle(pt&) co
~ 2_Q

=A ~~ 6]9- co--tOsna+X
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Hence the real part of y will be

~=A _esnpt-o-a')+ e 3sin(pt-40+a$)] (10)

From this the potential Vis easily deduced. Since

iaq- aC_ 0dV
dt

'we shall have

V--A,[e 5cos(Pty-0-aC)-6 2cos(.pt--O f+a$)] (11)
V1- V

where
4

AA+a2+pY _ Av L2-R2
pC 4/

tan 'p =

The displaceiment current x plays a very important part in
telephony owing to the facility with which it will produce cross-
talk and thus miake itself objectionable. Several devices have
been tried in telephony to get rid of this source of annoyance.'

The expression for x is easily obtained from the relation.

x= C dV (12)
dit

The equations of the mean square curves are now easily ob-
tained.

X §) A 2( e2g$ +e-2g$2CO a

3(VI)= I(e+Be --2cos 2a$)
2

M11 (x') = p'C2AI2(e2P% e 2/r2 cos 2a$)

Dicsussion of the eqjuations:-lt is evident that the mathe-

1. See J. J. Carty, TRANSACTIONS, Vol. viii, p. 100, 1891.
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matical relations deduced for the second case are of the same
form as those obtained for the first case. The effect, therefore,
of the transmitting apparatus upon the wave is to modify its
initial amplitude, only, and nothing else. It is sufficient, there-
fore, to discuss the physical mearning of the results of the second
case.

lThe current wave, equation (10):-It can be decomposed into
two componentsAj and ^2; thus,

'2 = ~21 + rj2

j=A e sin (p t b-a$)

'22 = A e'9$sin(pt b+ as)

Each of these components is a progressive wave.

2 is maximum at X_-1, and minimum at I_ 1

The first wave starts from one pole of the transmitting alter-
nator and describes a riglht handed rnotion arouild the loop. The
second wave starts at the otlher pole of the alternator and travels in
the opposite direction. The waves have the same in-itial ampli-
tude, the same velocity, and they become atteniiuated at the same
rate. The distribuition of the wave around the loop is perfectly
symmnetrical. The resultant current wave a is an interference
wave. On account of attenuation the interference is not
capable of producing a stationary wave, because when the two
interfering waves ineet they have unequal armplitudes.
When the resistance per u-nit length is made small in com-

parison to the reactance and the line is sufficiently short, the
attenuation constant ' becomes so small that

and in that case

a-1 + 52 _A[sin (p t - -a$) + sin(p t - +at )]

=2 A cos a $ sin (p t-b)

that is, a stationary wave is formed.
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But even if the line is long, provided that R is suifficiently
small in comparison to pL, as in the case of efficient long-distance
telephone lines, the two waves will be nearly equal for quite a
distance on each side of the middle point of the loop where in
general the receiving apparatus is located. I-enee in the vicinity
of this poilnt the resultant current wave approximates very nearly
the form of an interference wave. This fact manifests itself ill
an interesting maniner and will be brouight out presently in coin-
nection witlh the diseussion of a method which this theory sug-
gests for measuring experimentally the wave-length and the
velocity of long waves.

The potential and the displacement current waves, equations
(11) and (12) :--They are just like the cuirrent wave, interference
waves, and the remarks just made with reference to the current
wave apply to them also. An interesting relation between these
waves arid the current wave deserves a careful attention. ft is
the phase-difference so. This angle rneasures the attenuation, as
will be seen presently.

Eficiency qf transmission :-Equation (1) can be written

ldd + aC zV

The quantity should, therefore, be called the electromotive

tnten,sity. Its value is easily obtained from (11.) Thus

VV.=..A(a2+P2) [ egsin( pt-0-a$+d)+eh& sin (pt-b+a S + 0)]

(14)
where

2

The angle 0 is the angle of lag between the current auca the
electromotive intensity as can be seen by comnparing (10) and (14).
It will be shown now that this angle of lag plays the samne part
here as the'angle of lag between the impressed electromotive
force anld the current in ordinary alternating current circuits.

Consider the equation

IV R (R ) = (^q x
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That is to say, the meani value of the work per second done by
the electro-mnotive intensity equals the mean value of the rate of
dissipation per unit length of the line. This dissipation causes the
attenuation of the wave and thus dininishes the efficiency of
transmission. A small value of I? will evidenrtly prevent it.
But that this efficiency is not a question of olhmic resistance, only,
will be seen from the following consideration:

Cos 6 sin 2 -2 sin o cos PL=R_
/p2 jJ2+ 1?2

or

tan OP=

Now let

A 2
X W§) A72

Then since

X 0( a ¢ ) 0 = (p2 l2 + _R2) M (72)
we shall have

i V/p-2Jy] A2v A = u(fQ2)

1 Av A; cos 0 R Xa2

For efficient transmissiont we m-nust have, therefore, a large
angle of lag between the current and the electromnotive intensity.

The quantity that is the ratio of reactance to resistance,

is the most essential elemen-t, an(l not R alone, in questions of
efficiency of this kin(l. Employing the terminology which has
been generally adopted ainong electrical engineers, we have the
following simple ruie :--7the power factor of the line gmust be
as small as possib?e. The phlysical reason for this is not far to
seek. A large angle of lag between the electromnotive intensity
and the current, mneans the same thing here as it does in ordinary
circuits, and that is, it means a larg,e self-inductioni reaction in
comparison to the dissipative resistance reaction, and this again
means a large arnount of energy stored up in comparison to the
energy dissipate(l. Thlis stored up energy is returnred to the gen-
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erator in the case of ordinary circuits and propagated in the case
of long lines. The conisideration of the angle of lag 0 or, wlhat
is the same tlling, the Powevr factor of the l,ine, enables us
therefore to view the wave propagation in the samne simple light in
which we view the energy transfer in ordinary alterniating cur-
rent circuits. B3ut it slold be ol)served that the _poerjfctetor-o
the line is not the same thing as the power factor of an ordinary
alternating current circuit In wave propagation of electrical
energy, the power factor of the line measures the power con-
sumed on the line only ; the power absorbed in the receiving
apparatus is measured by another power factor.

y~~~~~~~~~~~~~~~~~~~

O .50 100 OU; 50t 0n- }* eC(i ibG .i
/~~ \ 7 /

11~ .,~

FIG. 2.

The mean square curves, equation (13) :--Plotting the curves
by taking these mean squares for ordinates and $ for the abscissa
we obtain an extremely simiple representation of the variation of
the mean electro-kinetie energy duiring its propagation along
the line. The thick line x it1 Z' wl x diagrarmt Fig. 2 represents
the curve of X (r2). It consists of the superposition of two eurves,
the catenary x y z y x and the siunpie harimonic x u z w. 'The
wave-length of this simiple harmonic is one-half as long as the
wave-length of the progressive wave, that is

2

Let u1 w1 be two points on the M (Ci) curve such that u, w
iU1 w1, then these points will be shown to be imrlportant points in
the expeerimental determinationi of the wave-length.

Concerninq an experpinental method of measuring the wave-
length and the velocity ofprojpagation qf long electricat waves:
-Tany seriouis attepl"ts Wel e lria(le 1on(T before the timile of
Hertz to mneasure tlle velocity of propagationi ot ani electri-al
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disturbance in a linear conductor. The most notable among
these were the experiments of Wallaston and Fizeau. The cause
of their failure has been discussed before, and needs no further
commentary here. IHertz was the first to conceive the idea of
determining this velocity by ineasuring experimenltally the wave-
length of a harmonic disturbance of known periodicity, and in
order to obtain a sufficiently slhort wave-length lie made the
period sufficiently short. The solution of the problem of pro-
ducing powerful harmonic electrical oscillations of very high
frequency and therefore short wave-length forms the foundation
of his classical experiments.

It will be pointed out now that the I{ertzian metlod of measur-
ing the velocity of propagation is applicable to forced electrical
oscillations of long period ; the difficulties involved in it will be
brouglht out and a way of avoiding thein will be discussed mnore
fully in Section III. of this paper.

Consider as an illustration the following example:

I _ 250 miles,
; .005 henry,
X = 1 ohm,
C = .01 mnicrofarad,
p 6000.

Such a line represents very nearly a long-distance telephone
line of 500 nuiles in length such as in use now between NIew York
and Chicago. Fig. 2 is a M (§2) cutrve answering this example.

In this case we have approximately

,= .000706
v = 1.42 X 105 miles, roughly.

i= 142 miles,
2

Hence
z w1 z it1 = 71 miles

At w, we have s = 71, hence

e23 _e_142>x.000706 -el

This shows that the catenary is very flat in the vicinity of the
origin o, the most distant point on the loop, and therefore the
points u1 and w1 will be very near the minima points nearest
to o. The distance between the miniima is, therefore, equal to a
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half wave-length corresponding to frequency 500. H:ence if we
plot the M (C2) curve for a telephone line such as specified above,
and determine tlle distance between the two furthest minima,
this will give the half wave-length. Since the period is known,
the velocity can be caleculated. Tfhis method of determining ex-
perimentally the velocity of propagation is the same as the one
devised by Hertz. It is evident, however, that in its practical
execution it would offer many almost insurmou-ntable difficulties,
the chief among them being the excessively long wave-length
and the consequent necessity of distribuiting the points of observa-
tion Over long distances. bliut a simple consideration will show
that a long period does not necessarily mean a long wave-length
in the case of propagation along conduietors. We lhave in this case

2=TvT v _

For a frequency of

T_
500

we have
2 284

miles approximatelv.
If the surrounding medium had a rnillion times the permea-

bility and specific inductive capacity as the ordinary atmnosphere
we should have for the same conduietor

2 1.5 foot, about,

that is about the samne wave-length as H.-ertz obtained for his very
high frequencies. The velocity of propagation is a matter of the
amount of energy per unit length of the path of the wave wlhen
a given currenrt and potential are propagated along that pat]].
We can make that amnount anything we please, and thus modify
the velocity of propagation and the wave-length in any desirable
manner as will be shown in Sect. III.

Third ca.se. The impedances of both the receiving and the
transmitting apparatus are taken into accoutnt: -This is the most
general case. Solution (6) in its complete form must be em
ployed here. The current is the real part of

q -(2 m, cos >n -[ h, sin rnm) Do e'P
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The separation of the real and imaginary parts of this ex-
pression can be done as follows:-

D0 e1^ = i A et(P#
-F

It can be shown that

2 m cos m ,+h, sin in Xe cos (a$+s)+ Ye c$Cos (ac )-

-i [Ke$sin (a$+e)- Ye sin (a; ) 3

Hence the real part of y will be

v=-A[XA,Xcos(pt---ac)+Ye cos (p t-/b -3+a )] (15)

The potential V is easily obtained from

dddt

V= Al[-Xe sin (yt-b-f-s-ac)± Ye sin (p t-b-f--+a )]
(16)

V' _-V ,A1 A I/ a' +

=-Alva1 + x2[e9 cos (p t-0---a c+)+

+ YeX cos (p t-0-8+a +)1 (16 a)
where

2(

We have here as in the preceding case

tanyi taii pL

where, as before, 0 is the angle of lag between the potential
gradient and the current, and cos 0 is tie powerfactor of the line,
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Xj[ (<j2) _--2[X2g+ 23'4Q9XAYcos (2 a ' --z+8)]
S (17)

A1 [X2 2/9+ y2e- { cos21.( IV2)= 2 e7 (a+-)
J

The quantities A, A1 X, Y, E a can be calculated when re-
quired. The calculation is excessively long aild tedious, and has
been omitted on that account. The questions proposed in this
investigation can be answered without a knowledge of the
numerical values of these quiantities.
Physical interpretation oJ the third case: -Little can be said

here whicll has not already been mentioned in connection with
the preeeding case. The eurrent and the potential vaves are
interference waves. The interfering components are two in
nunmber, just as in the preceding case.

where

^qt -A Y e#' cos (pt - + at)

(2=+A X e Cos (p -0-e-v $+ r)

7}l is maximum at, = - and minimum at =0

Cz " X$ --0 " '" 4 i

Hence ^q is the direct or the inicident wave proceeding froiri
the machine at the transmiiitting end, and '2 is a reflected wave,
the reflection taking place at the apparatus of the receiving end.
In this respect, then, this case differs fromn the preceding one,
there being no reflection when there is no receiving apparatus.
The presence of the receiving apparatus acts as a source of
secondary radiation. The reflected waves coming frorn the re-
ceiving apparatu-s may be called the counter-current waves pro-
duced by the counter-electromotive force due to the reaction at
the receiving end. The transmitting apparatus acts like a source
of light, and the receiving apparatus acts like a reflecting surface.
But here is a distinction whicil deserves to be mentioned in this
place. Liglht waves proceed in straight lines, whereas these
electric waves bend around corners with perfect ease; they follow
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the conducting wire. This difference is due principally to the
fact that the current waves discussed here are conduction current
waves, whereas the waves of light are waves of displacement cur-
rents of very short wave-lengtlh, and such waves will niot bend
easily around corners. Displaceineint current waves impinging
upon a conductor will, of course, produce conduction currenits
and hence cross-talk in telephony, and there is every reason to
believe that even ordinary light-waves when falling upon a con-
ductor produice conduction current-waves which will bend arounld
corners, if by the time they have reached a corner they have not
been attenuated out of existence.
Comparing the potential gradient wave (16 a) to the current-

wave it will be seen that the same angle of lag 6 between the
electromotive intensity or potential gradient and the current ap-
pears. It measures here in the same way as it did in the pre-
ceding case, the efficiency of transmission and on account of the
same physical reasons. A line possessing perfect efficiency is
like a perfectly transpareint medium In sueh a medium the
electric force and the magnetic are, at every point of a luminous
wave, in quadrature.
The importance of this angle of lag can be shown here by in-

quiring how much energy per second passes at any point -q" to-
ward the receiving apparatus.

Let W total power of trannsmitting apparatuis radiated on2P
one-half of the loop.

HI rate of heat generated on the line between the
points - I and --

Tt can be easily shown that

W'AA1[ ) 192 26P1Ur_ 2Li ,IL( }~2j923-X-6 sin 0+2 X Ysin (a I+e-a) Cos

Jj, __AAXYii[ ( 2n_K, )S G2 cos+i
2 2

The energy per second( radiating from any point - toward
the receiving apparatust is

J _/l ______'L(Ye972evl'- 2eUX)sinY+2XYsiT (aS+r-a)cos9]
2

-El si-n (f - i2Cos
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Where El anid E are positive quantities. Hence the greater
the greater will be '

Passing now to the consideration of the mean square values of
§ and V we obtain additional illustrations of the physical fact
that long-distance transmission of power along conducting wires
is a process of transference by means of wave radiation following
the samie laws as every other kind of wave radiation. Equations
(17) express simply a geomiietrical relation between the incident
and the reflected waves of current and potential, and their re-
sultants. They state that these resultants are foiund by the
ordinary rules of compounding waves or vectors in general.
Now it happens, fortunately, that the mathematical expressioni
for these resultants admits of a very simple geometrical coni-
struction, and of a suggestive mechanical illustration.

0 , 50 100 \150 200o / oO250 \ 300 350/ul .400 450 X 500
Yi I

FIG. 3.

In Fig. 3 the thick line 1? S TZ T, 8, R1 represents the _Ml(l2)
curve on a 500-mile telephone line mientionled above. Each
half consists of the superposition of a simple harmonic r t u v z
upon a portion of a cateinary x S y z. It should be observed
that the lowest point of the catenary of which x SSy z is a portiorn
is to the right of z. That is to say, the double catenary x S y z
Yi SI Xi is the catenary which we obtain by lhanging a weight at
tlle middle point of a heavy string which is suspended at its
terminals. So that the effect of the receiving apparatus uponl the
XM (@2) curve may be described broadly by stating that this curve
can be represented by the forced vibrationls of a heavy string, the
extremities of which are held by a certain tension at two points
on the same horizontal line and carrying a weight at its rniddle
point. The density of the string, the stretching t'ension, and the
weight at its middle point, correspond to the coefficient of self-
induction and the capacity per unit lengthl of the wire, and to the
self-indulction of the receiving apparatus, respectively.
An interesting analogy will be mentioned here. If the self-

induction of the receiving apparatus is balanced by a capacity,
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and the resistance is negligibly smnall, the cusp of Fig. 3 disap-
pears and in place of it we have the samrye formation as in Fig. 2.
This case corresponids to a weight suspended by means of a
spiral spring to the middle of the string, the weight and the
elasticity of the sprinig being adjusted so that their period equals
the period of the impressed force.

lVote.--Another way of looking uipon the effect of the line re-
actance upon the efficiency of transmission is to consider the
atte-nuation constant ,B. When the reactaniee per unit length of
line is large in comparison to resistance thenL for all frequencies

A_ RI Cv,
where v is the velocity of propagation and it is given by

1

This relation takes place here of the so-called KR law.-
The reactance dinlinishes the speed of propagation, but en-

ables the line to transmit all frequencies (within certain limits
which are of importance in telephony) with the same velocity
and the same attenuation. It makes the line what Mr. Heaviside
calls " distortionless."
FREE OSCILLATIONS ON A LINEAR CONDUCTOR OF UNIFORMLY Dis-

TRIBUTED SELF-INDUCTION, RESISTANCE, AND CAPACITY.
0 2. Free oscillations on a conductor of this kind are readily calcu-

lated for a few special cases. Equation (6) is a general solution
for free oscillationls also, provided, however, that m has such a
value as to make

F =-O sinceDDo =O
that is, we must have

(ho h- 4 ml) sin m I + 2 m (ho + hl) cos nm= 0 (19)
but, of course, in tbis case

ho k- C (k A0o+ Ro)
h= k C (kA1+R1)

-in2 k C (k L + R)
Equation (19) is a transcendental e(luation and can be be

solved in a few simple cases.
Case 1. Thte trancsmitting and the receiving apparatu,s are

not present.
In this case

AO hi -_ 0
Equation (19) reduces to
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sin n l = 0
s 7r

T
where s can have any integer value from 1 to so. The periods
of free oscillationls are calculated from the equation

-m2 - k2 L C-4+-kRC_ 8s12W2
* - 2 = P1 C k C-
-k2L ± _

2L ~~~7W1- 411
R

= -- ±i kB

There are therefore an infinite number of periods which are
harmonically related to each other unless the damping factor

2R is not sufficiently small in comparison to 1L

The most general solution of this case can be written.
co

y = e2-tLSt A 8 Cos cos (k. t - (20)
Case 2.-lransmitting apparatus is not present and in place

of the receiving apparatus there is a break in the wire.
In this case hAoo,= 1hicio
Equation (19) reduces to

Cos n I _ 0
2 _s+1 7r

1 2

k=_ R ±i 1 (2 +1WI 2 R2
2L LC6' l 4/7

- ± i k28+1
Rt 2--+ 1

W

=e-2,L E.-2s,9 in2S1 - coS (k2,+l- E2,+1) (21)
0

The damping factor is the same for all frequencies, hence the
color of the complex harmonic vibration remains unchanged dur-
ing the whole epoch while the vibrations last. The dying out
sound of a bell is a striking illustration of this initerestiing relation.
Whenever the circuit is made or opened, we shall have in addi-

tion to the forced vibrations, free vibrations also. The lower
harmonics of these free vibrations will be quite within the
ordinary frequencies, especially on long lines. There is no douLbt
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that these free vibrations interfered considerably with the suc-
cessful working of harmnonic telegraphy. The discussion of a
method of preventing the developm-lenit of free vibrations of any
period is reserved for a future occasion.

SECTION II. 1

OSCULATIONS ON' A LOADED CONDUCTOR.
Introduetior:-This part of the paper discusses the foreed and

the free electrical oscillations in a loaded conductor.
1FIRST ARRANGEMENT.

The eonductor consists of 2 n equal coils, 1 .... L. (Fig. 4) Con-
nected in series, so as to form a closed loop. At one point A of this
loop is an alternator, at the diametrically opposite point is a re-
ceiving apparatus B. At equal distances (n - 1) equal condens-

Ll L, L,,_ L,,- LK,

AL j >t~C C n-3 c 11.2t C [.%

A ~~~2 B-~AW~~~Ah

, L2 L n-2. L- L,

FIG. 4.
ers, C1....-C1-, form bridges across the loop. The whole loop is
thus divided into n component circuits, 1, 2....n. The com-
poneint circu-its except the first and the nth are equal to each
other in the sense that they have equal resistanee, capacity, and
self-induction. The first and the nth circuit differ fromn the other
circuits on account of the presence of alternator A in the former,
and that of the receiving apparatus B in the latter circuit.

It is evident that in the limit when n becomes infinitely large,
this conductor becomes an ordinary telegraph or telephonie linie
with uniformly distributed resistance, capacity, and self-induction.
The practical question arises now, under what conditions will a
conductor loaded in this manlner become equivalent with sufficient
approximation to a uniform telegraph line when n is not in-
finitely large 2 This problemi does not seem to have been solved
before. Professor Blakesley in his book on alternating currents
devotes considerable attention to the discussion of a similar prob-
lein, but his efforts do lnot appear to throw any light upon this
natter.

1. This section read before the American Mathematical Society, March
meeting, 1899.
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In its meain features this problem is similar to that which
Lagrange solved in his "1 Mecanique Analytique, sec. partie, sect.
VI.," the problem, namely, of the free vibrations of a string, fixed
at its two ends, and loaded at equidistant points by equal weights.
But it is much mnore general than that of Lagrange, in the first
place because frictioinal resistances are taken into consideration,
and secondly, forced as well as free oscillations are considered.
Specifieation of the constants and of the currents:

Let I,, and L1= co-efficient of self-induction of A and Bre-
spectively.

Let Ro and R1 = Ohmic resistance of A and BI respectively.
Let C0 and C( = Capacity of A and B, respectively.
Let L, R, C, be the corresponding quantities of the coils and

condensers in the several component circuits.
Let the real part of E e'Pt be the E.M.F. impressed bv the

alternator A.
Let x, xS, be the currents in the n component circuits.
Let P1. .. . P,1 be the differences of potential in the line con-

densers.
Let P0 and P' be the differences of potential in the con-

densers in A and B, respectively.
Let F1.... a be the condenser currents.
We shall have

eI - d P, C dl2 etc.
dt dt

(1)
$1 ,_ X21$S,2 2= 2-X3, etc.

A. FORCED OSCILLATIONS.
Stating the law of equality of action and reaction for each

componlent circuit we obtain the following n differential equa-
tions

(-+dtx(o0 + 2 L) -d- (R,, + 2 R) x, + P, + PO= E ep

2 L
d + 2 R H2+ P,2- P, = 0,

................. ...(2)

2 l dtdn+ 2 R xnl-1 + P[-n1 P.-29 °,

dx(Li t2 L)ddn+.-(Rl+2RB)xn-P,-,+P,= .
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When the steady state has been reached, the currents will be
just like the impressed E.M.F., sinmple harmonics of the time t,
that is

i A1 elPt,

X= A2 e6pt (3)
. .... *. -. **.. -

where A1, A2,....are complex quantities.
From (3) follows that for the differential co-efflcients in (2) we

can substitute currents, because

dxm
dt

_2X (4)
dt2 - P r

Hence differeintiating each member of (2) and substituting from
(4) and (1) we obtain

2Ca( p2jL+itp R)x1 + -o° ip CEe'Pt
+ C(p22 -ip RO) X

2 0(-pK1I +ip R)x2 +- $2 01=O

2 C(-p2 I+ ip R) xn,-,+ $n- .n-2I (

2C(-p2 I +iR)xR ±n+ C p21 -pP R1)x1
where

~0=Lo 1 11=LPz G p2 G
Introducilng the following abbreviations:

h = 2 C( p2 L + iP R)
D=iP CEe'Pt + C(p%A o-ip leo) =D0-h0ox
A, p2-PI + i p

we obtain

h1,+x --o =1)

hX2 + 2 -$1 -0

It Xn-1 An- - n-2-0

x + O0- Al X
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Another form is obtained by substituting for t, .. as
follows

(AO 4- A + 1)XI + X2 =D

(It + 2)X2 XI X3 = 0
.......... , . .............. k (6)
(+ 2) x1n--- =0

(hl + it + 1)x + -X_=- j

Two methods of solvirng these equations present themselves,
the direct method and the indirect one.

The direct method:-IIn this method the system (6) forms the
starting point. Consider the following determiinant

110+h+l,-1 1, 0,.

-1,(h+2), -1, O...............

0, -1,h-+2,-1, 0. .

0, 0, 0, 0, 0,.. . 1, h + 2,--1

0, 0, 0, 0, O.... 0,-1, (hi+h+l)

Let now 4m stand for the minor of that termii in the rnth col-
umn whieh contains i, then

Xm = A Do (7)

if Dm aind J could be evaluated by the ordinary rules of ex-
panding a determinant then (7) would give the solution of the
problern for forced oscillations. The free oscillations could
then be readily obtained from it. BIit the direct expansion of Dm
and d seems to be a matter of much difficulty, so that (7) is
merely a symbolic solution of no actual value. The direct
method leads, therefore, to nro effective result. In his investiga-
tion of the problem referred to above, Lagrange did not adopt
the direct method. The indirect method employed in this paper
is different fromn that employed by hirm, and it had to be devised
as Lagrange's method does not seem to be applicable here,
because, as already stated, the two problems, though similar in
their general features, are essentially different.
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The indirect method:-This method may be called the method
of successive eliminations.
The starting point is system (5). Adding the n equations we

obtain

h(XI+$2+*+ *+Xn-.+X+Xn) -/)-h-In (8)

The indirect method can ilow be readily explained. It con-
sists in successively eliminating from the left-hand member of
(8) the currents xn ... x2 and thus obtaining in place of (8) an
equiation containing in its left-hand member x1 as the only
unknown quantity. 1From this equation the complete solution
of the problem can then be easilv obtained.
Elimination of tx.

First step.

x1-
XI = XI-
=2 = $-h1

X3 =D I--(1 -x2

X4 XI -t $2-t

=n-D -h(1 + x2- 3 *n-2

2:n XI, 1 - 2 -$3 . ... n-3 - a-2- t-

Ao (xl + n)n Ahxt-h L(n 1) ;_' + (n- 2) $2

Fl =DL-h(x+ 2 ..
_nlD h (x, + X2+**) n

**( 1+( )*e+. . . . . . . . . . . . . . . . . . . . . + 2 -c,-. . ..... (7-1)1

-(n-)$ + (n- ) x,+ ... .- 1)n t2 _ nn 10)
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By means of (9) and (10) equation (8) transforms into

n h x1 + [nn(n-1)x1-+(n-1.) (n-2)x2+ . ... +2 XI X1-2+ Xn-1]

_ D) [1 + n(n-1) h]_Ag x (11)
2

D

In place of (8) we have (11) and in the left-hand member of
this equation, x11 does not appear.
To eliminate the remaining variables xn-l ...2 we have to re-

peat the same operations through which we have just passed
during the elimninatioin of x,. In each elimination the same two
steps just shown have to be made. It seems, therefore, super-
fluous to go into any further details here. Before giving the
final result it is well to observe lhere, that the following theoremn
can be employed with advantage in performing the summations
which ocCtlr ina each elimination.
Theorem

Let S-1.2.3 .......(s + 1) + 2.3 ........ (s + 2) . ........

+ (n s) (n s + ) ....... n
then

_(n - s) (- n (n 1)
s + 2

It can be proved as follows:

(,n--s) (n-s+) [(-s) ..n (n+l)
89+2

(r-)...nl--+ 2 [Tlsl n] U-t-st2

It is evident that

s _s- &Jnls1 + Jln-a-1 -Un--2
s+2

+ ...+ U2 - Ul + Tr 1 ZroI +2U-

since 1 0

The final resuilt of the eliminations indicated above is
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xr [nh4 (fn+i)fl(nA1)A22+(n+2)(n+l)n(Cn-l)(n-2)3XI+~ -3 w3 +

=D [1 + n +n-1)/± (ri+1l) n (n-l) (n-2)h2+
2! 4!

h, x, (12)

Equation (12) takes place of equation (8). Its left-hand iniem-
ber conrtains the variable x, only. The ultitnate object of the
successive eliminations lhas, therefore, been reached. Our prob-
lei now can be readily solved. The last equation can be much
simplified by the following substitution:

A = - 4 sin2 0

Consider the mnth term of the left-hand member of (12), namely

(n+m-1) (n+r -2) n7.... (n +2) ( hm
(2mn-1) /

This term becomes

t (- 1)a [(2 n)2 22 (M- 1)2] [(2 n)2 - 22 -(m-2)2] ....2 n
(2 m 1)!

X 2 sin 0 siu2n-1 0

or if we put 2 n = i), then the left-hand member of (12) be-
comes

-[_-2 sin + (W- 22) (v 42)-I sinl 0 [sin 0 - si2_________ sn..

The series in parenthesis is well known.' The expression can be

written in the following concise fornm:

2 sin 0 sin 2 n 0
cos O

It may be shown now in a similar manner that the right-hand
member of (12) can be written

D cos (2 n - 1) 0 - l Xn
cos 0

1. Todhunter Trigonometry, p. 230.
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Equation (12) can, therefore, be written

-L cos (2 n- 1) 0 + A, x, cos 0 13XI = ,*, .... ....(13)2 sin 0 sin n 0

The remaining currents can now be easily calculated. Thus

X= (h + 1) XI - D

= (2 cos 2 0 1)x1 D

Al n,, cos 3 0 D cos (2 n - 3) 0
2 sin 0 sin 2 n 0

=3 h x$, cos 5 0 - -D cos (2 n - 5) 0
2 sin 0 sin 2 n 0

It is evident that in general

_Ah,1x cos (2 m-1) 0-Dcos [2 (-m)+1 (14)
2 sin 0 sin 2 n 0

Thisexpression for x'm is still incomplete as it contains two
unknown quanitities, namely x, and x1. The last one is contained
in D = -D - A, x,. These two have now to be eliminated.

Let m _ n, then

=h,Ax, cos (2 n - 1) 0-(Do- & x,) cos 0
2 sin 0 sin 2 n 0

From which

(DO h-Ix) Cos 0

A1 cos (2 n - ) 2 sin 0 sin 2 n 0

(Do -h. x,) cos 0
(A1-1) cos (Dn-1)0 + cos (2 n + 1) 0

._ (D0 - AO $1) Cos 0
A (15)

Fromn (14) we obtain by substituting Do- wx for D the
following value for x,

Xi
D0cos (2 n- 1) 0-h1A,x(cos 0

(h,- 1) cos (2 n - 1) 0 + cos (2 n + 1) 0

_ Di, cos (2 n - 1) 0 - Al z cos (1)
B (
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Combining (15) and (16) we obtain

[A cos (2 -n)1 0-h1 cos_ ] D1-
- ~ ~A B-t oCosS

_ J), sin 2H sin 2 n HAB-hh1osd(18)
The most co-nvenient way of tindinig the value of any other

ecurrent, say xm, is to go back to (6) and find Q;2 from the first
e(uation by itiserting the valu:e of xi from (17). We find

- [A cos(i2n -)O-hA, cos 0 cos3 ]iDo
A _B -_ /" Acos02

The genieral formuLla catn now be easily guessed. It is

[A. cos (2n-2mn+1) 0-h1 cos 0 cos (2m-,1) 61 _D0
AAB -h0hAcos20.

[2sirn0cos(2ms-2m+F)t +h,sin(2n'-2n+2)i]D0 19)
hohi,sirn(2n-2)O-4sin'Osin2n t 4-2sinTO(hO+h,)cos(2n-1)O J

G G G G

c h C' C.;['2 c,f

xi t e L L 2 Ln-2-xLi LJA LB

G G G G

FIG. 5.

This value of xm satisfies all the conditions, which forced oscil
lations have to satisfy. It is therefore the complete solutioni of
our problem for forced oscillations, taking into accouint the re-
actions of the transmitting and the receiving apparatus. The
angle 0 is a comnplex angle, so that the real part of (19) is the
actual current in circuit m.

SECOND ARRANGEMENT.
In this arrangem-1ent there are 2 (n---1) conde'nsers each of

capacity C', all conniected to ground as shown in Fig 5. In place
of (5) and (6) we shall have here thie following differential
equations
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hAx1 +[I -0 _ 1(Do-h x1)

/A X2 + $2 -$1 0 I

Axm+$M $MiO0 (20)

A$+ o e 1

or

(h + 1) XI- -X2 -1 (DO-ho ,1)

(h+2)X2-1XI 3 0
(21)

(It+2) XII Xm-1Xm+i= 0.

(h + 1)Sn-n-lX". X.-, - X,,

Solution (19) will therefore hold for these equations also, pro-
vided that in 'it we multiply A0, hA, and Do by i and also re-
member that in this case

-4sin2l _ (p2 L C t _pR C)-h

Note :-Solution (19) can also be obtained by a short cut.
Equation (6) of Section I. of this paper suggests the follow.
ing as a trial solution:

xm = ,1 cos 2 (n -m) 6 + K2 sin 2 (n - m) 0.

It will be found that this satisfies all equations in (6) and (21)
except the first and the last, provided that

h == 4 sin2 LI.

Now by giving K1 and K2 their proper values the first and
the last equation may also be satisfied. Having thus deterrnined
K1 and K2 we obtain (19). Considerable calculation can thus be
saved. The longer and more tedious method was selected be-
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cause it offers a convenient imeans of discussing certain cases of
wave propagation, not considered in this paper, which cannot
very well be attacked directly by the infinitesimal nmethod.
This matter is reserved for a future occasion.

B. FREE OSOILLATIONS.

Equation (19) holds true for free as well as forced oscillations.
But since in thee case of free oscillations D0 0O it follows that
the denominator of (19) must vanish to prevent the vanishing of
all the currents. We shall have, tlherefore, in this case

h60hsin(2n-2)O-4sin2Osin 2n6+2sinO (h0o+kl)cos(2n-1)0 0 (22)

From this equation 0 has to be determined. A solution can
be obtained for a small number of problerns. The two most im-
portant will be considered here.

First. the transm,itting and the Peee;vinq a}pparatns are not
present. In this case

ho= Al= 0,

Xm = Bcos(2n-2m+1)0 (23)

It is found from (22) that (23) is actually the solution of the
differential equations (C)) for A0- D = 0, provided that

s 7*0_
2n

where s may be any integer from 1 to 2 n.

Hence the most general solution will be

2n

xm =s Bg cos (2 n- 2m +1) 2
` (24)

1 2 n

But it should be observed now that xm is a periodic function
of the time, that is

xm AmePt
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Hence in (24) each amplitude B contains the time factor el't
that is

BS A8efi,

The constant p, which measures the period of the free oscillation
is determined fromi the relation

h -. 4 sin 210

In the case of free oscillations

h p21C+ PtC,* 08=

Ilence

P28 L C + pfPi C-- 4 sin2 _-8 (25)
2nI

This enables us to determine _p. Before solving this equation
it is desirable to make the following substitution:

Let 1,', C', le' be the total co-efficient of self-induction,
capacity, and resistance, respectively, of one-half of the conduc-
ter, then

L

n

then

n ~ p n

* This will apply to second arrangement, Fig. 5, but not to the first ar-

rangement. The calculationforfirst arrangementisslightlydifferent andan
be easily made.
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From (23) we obtain

(2 2c+pr)_ 4 sin's2
n22

rX i 1 4 n2 s sW r
-Psp8 = 2A 4/ 1 \/ A c , Sn 2n*Ps-~~2±4cV 7 C7 "

2n 4 2

r
p_8 rj + i krs

Equation (22) becomes now

2n

m= e 22 .5 A, cos (2n-2m+1) 8-f cos (k8t-e,) (26)
1

~~~2n

Second case:- The transmitting apparatus is not present, and
n_place of the receiving apparatus tlhere is a breale in the line
at B.

In this case ho = 0, hl = so. Equation (19) gives

=m-- B sin (2 n - m + 2) 6

provided that

cos (2 n - 1) 0 _ 0

ord= 2s+l1
2n--1 2

We shall have, therefore,

r . I/1 4 n,2 . 2 2 8 + l 7r r
_p284-1 2 it -_12 sin _ _'22 ~Ac 12 2n-1 ;2 42

22 A

rt
-- 2n

x. -e '22 ,2A2,, sin (2n-2mn+2) tt ?1 COi
On--i 2

(27)

The question arises now, under what conditions will a loaded
conductor of this kind become approximately equivalent to a
uniform wire?
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Let
L _ .0125

C= .025

R = 2.5

p = 3000

that is the frequency is al)out 50()pp.s.
It will be found that since
4 sin2 d - p2 1 0 + ip R C - ( a + i 2 - _ 4 2

or
sin 0 _ (a + i P) =

.026 + .0014 i

0 = , very nearly.

If n coils have the same co-efficient of self-inductioni, the
sam-te capacity and the same resistance as a uniform wire of
length 1, and m coils correspond to a length s, then

m n :: s: I

ns

and

2 (n-m)+l z2n( 1 + 2n)
Again

pI LC+ip R C
_
p2I c+ipr c)= 22

where mn has the same meaning as in sectioni i.

n 2

2n( g + n)- (I s+ _= ) rn

-(-8)m
when n is large

In the apparatus described in Sect. III, n = 200 hence above
expression reduces to
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2 n (1 - ++400( ) SY =

1-s m_z

When this value of 0 is substituted in (19), this equation re-
duces to equation (6) of Section L., which shows that under the
conditions just described, the loaded conductor described here
becomes equivalent to a uniform wire. Experiments performed
upon the loaded conductor described in Section III, verify this
theoretical conclusion. Up to about 1000 p.p.s. the loaded con-
ductor (having for I, C, R, of each section the values given
above) behaves, very nearly, like a uniform slow-speed con-
ductor.

SECTION III,

EXPERIMENTS WITH SLOW-SPEED CONDUCTORS.

Slow-Speeed Conduetor with un;for0mly distributed capaictly,
self-induetion and resistance.-This conductor consists of a
number of coils, generally twenty-four, joined in series. The
construction of each coil is represented in Fig. 6. A number of

a,

FIG. 6.

layers of No. 20 wire are wound upon a wooden spool; the height
of the layers is three inches, the diameter of the inside layer is
seven inches, the number of layers is eight. Each layer when
wound is covered with a sheet of paraffined paper, then a sheet of
tinfoil is wrapped and covered with a sheet of parafflined paper,
and then the next layer is wound. The same operation is re-
peated after eaclh layer of wire. The tinfoil sheets are all c-on-
nected in series and to the binding post c. The thick vertical
lines between the layers represent the tinfoil. The spools are
carefully turned and everythinig is done to secuire the equality of
the coils. Experimental measurements of the electrical constants
of the coils showed that the coils were equal to eaclh other to
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within less than one per cent. But it should be observed that
this equality can be verified experimentally when the coils are
well heated up so as to expel the moisture between the layers;
moisture prevents an accurate measurement of capacity on account
of excessive leakage. The heatinig was done electrically. By re-
peated trials the result aimed at was finally obtained, niamely,
that each coil should have the following constants:-

f g h

FIG. 7.

_ .05 henry
C= .1 microfarad
I? 10 ohms.

That is to say, each coil was equivalent to about ten miles of
telephone wire -now in use betweein New York and Chicago. The
leakage was more than on ordinar-y telegraph lines under fair
conditionis. It cannot be avoided in coils of this kind, buit as long
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as the impressed E.M.F. is not above 300 volts it does not interfere
very seriously with the successful operation on conductors of
this kind.
The coils were connected in series as represented in Figs. 7

and 7a. In Fig. 7. the exciting machine is A. The binding posts
f g to i k . . . lead to the tinfoils. They are all connected to-
gether and then grounded. The coils are not connected to each
otier directly but through a switchboard a b x y z, the lower part
of Fig. 7. This switchboard is constructed as follows:-Into a
well-seasoned board of oak x Y z Fig. 7a and a b x y z Fig. 7 are
driven two rows of circular brass plugs a. . . c . . . Fig 7 or b
c d . . . h i k . . . Fig. 7a. These are connected by rods driven
in from binding screws 8 t u . . Fig. 7a The upper row of plugs

hAsholes, 1,e n b blac c yg
E 0 -- -0 X

FIG. 7a.

has lholes In I IIIil represented by black circles in (Fig. 711) into
which plungers, ordinary condenser plugs, are inserted; thus a
plunger in I (Fig. 7a) connects plugs b and c. The connection of the
coils to the brass plugs is represented correctly in Fig. 7a (but not
in Fig. 7 owing to a mistake of the draughtsman). A wire a leads
from alternator A to the first pluig b. The terminals of the coils
1, 2, 3, etc., are connected as represented to binding screws t, a,
v, w, . . . Suppose now that the connecting plungers are in I, II,
ill, etc., the coils are then connected together and the circuit is
established. To measure the current and the potential at various
points of this circuit proceed as follows:-Three long brass bars
x y z (Fig. 7) running parallel to the rows of brass plugs can be
connected to any three consecutive plugs by imieans of three brass
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strips z s t (Fig. 7) orp q z (Fig. 7a). The two upper bars x y
Fig. 7 are connected to a Siemens electro-dynamoineter D (reading
down to .02 ampere), the lower is connected to a Thomson
multicellular voltineter E (reading up to 250 volts). Suppose now
that a reading is to be taken at the point between coils 1 and 2.
That would correspond to a point 10 miles outside of the send-
ing stationl on the ]ong-distance telephone wire mentioned above.
The brass strips p q z (Fig. 7a) which are connected to a wooden
slide M N (Fig. 7a) are iiioved to the right until strip p reaches
plug k; at the same time q will be on I anid z will be on m. The
coninecting plunger in ii is then removed and the current made to
pass through the electro-dynamometer, D, at the samle time the
voltmeter E iS conniected to poilnt iii. The two readings give
the mean square of current at II and the R.M.S. of potential at iii.
The readings from which curves in Fig. 8 and Fig. 9 were plotted
were taken in this mannier.
The alternators which supplied the impressed E.M.F. were two

small machines, each having four separate armatures and four
fields. The four fields rotated on the same shafts. In this inan-
ner any frequency between about 25 P.P.S. and 750 P.P.s. could
be obtained. The E.M.F.' generated were not simple harmonics;
the effect of the higher harmonics (the fifth was predomninailt,
but not strong) was weakened by tuning. Well known pre-
cautions were taken to keep the speed and excitation constant.
The electromotive forces employed ranged between 60 and 234
volts. The length of the equivalent line operated upon was
usually 240 miles. The number of observations made ran into
hundreds. The two recorded in Fig. 8 and Fig. 9 are among the
best. The most serious source of inaccuracy was found to be the
variatiorn of the speed and excitation of the alternators. The
slow-speed conductor gave no serious trouble, provided that it
was kept reasonably warm by passing through it from time to
time a stronig current for several minutes.

The mean square curves, Fig. 8 and Fig. 9.-Fig. 8 repre-
sents the mean square curves of current (full line) and of potential
(dotted litne) when there was no receiving apparatus present. The
imilpressed E.M.F. was 234 volts and the frequency 610 P.P.S.
There were 24 coils in series, hence an equivalent of 240 miles
of long-distance telephone wire mentioned above. The current
curve represents a little over one-half of the theoretical current
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curve in Fig. 2. The curve of mean square of potential is not
given in Fig. 2.
The abscissae 1, 2, 3, . . . measure the number of the coil in

front of which the reading was taken. Thus abscissa 1 means
that the current reading was taken when the slide had the posi-
tion indicated in Fig. 7a and plug i was removed. Hence this
reading represents the value of current between the inacline and
the slow-speed conductor. Voltmeter reading taken in this posi-
tion of the slide represents, of course, reading 2. To get the
voltmeter reading 1 the slide 2 N had to be moved one peg to
the left and the connecting plunger left in i. There were 24 coils in
series, hence reading 13 representing the reading between coils 12
and 13 gives the reading at the middle point of the loop. Here

M(n2) MF2) P.p.S.610
110 .. - IIM (r/2) M(V2) COIL

100 - / V OBs. 141,520 MILES - 500 B3 178

90/t %% V CAL. 141,4i88 807190 2
90 7' 232 1 50 250
80_ - - T SEC. -'0 500300

sotX 253 X10 X
1 5a3{ 0 1 1 3 1 5 1

FI. 8.37
70 35~~~---70 1 5

00-i 3---00 4 1So .7
1.5 400 8

2-.50
8.5 250 8

to - - - -- -- - - 200 20 131 15

30 15~~~~~~~~~~~~~~~~~~~0354011

17 12

20 ~~~~~~~~~~~~~-14 13

the 1 (a2) is a maximum andX ( V2) is zero, as required by theory.
The voltmeter did not read below sixty volts, hence no 2 (1V2)
readings could be taken in the immediate vicinity of the middle
point. But the lowest readings were carefully determnined on
each side of this point, and the course of the M ( F2) curve in
this vicinity is thus fixed. The column headed X (a2) in the table
on the right of Fig. 8 gives the electro-dynamometer readings
just as they were read off the instrument. The figures in
column headed 2M (V2) represent the first three figures of
the voltmeter readings squared. These curves agree remarkably
well with the curves given by theory, in fact much better
than oine would expect from the apparent complexity and the
apparent muiltiplicity of the apparatus employed. But it should be
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observed that the actual experimental operations involved after
everything has been onice set up are extremely simple and capable
of great precision. The maximum of the middle point of the
Ml ((2) curve is not exactly at 13 which shows that the two sides
of the slow-speed conductor were not perfectly symmetrical.

The det6rminaUton of wave-length and of the velocity qfpropa-
gation.-Thle distance between the maximlum in the vicinity of
reading 13 and the minimuln in the vicinity of reading 8 repre-
sents a quarter wave-length. Now this distance is 29 divisions,
aind since each division represents 2 miles it follows that tlle wave
length

A 232 miles.
V 2 T1 232 X 610 = 141520 miles.

M(r20 M~V2)

COILS M(7]2) M( 72)
19 200 1 8 184

18 - - 2 13.5 90__
-F 1 a 1 ;-3 17 46

16 -IC

~~~_____168 ____5
t \01 ttw0,<1~~41

18 - 6 ~~~~~~~~~~~~~~15 56

- 0. 182
10 1~~~~~~~~~0 _ 1

60 2 13721

8; 10
3 { 5 6 7

9 10 11 12 13 1L15 418
___ - - - 2~~~015

FIG. 9.

Calculating v from the formula

2wr 1

[11a~ ~~1

we obtain
v2 141480 miles.

The agreement between the observed and the calculated value
is so remarkable that onle is rnuch ternpted to attribute it to luck
rather than to good management. That such is actually the case
is admitted here frankly, but it should be observed, in justice to
the method, that a large series of curves obtained with different
frequencies ahd nnder different conditions support the belief that
with careful precautions and a reasonably well made and care-
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fully nursed slow-speed conductor this miethod is actually capable
of determining A and v with miuch accuracy, in fact a greater
accuracy than is usually obtained in wave-length determinations
of the Hertzian waves. The measurement of T introduces the
largest error, but this error will not cause a disagreement between
v observed and v calculated since the same T is used in both cases.
The curves in Fig. 9 represent the mean square values of

the current and of the potential when a coil with a coefficient
of self-induction of one hlenry was placed in the middle. There
were 22 coils in series; the frequency and electromotive force
were the same as in the preceding case. The Cllsp predicted by
theory (see Fig. 3) occurs therefore at reading twelve, that is,
between the eleventh and twelfth coil. A comparison between
Fig. 9 and Fig. 3 shows a very satisfactorv agreement between

1 2 3

m 0,

aMliglElul~~I,// zl/ZWM

FIG. 10.

theory and experiment. The emormouis sag of the current in
the vicinity of the receiving apparatus is due to the high fre-
quency and the large self-induction, and therefore large reactance
of the receiving coil. The power delivered to this coil is not
small in spite of the dimninished current, for it will be seen fromn
the i ( V2) curve that the potential is high in the vicinity of
the coil where the current is small.
The slow-speed conductor jtust described cannot stand high

voltage and, besides, its leakage is large unless handled with much
care. Another type of slow-speed conductor which does niot have
these objectionable features is represented in Fig. 10 and Fig.11.
It consists of a large number of equal spools l1 2 3. . .. connected
in series. Fig. 10 represents a part of two rows of these spools,
each row mounted on the same tube, one for each row. These
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tubes are marked A and B. From each wire connectilng two
consecutive coils runs a wire to a binding post leading to a section
of a condenser; these sections are denoted by i, iI, III, etc., in
Fig. 10. There are as many of these sections as there are coils,
and they are all equal to each other. Each coil has as nearly as
possible the following constants

L = .0125 11.
R= 2.5 ohms.

The capacity of each condenser section is .025 nmicrofarad. Each
coil with its condenser section is equal to 24 miles of telephone
wire mentioned above. Two rows of 40 coils each with corres-
ponding condenser sections are mounted together and enclosed in
a dust-tight glass case. Such case represents a loop of 200 miles

FIG. 11

of long-distance telephone wire. The electro-mechanical labora-
tory of Columbia University has five such cases and these repre-
sent together a loop of a thousand miles. Fig. 11 is taken from
a photograph of one of these cases. The two rows of coils are
seen near the bottomn of the case. The square box near the top
of the case is the condenser box witlh the condenser sections.
The wires running radially from this box are the wires connect-
ing the condenser sections to the coils. The condenser sections
and the coils can be connected in two ways, both of which were
discussed in Section II and illustrated by Fig. 4 and Fig. 5 of
that section. In the first arrangement, Fig. 4, half as many con-
denser sections are required as in the second and, therefore, the
capacity per unit length of equivalent wire will be smaller. The
theory given in Section III states that up to about 1,000 P.- .s. such
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a loaded conductor will be equiivalenit to a uniform air line.
Experimnent confirms the theory, for it shows that l1i (^2) and
11 ( V2) curves obtained with subch a conductor are the same as
those given in Fig. 8 and Fig. 9, at any rate up to 750 P.r.s.

This loaded conductor ofiers advantages of miiore exact and
more solid and durable construction. The spools can be wound
so accurately that the difference in self-induction and resistanice
between themn is exceedingly srnall. Tlhe conidenser sections are
made of titnfoil and selected mica and adjusted carefully.
Two consecutive condenser sections will differ from each otlher in
capatcity by as mnuch as even three per cenit., but then the average
capacity of forty such sections will be very nearly equal to the
average capacity of the consecutive forty sections. It is this
average capacity whichi determines the wave-length and the
veloeity of propagation. The capacity of these condensers re-
mriainis practically constant. They> can stand 3500 volts with itn-
purlit'..

Laboratory -for Electro-Mechanlics,
Colutnbia University, New York, March, 1899.


