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Abstract

Non-similarity solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamic spherical

(or cylindrical) shock wave propagating in a self-gravitating perfect gas in the presence of a constant azimuthal

magnetic field. The density of the gas is assumed to be varying and obeying an exponential law. The shock wave

moves with variable velocity, and the total energy of the wave is non-constant and varies with time. The effects of

variation of the Alfven-Mach number and time are obtained. It is investigated that the presence of gravitational field

reduces the effects of the magnetic field. Also, the presence of gravitational field increases the compressibility of the

medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock

surface is reduced. A comparison between the solutions in the cases of the gravitating and the non-gravitating

medium with or without magnetic field is made. The solutions are applicable for arbitrary values of time.
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Introduction
Shock processes can naturally occur in various astro-

physical situations, for example, photoionized gas, stellar

winds, supernova explosions, collisions between high-

velocity clumps of interstellar gas, etc. Shock phenomena,

such as a global shock resulting from a stellar pulsa-

tion or supernova explosion passing outward through

a stellar envelope or perhaps a shock emanating from

a point source such as a man-made explosion in the

Earth’s atmosphere or an impulsive flare in the Sun’s atmo-

sphere, have tremendous importance in astrophysics and

space sciences. Shock waves are common in the inter-

stellar medium because of a great variety of supersonic

motions and energetic events, such as cloud-cloud col-

lision, bipolar outflow from young protostellar objects,

powerful mass losses by massive stars in a late stage of
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their evolution (stellar winds), supernova explosions, cen-

tral part of star burst galaxies, etc. Shock waves are also

associated with spiral density waves, radio galaxies and

quasars. Similar phenomena also occur in laboratory sit-

uations, for example, when a piston is driven rapidly into

a tube of gas (a shock tube), when a projectile or air-

craft moves supersonically through the atmosphere, in

the blast wave produced by a strong explosion, or when

rapidly flowing gas encounters a constriction in a flow

channel or runs into a wall. The explanation and analysis

for the internal motion in stars is one of the basic prob-

lems in astrophysics. According to observational data, the

unsteady motion of a large mass of gas followed by sud-

den release of energy results in flare-ups in novae and

supernovae. A qualitative behavior of the gaseous mass

may be discussed with the help of the equations of motion

and equilibrium taking gravitational forces into account.

Numerical solutions for self-similar adiabatic flows in self-

gravitating gas were obtained by Sedov [1] and Carrus

et al. [2], independently. Purohit [3] and Singh and Vish-

wakarma [4] have discussed homothermal flows behind
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spherical shock waves in a self-gravitating gas using sim-

ilarity method. Shock waves through a variable-density

medium have been treated by Sedov [1], Sakurai [5], Nath

[6], Rogers [7], Rosenau and Frankenthal [8], Nath et al.

[9], Vishwakarma and Yadav [10] and others. Their results

are more applicable to the shock formed in the deep

interior of stars.

Hayes [11], Laumbach and Probstein [12], Deb Ray

[13], Verma and Vishwakarma [14,15], Vishwakarma [16],

Vishwakarma and Nath [17], Nath [18] and Vishwakarma

et al. [19] have discussed the propagation of shock waves

in a medium where density varies exponentially and

obtained similarity and non-similarity solutions. These

authors have not taken into account the effects of the

self-gravitation of the medium. The shock waves in con-

ducting perfect gas in the presence of a magnetic field

can be important for description of shocks in supernova

explosions and explosion in the ionosphere. The strong

magnetic fields play significant roles in the dynamics

of the interstellar medium. Among the industrial appli-

cations involving applied external magnetic fields are

drag reduction in duct flows, design of efficient coolant

blankets in tokamak fusion reactors, control of turbu-

lence of immersed jets in the steel casting process and

advanced propulsion and flow control schemes for hyper-

sonic vehicles.

The magnetic fields have important roles in a variety

of astrophysical situations. Complex filamentary struc-

tures in molecular clouds, shapes and the shaping of

planetary nebulae, synchrotron radiation from super-

nova remnants, magnetized stellar winds, galactic winds,

gamma-ray bursts, dynamo effects in stars, galaxies, and

galaxy clusters as well as other interesting problems all

involve magnetic fields (see [20,21]).

In the present work, we investigated the effects of the

presence of an ambient azimuthal magnetic field and the

self-gravitation of the ambient medium on the flow field

behind a magnetogasdynamic spherical (or cylindrical)

shock wave. Non-similarity solutions for the flow field

behind the shock wave are obtained. The density in the

medium ahead of the shock is assumed to obey an expo-

nential law. The medium is assumed to be a perfect gas

and the initial magnetic field to be constant. The present

study can be important to varify the accuracy of the

solution obtained by the theory of self-similarity and com-

putational methods such as finite difference scheme, finite

element, etc.

Variation of the flow variables behind the shock for

different values of the Alfven-Mach number and time is

obtained. It is investigated that the presence of gravita-

tional field reduces the effects of the magnetic field. Also,

the presence of gravitational field increases the compress-

ibility of the medium, due to which it is compressed and

therefore the distance between the inner contact surface

and the shock surface is reduced. A comparison between

the solutions in the cases of the self-gravitating and the

non-gravitating medium is made for both the magnetic

and non-magnetic cases.

Fundamental equations and boundary conditions
The fundamental equations governing the unsteady adi-

abatic spherically (or cylindrically) symmetric flow of an

electrically conducting and self-gravitating gas, in the

presence of an azimuthal magnetic field may, in Eulerian

coordinates can be expressed as [22-24]

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+

iρ u

r
= 0, (2.1)

∂u

∂t
+ u

∂u

∂r
+

1

ρ

(

∂p

∂r
+ μh

∂h

∂r
+

μh2

r

)

+
mG

ri
= 0, (2.2)

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
+ (i − 1)

hu

r
= 0, (2.3)

∂m

∂r
= 2π iρri, (2.4)

∂U

∂t
+ u

∂U

∂r
−

p

ρ2

(

∂ρ

∂t
+ u

∂ρ

∂r

)

= 0, (2.5)

where r and t are the independent space and time coordi-

nates, respectively, u is the fluid velocity, ρ is the density,

p is the pressure, h is the azimuthal magnetic field, U is

the internal energy per unit mass, μ is the magnetic per-

meability, m is the mass contained in a unit cylinder of

radius r or in a sphere of radius r and the dimension ofm is

taken as [m]= MLi−2 where i takes the values 2 and 1 for

the respective cases of spherical and cylindrical symmetry,

and G is the gravitational constant. In the non-gravitating

case, Equation 2.4 and the term mG
ri

in Equation 2.2 do not

occur. The electrical conductivity of the gas is assumed to

be infinite, and the effects of viscosity and heat conduction

are not considered.

The magnetic field equation (2.3) contains all the rel-

evant information needed from Maxwell’s equations and

Ohm’s law; the diffusion term is omitted from it by

virtue of the assumed infinite electrical conductivity. The

assumption of infinite electrical conductivity of the gas

is physically realistic in the case of astrophysical phe-

nomena where the magnetic Reynolds number is very

high (or infinite) due to astrophysical scale. The magnetic

Reynolds number is a dimensionless parameter defined

by Rm = U L
ηm

, where U and L are the characteristic

velocity and characteristic length of the flow field, respec-

tively, and ηm = 1
μσ

is the magnetic diffusivity (magnetic

viscosity), σ being the electrical conductivity of the

medium (see p. 169 in [25]). In this case, the Reynolds
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number Re of the flow is also very high, as Re is defined by

Re = U L
ν
, where ν is the kinematic coefficient of vis-

cosity. It is well known that the effects of viscosity and

heat conduction are negligibly small for the high Reynolds

number flow except in the boundary layer region near the

solid boundary or in any other region of large variations

in velocity and temperature such as inside of a shock wave

(see p. 139 in [26]). Therefore, omission of the effects of

viscosity and heat conduction on the flow field may be

justified in the present study.

The above system of equations should be supplemented

with an equation of state. A perfect gas behaviour of the

medium is assumed, so that

p = ŴρT , U =
p

ρ(γ − 1)
, (2.6)

where Ŵ is the gas constant and γ is the ratio of specific

heats at constant pressure and volume.

The ambient density of the medium is assumed to obey

the exponential law, namely,

ρa = ρ0e
δR, (2.7)

where R is the shock radius and ρ0 and δ are suitable

constants.

We assume that a spherical (or cylindrical) shock is

propagating outwardly in the undisturbed ideal gas with

infinite electrical conductivity and variable density in the

presence of a constant azimuthal magnetic field. The jump

conditions at the shock wave are given by the principles

of conservation of mass, momentum, magnetic field and

energy across the shock [18,22-24], namely,

ρaV = ρn(V − un),

haV = hn(V − un),

pa +
1

2
μh2a + ρaV

2 = pn +
1

2
μh2n + ρn(V − un)

2,

Ua +
pa

ρa
+

μh2a
ρa

+
1

2
V 2 = Un +

pn

ρn
+

μh2n
ρn

+
1

2
(V− un)

2,

ma = mn,

(2.8)

where the subscripts ‘a’ and ‘n’ denote the conditions

immediately ahead and behind of the shock front, respec-

tively, and V
(

= dR
dt

)

denotes the velocity of the shock

front.

If the shock is a strong one, then the jump conditions

(2.8) become

un = (1 − β)V ,

ρn =
ρa

β
,

hn =
ha

β
,

pn =

[

(1 − β) +
1

2M2
A

(

1 −
1

β2

)

]

ρa V
2,

mn = ma,

(2.9)

where MA =
(

ρaV
2

μh2a

)1/2
is the Alfven-Mach number. The

quantity β(0 < β < 1) is obtained by the relation

β2 − β

(

γ (M−2
A + 1) − 1

(γ + 1)

)

+
(γ − 2)M−2

A

(γ + 1)
= 0.

(2.10)

Let the solution of Equations 2.1 to 2.5 be of the

form [14,16,18]

u =
1

t
U(η),

ρ = t�D(η),

p = t�−2P(η),

m = t�K(η),
√

μh = t(�−2)/2H(η),

(2.11)

where

η = teλr (2.12)

while � and λ are constants. The variable η assumes a

constant value η0 at the shock surface. Hence,

V = −
1

λt
, (2.13)

which represents an outgoing shock surface, if λ < 0.

The solutions of Equations 2.1 to 2.5 in the form (2.11)

to (2.13) are compatible with the shock conditions, if

� = 2, λ = −
δ

2
. (2.14)

Since necessarily λ < 0, relation (2.14) shows that

δ > 0, thereby meaning that the shock surface expands

outwardly in an exponentially increasing medium.

From Equations 2.13 and 2.14, we obtain

R =
2

δ
log

(

t

t0

)

, (2.15)

where t0 is the duration of the almost instantaneous

explosion.
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Solution to the equations
The flow variables in the flow field behind the shock front
will be obtained by solving Equations 2.1 to 2.5. From
Equations 2.11, 2.13, and 2.14, we obtain

∂u

∂t
= λuV − V

∂u

∂r
, (3.1)

∂ρ

∂t
= −2ρλV − V

∂ρ

∂r
, (3.2)

∂p

∂t
= −V

∂p

∂r
, (3.3)

∂h

∂t
= −V

∂h

∂r
, (3.4)

∂m

∂t
= −2λmV − V

∂m

∂r
. (3.5)

Using Equations 3.1 to 3.5 and the transformations

r′ =
r

R
, u′ =

u

V
, ρ′ =

ρ

ρn
, h′ =

h

hn
, p′ =

p

pn
, m′ =

m

mn
,

(3.6)

in the fundamental equations (2.1) to (2.5), we obtain for
spherical symmetry (i = 2)

dρ′

dr′
= f1(r

′, ρ′, p′, h′,m′,u′), (3.7)

dp′

dr′
= f2(r

′, ρ′, p′, h′,m′,u′), (3.8)

dh′

dr′
= f3(r

′, ρ′, p′, h′,m′,u′), (3.9)

dm′

dr′
= f4(r

′, ρ′, p′, h′,m′,u′), (3.10)

du′

dr′
= f5(r

′, ρ′, p′, h′,m′,u′), (3.11)

where

f1(r
′, ρ′, p′, h′,m′,u′) =

ρ′

(1 − u′)

[

f5 + 2 log
t

t0
+

2u′

r′

]

,

f2(r
′, ρ′, p′, h′,m′,u′) =

ρ′
[

(1 − β)β + M−2
A
2

(

β − 1
β

)

] ×

[{

(1 − u′) −
M−2

A h′

βρ′(1 − u′)

}

f5 + u′
(

log
t

t0

)

−
L∗m′

r′2
{2(log t/t0)+(log t/t0)

−1−2}(t/t0)4−
h′u′M−2

A

r′(1 − u′)βρ′ −
M−2

A h′2

βρ′r′

]

,

f3(r
′, ρ′, p′, h′,m′,u′) =

h′

(1 − u′)

[

f5 +
u′

r′

]

,

f4(r
′, ρ′, p′, h′,m′,u′) =

4ρ′r′2(log t/t0)
3

β[ 2(log t/t0)2 − 2(log t/t0) + 1]
,

f5(r
′, ρ′, p′, h′,m′,u′) = (1 − u′) ×

[

u′ρ′
(

log
t

t0

)

−
M−2

A h′2

βr′
−

M−2
A u′h′

β(1−u′)r′
−
L∗m′

r′2
ρ′{2

(

log
t

t0

)

+
(

log
t

t0

)−1

−2}
(

t

t0

)

4

]

−
2γu′p′β

r′

[

(1 − β) +
M−2

A

2

(

1 −
1

β2

)

]

[

M−2
A h′

β
− ρ′ (1 − u′)2 + γ p′β

{

(1 − β) + M−2
A
2

(

1 − 1
β2

)

}] ,

and L∗ = πρ0Gt
2
0 .

Also, the total energy of the disturbance is given by

E = 2π i

R
∫

r

ρ

[

U +
1

2
u2 +

μh2

2ρ
−

Gm

ri−1

]

ridr, (3.12)

where r is the position of inner boundary of the dis-

turbance. Using (2.6), (2.9) and (3.6), (3.12) becomes

(for i = 2)

E=
16πρ0

δ2η20
R3

1
∫

r′

⎡

⎢

⎢

⎣

{

(1−β)+ M−2
A
2

(

1− 1
β2

)

}

p′

(γ−1) + ρ′ u′2

2β + M−2
A h′2

2β

−πGη20
m′

r′
(

log t
t0

)

{

2
(

log t
t0

)2
− 2

(

log t
t0

)

+ 1

}

(

t
t0

)2

⎤

⎥

⎥

⎦

r′2dr′.

(3.13)

Hence, the total energy of the shock wave is non-

constant and varies as R3. The increase of total energy

may be achieved by the pressure exerted on the fluid by

the inner expanding surface (a contact surface or a pis-

ton). A situation very much of the same kind may prevail

during the formation of a cylindrical spark channel from

exploding wires. In addition, in the usual cases of spark

breakdown, time-dependent energy input is a more real-

istic assumption than instantaneous energy input [27,28].

In terms of dimensionless variables r′, u′, ρ′, p′, h′ and
m′, the shock conditions (2.9) take the form

r′ =1, u′ =(1 − β), ρ′ =1, p′ =1, h′ =1, m′ =1.

(3.14)

Equations 3.7 to 3.11 along with the boundary condi-

tions (3.14) give the solution of our problem. The solution

so obtained is a non-similar one, since the motion behind

the shock can be determined only when a definite value

for time is prescribed.

Results and discussion
The distribution of the flow variables behind the

shock front is obtained by the numerical integration of

Equations 3.7 to 3.11 with the boundary conditions (3.14)

by the Runge-Kutta method of the fourth order.
For these numerical integrations, we used the ‘Mathe-

matica’ software in which the number of steps is taken
to be 1,000 by default, so that the value of the step size
(x) is equal to the distance between a neighbouring point
to the piston and the shock front divided by 1,000 (see,
for example, for curve 2 with L∗ = 0.001 in Figure 1,
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a b
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Figure 1 Variation of reduced flow variables in the region behind the shock front for γ = 5/3. (a) Reduced density ρ′ , (b) reduced pressure

p′ , (c) reduced velocity u′ , (d) reduced massm′ . (1)M−2
A = 0, t/t0 = 3; (2)M−2

A = 0.04, t/t0 = 3; (3)M−2
A = 0.08, t/t0 = 3; (4)M−2

A = 0, t/t0 = 5; (5)M−2
A =

0.04, t/t0 = 5; (6)M−2
A = 0.08, t/t0 = 5.

x = 3.28 × 10−5). The Runge-Kutta method of the fourth
order gives the value of the interpolating function correct
to the first four powers of x and has, therefore, errors of
the order of x5. The Runge-Kutta fourth-order formulae
are

ρ′(r′ + x) = ρ′(r′) +
1

6
(K01 + 2K11 + 2K21 + K31) + O(x5),

p′(r′ + x) = p′(r′) +
1

6
(K02 + 2K12 + 2K22 + K32) + O(x5),

h′(r′ + x) = h′(r′) +
1

6
(K03 + 2K13 + 2K23 + K33) + O(x5),

m′(r′ + x)= m′(r′) +
1

6
(K04 + 2K14 + 2K24 + K34) + O(x5),

u′(r′ + x) = u′(r′) +
1

6
(K05 + 2K15 + 2K25 + K35) + O(x5),

with

K0i = xfi(r
′, ρ′(r′), p′(r′), h′(r′),m′(r′),u′(r′)),

K1i = xfi

(

r′ +
x

2
, ρ′(r′) +

K01

2
, p′(r′) +

K02

2
, h′(r′)

+
K03

2
,m′(r′) +

K04

2
,u′(r′) +

K05

2

)

,

K2i = xfi

(

r′ +
x

2
, ρ′(r′) +

K11

2
, p′(r′) +

K12

2
, h′(r′)

+
K13

2
,m′(r′) +

K14

2
,u′(r′) +

K15

2

)

,

K3i = xfi
(

r′ + x, ρ′(r′) + K21, p
′(r′) + K22, h

′(r′)

+K23,m
′(r′) + K24,u

′(r′) + K25

)

,
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where i = 1, 2, 3, 4, 5 and O(x5), the error terms, are

omitted during the numerical calculations.
For the purpose of numerical integration, the typical

values of physical quantities involved in the computation

are taken as [26,29-32] γ = 5
3 ; M

−2
A = 0, 0.04, 0.08; t

t0

= 3, 5; and L∗ = 0, 0.001. For fully ionized gas, γ = 5
3 ,

and therefore, it is applicable to the stellar medium. Rose-
nau and Frankenthal [8] have shown that the effects of
magnetic field on the flow field behind the shock are sig-

nificant when M−2
A ≥ 0.01; therefore, the above values of

M−2
A are taken for calculation in the present problem. The

value M−2
A = 0 corresponds to the non-magnetic case.

The value L∗ = 0, M−2
A = 0 corresponds to the solu-

tion in the non-gravitating and non-magnetic cases, the
solution obtained by Vishwakarma [16] in the dust-free
case. It should be noted that 0 < t

t0
< 1 corresponds

to the shock free flow and 1 < t
t0

< ∞ corresponds to

the flow under the influence of shock (i.e., shock forma-
tion requires that t

t0
> 1); therefore, the above values of t

t0
are taken for calculation to know the flow field behind the
shock at different times. Starting from the shock front, the
numerical integration is carried out until the singularity of
the solution

βγ p′
{

(1 − β) + M−2
A

(

1 −
1

β2

)}

−
M−2

A h′

β
−ρ(1−u′)2 = 0,

(4.1)

is reached. This marks the inner boundary of the distur-

bance, and at this surface, the value of r′ (= r′) remains

constant. The inner boundary is the position in the flow

field behind the shock front at which the velocity of the

inner boundary and the fluid velocity are equal. Also, the

velocity of the inner boundary and shock velocity are in

a constant ratio. The results are shown in Figures 1a,b,c

and 2. These figures show that the self-gravitation of the

medium has a significant effect on the flow variables.

Table 1 shows the variation of the density ratio β

(

= ρa
ρn

)

across the shock front and the position of the inner

expanding surface for different values ofM−2
A with γ = 5

3 ;

L∗ = 0, 0.001; and t
t0

= 3, 5 in both the gravitating and

non-gravitating cases. The shock strength decreases with

an increase in the strength of the magnetic field. Also,

Table 1 shows that the distance of the inner expanding

Figure 2 Variation of reducedmagnetic field h
′ in the region

behind the shock front for γ = 5/3. (2)M−2
A = 0.04, t/t0 = 3; (3)

M−2
A = 0.08, t/t0 = 3; (5)M−2

A = 0.04, t/t0 = 5; (6)M−2
A = 0.08, t/t0 = 5.

surface from the shock front is less in the case of the

gravitating medium in comparison with that in the case

of the non-gravitating medium. Physically, it means that

the gas behind the shock is compressed in the gravitat-

ing medium, that is, the shock strength is increased in the

gravitating medium.

Figures 1a,b,c and 2 show the variation of the flow vari-

ables ρ
ρn
,

p
pn
, u
V and h

hn
, with r′ at various values of the

parametersM−2
A , L∗ and t

t0
.

Figures 1a,d and 2 show the distributions of reduced

density, reduced mass and reduced azimuthal magnetic

field, respectively. These flow variable decrease as we

move from the shock front to the inner expanding surface

(see Figures 1a,d and 2).

Figures 1b,c show the distributions of the reduced pres-

sure and the reduced velocity, respectively. The pressure

and velocity (except M−2
A = 0) both increase from the

Table 1 Variation of β and position of inner expanding surface for different values ofM−2

A
with γ = 5/3

Position of the inner expanding surface r ′

M
−2
A

β t

t0
= 3 t

t0
= 5

Gravitating case Non-gravitating case Gravitating case Non-gravitating case

(L∗
= 0.001) (L∗

= 0) (L∗
= 0.001) (L∗

= 0)

0 0.2500 0.077 0.033 0.8660 0.040

0.04 0.2921 0.672 0.150 0.8580 0.1634

0.08 0.3302 0.617 0.170 0.8480 0.1870
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shock front and approach to maximum near the inner

expanding surface (see Figures 1b,c). In the non-magnetic

case, i.e.,M−2
A = 0, the density and velocity decrease as we

move from the shock front to the inner expanding surface

(see Figures 1b,c).

Conclusions
Non-similarity solutions for propagation of explosion

waves in a stellar model, in which density falls exponen-

tially, has been obtained in this paper. The shock wave

moves with variable velocity, and the total energy of the

wave is not constant and varies with time. It is investigated

that the presence of gravitational field reduces the effects

of the magnetic field. Also, the presence of gravitational

field increases the compressibility of the medium, due to

which it is compressed and therefore the distance between

the inner contact surface and the shock surface is reduced.

The article concerns with the explosion problem; how-

ever, the methodology analysis presented here may be

used to describe many other physical systems involving

non-linear hyperbolic partial differential equations. The

shock waves in conducting perfect gas can be impor-

tant for description of shocks in supernova explosions

and explosion in the ionosphere. Other potential applica-

tions of this study include analysis of data from exploding

wire experiments and cylindrically symmetric hypersonic

flow problems associated with meteors or reentry vehi-

cles (c.f. [33]). Also, the present study can be impor-

tant to varify the accuracy of the solution obtained by

the theory of self-similarity and computational meth-

ods such as finite difference scheme, finite element,

etc.

The following conclusions may be drawn from the find-

ing of the current analysis (see Figures 1a,b,c,d and 2):

1. It is found that the reduced density, reduced pressure

and reduced mass increase with the strength of

magnetic field, whereas the reduced velocity shows a

reverse behaviour in general.
2. By an increase in the strength of magnetic field, the

gas behind the shock is more compressed in the

gravitating case (L∗ = 0.001), whereas it is less

compressed in the non-gravitating case, i.e., the

shock strength is increased in the gravitating case

and it is decreased in the non-gravitating case.
3. The reduced velocity, pressure and azimuthal

magnetic field increase in the gravitating case and

show a reverse behaviour in the non-gravitating case

with an increase in time
(

t
t0

)

, whereas the reduced

density, reduced mass and shock strength decrease.
4. Due to the presence of gravitation, the pressure,

velocity, azimuthal magnetic field and density

decrease, in general, as we move inward from the

shock.
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