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It is proposed that an array of Helmholtz resonators connected to a tunnel in its axial 
direction will suppress the propagation of sound generated by a travelling train and 
especially the emergence of shock waves in the far field. Under the approximation 
that the resonators may be regarded as continuously distributed, quasi-one- 
dimensional formulation is given for nonlinear acoustic waves by taking account of 
not only the resonators but also the wall friction due to the presence of a boundary 
layer and the diffusivity of sound. For a far-field propagation, the spatial evolution 
equation coupled with the equation for the response of the resonator is then derived. 
The linear dispersion relation suggests that the resonators, if appropriately designed, 
enhance the dissipation and give rise to the dispersion as well. By solving initial- 
value problems for the evolution equation, the array of resonators is proved to be 
very effective in suppressing shock waves in the far field. The resonators themselves 
fail to counteract shock waves once formed, but rather prevent their emergency by 
rendering acoustic waves dispersive. By this dispersion, it becomes possible, in a 
special case, for an acoustic soliton to be propagated in place of a shock wave. 

1. Introduction 

It is likely that in future high-speed trains will have to travel inside tunnels 
because of the environmental noise problem and the weather problem. Tunnels will 
then become unprecedentedly long and many acoustic problems in tunnels will have 
to be overcome. This may open up a new field to be categdrized as a ‘tunnel 
acoustics ’ . 

Pressure disturbances generated by a travelling train are propagated along a 
tunnel in the form of sound. As the tunnel plays the role of a waveguide for the sound, 
it is transmitted far down without geometrical spreading. While the intensity 
depends on the ratio of the cross-sectional area of the train to that of the tunnel, the 
faster the train travels, the more intense is the sound generated. Thus it is possible, 
in a long tunnel, for shock waves to emerge unexpectedly far down the tunnel, even 
if the speed of the train is well below the sound speed. 

In  considering a sound field generated, it becomes important to distinguish 
between the near field and the far field of the train. In  the near field, many sources 
of sound are identified which are attributable to the geometry of the train and the 
tunnel. In this field, a very complicated sound field of a three-dimensional nature is 
built up, involving a wide range of frequencies. As the distance from the train 
increases, however, the high-frequency components involved will fade out owing to 
dissipation and eventually almost one-dimensional propagation along the tunnel will 
remain. 



56 N .  Sugimoto 

- x Acoustic main flow 

Helmholtz resonator 
.____________~ 

FIGURE 1. Tunnel with an array of Helmholtz resonators where the x-axis is taken along the axis 
of the tunnel and the n axis is chosen inward normal to the tunnel wall; A(x, t )  represents a cross- 
sectional area of the acoustic main flow excluding a thin boundary layer and the vicinity of the 
orifice of a resonator but A is almost equal to the area of the whole geometrical cross-section of the 
tunnel. 

This far-field propagation is characterized by the length of the train 1, its speed U ,  
the diameter of the tunnel D and the ratio of the cross-sectional area of the train to 
that of the tunnel x. A typical frequency of the pressure disturbances is estimated to 
be a,/l to a,/D, a, being the sound speed, but the magnitude of the pressure 
disturbances depends on how the train is accelerated. A maximum magnitude would 
be attained, as an extreme case, when the train suddenly sets in motion with a 
constant speed U. To estimate it, the train is regarded as the one-dimensional dipole 
of strength po XlU per unit cross-sectional area of the tunnel where p o  is the density 
of air. Then the linear acoustic theory estimates that the maximum magnitude 
relative to the atmospheric pressure is of order xM/( 1 -M)  where M( = U/a,) is the 
Mach number of the train (M < 1) .  Although this result will overestimate the real 
value, it  is worth noting that for a small value of M ,  the magnitude is proportional 
to M rather than M2 and that asM approaches unity, it tends to diverge. As a typical 
example, suppose that a train of length 100 m be accelerated suddenly to travel with 

speed 150 m/s (540 km/h) in a tunnel of diameter 10 m. The typical frequency is 
estimated to a few Hertz to 10 Hz, while the magnitude is estimated for x = 0.1 to 
be 0.08 (corresponding to 172 dB in the sound pressure level). Since such an infra- 
sound is subjected to less dissipation, it is highly probable that the nonlinearity 
accumulates in the course of propagation to give rise eventually to shock waves. 

In order to avoid their emergence, it is proposed to connect many Helmholtz 
resonators in array to a tunnel (as shown in figure 1) .  Each resonator consists of a 

large cavity and a throat through which the cavity is connected to the tunnel (see 
figure 2). For simplicity, identical resonators are assumed to be connected with equal 
axial spacing, d. Let the number of resonators per characteristic wavelength A be 
large, i.e. A / d  9 1,  so that the resonators may be regarded as continuously 
distributed. Each resonator acts as an agent giving rise to reflection of the acoustic 
waves in the tunnel. The degree of reflection is controlled by the ratio of the volume 
of the cavity V to that of the tunnel per spacing d,  i.e. V / A d .  To the extent that V/Ad  
remains small, the reflection is considered small also. This paper considers a case of 
small reflection such that neighbouring resonators respond almost in unison to the 
local pressure disturbances in the tunnel and an interaction between those resonators 
is ignored. 



Propagation of nonlinear acoustic waves in a tunnel 57 

Tunnel 

y-' 

FIGURE 2. Helmholtz resonator with a cavity of volume V and a throat of length L ;  the y-axis is 
chosen inward normal to the throat wall while the z-axis is taken along the throat with its origin 
at orifice 1 on the tunnel side. 

To pursue a far-field propagation quantitatively, dissipation must be taken into 
account. The dissipation results from both the diffusivity of sound itself and the wall 
friction through the presence of a boundary layer. For propagation of infra-sound, 
the former effect is negligibly small compared with the latter one. The wall friction 
exhibits a hereditary (memory) effect so that it  accumulates in the course of 
propagation to influence globally the far-field behaviour. In  contrast, the diffusivity 

of sound becomes important only if shock waves appear, but very locally in a thin 
shock layer. 

In what follows, formulation is first given, in $2, for quasi-one-dimensional 
propagation of nonlinear acoustic waves in the tunnel with the array of Helmholtz 
resonators. Dissipative effects due to the wall friction and to the diffusivity of sound 
are taken into account in general, while the response of the resonator is included 

within the linear theory. As the magnitude of pressure disturbances tends to be high, 
the nonlinear response comes into play. For this case, the nonlinear theory for the 
response of the resonator is developed in the Appendix. A spatial evolution equation 
coupled with the equation of the response of the resonator is derived in $2. On the 
basis of these equations, in $3, local properties of a discontinuous solution are 
examined and then some initial-value problems are solved to see the effectiveness of 
the array in suppressing the emergence of shock waves. There is a brief discussion on 
a special case in which an acoustic soliton rather than a shock wave can be 
propagated. 

2. Formulation of the problem 

In  the following, the tunnel is regarded as a straight pipe of infinite length having 
a smooth interior surface, to which a single array of Helmholtz resonators is 

connected (as shown in figure 1).  A cross-section of the tunnel is assumed to be axially 
uniform but it may be of any shape other than circular, as long as its boundary is 
smooth. Let the identical resonator be connected to the tunnel with the axis of the 
throat normal to that of the pipe. Each resonator may be positioned arbitrarily along 
the periphery of the tunnel, if the axial spacing is kept equal and narrow. 

To formulate the problem, a t  first, the acoustic main flow in the tunnel is defined 
as that excluding a thin boundary layer adjacent to the tunnel wall and the vicinity 
of orifices from the resonators. In this region, the assumption of quasi-one- 
dimensional flow can be exploited. Thus, let all physical quantities for the main flow 



58 N .  Sugirnoto 

be a sum of the averaged quantities over its cross-section and the small ‘deviations’ 
from them. Of course, the deviations result from the axial non-uniformity in the 
boundary-layer thickness and the response of the resonator. The guiding principle for 
the formulation is to take account of all terms up to the first order of the deviations. 
However, because the viscous and thermal effects are small in the main flow, even the 
first-order deviation, if multiplied by the viscosity or the thermal conductivity, is 
neglected. 

Following this principle, the equation of continuity is given by 

where p and u denote, respectively, the mean values of the density and the axial 
velocity of the gas (i.e. air) averaged over the cross-section of the main flow with its 
area A = A(x, t ) ,  x and t being the axial coordinate and the time. The right-hand side 
is the first-order deviation which represents the mass flux through the edge of the 
boundary layer and the orifices of the resonators, w, being the small deviation of the 
velocity inward normal to the boundary of the cross-section of the main flow and ds 
the small line element along it. In deriving (2.1) by averaging the three-dimensional 
equation of continuity, the variations of A with respect to x and t are small and of 
comparable order to the deviations. 

Within the same approximation, the equation of motion, i.e. Navier-Stokes 
equation in the axial direction of the tunnel takes simply the one-dimensional form : 

where p is the mean pressure ; p and pV are, respectively, the coefficients of the shear 
and bulk viscosities. Throughout this paper, such material constants, as well as the 
thermal conductivity below, are assumed to be constant. With the axis of the throat 
normal to that of the tunnel, the resonators do not contribute to the momentum flux 
in the axial direction. 

The equation of energy also takes the one-dimensional form, as long as the thermal 
effect is assumed to be small compared to the viscous one. Thus it follows that 

where T and S denote, respectively, the mean temperature and the entropy, k being 
the thermal conductivity. In addition to these equations, the equation of state for 
the ideal gas is assumed for air, i.e. p = BpT where W is the gas constant. Then the 
pressure can alternatively be expressed in terms of p and S as follows : 

with y = cp /cv ,  where c p  and c, are specific heats a t  constant pressure and volume, 
respectively; the subscript ‘0’ for p,, po, So and To in (2.5) below implies the 
respective equilibrium value. 

From (2.1) to (2.4), the effect of resonators as well as that of the boundary layer 
appear only in the mass flux on the right-hand side of (2.1). In  other respects, the 
system of equations is the same as that in the one-dimensional case. Thus a procedure 
to develop the nonlinear theory for acoustic waves subjected to the weak dissipative 



Propagation of nonlinear acoustic waves in a tunnel 59 

effect follows in the same way, except for the effect of resonators, as demonstrated 
in previous papers (Lighthill 1956; Chester 1964; Sugimoto 1989). Hence, the 
description of this process is limited here to the minimum. 

Both weak effects of nonlinearity and dissipation are measured by the acoustic 
Mach number 8 and the acoustic Reynolds number Re: 

where u, and a, denote, respectively, a characteristic velocity of the gas induced by 
the acoustic waves and the linear sound speed, while o and v denote a characteristic 
angular frequency and the kinematic viscosity, respectively. In  passing, the 
magnitude of pressure disturbance is estimated to be ye by the linear theory. The 
following analysis takes full account of nonlinearity except for the dissipative terms 
for which only linear effects are retained. By this approximation, the adiabatic 
relation is modified to include the small change in the entropy. Then (2.3) may be 
approximated by 

Using the adiabatic relation (2.4) with S = So, together with the equation of state, 
(T-T,) /T,  is given in terms of the variation of (p-po)/po. Further, using the first- 
order relation of(2.2), i.e. Po&@ = -a;+/ax with a: = ypo/p,,, the entropy change 
is related to u by 

The pressure gradient in (2.2) takes account of this entropy change in addition to the 
density change : 

Following the standard procedure, p in (2.1) and (2,2) is expressed in terms of the 
local sound speed a defined by a = [ap/ap),_,> = a , ( p / p o ) ~ c ~ - u .  After some 
manipulation, i t  follows that 

with the signs vertically ordered, where vd{ = v[$+,uv/p+ (y-  l)/Pr]} is the 
diffusivity of sound and Pr ( = ,ucp/k) the Prandtl number. In order to close (2.8), pw, 
must now be specified by examining the flow in the boundary layer and the response 
of the resonator. 

2.1. Effect of boundary layer 

An effect of the boundary layer has already been examined by Chester (1964). The 
boundary layer consists of two layers for the velocity and the temperature. For the 
first-order deviation of pv, in (2.8), it only suffices to linearize the boundary layer 
around the equilibrium state. Applying the boundary-layer approximation, it 
immediately follows from the equation of motion normal to the tunnel wall that the 
pressure in the main flow prevails over the boundary layer. On traversing it,  thus, the 
density and the temperature are subjected to the isobaric change, i.e. p’/po = - T’/T, 
where the sums p+p’ and T+T’ represent, respectively, the density and the 

3 m.m mi 
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temperature in the boundary layer. Upon using these relations together with the 
first-order relations of (2.1) and (2.2) for the main flow, the equation of motion in the 
axial direction and that of energy are reduced to the following two heat equations for 
u’ and T: 

(2.9a, b )  

where n designates the coordinate inward normal to the tunnel wall (see figure 1) ; the 
sum u + u’ represents the axial velocity in the boundary layer. The primed quantities 
such as u’ and T as well as p‘ above depend not only on x and t but also on n, whereas 

u, T and p depend on x and t only. 
Equations (2.9) are to be solved under the following matching condition as n-tm 

between the boundary layer and the main flow and the boundary condition a t  the 
tunnel wall n = 0 :  

u‘+O, T + O  asn+co. (2.10a) 

u’= -u, T’ = To-T at n = 0, (2.10b) 

where the non-slip and isothermal conditions are imposed at the tunnel wall. It is 
straightforward to solve (2.9) under (2.10) by employing, for example, the method of 
Fourier transform with respect t o  time (Sugimoto 1989). When u’ and T are 
available, the velocity component normal to the edge of the boundary layer, defined 

as vb, is obtained by integrating the equation of continuity with respect to n from 
n = O  to n=co: 

au/ awl 
at ax an 

g + p o - + p o -  = 0, (2.11) 

where w‘ denotes the velocity component normal to the tunnel wall. By doing so, wb 

is now evaluated in terms of the axial velocity in the main flow as follows: 

with C = 1 + (y-  l ) /Pr i .  Note that the deviations in the main flow are small and 
comparable with vb. For details of the derivation and definition of the minus half- 

order derivative, see Chester (1964) and Sugimoto (1989), respectively. Incidentally, 
the half-order derivative is frequently used in the following. It is defined by 
differentiating the minus half-order derivative with respect to t once. 

(2.13) 

Furthermore, the derivatives of order 8 and $ are also used below, which are similarly 
defined as the ones obtained by differentiating (2.13) once and twice with respect to 
t ,  respectively. 

2.2. Effect of Helmholtz resonators 

We now specify the mass flux from the resonators by examining their response. Each 
resonator consists of a large cavity and a throat of uniform cross-section. The shape 
of the cavity is arbitrary but its volume is large enough compared with that of the 
throat. A cross-section of the throat may also be of arbitrary shape as long as its 
boundary is smooth. Typical dimensions of the cavity and the throat should be much 
smaller than a characteristic wavelength of the acoustic waves. 
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For the response of the resonator, the elementary treatment is adopted. Neglecting 
the motions of the gas inside the cavity, only the conservation of mass is considered : 

3Pc - 
at 

V -  - Bq, (2.14) 

where pc is the mean density of the gas in the cavity of volume V ,  while B is the area 

of the whole geometrical cross-section of the throat and q is the mean mass flux 
density over B into the cavity. A flow in the throat is assumed to be quasi-one- 
dimensional, just as in the tunnel. In  this case as well, an effect of dissipation appears 
in the form of the friction through a thin boundary layer at the throat wall. Since the 

situation is the same as that in the tunnel, the same system of equations could be 
applied. In  order to facilitate the calculation of the net mass flux Bq in (2.14), 

however, we adopt here the averaging, not over the cross-section of the 'main flow' 
in the throat, but, over its whole cross-section, including the boundary layer. Then 
the equation of continuity simply becomes 

ap a 
-+-(p) = 0, 
at a Z  

(2.15) 

where z is the axial coordinate along the throat as shown in figure 2 with its origin 
at  the orifice I ; p and p denote, respectively, the mean density and mass flux 
density averaged over the whole cross-section. Because of the non-slip conditions on 
the throat wall, the right-hand side vanishes, unlike (2.1). 

The equation of motion in the axial direction should now be modified to include 
the wall friction : 

(2.16) 

where 3, p, and rn denote, respectively, the mean momentum flux density, 
pressure, and axial velocity averaged over the whole cross-section, while cr stands for 
the wall friction per unit axial length of the throat. 

Here it might be appropriate to mention the difference in averaging, i.e. over the 
cross-section of the 'main flow ' and the whole cross-section. A difference is clearly 
seen on comparing (2.15) and (2.16) with (2.1) and (2.2). According to the definition 
of averaging, each averaged quantity differs slightly by an amount proportional to 
the first order of deviations. If this difference is carefully taken into account, the 
resultant equation by one definition can be converted to the other as far as the 
present approximation is concerned. 

In order to specify the mass flux from the resonator into the tunnel, we examine 
the response of the resonator. From the assumption that the throat is far shorter 
than a wavelength of the acoustic waves, compressibility of the gas in the throat may 
be neglected. To see this, the magnitude of the mass flux density is estimated from 

(2.16) to be Ap/oL where the mass flux is brought about by the pressure difference 
Ap between both ends of the throat. Thus it is found that 

lap/lat/a(p)/azl - (wL)2Ap/Ap - (L/A)' @ 1, 

where Ap is a variation in the density due to Ap and ao/o is a characteristic 
wavelength A by using Ap/Ap x a:. For L < A, the gas in the throat may be regarded 
as being incompressible. With the neglect of the smallness factor (L/A)2 ,  p may be 
set equal to constant along the throat as 

P = q(t)* (2.17) 
3-2 



62 N .  Sugimoto 

Using (2.17) in (2.16) and neglecting the quadratic momentum flux density, we have, 
on integrating (2.16) with respect to z from one orifice 1 to the other orifice 2:  

34 La 
L-=-p,+p,-Fr, withFr=- ,  

at B 
(2.18) 

where p, and p, denote the pressure at  the orifices 1 and 2, respectively. Here the 
viscous term in (2.16) vanishes by virtue of the first-order relation of (2.17), i.e. 
q x porn and the wall friction is uniform along the throat. 

To evaluate the total friction Fr, the boundary layer must be examined. Unlike the 
case in the tunnel, we have only to take account of the boundary layer for the 
velocity because of the incompressible approximation. The axial velocity is similarly 
decomposed into a sum of m(t)  and w'(t, y) where y designates the coordinate directed 
inward normal to the throat wall. Then wf obeys the same heat equation ( 2 . 9 ~ )  as uf 
with n replaced by y. By solving this equation, u is given by pawf/ay at y = 0 
multiplied by the perimeter of the cross-section 2B/r ,  r being the hydraulic radius of 
the throat. Although the heat equation is easily solved, we demonstrate the easiest 
way to do so. Since aw'lay is desired, the heat equation for wr is factorized, if the half- 
order derivative defined by (2.13) is employed, as 

(2.19) 

Because the positive domain of y is concerned here, the second factor should be 
taken, in view of the matching conditions, w r  + 0 as y -+a. The choice is easily verified 
by examining the dispersion relation of each factor. Assuming wf proportional to 

exp (iwt+Ky), it follows from the first factor, for example, that K = (iw/v)i = 

( w / ~ v ) ~ ( l + i )  where the half-order derivative of exp(iwt) is simply given by 
(iw)sexp (iwt) = (!p)'(l +i) exp ( id) .  Thus we immediately derive 

(2.20) 

where use is made of the non-slip condition wf = -m at y = 0. Using (2.20), the total 

friction Fr is now expressed in term of q :  

(2.21) 

Let us now derive an equation describing the response of the resonator. Assuming 
that the density change in the cavity occurs adiabatically, and that the pressure pc  
may be set equal to p 2  at the orifice 2, the first-order relation of (2.14) is given by 

(2.22) 

where dp,/dpc = a2 and pk = p2-po. Elimination of q in (2.18) by (2.22) and use of 
(2.21) lead to 

(2.23) 

with p; = p, -po where w i (  = Bat/LV) is the natural angular frequency of the 
resonator. Here pi, the gauge pressure at  the orifice 1 is assumed to be equal to that 
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pressure p'( = p-po)  in the main flow of the tunnel. Consistent with the variables 
used in (2.8), p i  is related to the variation of a through 

(2.24) 

To conclude this subsection, we make the following remarks. A resonance frequency 
of the resonator to an external excitation is different, in practice, from the natural 
frequency wo given above, even if the friction at  the throat wall is taken into account. 
This results from the difficult problem known as the end correction of the throat. For 
a long throat which opens at both ends in a form of flanged termination, it is known 
from the inviscid and linear theory that the correction added at each end is given by 
0.82r for a circular cross-section with L B r (King 1936; Pierce 1981). However, since 
this result is derived for an orifice into semi-infinite space, it is an open question to 
what degree it could be applied to the present case. As for the end correction, we refer 
to the recent work by Monkewitz & Nguyen-Vo (1985) who refined the theory, 
though for geometrically different resonators, by the matched-asymptotic expansion 
method in terms of the ratio of a radius of a throat to a characteristic wavelength. 
With suitable corrections not only for the length of the throat but also for the size 
of the cavity, it is verified that the resonance frequency is still given by wo in the 
elementary theory as the lowest approximation. 

This result is derived by the inviscid and linear theory. In  reality, a similar 
correction should also be introduced for the friction. Zinn (1970) added to L the 
viscous end corrections 2r found experimentally by Ingard (1953). The friction 
allowed by Zinn is insufficient because it takes account only of the so-called 
resistance (real) part of (2.21) for rn in the form of a harmonic oscillation exp ( i d )  and 
the reactance (imaginary) part is ignored. While this correction is applied to the 
linear friction, nonlinear friction must be taken into account as the pressure 
disturbances in the tunnel become large. Then the resistance of the resonators will be 
enhanced because the kinetic energy of the jet formed on leaving an orifice is 
transformed into turbulence. In  the Appendix, the nonlinear theory for the response 
of the resonator is developed, by which we can find a condition to justify the linear 
approximation of the response of the resonator. 

2.3. Spatial evolution equation 

We are now in a position to complete (2.8) by specifying the mass flux pun due to 
the boundary layer and the resonators. For the resonators almost continuously 
distributed with equal axial narrow spacing d, let the number density be N(  = l /d) .  
Then the mass flux per unit axial length can be given as 

(2.25) 

where R is the hydraulic radius of the pipe and N B  accounts for the total cross- 
sectional area of the orifices per unit axial length. Note that A in (2.25) may be 
replaced by the area of the whole geometrical cross-section of the tunnel because the 
difference from that of the main flow yields the higher-order correction. Upon 
substituting (2.12) and (2.22) into (2.25), (2.8) is written as 
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with the signs vertically ordered, where 1/R* is defined as ( l - N R B / M ) / R  with 
B / A  = ( r /R)2 .  Equation (2 .26) ,  coupled through the pressure in the cavity p i  with 
(2.23) and (2.24) describes the bi-directional propagation of nonlinear acoustic waves 
in a long tunnel with the array of Helmholtz resonators. For unidirectional 
propagation in the positive axial direction, they can be simplified further. Since the 
members on the right-hand side of (2.26) are small, u & 2 a / ( y -  1 )  may be set equal to 
constants, at  the lowest approximation, known as Riemann invariants, along each 
characteristic defined by dx/dt = u f a  (the signs vertically ordered). To pursue a 

far-field propagation in the positive direction along dx/dt = u + a, we take account 

of those small corrections, whereas we use the lowest approximation 
u/a, = [ 2 / ( y -  l ) ]  (u-uo)/uo along dx/dt = u - a  for the simple wave region. Hence 
(2.26) is simplified as 

v ap; a2u au 

at ax R* at-; ax 2p,a,Ad at daz2 
-+'v -. (2.27) 

au cu vi a-; ("") 
- + ( a o + $ ( y + l ) u ) - = ~ -  - - 

Here we introduce the non-dimensional retarded time e[ = w(t  - x/a,)] measured in a 

frame moving with the linear sound speed and the far-field space variable X 
( = ewx/a,), w being a characteristic angular frequency. In addition, we normalize 
[icy + l ) ]u /ao  and [ ( y+  1 ) / 2 y ] p ; / p ,  by ef and eg, respectively, where f and g are of 

order unity and the factor +(y + 1) is introduced for convenience. Since p'/po = yu/a ,  
in the present approximation. ef measures also the pressure [ ( y+  1) /2y ]p ' /po  in the 
tunnel. From (2.27) and (2.23), it follows that 

where the coefficients a,, p, K ,  8, and 52 are defined as 

(2.28) 

(2.29) 

(2.30) 

Here ( v /w) i  gives the thickness of the boundary layer so S, and 8, measure the ratios 
of the boundary-layer thickness to the radius of the tunnel and that of the throat, 
respectively. The effect of diffusivity of sound is represented by 8. Given a frequency 
w and a magnitude of nonlinearity 6, 6, and /3 take definite values for a fixed 
geometry of the tunnel. The effect of the array of resonators is controlled by the 

' coupling parameter ' K and the 'tuning parameter ' SZ. A suitable design of the array 
is thus reduced to a choice of K and SZ. 

By taking a plausible example, let us evaluate these coefficients. For an air a t  
15 "C, a, = 340 m/s, y = 1.40, Pr = 0.72 and v = 1.45 x lop5 mz/s. Let the diameter 
of the tunnel be 10 m (i.e. R = 5 m and A = 2511 m2), and let the cavity be a sphere 
of diameter 4 m (i.e. V = yn m3) with the circular throat of diameter 1 m (i.e. 
r = 0.5 m and B = ~ I I  m2) and of length L = 3 m. For this geometry of the resonator, 
the natural frequency w, is 4.8 Hz. If we let a characteristic frequency of the acoustic 
waves w be 1011 rad/s (5  Hz), we have 8, = 2.0 x /3 = 4.9 x 
6, = 2.7 x and K = 2.1 x for d = 10 m (N = O.l/m) where 
C = 1 + (y-  l ) /Pr i  = 1.47 and,uJ,u in vd is set equal to 0.60 (Pierce 1981). According 
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to these data, P/S, is extremely small (of order so that it could be ignored in 
(2.28). If 8 is taken to be moderately small, for example, 2 x (the magnitude of 

the pressure disturbances p' /po = [2y/(y+ l)] 6 = 2.33 x i.e. 141 dB in the 
sound pressure level), it is found that 8, and K are of order of 0.1 and 10, respectively. 
Although 8,. for the friction at  the throat wall is relatively small, it can be increased 

by effectively making the radius r small, for example, by subdividing the throat 
axially into a bundle of throats. 

Because we can choose the parameters K and $2, we look at  (2.28) and (2.29) in the 
extreme cases where K or Q is taken to be very small or very large. In the trivial case 
with K -4 1, (2.28) describes simply the evolution in a tunnel without the array of 
resonators. In the opposite case with K 9 1, the effect of resonators dominates over 
the nonlinearity and the effect of boundary layer so that the evolution off, af/aX, is 
given almost by -Kt)g/aO. With this relation substituted into (2.29), we have the 
linear dispersive wave equation for f 

-+K-+--  af 1 ay +f-H 6 "aj) - = 0. af 
ax ae saaezax sza@ ax (2.31) 

However, it should be borne in mind that an extremely large value of K, i.e. V / A d ,  
invalidates the basic assumption of small reflection by each resonator connected 
discretely in practice. 

Next we examine the extreme cases for 52. For B < 1,529 in (2.29) may be dropped 
in the response off. On eliminating g in (2.28) and (2.29), it  then follows that 

(2.32) 

As Ks2 is negligibly small, the factor in the second parentheses on the left-hand side 

must vanish so that the evolution off is tantamount to that in the tunnel without 
the resonators. In  this case, it is already found that if the term with p is ignored, the 
evolution equation resembles a hyperbolic type of wave equation so that shock waves 
generally emerge (Sugimoto 1991). Even if Ks2 becomes of O(l ) ,  (2.32) still preserves 
such properties because the additional term on the right-hand side is lower order 
(zeroth) in differentiation than that of the nonlinear term. Therefore, it  is unavoidable 
that shock waves will eventually appear in this case. 

For 52 D 1, on the other hand, (2.29) may be approximated as 

Neglecting the order of W2, we have from (2.28) 

(2.33) 

(2.34) 

This equation is the Korteweg-de Vries-Burgers equation which takes account of 
the hereditary effect due to the boundary layer. Furthermore, if both the diffusivity 
and hereditary effects are negligibly small, (2.34) is reduced to the well-known 
Korteweg-de Vries equation (see, e.g. Whitham 1974; Drazin & Johnson 1989) : 

(2.35) 

The third-order derivative can compete with the nonlinear steepening to allow 
propagation of a smooth solidary wave, now well-known as a soliton. In this special 
case, a shock wave can no longer be propagated. 
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FIQURE 3. Dispersion relation for the linear acoustic waves in the tunnel with an array of 
Helmholtz resonators where the inverse of the phase velocity S (ie.  slowness) is given as a function 
of wo normalized by o: (a) and ( b )  show, respectively, its imaginary part IS,( and its real part A’, 
versus oo/o for 8, = 0.1, 8, = 0.01 and K = 10. 

2.4.  Dispersion relation 

Before considering the full problems, let us examine the linear dispersion relation to 
see how the resonators contribute to the damping of the acoustic waves. Assuming 
thatfand g are proportional to exp [i(@-SX)] where S (which should not be confused 
with the entropy used before) is constant, we have 

(2.36) 

where, remember, that the frequency w is involved not only in 51 but also in a,, 8, 
and S, and that S corresponds physically to an inverse of a phase velocity called a 

slowness. The imaginary part of S ( 3 S, + is,) gives the spatial decay with respect to 
X. From (2 .36) ,  it follows that 

(2 .37)  

While the first and second terms represent the inherent decay of acoustic waves 
owing to the wall friction and the diffusivity of sound itself, respectively, the last 
term represents the very enhancement of decay by the array of Helmholtz 
resonators. If S, is regarded as a function of wo with w fixed, ISJ has a maximum 

at 0 = Qo = (1 + 4 2 8 ,  + 8;); = 1 + 8 , / d 2  + + . . . . (2.38) 

Since /3 is far smaller than S,, the effect due to the diffusivity is secondary behind the 
wall friction. Figure 3 (a) depicts the damping rate IS,l as a function of wo normalized 
by o for the values of parameters SR = 0.1, 8, = 0.01 and K = 10 where /3 is ignored. 
Hence, if the resonators are appropriately designed, they will enhance significantly 
the decay of acoustic waves in the tunnel. Here it is noted that this decay 
characteristic is not necessarily valid in the case of nonlinear acoustic waves, as we 
shall see later. 
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In addition to the decay, the resonators can also give rise to the dispersion. From 
(2.36), in fact, the real part of S gives 

(2.39) 

Figure 3 ( b )  depicts S, versus wo/w.  In the limit as w o / o  -+ 0, S, approaches 8R/2/2 for 
a tunnel without resonators. It is found that the boundary-layer effect gives rise not 
only to the decay but also to the delay of propagation. In  the other limit, as wo/w -+ co, 

the array of resonators contributes to the further delay and S, approaches 

8 ~ / z / 2  + K .  

3. Evolution of nonlinear acoustic waves 

On the basis of (2.28) and (2.29), we examine an effect of the array of Helmholtz 
resonators on propagation of nonlinear acoustic waves. The effect due to the 
diffusivity of sound is sufficiently small that the term with /3 in (2.28) may be 
neglected. For a tunnel without an array of resonators (called a simple tunnel 
hereinafter), the diffusivity of sound has a primary role only locally in a thin shock 
layer, outside of which it always remains secondary behind the global effect due to 
the wall friction (Sugimoto 1991). In view of this result, the second-order derivative 
off in (2.28) is neglected in the following because interest is focused on the global 
effects of the resonators and the boundary layer. 

3.1. Relations for the discontinuity 

In  the simple tunnel, it is already known that the wall friction fails to compete with 
the nonlinear steepening, unlike the diffusivity of sound, which allows the emergence 
of a discontinuity, i.e. shock wave. First, therefore, we examine whether or not the 
propagation of a discontinuity is possible even when the resonators are connected. 

Suppose a discontinuity in f and g be located at B = 7 ( X ) .  Introducing a new 
variable q defined by q = 8 - 7 ( X )  instead of 8, (2.28) and (2.29) are written in terms 
of q and X as follows: 

where the dot denotes differentiation with respect to X .  Let continuous solutions 
f = F ( q , X )  and g = G ( q , X )  to (3.1) and (3.2) be prevalent in the region - 00 < 7 < 0. 
Assume that F and G be appropriately smooth enough around q = 0 to be continued 
beyond it as 

1 (3.3) 
F ( ~ , x )  = FO +F.  7 + ~ 4  q2 + . . . +F, qtn + . s., 
G ( q , X )  = G o + G 2 q + G 4 q 2 + . . . + G ~ q ~ n +  ..., 

where 171 -4 1 and F,, and G, (n = 0,2,4,  ...) are functions of X. The solutions 
including the discontinuity at q = 0 are assumed to be expressed locally as 

(3.4) 
f = F ( q , X )  + [h+ K : J q ( i + .  . . + V,,lqlin + . . .] h(q), 1 
g = G(q,X)+[W,+W,JqJi+  ... +W,lq14n+...]h(q),) 
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where h(q) denotes the unit step function; V, and W, (n = 0, 1,2,  ...) are functions of 
X .  As was already demonstrated by Sugimoto (1991), this half-power expansion of 1171 
behind the discontinuity, i.e. > 0, is suggested by the following formula of the 

fractional derivatives : 

where p = in (n  = 0, 1 ,2 ,  ...) and q = t or 2 in the present context; r(p) denotes the 
Gamma function. 

Although the discontinuity in g is expanded formally from W,, it  is found from (3.2) 
that W, should vanish for n = 0 t o n  = 3. Substituting (3.4) into (3.1) and identifying 

h(7)' resulting from fz to be h ( r ) ,  we have from the coefficient of the delta function 

47)[ = dh(r)/drl: 
i = -(F0++&). (3.6) 

Proceeding with the expansion in (3.1) successively, we derive from the coefficients 

of l ~ , ~ l ~ ' ~ - % ( q ) ( n  = 1,2 ,3 ,  ...) : 

q==, 44% T $ = - [ ~ + 2 + - ~ ) ] - 2 F z ,  2 

7P v, I 

(3.7) 
where Fn vanish for odd n. From (3.2), similarly, we have 

where W, = W, = W, = W, = 0. It is the inertia of the resonator that makes W, vanish 
for n = 0 to n = 3. Therefore, the resonators respond to the discontinuity very 
slowly. Since (3.6) is free from K ,  it is found that the propagation of the discontinuity 
is unaffected by the resonators explicitly. It will be shown later, however, that they 
will suppress the emergence of the discontinuity indirectly by dispersing the acoustic 
waves. 

3.2. Steady discontinuous solution 

As a simple example of the preceding subsection, let us examine a steady and 
discontinuous solution propagating with a constant velocity into the equilibrium 
state ahead F = G = 0. Setting i to be a constant l /h  (>  0) where h is a velocity, we 
assume that f and g depend only on [( = O - X / A ) .  Even under the 'steady 
assumption', it is still difficult to solve (3.1) and (3.2) analytically. Thus, numerical 
solutions are sought by making use of the asymptotic relations around the 
discontinuity. 

In choosing values of parameters, the following points are remarked. If the 
nonlinear parameter E is measured by a magnitude of discontinuity, V, is set equal to 
unity. Because no characteristic timescale is involved in this problem, w may be 
chosen to be w, so that 52 may be set equal to unity. Then 8, and 8, take the definite 
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FIQIJRE 4. Profiles of steady discontinuous solutions off and g for 8, = 1, 8, = 0.01, K = 10 and 
f2 = 1 .  For reference, the profile off in a case without resonators is shown in the broken lines for 
the same value of 8,. 

values S,, and a,,, respectively. Alternatively if o be chosen so that 13, may be 
normalized, then 8, and SZ should read, respectively, S,,/S,, and &:. 

Figure 4 shows the discontinuous solutions off and g with V, = 1 versus g = 19 + LJ 
for the parameters 8, = 1 ,  8, = 0.01, K = 10 and L2 = 1. For reference, the profile of 
f i n  the simple tunnel is shown by the broken lines for 8, = 1 (Keller 1981 ; Sugimoto 

1989). It is seen that the resonators make the profiles off and g oscillatory, owing to 
the dispersion. In contrast, the dispersion due to the wall friction does not yield any 
oscillatory profile. 

As 6 becomes large, it is confirmed numerically that f and g increase indefinitely, 
while the oscillation gradually decays out. The asymptotic analysis as c+m 
indicates that 

R d ( ~ - 4 )  (V,+21Q2 
Silogc+O(@) as <+m, 

(v,+21Q+ 86,(~-2)~log4 
f = g = S,(R[) i+-  

2(R - 2) 

(3.9) 

where f is equal to g within the first three terms. In this limit of large c, the effect of 
resonators is secondary. 

Even if a value of K is changed, oscillatory profiles off and g are commonly 
observed. As K becomes smaller than 10, the oscillation tends to be small. For other 
choices of the parameter 8, as well, the oscillatory profiles do appear and the damping 
of the oscillation is controlled by the value of 8,. As 8, becomes large, the oscillation 
rapidly decays out. 

3.3. Initial-value problems 

We now consider the initial-value problems for (2.28) and (2.29) in which the 
diffusivity of sound is ignored. To this end, it is convenient to express them in the 
‘characteristic form’ as 

(3.10) 

with (3.11) 
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along the ‘characteristics’ defined by 

d8 

dx 
- = -f. (3.12) 

An initial condition for f is prescribed on X = 0 as 

f(8,X = 0) = f,(@. (3.13) 

An initial condition for g should be given as a solution to (3.11) withf=  f,. It is 
remarked that although the condition (3.13) provides an initial value for (3.10), it 
corresponds physically to the boundary condition prescribed on x = 0 and (3.10) 
describes the spatial evolution. In the following, we consider three types of 

conditions for f, ; a unit step function, a Gaussian-shaped positive pulse and a pair of 
positive and negative pulses given by the derivative of the Gaussian-shaped pulse : 

I. a step : f, = h(8) 
11. a positive pulse : f, = exp ( - 02), 

111. a pair of positive and negative pulses: fo  = - (2e);dexp ( -e2), 
where the maximum of f, is normalized to unity. 

The initial-value problem is solved numerically by integrating (3.10) and (3.11) 
along (3.12). For a given fo, (3.11) is first solved to derive g = go at X = 0. This is to 
solve the integro-differential equation for g because of the three-half-order derivative 
of g. With go thus obtained, ag,/a8 is easily available so that the right-hand side of 
(3.10) can be evaluated together with the half-order derivative off,. This process is 

done numerically by discretizing 8 (not necessarily equi-distantly). At each point of 
8, (3.12) gives the slope of the characteristic, which is approximated by a straight line 
between X = 0 and X = AX < 1 .  Along this line, (3.10) is replaced by the simplest 
forward difference so that a new value off at X = AX is evaluated. Using f thus 
obtained, g is renewed by solving (3.11). Advancing this scheme by AX successively, 
the spatial evolutions off and g are sought. 

As soon as the multi-valuedness in f happens in the course of calculation, a 
discontinuity is fitted according to the so-called equsl-area rule (Whitham 1974). For 
localized initial conditions, (3.10) stipulates that the total area under f is conserved 

with respect to X (Sugimoto 1991). Further evolution of the discontinuity is 
determined by the relations derived in $3.1. A position of the discontinuity is 
calculated by integrating (3.6), while its magnitude is determined by fitting locally 
the asymptotic solutions (3.4). Evolutions o f f  and g are not pursued over a 

sufficiently long distance of X until shock waves finally disappear because of the 
present concern on the possibility of the emergence of shock waves. 

3.3.1. Case I :  fo = h(8) 

In contrast to the case of the steady but unbounded discontinuous solution, it is 
interesting to examine evolution from the unit step. Since the initial condition 

involves the discontinuity, its evolution must be taken into account from the outset 
by using the asymptotic relations. Figure 5 shows the spatial evolutions off and g for 
8, = 1,  8r = 0.01, K = 10 and SZ = 1 .  To show the initial profile of g explicitly, the 
direction of the X-axis is taken reversed in figure 5 ( b ) .  The dispersive character 

makes the profile off undulatory, which is to be compared with the monotonically 
increasing one in the simple tunnel (Sugimoto 1990). The vicinity of the wavefront 
is seen to be segregated to form a triangular pulse. In the profile behind this pulse, 
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FIGURE 5. Spatial evolutions from a step for f up to X = 0.5 where (a )  and ( b )  show the evolution 
off and g, respectively for 8, = 1,8, = 0.01, K = 10 and 52 = 1 and the length of the vertical arrows 
measures unity off and g. 

x = o  
1 

-0.1 0 0.1 0.2 0.3 
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FIGURE 6. (a )  Local profiles off around the discontinuity up to X = 0.5 by steps in X of 0.025 for 
8, = 1, 8, = 0.01, K = 10 and 52 = 1 ; ( b )  spatial variations of the magnitude of the discontinuity 
V,(X)  and its location 7 ( X )  obtained from the evolution shown in (a) ,  where the broken lines 
represent those in the simple tunnel with the same value of 8, = 1. 

there is no indication of new emergence of discontinuities up to X = 0.5. Figure 6 ( a )  
shows the local profile off around the discontinuity. As in the simple tunnel, the 
effect of the boundary layer makes the discontinuity round-edged. Figure 6 (b )  shows 
the spatial variations of the magnitude of the discontinuity V,(X)  and its location 
7 ( X )  where the broken lines correspond to those in the simple tunnel for reference. It 
is confirmed that the resonators do not affect propagation of the discontinuity itself. 

3.3.2. Case 11: fo = exp ( -ez) 
Next we examine evolution from a positive pulse. It is already known that, in the 

simple tunnel, the shock wave appears at the leading edge for a value of 8, smaller 
than about 0.5 (Sugimoto 1990, 1991). Thus, interest is focused on how the array of 
resonators affects emergence of shock waves by changing the coupling parameter K 
and the tuning parameter D. In  view of the plausible values of the parameters, we 
fix 8, and 8, as 0.1 and 0.01, respectively, and examine evolutions for nine 
combinations of parameters for K and D among K = 1, 5 and 10 and D = 0.1, 1 and 
10. For comparison, the evolution in the simple tunnel is also shown in figure 7 for 
8, = 0.1. It is seen that the initial pulse forms the shock wave at X = 1.2550 to evolve 
into the triangular pulse. In addition to rounding the shock wave, the effect of the 
boundary layer also produces the tail behind. At the final stage of calculation X = 4, 
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FIGURE 7. Spatial evolution from a positive pulse for f in the simple tunnel up to X = 4 where 
8, = 0.1 and K = 0. 

FIGURE 8. Spatial evolutions from a positive pulse for f up to X = 4 where (a) and (a) show the 
evolution off and g, respectively, for 8, = O.l,S, = 0.01, K = 10 and B = 0.1 and the length of the 
vertical arrows measures unity off and g. 

the shock wave is still of large magnitude. For reference, the unity of X corresponds 
physically to a distance 5.4 km for E = 2 x 

What will happen to this tunnel if the resonators are connected? In the following, 
the spatial evolutions are displayed by varying Kfirst with 9 fixed. For 9 = 0.1, the 
linear dispersion relation indicates no significant dissipation. The numerical 
calculations show, for all values of K chosen above, that the second shock wave is 

formed behind the leading one of the triangular pulse. Emergence of shock waves 
agrees with the anticipation by the approximate equation (2.32) for 9 6 1 and /3 = 0. 
Figure 8 shows the typical evolutions off and g for a relatively large value of K = 10. 

The leading shock wave emerges at X =  1.8730 while the second one emerges at  
X =  3.8395. It is seen that the magnitude of the second shock wave exceeds 
eventually that of the leading one. In this respect, the resonators make the situation 
worse, compared with the case for the simple tunnel. 

For SZ = 1, the significant dissipation is expected. For K =  1 ,  however, the 
evolution is qualitatively similar to that shown in figure 8, although the oscillatory 
behaviour of g becomes rapid because of a larger value of 9. As K is increased to 
K = 5 and 10, the initial pulse quickly decays out without any sign of shock waves. 

Figure 9 demonstrates the typical situation for K = 10. A t  X = 4, there remain only 
a few ripples. 

For SZ = 10, no shock wave emerges, even for K = 1, although the linear damping 
rate is much smaller than that in the case of 9 = 0.1 and K = 10. Figure 10 shows the 
typical situation in which the initial pulse is delayed, i.e. propagated backward 

and w = 10n rad/s. 
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FIGURE 9. Spatial evolutions from a positive pulse for f up to X = 4 where (a )  and ( b )  show the 
evolution off and g, respectively for 8, = 0.1, 8, = 0.01, K = 10 and SZ = 1 and the length of the 
vertical arrows measures unity off and g. 

FIGURE '10. Spatial evolutions from a positive pulse for f up to X = 4 where (a)  and ( b )  show the 
evolution off and g, respectively, for 8, = 0.1, 8, = 0.01, K = 1 and SZ = 10 and the length of the 
vertical arrows measures unity off and g. 

(rightward) without any sign of shock waves, at least up to X = 4. This result is 

understood by the approximate equation (2.34) for 51 9 1 and p = 0. The term 
KtIf/tIO represents the delay consistent with the dispersion relation (2.39) for SZ 9 1. 

The smooth profile is due to the dispersion, i.e. the third-order derivative, which can 
now compete with the nonlinear steepening to suppress the emergence of shock 
waves. As suggesting by (2.33), incidentally, it  is seen that f and g tend to coincide 
with each other after the initial transient decays out. 

3.3.3. Case I I I : fo  = -(2e)%exp(-02) 

Finally we examine evolutions from a pair of positive and negative pulses. The 
spatial evolution in the simple tunnel is shown in figure 11. The pulses evolve into the 
so-called N-wave, though asymmetrically owing to the hereditary effect, and 
accompany the tail behind. The leading and trailing shock waves are formed at 
X = 1.0265 and X = 1.0530, respectively. 

Let us examine the effect of resonators. For 52 = 0.1, the leading and trailing shock 
waves appear for K = 10, as shown in figure 12, at X = 1.3280 and X = 0.8535, 
respectively, but the trailing one has no longer an expansion region, unlike in figure 
11.  Furthermore, it is remarked that the trailing shock wave grows greater than the 
leading one. For 51 = 1,  two shock waves are still formed for K = 1 just as shown in 
figure 13 at X = 1.2960 and X = 0.8630. In this case as well, the magnitude of the 
trailing shock wave exceeds that of the leading one. For K = 5, the leading shock 
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FIQURE 11. Spatial evolution from a pair of positive and negative pulses forfin the simple tunnel 
up to X = 2 where 6, = 0.1 and K = 0. 

FIGURE 12. Spatial evolutions from a pair of positive and negative pulses forf up to X = 2 where 
(a) and (b) show the evolution off and g,  respectively for 6, = 0.1, 6, = 0.01, K = 10 and 52 = 0.1 
and the length of the vertical arrows measures unity f and g. 

FIGURE 13. Spatial evolutions from a pair of positive and negative pulses forf up to X = 2 where 
(a) and (b) show the evolution off and g,  respectively for 6, = 0.1, 6, = 0.01, K = 1 and f2 = 1 and 
the length of the vertical arrow measures unity. 

wave is no longer formed so that only one shock wave appears. As K is increased 
further to 10, no shock wave emerges. Figure 14 shows the evolution in which the 
initial pulses develop into ripples. For 52 = 10, finally, the evolution is qualitatively 
similar to case 11. There appears to be no shock wave, even for K = 1, and the wave 
is propagated backward. 
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FIQURE 14. Spatial evolutions from a pair of positive and negative pulses forf up to X = 2 where 
(a) and (a) show the evolution offand g, respectively, for 8, = 0.1, 8, = 0.01, K = 10 and SZ = 1 and 
the length of the vertical arrows measures unity off and g. 

4. Results and concluding remarks 

We have investigated the effect of the array of Helmholtz resonators on the 
propagation of nonlinear acoustic waves in a long tunnel. It is found that the 
resonators are very effective, if appropriately designed, in suppressing the shock 

waves which would emerge unless connected. It is emphasized that the resonators do 
not suppress shock waves once they are formed. They prevent the emergence of shock 
waves by introducing dispersion into acoustic waves in addition to damping. 

6, = 0.1 and 8,. = 0.01, 
as a typical example, the resonators are proved effective if the coupling parameter 
K is taken to be a large value such as 10, while the tuning parameter 52 is chosen 

greater than unity. Of course, greater values of K would give rise to higher damping, 
but there is a limitation of the present theory, i.e. V/Ad + 1. As 52 becomes greater 
than unity, it is found that even a smaller value of K is enough to delay or suppress 
the emergence of shock waves. In fact, if 52 is chosen to be 3 for K = 1, the emergence 

of shock waves is delayed significantly, as is shown in figure 15, to X = 1.9415 at 
8 = 5.2649 in the evolution from a pair of pulses. A possible reason may be 
conjectured as follows. In  the course of evolution, the nonlinearity gives rise to 
higher-frequency components than those involved in the initial profile, which lowers 
52 substantially. Therefore, even if 52 is set, initially, to be ‘tuned up’ greater than 
unity, the nonlinearity lowers 52 effectively for the frequency containing the most 
energy to be located around i2 = 1 so that higher damping would be expected rather 
than the case with 52 = 1 initially. 

In  particular, it is a useful result that for a large value of Q, there is no sign of 
emergence of shock waves even for a small value of K.  In  spite of the small linear 

damping rate as in the case with 52 4 1, the smooth profiles are brought about by the 
dispersion due to the third-order derivative in (2.34). Furthermore, when the 
nonlinearity becomes relatively strong compared to the diffusivity and the hereditary 

effects, as the Korteweg4e Vries equation (2.35) stipulates, it becomes possible for 

an acoustic soliton to be propagated and its profile is given by 

f = a  sech2 [(01.52/12K): (8 - KX + &X- e0)],  

In  order to avoid shock waves for the case with E = 2 x 

where 01. is a constant and positive amplitude and B0 is a phase constant (see, e.g. 
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(b)  

FIGURE 15. Spatial evolutions from a pair of positive and negative pulses for f up to X = 2 where 
(a) and ( b )  show the evolution off and g, respectively, for 6, = 0.1, 8, = 0.01, K = 1 and l2 = 3 and 
the length of the vertical arrows measures unity off and g. 

Whitham 1974; Drazin & Johnson 1989). As the width of the soliton in 0 is 
proportional to the square root of KlaSZ, the greater value of SZ corresponds to the 
narrower width so that the pulsive behaviour becomes prominent. Because of the 

well-known persistent properties of the soliton, such a sharp pulse may be 
unfavourable from a similar viewpoint of suppression of shock waves, but it is 
interesting in its own right that the propagation of an acoustic soliton can be realized 
generally in a pipe with an array of Helmholtz resonators. 

To conclude this paper, some problems are mentioned. The magnitude of 
nonlinearity 6 has been assumed to be moderately small so that the response of the 
resonator may be well described by the linear theory. As is shown in the Appendix, 
this approximation is valid for e(A/L,SZ)2 < 1. As 6 becomes large, the nonlinear 

response, especially nonlinear loss, will be enhanced, so how this loss plays an 
additional role in suppression of shock waves is worth examining. This is discussed 

in Sugimoto (1992). 
In the present formulation, the resonators have been regarded as being 

continuously distributed axially on the assumption that the spacing is much smaller 
than a characteristic wavelength. However, for a wave of such high-frequency that 
its wavelength becomes comparable with the spacing, a problem arises of the 
interaction between neighbouring resonators. In particular, when the wavelength 
becomes equal to the spacing, the interference resonance might occur (Monkewitz 

1985). 
Further, if a shock wave is propagated, obviously, the continuum approximation 

for the resonators breaks down. Even if the second-order derivative in (2.28) is taken 
into account, a shock thickness is extremely thin and is estimated to be /3uo/w 

(Sugimoto 1991). The breaking of approximation might lead one to consider that the 
shock wave will be reflected or diffracted strongly at each orifice of the resonator, but 
it should be emphasized that V / A d  has been assumed to be small and comparable 
with E ,  as the definition of K in (2.30) implies. Therefore, even if a shock wave 
emerges, its reflection still remains small. In addition, since the resonators behave as 
if dormant for the shock wave, this act5 favourably for the present approximation 
and the diffraction is also considered small. Yet it is true, strictly speaking, that the 
continuum approximation is still invalid around the orifices locally. Even without 
the array of resonators, the same invalidness happens near the tunnel wall where the 
shock wave touches. 
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As e becomes large (though keeping E Q l),  however, V / A d  should be taken to be 

proportionally large in order to choose K ,  for example, to be 10. Then the presence 
of each resonator tends to be no longer small for the tunnel so that the reflection or 
the diffraction will happen. This situation now invalidates the basic assumption of 
the quasi-one-dimension for the main flow in the tunnel. At present, how this effect 
of finite spacing will affect propagation along a tunnel is an open questioh. 

The author wishes to thank Professor Kakutani for his comments on reading the 

manuscript. 

Appendix. Nonlinear theory for the response of the resonator 

The main text has been concerned only with the linear theory for the response of 
the resonator. In  this Appendix, we shall extend it to include the quadratically 
nonlinear effects. As yet, we still maintain the incompressible approximation in the 
throat because this validity is endorsed by the assumption (L/A)2 4 1. In  order to 
take account of the loss into turbulence, the momentum flux density in (2.16) must 
be carefully evaluated. 

Before that, it  is appropriate to refer to the experimental observations for the flow 
in the throat (Ingard & Labate 1950; Ingard 1953; Ingard & Ising 1967; Zinn 1970). 
As the amplitude of the oscillatory flow becomes large, the flow pattern just before 
entering one orifice and after leaving the other orifice is substantially different. A t  
the inflow side, the gas is sucked in omni-directionally, although bounded locally by 
the infinite tunnel wall, whereas, at  the outflow side, it forms the axial jet on leaving 
the orifice, entailing a vortex ring. If, therefore, a control volume between z = 0 and 
z = L is extended to just a little upstream of the entrance of one orifice, say at  
z = -h ,  for a flow directed from the tunnel to the cavity (see figure 2), the point at  
z = - h may well be regarded as stagnant so that the axial momentum there may be 
neglected compared with that in the jet leaving the other orifice (Zinn 1970). Then 
the difficult problem of how far h should be taken arises. In  the present context, it 
must be determined experimentally. 

For a cycle when the flow in the throat is directed from the tunnel into the cavity, 
integration of (2.16) from the stagnation point at z = -h  to the exit at z = L leads 
to 

L, a q p t  = -p2  +pl ,  -mO2 - Fr.  (A 1) 

where L,( = L + h)  is the effective length of the throat and p,, denotes the pressure a t  
z = -h,  which is assumed equal to p in the tunnel. Within the present quadratic 
theory, o2 may be approximated as [ ( P W ) ~ / P ]  z q2/p,. For a cycle of the flow 
directed from the cavity into the tunnel, on - the other hand, the stagnation point is 
- now taken symmetrically at z = L + h and ( P W ~ ) ~ ,  is neglected in comparison with 
( P W ~ ) ~ .  For this approximation, we refer to the paper by Wijngaarden (1968). For an 
orifice into infinite space, the above result is also obtained by using the boundary 
conditions due to Wijngaarden. 

When q in (A 1) is eliminated by (2.14), q in (2.14) should now be specified up to 
the quadratic term in p: by using the adiabatic relation as follows: 

VaPC - v 3PC - 
B at Ba2 at Bai Y Pa 

q = - - - - - - -  



78 N .  Sugimoto 

Assuming ph = pk, (2.23) is now replaced by the nonlinear equation 

where w$(=Ba; /L,V)  is the natural angular frequency of the resonator taking 
account of the effective length of the throat. According to Ingard (1953), L in the 

coefficient of the derivative of order $ should be lengthened effectively to L’( = L + 2r) 
to include the viscous end correction. In terms of g,  finally, (2.29) is specified up to 
the quadratic terms as follows: 

where 0 = (we/w)’  and 2 V / ( y +  l )BL,  = 2 ( A / L , 9 ) 2 / ( y +  1 )  with A = a,,/w. Since A is 

much longer than L,, the nonlinear loss may be negligible as far as s (A/L,  4 1. 
As E becomes large, the nonlinear loss tends to be enhanced, especially for a small 
value of a. 
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