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ABSTRACT 
 

The investigation into Bessel beams has been a topic of immense research during the past 20 years, due to the 

interesting properties they display. Bessel beams not only exhibit diffraction free propagation, but also reconstruction of 

the amplitude and phase of the beam after encountering an obstruction. Although this self reconstruction property has 

been previously modelled by numerous groups, the techniques involve rigorous, time-consuming computations. In this 

work we present an efficient method to accurately calculate the reconstruction of a Bessel beam after an arbitrary 

obstruction. Our method considers the well-known conical wave features of Bessel beams and looks at the projection of 

the obstruction in space as a result of the travelling conical waves that produce the Bessel beams.  
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1. INTRODUCTION 
 

Bessel beams (BBs) represent a class of so–called diffraction free solutions to the Helmholtz equation, and have been 

studied extensively since the seminal work of Durnin et al.1 in the late 1980s.  One of the simplest solutions illustrated 

by Durnin2, describes a monochromatic wave with an electric field envelope that is a zeroth–order Bessel function of the 

first kind, given by J0(krr), where kr is the radial component of the wave vector k and r denotes the distance from the z–

axis. This was the first mathematical concept of the Bessel beam, which ideally consists of an infinite number of rings 

of light, carrying an infinite amount of power over an infinite area. Experimentally, it is not possible to generate such a 

beam, and so an approximation is made in the form of a Bessel function enveloped by a Gaussian profile, thereby 

limiting the energy carried by the field to some finite value.  

 

The electromagnetic field u(r,z) of a Bessel–Gauss beam propagating in free–space in the z–direction is given by3: 
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where A is an amplitude factor, which may be complex, and      
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These equations represent the Rayleigh length, the beam width, the radius of curvature of the wavefronts and the Guoy 

phase of a Gaussian beam respectively. The Rayleigh length determines the distance over which a Gaussian beam can 

propagate without diverging significantly and depends on the beam width at the waist, ω0, and the wavelength of the 

beam, λ. 
 

These “pseudo non–diffracting” beams maintain the properties associated with ideal Bessel beams, but only over a finite 

distance. In particular, they satisfy that the beam be propagation–invariant and also display the interesting property of 

reconstruction. The latter property has been used in a variety of applications, including optical tweezing4 and medical 

imaging5, and is therefore an intriguing property worth investigating. Reconstruction has been well explained by firstly 

considering a Bessel beam as a superposition of plane waves, whose transverse amplitudes reform after encountering an 

obstruction6. Theoretical studies of this property describe reconstruction under varying conditions, including in a 

nonlinear medium7 and by wave packets due to spatial-temporal links8. The reliability of the periodical self–

reconstruction, as well as the wavelength dependence of white light Bessel beams have been examined9.  

Experimentally, reconstruction of Bessel beams has also been verified on numerous occasions by means of different 

methods.  

 

Although extensive work has been devoted to this one property, the methods of modelling this characteristic are limited 

in accuracy and speed, and are yet to calculate Bessel fields after arbitrary obstructions.  Conventionally, the Fresnel–

Kirchoff diffraction integral together with Babinet’s principle has been employed, which results in time consuming 

calculations. Recently, the phenomenon of reconstruction was eloquently explained by considering the dynamics of the 

conical waves that form a Bessel beam10. Essentially, the cone of wave vectors previously mentioned consists 

simultaneously of two conical waves, an incoming and an outgoing wave, which can be represented by Hankel 

functions11 of the second, )()2(
0 rkH r , and first, )()1(

0 rkH r , kind respectively: 
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where N(krr) is the zero-order Newman function. 

 

The incoming conical wave transforms into the outgoing conical wave and the superposition of these two conical waves 

is crucial in obtaining propagation invariant beams. Within a Bessel beam, although locally the light travels parallel to 

the axis of propagation, the energy flux follows the direction determined by the cone of wave vectors. For this reason, 

reconstruction after an obstruction is observed. That is, the reconstructed beam results from light that was not obscured 

by the obstacle.  

 

Despite this fluent explanation by Anguiano-Morales et al.10, the numerical simulations demonstrated resorted back to 

solving the Helmholtz equation. In this paper we present an efficient and accurate technique to predict Bessel and 

Bessel–Gauss beam propagation after encountering an obstruction of arbitrary geometry and complex orientation (i.e., 

no symmetry is required in the obstacle under study).  The technique is a simple exploitation of the well–known conical 

wave formalism of Bessel beams, and is based on a projection of the obstacle in space due to the travelling conical 

waves that form the Bessel beams.  We verify the concept experimentally for two obstacle geometries, and show that 

despite the method being based on a ray optics approximation, the method is resilient even when diffraction is evident. 
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1.1. Fundamentals of Bessel beams 

 

The propagation and generation of Bessel–Gauss (BG) beams have been well documented3,12,13. Equation (1) can be 

simplified by considering the field at the plane z = 0, where the intensity profile is shown in Fig. 1 (a): 
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Fig. 1 illustrates how the intensity profile of Eq. (1) changes along the axis of propagation (z-direction), from a Bessel 

beam (a) to an annular ring (b).  

 

 

Fig. 1: Intensity profiles of a Bessel-Gauss beam. (a) A Bessel beam profile is produced near z = 0, (b) while an annular ring is 

produced at larger propagation distances. 

 

An important property of the Bessel beam is its non-diffracting nature. That is, for propagation in the z direction, the 

intensity satisfies, 

 

                                                                        ),()0,,( yxIzyxI =≥ ,                                                                         (5) 

 

where )(),,( 2
0 rkJzyxI r∝ for a zero–order Bessel beam. 

 

Of course, for a BG beam this equality is true only for a finite distance of z. This distance can be calculated by analysing 

the experimental generation of a BG beam. There are two well established methods for Bessel beam formation, one of 

which makes use of an annular slit. A Bessel beam can be thought of as a superposition of plane waves whose wave 

vectors lie on a cone, which in k-space reveals itself as a ring. That is, the Fourier transform of a ring results in a Bessel 

beam, which allowed Durnin et al.1 to produce an approximation to a Bessel beam by illuminating an annular slit onto 

the back focal plane of a focusing lens. A more efficient method of Bessel beam generation makes use of an axicon. Fig. 

2 illustrates how a Bessel beam is created by illuminating a Gaussian beam onto an axicon. The opening angle of the 

cone is given by, 

 

                                                                                   γθ )1( −= n ,                                                                                  (6) 

 

where n is the refractive index of the axicon and γ is the opening angle of the axicon.  
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Fig. 2: Diagram illustrating the finite propagation distance of a Bessel beam generated by an axicon of opening angle γ. The 

superposition of plane waves has wave vectors, which lie on the surface of a cone with opening angle θ. 

   

The finite distance after the axicon in which a BG beam is found is determined from the wave vectors of the Bessel 

beam that propagate on a cone. This maximum distance is given by, 

 

                                                                            
θ
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rk

k
z ,                                                                           (7) 

 

Within this finite propagation distance, the properties associated with the ideal Bessel beam hold true for a BG beam. 

Using geometric optics, further information about the beam can be revealed. The maximum width of the BG beam, rmax, 

is found at zmax/2: 

 

                                                                              θtanmaxmax zr = ,                                                                              (8) 

 

These two parameters together with the Bessel function parameter, θsinkkr = , allow the number of rings, N, at rmax to 

be solved: 
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where 
rk/πδ ≈  is the spacing between each ring.   

 
For such beams, there is a minimum distance behind an obstacle of radius ½ D before reconstruction occurs, 
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We are able to verify this equation using our conical wave method. Although all the key aspects required to implement 

this technique are well known, previous models persisted with lengthy integral calculations. 
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2. GEOMETRICAL MODEL 
 

The model presented here is based on a geometrical approximation to the propagation of conical waves after obstacles.  

As we will show later, this approximation is amazingly resilient even when the obstacle sizes are in the order of the 

wavelength of the illuminating light, and so while our method cannot be considered a complete substitute for a full 

vector diffraction based calculation, it offers a very accurate first approximation. 

 

Consider the schematic in Fig. 3 where an arbitrary obstacle is placed off–centre in the path of a Bessel–Gauss beam.  

The obstruction cross–section due to this obstacle along one azimuthal direction is shown.  The positive z–axis defines 

the direction of propagation of the Bessel–Gauss beam, which we assume to have a spatial extent of 2d, as shown in Fig. 

2.  Since only a cross–section is shown, there are only two conical waves (labelled CW1 and CW2 respectively) 

contributing to the Bessel–Gauss beam at any given point.  

 

 

Fig. 3: Diagram illustrating the projection of the obstacle in space by two conical waves, CW1 and CW2. The shadow region where 

neither conical wave contributes has a minimum distance given by zmin. 

 

It is clear from Fig. 3 that the projection from these two conical waves results in distinct regions defined by (i) one 

conical wave contribution only, (ii) a shadow region where neither conical wave contributes, and (iii) the Bessel–Gauss 

beam where both waves contribute.  The boundaries that define these regions are mapped by the projection of the 

obstacle’s boundaries along a given z plane.  Without any loss of generality, consider an obstacle with cross–section 

shown in Fig. 3 with full width D and that is placed some distance ρ = a from the central axis (ρ = 0) of the Bessel–

Gauss beam, so that the two extreme edges of the obstacle are defined by ρ = a and ρ = b, with D = b – a.  From the 

geometry one can derive the projection of the obstruction due to each conical wave.  If the new positions of these edges 

due to CW1 are labelled a1 and b1, and similarly a2 and b2 due to CW2, then one can show that at some distance z after 

the obstacle we have:  
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Clearly the projection results in the creation of two zones defined by a single conical wave, with the boundaries of these 

zones moving farther apart at a rate of 2ztanθ.  The region behind the obstacle is then defined as follows (for a given z 

propagation and a chosen azimuthal angle φ): 

 

2ad ≤≤− ρ   CW1 and CW2 add to form a complete Bessel–Gauss beam; 

12 aa << ρ   CW1 contribution only; 

21 ba << ρ   no contribution from either CW1 or CW2, resulting in a shadow region; 

12 bb << ρ   CW2 contribution only; 

db ≤≤ ρ1   CW1 and CW2 add to form a complete Bessel–Gauss beam; 

 

Clearly at the distance z = zmin where b2 ≤ a1 the shadow region vanishes and the Bessel–Gauss beam is said to have 

reconstructed.  The value for zmin can easily be found from Eq. (11) by solving for the equality b2 = a1: 
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which is consistent with the expression in Eq. (10), as expected.  If the process described above is carried out for all 

points along the boundary of an obstruction, then the complete movement of the boundaries of each region can easily be 

computed.  With this information the complete intensity pattern at any position after an obstacle, regardless of the 

complexity of the geometry of the obstacle, may readily be found.  

 

It is worth pointing out some salient points in how these regions develop: firstly, the single conical wave regions move 

apart at a rate of 2ztanθ.  Thus in an off–centred geometry one expects the boundaries defining the Bessel–Gauss beam 

to move apart, in opposite directions, with one passing through the centre of the original Bessel–Gauss field.  Secondly, 

any combination of points on the boundary of an obstacle that find themselves equidistant from the central propagation 

axis of the Bessel–Gauss beam will result in boundaries that evolve in identical fashion.  This latter fact can be exploited 

to simplify the calculation for arbitrary obstacles.   

 

 

3. EXPERIMENTAL METHODOLOGY AND RESULTS 
 

Fig. 4 shows the experimental set–up used in generating the Bessel–Gauss beam. A 660 nm, 100 mW diode laser beam 

was expanded through a 5× telescope before illuminating an axicon with an opening angle of γ = 5˚.  
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Fig. 4: Experimental design for generating a Bessel–Gauss beam: a telescope with lenses f1 = 50 mm, f2 = 250 mm expands the beam 

before illuminating the axicon (A). The obstacle (O) was placed 45 mm from the axicon and was imaged onto a screen (S) by lens f3 

= 25 mm. The inserts represent the theoretical prediction (left) and the experimentally measured (right) Bessel–Gauss beam. 

The obstruction was placed on a thin transparent cover slip and positioned within the Bessel beam at a distance of ½ zmax 

from the axicon. The resulting obstructed beam was imaged onto a screen with a suitable magnification (57×) to observe 

the intensity variations during propagation.  The image plane could be varied continuously by means of a translation 

stage so as to allow measurement of the beam from fully obstructed to fully reconstructed.  The geometries of the two 

test obstructions – a centred circle (approximately) and a vertical wire – are shown in Fig. 5.  In each case the 

obstruction is opaque so that immediately after the obstruction a dark shadow region is evident, surrounded by an 

unperturbed Bessel–Gauss beam.   

 

 

Fig. 5: Experimental images with the theoretical predictions inset in the bottom left corners. The images illustrate the excellent 

comparison for the self reconstruction of a Bessel beam. 
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Fig. 5 shows a sequence of measured Bessel–Gauss beam intensities during propagation after the two obstructions, with 

the theoretical predictions shown as insets on the experimental images depicting the calculated boundaries due to the 

conical waves from the source.  Figs. 5 (a) – (d) show the change in the Bessel–Gauss beam intensity during 

reconstruction when the starting obstacle is an approximation to a centred circle, a scenario with radial symmetry.  As 

the propagation distance from the obstruction was increased, so the shadow regions appear to move.  Following the 

discussion in the previous section we note that, as expected, two boundaries appear due to the projection of the obstacle 

by the two conical waves from the source.  The intersection of the two boundaries defines the true shadow region, while 

the region between the two boundaries defines a single conical wave contribution.  Elsewhere, the original Bessel–

Gauss beam is evident due to the summation of both conical waves.  This is clear in the sequence from (b) to (d).  The 

final image at (d) was taken at a propagation distance that exceeded zmin, so that complete reconstruction has taken 

place.  This is predicted by the calculation method and has been confirmed experimentally.  Verification of the 

reconstruction at the centre of the field, where the original obstacle was, is indicated by the zoomed inset of the centre of 

the beam in (d).  A similar sequence is shown in Figs. 5 (e) – (h).  In this case the radial symmetry is purposely broken.  

The sequence illustrates an interesting case with the vertical wire, as here there is a region where no contribution from 

one of the conical waves is possible, since the obstruction extends across the entire Bessel–Gauss beam in the vertical 

plane following the wire.  Again the agreement between calculation and experiment is excellent.      

 

 

4. CONCLUSION 
 

We have described an effective method to predict the self reconstruction of Bessel and Bessel–Gauss beams after 

arbitrary obstructions. The model predicts where the beam will reconstruct and also how the shadow regions will 

progress over the propagation distance. We were able to verify our model experimentally, where the theoretical 

predictions and experimental results correspond especially well. We have therefore simplified the computations 

involved in evaluating the self reconstruction of Bessel–Gauss beams, particularly in light of the fact that there are no 

restrictions on the geometry of the obstacle used, nor its placement in the Bessel field. 
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