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Propagation of Partially Coherent Beam in Turbulent Atmosphere:
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Abstract—Partially coherent beam is preferred in many applications, such as free-space optical
communications, remote sensing, active laser radar systems, etc., due to its resistance to the deleterious
effects of atmospheric turbulence. In this paper, after presenting a historical overview on propagation
of optical beams in turbulent atmosphere, we describe the basic theory for treating the propagation of
optical beams in turbulent atmosphere and we mainly introduce recent theoretical and experimental
developments on propagation of partially coherent beam in turbulent atmosphere. Recent progress on
the interaction of a partially coherent beam with a semirough target in turbulent atmosphere and the
corresponding inverse problem are also reviewed.

1. INTRODUCTION

Recently, more and more attention is paid to the use of optical beams for free-space optical (FSO)
communications due to the increasing requirement for larger bandwidths and high rate of data transfer
in optical wavelength. The high direction of the optical beams can guarantee the security of the
transmitted data to a certain extent in FSO communications compared to that in Radio-frequency
(RF) communications. Furthermore, optical beams are also applied in other applications, such as laser
satellite communications, laser radar system and remote sensing. In those applications, propagation of
optical beam in atmosphere is inevitably encountered.

In general, there are three primary atmospheric phenomena, i.e., absorption, scattering and
refractive-index fluctuation, affecting the propagation of optical beams through atmosphere. Absorption
and scattering which cause energy attenuation of the optical beam upon propagation are caused by the
constituent gas and particles in atmosphere. Refractive-index fluctuation which is commonly referred
to as atmospheric turbulence is caused by the temperature differential between earth’s surface and
atmosphere. When a laser beam propagates through atmospheric turbulence, it experiences extra beam
spreading, beam wander, scintillation (i.e., intensity fluctuation) and angle-of-arrival fluctuation. The
presence of atmospheric turbulence greatly limits the performance of FSO communication, laser radar
system and remote sensing, etc.. Therefore, it is of practical importance to study the propagation of
laser beams in atmospheric turbulence and the methods to overcome or reduce the turbulence-induced
degradation. Turbulence represents a nonlinear process which is governed by Navier-Stokes equations,
while it is difficult to solve Navier-Stokes equations rigorously in mathematics. Thus, the turbulent
theory commonly applied in the literature is based on a statistical method developed by Kolmogorov [1]
and some additional simplifications and approximations, not derived from first principles.

The earliest theoretical study on the propagation of optical wave through turbulent media dated
back to before the invention of laser beams. Tatarskii [2] and Chernov [3] published monographs on
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the propagation of optical plane waves and spherical waves through turbulence. Since then, various
approaches including difference equations [4], transport methods [5], ladder approximation of the
Bethe-Saltpeter equation [6] and the extended Huygens-Fresnel (eHF) principle [7] were introduced to
investigate the propagation characteristics including coherence properties, average intensity and beam
spreading, of optical beams propagation through turbulence. Among these approaches, eHF principle
is widely used because it is somewhat easy to obtain analytical propagation formula. Yura obtained
a general expression for the mutual coherence function (MCF) of a finite optical beam propagating
in turbulent medium based on the eHF principle [8]. Feizulin and Kravtsov investigated the beam
spreading of a laser beam propagating in turbulent medium with the help of the eHF method [9].

In 1972, Kon and Tatarskii considered the MCF of a partially coherent source in a turbulent medium
and investigated the dependence of the average light intensity in turbulent medium on the initial degree
of coherence of the source [10]. It seems to be the first publication to study the behavior of a partially
coherent beam in turbulent atmosphere. In 1978, Leader derives expressions for the MCF and average
intensity of a partially coherent beam in turbulent atmosphere based by using a Rayleigh-Sommerfeld
integral method which is built on eHF principle [11]. Later, Wang and Plonus formulated the general
expression for the mutual intensity function (i.e., MCF) of a partial coherent source in weakly turbulent
atmosphere with the help of eHF principle and quadratic approximation [12].

Leader investigated the normalized intensity variance (a parameter to measure the strength of
intensity fluctuation) of the optical beam which simulates laser reflectance from a rough surface
with arbitrary height deviation in atmospheric turbulence [13]. Later, he extended his study to the
intensity fluctuation of a partially coherent beam of arbitrary size and focus propagating through weak
atmospheric turbulence [14]. In his study, the extended Rayleigh-Sommerfeld integral and the quadratic
structure function (QSF) approximation for the fourth-order atmospheric spherical wave coherence
function were applied. The effect of source temporal coherence on light scintillation in weak turbulence
is studied by Fante [15]. Banach et al. explored the intensity fluctuation of a partially coherent beam
in turbulent atmosphere and discussed two different cases: “fast” and “slow” detectors, which led to
dramatic differences [16, 17]. Wang et al. studied the intensity fluctuation of a partially coherent beam
propagating in atmosphere considering the aperture-effects in the receiver plane [18]. In those early
studies, it was found that the scintillation of a partially coherent beam is smaller than a coherent beam
in turbulent atmosphere, while no experimental results are reported, and the beam wander of a partially
coherent beam propagating in atmosphere seems to be ignored. From 1990 to 2000, only few papers
were devoted to the propagation of a partially coherent beam in atmospheric turbulence [19, 20].

With the advent of a variety of novel laser beams with prescribed beam profile, state of polarization
and phase, several hundreds of papers were published on the propagation properties of novel laser beams
in turbulent atmosphere since 2000. It was shown that a laser beam with prescribed beam profile, state
of polarization, phase can reduce the turbulence-induced degradation. In the meantime, numerous
papers were published on propagation of partially coherent beams with prescribe beam profile, state
of polarization and phase, and it is interesting to find that such beams can further reduce turbulence-
induced degradation, which will be quite useful in free-space optical communications, remote sensing
and active laser radar systems.

In this paper, we outline the basic theory for treating the propagation of optical beam in turbulent
atmosphere, and we mainly introduce recent theoretical and experimental developments on propagation
of partially coherent beam in turbulent atmosphere. The interaction of a partially coherent beam with
a semirough target in turbulent atmosphere and the corresponding inverse problem are also introduced.

2. SECOND-ORDER STATISTICAL PROPERTIES OF A PARTIALLY COHERENT
BEAM IN TURBULENT ATMOSPHERE

The second-order statistical properties of a laser beam in turbulent atmosphere including average
intensity, root mean squared (RMS) beam width, propagation factor and so on are closely related
to the loss of the power and the effective receiver aperture size in the receiver, thus investigation of
those properties is essential for practical applications. Cai and He investigated the average intensity of
various flat-topped beams, dark hollow beams and elliptical Gaussian beam in turbulent atmosphere
with the help of a tensor method [21–23]. Young et al. explored the average intensity and beam
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spreading of high-order Gaussian beams including Hermite-Gaussian beams and Laguerre-Gaussian
beams in atmospheric turbulence [24], and they found that high-order Gaussian beams experienced
less percentage of additional broadening than the fundamental Gaussian beam due to turbulence. The
propagation properties of non-diffractive beams such as Bessel-Gaussian beams and Airy beams in
turbulent atmosphere were studied in [25, 26]. Furthermore, the propagation properties of laser beam
arrays in turbulent atmosphere were reported in [27–30]. These studies came to the same results that
the average intensity distributions of laser beams or beam arrays degenerated to Gaussian profiles at
sufficient large propagation distance due to the isotropic effect of atmospheric turbulence, and those
beams spread much faster in atmosphere than that in free space. Similar results were also found for other
laser beams upon propagation in turbulent atmosphere [31–38]. The propagation of a laser beam through
Target-in-the-loop (TIL) system in atmosphere was analyzed by Vorontsov and co-workers [39, 40].

In the meantime, the second-order statistical properties of a partially coherent beam in turbulent
atmosphere also attract much attention in the past decade due to potential application in FSO
communications. Beam spreading properties of a partially coherent beam in turbulent atmosphere
was theoretically investigated by Gbur and Wolf [41], and it was revealed that partially coherent beams
were less sensitive to turbulence. This interesting phenomenon was demonstrated in experiment by
Dogariu and Amarande [42]. Shirai et al. studied the spreading of partially coherent beams propagating
in atmospheric turbulence by use of the coherent-mode representation of the beams, and explained why
partially coherent beams are less sensitive to turbulence from the aspect of mode decomposition [43].
Ricklin and Davidson revisited the effects of the atmospheric turbulence on propagation characteristics of
a partially coherent beam and discussed its potential application in FSO communications [44, 45]. Since
then, numerous efforts were devoted to study the second-order statistical properties of partially coherent
beams in atmosphere. The model of partially coherent beam in the literature was not restricted to the
well-known Gaussian-Schell model (GSM) beam. The behaviors of other types of partially coherent
beams with prescribe beam profile and phase, such as partially coherent general beams [46], partially
coherent higher-order Gaussian beams [47–53], partially coherent flat-topped beams [54, 55] and partially
coherent dark hollow beams [56, 57], in turbulent atmosphere were also explored.

The statistical properties, especially the change of the polarization, of partially coherent vector
beams upon propagation in turbulent atmosphere were also paid much attention in the past several
years. Salem et al. analyzed the polarization changes of a partially coherent electromagnetic beam
(i.e., partially coherent vector beam with spatially uniform state of polarization) in atmosphere [58].
Korotkova and co-workers investigated the change of the polarization ellipse and the far-field behaviors
of the degree of polarization of a partially coherent electromagnetic beam propagating in atmospheric
turbulence [59, 60]. It was found that the value of the degree of polarization recovered to its initial
value in the source plane at sufficiently large propagation distance in turbulent atmosphere. The
statistical properties of partially coherent electromagnetic beams under different conditions in turbulent
atmosphere can be found in [61–67]. The statistical properties of a partially coherent vector beam with
spatially non-uniform state of polarization can be found in [68, 69].

As mentioned in the introduction, the eHF principle was first introduced by Yura in 1972 and
was used to evaluate the MCF of a Gaussian wave in turbulent medium [8]. In recent year, this
principle was adopted by many researchers to explore the second-order statistical properties of light
beams propagating in atmosphere. The numerical results obtained from eHF principle agreed reasonably
well with the experimental results [70], even the phase approximation was used [71].

If U (r, 0) denotes the electric field of a light beam in the transmitter, the field of the light beam
after propagating through turbulent medium with distance L is obtained through the eHF principle

U(ρ, L) = − ik

2πL

∫
d2rU0(r, 0) exp

(
ik (ρ − r)2

2L

)
exp (ψ(r,ρ, L)) , (1)

where r and ρ denote the position vectors in the transmitter plane and the receiver plane, respectively.
k = 2π/λ is the wave number with λ being the wavelength in vacuum. ψ (r, ρ, L) is the random part
of complex phase of a spherical wave propagating in turbulence for the point (r, 0) to the point (ρ, L).
The schematic for the propagation geometry is shown in Figure 1. The angular frequency of the field is
suppressed. Applying Eq. (11), the MCF (i.e., second-order correlation function) of a partially coherent
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Figure 1. Schematic for the propagation of light beams in atmosphere.

beam in the receiver plane in turbulent atmosphere is obtained as

Γ(ρ1,ρ2, L) = 〈U(ρ1, L)U∗ (ρ2, L)〉s = − ik

2πL

∫
Γ0(r1, r2, 0) exp

[
ik (ρ1 − r1)

2

2L

]

× exp

[
− ik (ρ2 − r2)

2

2L

]
〈exp [ψ(r1,ρ1, L) + ψ∗(r2,ρ2, L)]〉m d2r1dr2, (2)

where Γ0(r1, r2, 0) = 〈U0(r1, 0)U∗
0 (r2, 0)〉s denotes the MCF of a partially coherent beam in the

transmitter plane. The angular brackets denote the ensemble average. The subscript “s” and “m”
represent the ensemble averages over the source fluctuation and the turbulent medium, respectively.
We assume that the statistics between them is independent. The fourth-order correlation function of
the partially coherent beam in the receiver plane in turbulent atmosphere is obtained as

Γ (ρ1,ρ2,ρ3,ρ4, L) = 〈U (ρ1, L)U∗ (ρ2, L)U(ρ3, L)U∗(ρ4, L)〉
= − ik

2πL

∫∫∫∫
d2r1d

2r2d
2r3d

2r4 〈U0(r1, 0)U∗
0 (r2, 0)U0 (r3, 0)U∗

0 (r4, 0)〉s

× exp

[
ik (ρ1 − r1)

2

2L
− ik (ρ2 − r2)

2

2L
+
ik (ρ3 − r3)

2

2L
− ik (ρ4 − r4)

2

2L

]

×〈exp [ψ(r1,ρ1, L) + ψ∗(r2,ρ2, L) + ψ(r3,ρ3, L) + ψ∗ (r4,ρ4, L)]〉m . (3)

According to [72, see in Chapter 7.3], the average term in Eq. (2) can be written as

〈exp [ψ(r1,ρ1, L) + ψ∗(r2,ρ2, L)]〉m = exp [2E1(0, 0, ; 0, 0) + E2(ρ1,ρ2; r1, r2)] , (4)

and the average term in Eq. (3) reads as

〈exp [ψ(r1,ρ1, L) + ψ∗(r2,ρ2, L) + ψ(r3,ρ3, L) + ψ∗(r4,ρ4, L)]〉m
= exp [4E1(0, 0; 0, 0) + E2(ρ1,ρ2; r1, r2) + E2(ρ1,ρ4; r1, r4) + E2(ρ3,ρ2; r3, r2)

+E2(ρ3,ρ4; r3, r4) + E3(ρ1,ρ3; r1, r3) + E∗
3(ρ2,ρ4; r2, r4)] . (5)

where E1, E2 and E3 in Eqs. (4)–(5) are expressed as

E1(0, 0; 0, 0) = −2π2k2L

∫ ∞

0
κΦn(κ)dκ, (6)

E2(ρ1,ρ2; r1, r2) = 4π2k2L

∫ 1

0

∫ ∞

0
κΦn(κ)J0 [κ |(1 − ξ)ρd + ξrd|]dξdκ, (7)

E3(ρ1,ρ2; r1, r2) = −4π2k2L

∫ 1

0

∫ ∞

0
κΦn(κ)J0 [κ |(1 − ξ)ρd + ξrd|] × exp

[
− iLκ

2

k
ξ(1 − ξ)

]
dξdκ, (8)

where rd = r1 − r2 and ρd = ρ1 − ρ2 are the difference of coordinates in the transmitter and in the
receiver plane. Φn(κ) stands for the power spectral density of index-of-refraction fluctuation which
reflects the statistical properties of the turbulent atmosphere.
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To apply these formulae, we must know the model of the power spectral density. The well-know
Kolmogorov power-law spectrum is defined as

Φn(κ) = 0.033C2
nκ

−11/3, 1/L0 � κ� 1/l0, (9)

where C2
n is the structure constant describing strength of the turbulence, L0 and l0 represent the outer

scale and inner scale of turbulence, respectively. For the case of C2
n < 10−13 m−2/3, the turbulence

is called “weak turbulence”. For the case of C2
n > 10−13 m−2/3, the turbulence is called “strong

turbulence”. Due to its simple mathematical expression, the Kolmogorov spectrum is widely adopted
for theoretical calculations in many literatures. However, the Kolmogorov spectrum is only valid under
the condition of 1/L0 � κ � 1/l0. In some calculations, the outer scale is assumed to be infinity and
the inner scale is assumed to be quite small. In order to include the dissipation range κ > 1/l0, the
well-known power spectral density named Tatarskii spectrum is introduced and is expressed as follows

Φn(κ) = 0.033C2
nκ

−11/3 exp
(−κ2/κ2

m

)
, κ� 1/L0, (10)

with κm = 5.92/l0. The Tatarskii spectrum has a singularity at κ = 0 in the limiting case 1/L0 → 0.
The Kolmogorov spectrum and the Tatarskii spectrum are often modified in practice so that they are
also finite and isotropic in the case κ < 1/L0. One of such modified models is von Karman spectrum,
given by

Φn(κ) = 0.033C2
n

exp
(−κ2/κ2

m

)
(
κ2 + κ2

0

)11/6 , 0 ≤ κ <∞, (11)

with κ0 = C0/L0. Here C0 is a scaling constant and its value is chosen depending on the practical
application. Other modified models can be found in [72].

It is difficult to obtain analytical propagation formula for the MCF of light beam propagating
through the turbulence. In order to obtain analytical expression, a quadratic approximation has been
applied. Then the average term in Eq. (2) reduces to [12, 44]

〈exp [ψ (r1,ρ1, L) + ψ∗(r2,ρ2, L)]〉m = exp
[
− 1

ρ2
0

(
r2
d + rd · ρd + ρ2

d

)]
, (12)

where ρ0 = (0.546C2
nk

2L)−3/5 is the coherence length of a spherical wave propagating in turbulence. On
substituting Eq. (12) into Eq. (2), the analytical expression for the MCF of laser beams with different
models can be obtained.

As an application example, we outline briefly the process for obtaining the analytical propagation
formula for the MCF of a twisted anisotropic GSM beam (i.e., anisotropic GSM beam with twist phase)
propagating in turbulent atmosphere by means of the eHF principle and the tensor method [73–75].
The MCF of the twist anisotropic GSM beam in the transmitter plane is expressed in the following
tensor form [73, 74]

Γ0(r̃, 0) = exp
(
− ik

2
r̃TM−1r̃

)
, (13)

where r̃T = (r1, r2), “T” denotes the transpose of r̃. M is a 4× 4 partially coherent complex curvature
tensor given by [73]

M−1 =

(
R−1 − (i/2k)

(
σ2
I

)−1 − (i/k)
(
σ2
g

)−1 (i/k)
(
σ2
g

)−1 + μJ

(i/k)
(
σ2
g

)−1 + μJ R−1 − (i/2k)
(
σ2
I

)−1 − (i/k)
(
σ2
g

)−1

)
, (14)

where σ2
I and σ2

g stand the transverse spot width matrix and the transverse coherence width matrix,
respectively. R−1 is a wave-front curvature matrix. σ2

I , σ2
g and R−1 are all 2×2 matrices with transpose

symmetry given by:

(
σ2
I

)−1 =

(
σ−2
I11 σ−2

I12

σ−2
I21 σ−2

I22

)
,
(
σ2
g

)−1 =

(
σ−2
g11 σ−2

g12

σ−2
g21 σ−2

g22

)
, R−1 =

(
R−1

11 R−1
12

R−1
21 R−1

22

)
. (15)
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J is an anti-symmetric matrix, given by

J =
(

0 1
−1 0

)
. (16)

μ is a scalar real-valued twist factor with the dimension of an inverse length, limited by the double
inequality 0 ≤ μ2 ≤ [k2 det(σ2

g0)]
−1 due to the non-negativity requirement of Eq. (13). Eq. (13) can be

considered as the general case of a Gaussian-Schell model beam which possesses astigmatism and twist
phase. Eq. (12) can be expressed the following alternative tensor form

〈exp[ψ(r1,ρ1, z;ω) + ψ∗(r2,ρ2, z;ω)]〉m = exp
[
− ik

2

(
r̃T P̃r̃ + r̃T P̃ρ̃ + ρ̃T P̃ρ̃

)]
, (17)

with P̃ = 2
ikρ2

0

(
I −I
−I I

)
. ρ̃T = (ρ1,ρ2) with ρ1 and ρ2 being two arbitrary points in the receiver

plane. Substituting Eqs. (13) and (17) into Eq. (2), after some arrangement, Eq. (2) can be expressed
in the following tensor form

Γ (ρ̃, L) =
1

λ2
[
det
(
B̃
)]1/2

∞∫
−∞

∞∫
−∞

Γs(r̃, 0) exp
[
− ik

2

(
r̃T B̃−1r̃ − 2r̃T B̃−1ρ̃ + ρ̃T B̃−1ρ̃

)]

× exp
[
− ik

2

(
r̃T P̃r̃ + r̃T P̃ρ̃ + ρ̃T P̃ρ̃

)]
d2r1d

2r2, (18)

where B̃ =
(
LI 0
0 −LI

)
, P̃ = 2

ikρ2
0

(
I −I
−I I

)
with I is a 2×2 unit matrix. After some vector integration

and tensor operation, we obtain the MCF of TAGSM beam in the receiver plane

Γ (ρ̃, L) =
1[

det
(
B̃M

−1
+ Ĩ + B̃P̃

)]1/2 exp
[
− ik

2
ρ̃TMoρ̃

]
, (19)

where Mo = (B̃−1 +P̃)−(B̃−1−P̃/2)(M−1 +B̃−1 +P̃)−1(B̃−1−P̃/2) is the partially coherent complex
curvature tensor in the receiver plane and Ĩ denotes the 4 × 4 unit matrix. By setting ρ = ρ1 = ρ2 in
Eq. (19), the average intensity distribution in the received plane is obtained 〈I(ρ, L)〉 = Γ(ρ̃, L).

With the help of the tensor method, one can treat the propagation of a variety laser beams
with prescribed beam profile, phase and polarization, such as partially coherent electromagnetic beam,
flat-topped beam, dark hollow beam and Gaussian beam array, through turbulent atmosphere in an
analytical way [21–23, 27, 65].

The property of the beam spreading of a partially coherent beam in atmospheric turbulence is
characterized by the root-mean squared (RMS) width, defined by [9, 43]

ρ2(z) =

∫∫
ρ2 〈I(ρ, z)〉 d2ρ∫∫
〈I(ρ, z)〉 d2ρ

. (20)

According to [37], Eq. (20) can be written a rather simple form, i.e.,

ρ2(z) = σ2
I + σ2

Jz
2 + F2z

3. (21)

The first term of the right side in Eq. (21) represents the initial beam width of the partially coherent
beam, and the second term denotes the beam spreading induced by the diffraction effect in free space
propagation, proportional to the square of propagation distance z2. The coefficient σ2

J is a measure of
far-zone angular spread of beam in free space. The last term denotes the extra beam spreading due to
the effect of turbulence, proportional to the triple power of the propagation distance z3. The coefficient
F2 reads as

F2 =
2π2

3

∫ ∞

0
κ3Φn(κ)dκ. (22)
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F2 in Eq. (22) only depends on the power density spectrum of the turbulence, irrespective of
characteristics of the beam parameters. At sufficiently large propagation distance, the RMS beam
width is mainly determined by the term F2z

3. That is the reason why the beam shape of an elliptical
beam propagating through the atmospheric turbulence will become circular eventually. In fact, the
beam shape of any other beam will become rotational symmetry in the far field because the RMS beam
width of such beam is proportional to F2z

3.
Another useful method for obtaining the moments of the partially coherent beams in atmosphere

is the Wigner distribution function (WDF), defined as [76, 77]

h(ρs,θ, z) =
(
k

2π

)2 ∫ ∞

−∞
Γ(ρs,ρd, z) exp(−ikθ · ρd)d2ρd, (23)

where ρs = (ρ1 +ρ2)/2, Γ(ρs, ρd; z) is the MCF in the receiver plane. kθx and kθy are the wave vector
component along the x axis and y axis, respectively. The moments of the order n1 + n2 +m1 +m2 of
the WDF for partially coherent beams in turbulence are given by〈

ρn1
x ρ

n2
y θ

m1
x θm2

y

〉
=

1
P

∫ ∞

−∞
ρn1
x ρ

n2
y θ

m1
x θm2

y h(ρ,θ, z)d2ρdd
2θ (24)

with
P =

∫ ∞

−∞
h(ρ,θ, z)d2ρdd

2θ (25)

P denotes the total power carried by the beams. In principle, Eq. (24) allows us to obtain arbitrary
moments with the help of WDF. The WDF functions of partially coherent dark hollow beam, partially
coherent flat-topped beam, twisted GSM beam and their related properties such as RMS beam width,
effective radius of curvature and propagation factor can be found in [57, 78, 79].

3. SCINTILLATION OF A PARTIALLY COHERENT BEAM IN TURBULENT
ATMOSPHERE

When a light beam propagates through atmosphere, it experiences the atmospheric turbulence caused
by the random fluctuation of refractive index. The amplitude and phase of the light beam therefore
are temporal variant due to the turbulence. The intensity fluctuation of an optical beam resulting from
propagation through atmospheric turbulence is commonly referred to scintillation. Based on the Rytov
method, the scintillation theory built in the early studies was applied in a variety of beams under the
condition of weak turbulence [80–87]. The main motivation of this study was to find what kinds of
light beams could reduce the scintillation index in the receiver plane. Fortunately, some laser beams
posses such ability from the numerical simulation, and the experimental results for high-order beams
have been reported to support such conclusions [88, 89].

Calculation of the scintillation of a partially coherent beam induced by the atmospheric turbulence
seems to be more complicated compared to that of a coherent beam. In order to obtain analytical
expression for the scintillation index, Feizulin and Kravtsov used the quadratic approximation in the
two-source structure functions for a spherical wave propagating in a weakly turbulent atmosphere [9].
With the help of the quadratic approximation and eHF principle, the scintillation index of a partially
coherent beam has been studied by Leader [13] and Wang et al. [18]. Recently, this method was applied
to study the scintillation properties of other partially coherent beams with prescribed beam profile
and phase [90, 91]. In 2004, Korotkova et al. [92] established an analytical model for evaluating the
scintillation index of a GSM beam. In this model, a partially coherent beam is simulated by a laser beam
passing through a random phase diffuser with Gaussian statistics, which is placed in the transmitter
plane. Later, this model was applied for partially coherent electromagnetic beam [93]. Extension of
this theoretical mode to other types of partially coherent beams has not been developed yet. Berman
and Chumak [94] introduced photon distribution function to evaluate the scintillation index of a partially
coherent beam for long-distance propagation. The equivalence of these methods has not been approved,
but the results obtained from these methods are similar, e.g., the partially coherent beam can greatly
reduce the scintillation induced by atmospheric turbulence.
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The strength of the intensity fluctuation of the optical beam propagating through turbulence is
measured by scintillation index, defined as

σ2
I =

〈
I2(ρ; z)

〉
〈I(ρ; z)〉2 − 1, (26)

where I (ρ; z) stands for the instantaneous intensity of an optical beam at point ρ in the receiver plane.
The denominator is the square of the average intensity which can be evaluated from the second-order
correlation function of the field shown in Eq. (2), and the numerator is the average of the square of
the instantaneous intensity which can be derived from the fourth-order correlation function of the filed
shown in Eq. (3).

To calculate the scintillation index, it is important for use to take the characteristic time of intensity
fluctuation of the source τs, the response time of intensity fluctuation induced by the turbulence τa and
the integration time of the detector τd into consideration. For the case of τd � τs, the detector only
measures the average temporal intensity of the beam due to the source fluctuation, whereas for the case
of τd � τs, the detector is sensitive to the intensity fluctuation of the source and those caused by the
atmospheric turbulence. The term “fast detector” means that the response time of τd is faster than τs
and τa, i.e., τd � τs � τa. In this situation, the fourth-order moment of the field in the source plane is
written

〈U0(r1, 0)U∗
0 (r2, 0)U0(r3, 0)U∗

0 (r4, 0)〉s = Γs (r1, r2) Γs(r3, r4) + Γs(r1, r4)Γs (r3, r2) . (27)

The term “slow detector” denotes the case τs � τd � τa, and in this case, the fourth-order
correlation function of the field in the source plane reduces

〈U0(r1, 0)U∗
0 (r2, 0)U0(r3, 0)U∗

0 (r4, 0)〉s = Γs(r1, r2)Γs(r3, r4). (28)

Most of the literatures were devoted to investigate the scintillation index of a partially coherent beam
under the condition of “slow detector”. As an application example, we illustrate the process for
evaluating the scintillation index of the twisted GSM in weak turbulence based on the eHF principle and
the quadratic approximation for the average of the fourth-order phase term induced by the turbulence
by applying the tensor method. According to Refs. [13, 18], the fourth-order spherical-wave coherence
function of the turbulent medium is given by

〈exp [ψ∗ (r1,ρ) + ψ (r2,ρ) + ψ∗ (r3,ρ) + ψ (r4,ρ)]〉m
= exp [−0.5Dψ(r1 − r2) − 0.5Dψ(r1 − r4) − 0.5Dψ(r2 − r3) − 0.5Dψ(r3 − r4)]

× exp [0.5Dψ(r2 − r4) + 0.5Dψ(r1 − r3)]
× exp [2Bx(r2 − r4, 0) + 2Bx(r1 − r3)] exp [iDxs(r2 − r4) − iDxs(r1 − r3)] , (29)

where Dψ(r2 − r1) = 2|ra − rb|2/ρ2
0, (a, b = 1, 2, 3, 4) is the wave structure function, Dxs(ra − rb) =

|ra − rb|2/ρ2
xs is the log-amplitude phase structure function with ρ2

xs = (0.114k13/6C2
nz

5/6)−1/2 is the
coherence length of log-amplitude and phase. Bx(ra − rb) = σ2

xs − 0.5(1/ρ2
0 − 1/ρ2

x)|ra − rb| is the log-
amplitude correlation function, with 1/ρ2

x = 0.425C2
nk

13/6z5/6 σ2
xs = 0.124C2

nk
7/6z11/6 is the variance of

log amplitude for spherical wave.
Substituting Eq. (29) into Eq. (3), and after some arrangement, we can express the term 〈I2(ρ, z)〉in

the following alternative tensor form:

〈
I2(ρ, z)

〉
=

exp
(
4σ2

xs

)
λ4 det

[
D̃
]1/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp
[
− ik

2
r̃T Ñ−1r̃

]
exp

[
− ik

2

(
r̃T D̃−1r̃− 2r̃T D̃−1ρ̃

)]

× exp
[
− ik

2
r̃T Q̃r̃

]
d2r1d

2r2d
2r3d

2r4, (30)

where r̃T = (r1, r2, r3, r4) and ρ̃T = (ρ, ρ, ρ, ρ) represent four arbitrary position vectors in the source
plane and one position vector in the received plane. Ñ, D̃−1 and Q̃ are 8 × 8 matrix given by:

Ñ−1 =
(
M̄−1 0

0 M̄−1

)
, D̃−1 =

(
B̄−1 0

0 B̄−1

)
, Q̃ =

(
Q̄1 Q̄2

Q̄2 Q̄1

)
, (31)
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with Q̄1, Q̄2 are given by

Q̄1 =
2i
k

((−2/ρ2
0 + 1/ρ2

x − i/ρ2
xs

)
Ī 1/ρ2

0Ī
1/ρ2

0Ī
(−2/ρ2

0 + 1/ρ2
x + i/ρ2

xs

)
Ī

)
,

Q̄2 =
2i
k

(−(1/ρ2
x − i/ρ2

xs)̄I
(
1/ρ2

0

)
Ī

1/ρ2
0Ī − (1/ρ2

x + i/ρ2
xs

)
Ī

)
.

(32)

After some rearrangement and vector integration, we obtain the expression for the intensity-
correlation function〈

I2 (ρ, z)
〉

= exp
(
4σ2

xs

) [
det
(
D̃Ñ

−1
+ D̃Q̃ + Ĩ

)]−1/2
exp

[
− ik

2
ρ̃T Ñ−1

r ρ̃

]
, (33)

where Ñ−1
r = [(Ñ

−1
+ Q̃)−1 + D̃]−1 and Ĩ is a 8 × 8 unit matrix. Substituting Eqs. (19) and (33) into

Eq. (26), one can calculate the scintillation properties of the twisted GSM beam as well as the GSM
beam propagating through weak turbulence [91]. It was found in [91] that the twist phase can greatly
reduce the turbulence-induced scintillation.

Experimental study of the possibility for reduction of the scintillation index of a partially
coherent beam with prescribed phase or polarization propagating through simulated atmosphere or real
atmosphere has been carried out by several groups recently [95–99]. It was demonstrated that a partially
coherent beam with initial radial polarization or vortex phase can further reduce the scintillation index.
Here, we outline briefly our recent experimental development on the measurement of the scintillation
index of the GSM vortex beam propagation through thermal-induced turbulence. The experimental
setup for generating the GSM vortex beam, measuring its spatial coherence length and scintillation
index is shown in Figure 2 [91].

Part I of Figure 2 is the experimental setup for generating a GSM vortex beam with controllable
spatial coherence. A He-Ne laser beam (λ ≈ 632.8 nm) reflected from a reflecting mirror focuses on
the rotating ground-glass disk (RGGD) by a focal lens L1, and then, passing through the collimating
lens L2 and the Gaussian amplitude filter (GAF), the beam becomes a GSM beam. GAF is used to
transform its intensity into a Gaussian profile. After passing through a spiral phase plate (SPP) with
transmission function T (ϕ) = exp(ilϕ) which is located just behind the GAF, the generated GSM beam
becomes a GSMV beam, whose MCF is

ΓGSMV (r1, r2) = exp

[
−r2

1 + r2
2

4σ2
0

− (r1 − r2)
2

2σ2
g

]
exp [il (ϕ1 − ϕ2)] , (34)

Figure 2. Experimental setup for generating a GSM vortex beam, measuring its spatial coherence
length and the scintillation index of the generated beam propagating through thermally induced
turbulence. RM, reflecting mirror; L1, L2, L3, L4, thin lenses; RGGD, rotating ground-glass disk; GAF,
Gaussian amplitude filter; SPP, spiral phase plate; BS1, BS2, beam splitters; D1, D2, single photon
detectors; ECC, electronic coincidence circuit; CCD, charge-coupled device; PC, personal computer.
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Figure 3. Experimental results of the scintillation index of a GSM or GSM vortex beam (l = 1, 2) at
the centroid versus the initial coherence width.

where ϕi = arctan(yi/xi), l is the topological charge, and σ0 and σg denote the transverse beam width
and spatial coherence width, respectively.

Part II of Figure 2 shows the experimental setup for measuring the spatial coherence width σg of
the generated GSM or GSM vortex beam. The detailed information of measuring process can be found
in [96]. The transmitted beam from the BS1 first passes through a 35 cm × 50 cm electric hot plate
which is used to produce thermal turbulence through convection, then passes through a collection lens
L4 with focal length f4 = 15 cm, and finally arrives at the charge-coupled device (CCD) locating in
the geometrical focal plane (receiver plane), which is used to record the signal by a data acquisition
system. Note that the intensity distribution of the GSM or GSM vortex beam in the plane of CCD is
of Gaussian profile by controlling the spatial coherence length of the generated GSM vortex beam.

Figure 3 shows the experimental results of the scintillation index of a GSM vortex beam (l = 1, 2)
at the centroid versus the initial spatial coherence width [98]. The corresponding results of a GSM
beam are also shown in Figure 3. One finds from Figure 3 that the scintillation index of a GSM or
GSMV beam decreases with the decrease of σg, indicating that a partially coherent beam with low value
of σg is less affected by the turbulence as expected. When σg > 0.35 mm, the scintillation index of a
GSM vortex beam is smaller than that of a GSM beam and the scintillation index decreases with the
increase of the topological charge, which implies that a GSM vortex beam has advantage over a GSM
beam for reducing turbulence-induced scintillation. When σg < 0.35 mm, the scintillation index of a
GSM vortex beam is almost the same with that of a GSM beam, and almost doesn’t vary as σg varies.
This phenomenon could be explained by the fact that the scintillation index of the GSM vortex beam
is influenced by the coherence and the vortex phase together, when σg is very small, the influence of
the coherence on the scintillation index plays a dominant role, while the influence of the vortex phase
is negligible.

Although many kinds of laser beams including partially coherent beams and high-order Gaussian
beams have the potential to reduction of the scintillation index induced by the atmospheric turbulence,
the RMS beam width is relative larger than the fundamental Gaussian beam under the same condition,
which leads to the decrease of the intensity received by the detector in the receiver plane. Therefore,
there is a trade-off between the beam spreading and the scintillation, and one should take both beam
spreading and scintillation into consideration in a reasonable way in practical applications.

4. BEAM WANDER OF PARTIALLY COHERENT BEAM IN TURBULENT
ATMOSPHERE

Besides the turbulence-induced beam spreading and scintillation, beam wander is another important
factor caused by the turbulence which limits the performance of FSO communications, laser radar, and
other areas. Upon propagation in atmospheric turbulence, a finite beam experiences random deflections.
As a result, the beam spot observed at some distance from the transmitter will “dance” randomly in the
transverse plane over short time periods, which is commonly referred to beam wander. Beam wander
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can be characterized statistically by the variance of beam displacement along the propagation axis.
Up to now, many researchers have studied the effect of beam wander in atmospheric turbulence.

Chernov [100] and Beckmann [101] used a geometrical optics method (GOM) to evaluate the wander
of a single ray, not taking the diffraction effects and the finite beam size into consideration. Chiba
derived an analytical formulation for the beam wander of a collimated or nearly collimated beam with
finite beam size using GOM, and he carried out experiment for measuring the beam wander effect to
compare his analytical results [102]. Churnside and Lataitis [103] developed the GOM and derived
a simple, analytic expression for the variance of the beam displacement of light beam in atmosphere
obeying the Kolmogorov statistics, which is applicable for the divergent or convergent Gaussian beam.
Almost at the same time, an analysis of the beam wander that includes diffraction effects has also been
developed by means on Markov approximation [104–106]. Tofsted analyzed the effect of the outer-scale
of turbulence on the beam wander and the angle-of-arrival variance for the Gaussian beams [107].

Recently, the beam wanders of the high-order beams in turbulence have attracted more and more
attentions. Eyyuboglu and Cil analyzed the beam wander of dark hollow (DH), flat-topped (FT) and
annular beams in weak turbulence by means of Rytov approximation [108], and it was found that
DH and FT beams exhibit less beam wander under certain conditions compared to the fundamental
Gaussian beam. Similar results were found for cos, cosh-Gaussian beams and J0-, I0-Bessel Gaussian
beams in the later papers [109, 110]. The influence of the vortex phase on the beam wander of laser
beam in atmospheric turbulence was studied by Aksenov et al. using the Monte Carlo technique or the
phase screen method [111, 112]. Wen and Chu investigated the beam wander of an Airy beam with a
vortex phase in turbulence [113]. The results in those papers showed that the beam wander decreases as
the topological charge of the vortex phase increases. Funes et al. carried out experimental measurement
of the beam wander of a Gaussian beam against the propagation length through indoor artificially
convective turbulence [114], and Kaushal et al. studied the beam wander of a Gaussian beam under
varying atmospheric turbulence condition in an optical turbulence generator chamber [115].

In 2007, Berman et al. [116] used a photon distribution function method to examine the effect
of initial spatial coherent length of a light beam on the beam wander in atmospheric turbulence, and
they found that the beam wander decreases effectively with decrease of the initial spatial coherence
length when the propagation distance is not very short. Xiao and Voelz [117] extended the beam
wander theory of a focused coherent Gaussian beam in a weak turbulence developed by Andrews and
Phillips [72, see in Chapter 6] to a focused partially coherent beam, and investigated the behavior of the
beam wander of a focused partially coherent beam in atmosphere. Their theory is also applicable for
the collimated or divergent partially coherent beam. Later, the influence of the polarization properties
of the partially coherent electromagnetic beam on the beam wander was discussed by Song et al. [118].
Very recently, Liu et al. [119] verified in experiment that decreasing the spatial coherence length of
the beam could indeed reduce the beam wander in the thermal-induced turbulence, and this advantage
is enhanced when the spatial coherence length drops to a critical value which is determined by the
propagation length and the beam characteristics.

Assume that the statistics of the atmospheric turbulence obey the Kolmogorov spectrum. Based
on the Xiao’s analysis [117], the variance of beam wander of the collimated partially coherent beam
(GSM beam) takes the following form [119]

〈
r2c
〉

= 7.25C2
nω

−1/3
0 L3 × 48 − 33 [1 + P (σg)]

5/6 + 5 [8P (σg) − 3]2 F1 [1/6, 1/2, 3/2,−P (σg)]
40P (σg)

, (35)

with

P (σg) =
(

1 +
ω2

0

σ2
g

)
L2

z2
R

, (36)

where ω0 and σg represent the beam waist size and the initial coherence length of the GSM beam,
zR = kω2

0/2 denotes the Rayleigh length of the light beam, 2F1(·) is a hypergeometric function. Eq. (35)
is rather complicated and could not display the relationship between 〈r2c 〉 and σg clearly. In the limiting
case P (σg) � 1 or P (σg) � 1, Eq. (35) can be simplified to the following analytical expression

〈
r2c
〉

=

{
12.39C2

nω
−1/3
0 z3, P (σg) � 1

3.88k1/3C2
nz

8/3σ
1/3
g , P (σg) � 1

(37)
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(a) (b)

Figure 4. Experimental results of rms beam wander of the GSM beam versus (a) the transverse
coherence length σg and (b) the temperature of the hot plate.

P (σg) � 1 means that the propagation distance is short, or the spatial coherence length is large
compared to beam waist size, whereas P (σg) � 1 implies that the propagation distance is long or the
spatial coherent length is smaller than the beam waist size. It follows from Eq. (37) that the variance of
the beam wander is independent of spatial coherent length for the case P (σg) � 1, while the variance
of beam wander decreases as the spatial coherent length decreases for the case P (σg) � 1.

Experimental verification of the dependence on the spatial coherent length on the RMS beam
wander of the GSM beam is performed in Ref. [119]. The experimental setup is similar to Figure 2
(just remove the SPP in Figure 2). Figure 4 shows the experimental results of the RMS beam wander
of the GSM beam against the spatial coherent length and the temperature of the hot plate through the
thermal-induced turbulence. One finds that 〈r2c 〉1/2 is almost independent of σg when the value of σg is
about larger than 0.1 mm (P (σg) ≈ 0.25), while 〈r2c 〉1/2 decreases rapidly with the decrease of σg when
the value of σg is smaller than 0.1 mm. As expected, 〈r2c 〉1/2 increases with the increase of temperature,
and the increasing slope is almost same for three different values of σg.

We want to point out that the reduction of the beam wander of the partially coherent beams
sacrifices the beam divergence because the angular spread of the beam become far large with the
decrease of the coherence length. Thus, it leads to the decrease of the intensity received by the detector
in the receiver plane, and we should take those factors into consideration in practical applications.

5. INTERACTION OF A PARTIALLY COHERENT BEAM WITH A SEMIROUGH
TARGET IN TURBULENT ATMOSPHERE

The interaction of a partially coherent beam with a semirough target in turbulent atmosphere has
been studied in [120–122], and it was found that both the atmospheric turbulence and the target will
induce changes of the spectral intensity, the degree of coherence, and the degree of polarization of the
partially coherent beam. In [123], Sahin et al. analyzed the inverse problem of the interaction of a
partially coherent electromagnetic beam with a semirough target in turbulent atmosphere, and they
found that it is possible to predict the typical roughness of the target surface by comparing coherence
and polarization properties of the illumination beam and of the return beam. In [124], with the help
of the tensor method, Wu and Cai analyzed the inverse problem of the interaction of an isotropic GSM
beam with a semirough target in turbulent atmosphere, and they found that we can determine the
target size and the transverse correlation width of the target by measuring the transverse beam widths
and the transverse coherence widths of the beams at the source plane and the receiver plane.

Figure 5 shows the schematic diagram for a GSM beam interacting with a semi-rough target in
turbulent atmosphere and its equivalent (unfolded) version [124]. The MCF of an isotropic GSM beam
without twist phase at the source plane is expressed in the following tensor form [124]

Γ(̃r) = exp
(
− ik

2
r̃TM−1

0 r̃
)
, (38)
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(a) (b)

Figure 5. Schematic diagram for a GSM beam interacting with a semi-rough target in turbulent
atmosphere and its equivalent (unfolded) version.

where M−1
0 is the complex curvature tensor given by

M−1
0 =

⎛
⎜⎜⎝
(
− i

2kσ2
I

− i

kδ2I

)
I

i

kδ2I
I

i

kδ2I
I

(
− i

2kσ2
I

− i

kδ2I

)
I

⎞
⎟⎟⎠ . (39)

Here σs and δs denote the transverse beam width and the transverse coherence width of the GSM beam
in the source plane. I is a 2 × 2 unit matrix.

The correlation function which describes the effect of the semirough target on the beam can be
expressed in the following tensor form [124]

〈T (t1)T ∗ (t2)〉 =
4πβ2

k2
exp

[
− ik

2
t̃T T̃t̃

]
, (40)

with

T̃ =

⎛
⎜⎜⎝
(
− 2i
kω2

R

− 2i
kl2c

)
I

2i
kl2c

I

2i
kl2c

I
(
− 2i
kω2

R

− 2i
kl2c

)
I

⎞
⎟⎟⎠ . (41)

Here ωR denotes the target size, lc the typical transverse correlation width which characterizes the
roughness of the target, and β a normalization parameter.

After interaction with the target in atmospheric turbulence, we can obtain the MCF of the GSM
beam in the receiver plane as follows [124]

Γ (ρ̃) =
4πβ2

k2
[
det
(
Ĩ+B̃M

−1
1 +B̃T̃+B̃P̃0

)]1/2 [
det
(
Ã+B̃M

−1
0 +B̃P̃0

)]1/2
× exp

[
− ik

2
ρ̃TM−1

2 ρ̃

]
. (42)

where Ĩ is a 4 × 4 unit matrix, M−1
2 is the complex curvature tensor of the GSM beam at the receiver

plane given by

M−1
2 = P̃0 + B̃−1 −

(
B̃−1 − 0.5P̃0

)T (
M−1

1 + T̃ + B̃−1 + P̃0

)−1 (
B̃−1 − 0.5P̃0

)
. (43)

Here

Ã=
(

I 0I
0I I

)
, B̃=

(
zI 0I
0I −zI

)
, D̃=

(
(1 − z/f) I 0I

0I (1 − z/f) I

)
, P̃=

2
ikρ2

0

(
I −I
−I I

)
, (44)

where ρ0 = (0.545C2
nk

2z)−3/5 is the coherence length of a spherical wave propagating in the turbulent
medium and C2

n the structure constant of the turbulent atmosphere.
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We can express M−1
2 in the following alternative form

M−1
2 =

⎛
⎜⎜⎝
(
R−1

out −
i

2kσ2
out

− i

kδ2out

)
I i

kδ2out
I

i

kδ2out
I

(
−R−1

out −
i

2kσ2
out

− i

kδ2out

)
I

⎞
⎟⎟⎠ , (45)

where σout and δout are the transverse beam width and the transverse coherence width of the GSM
beam at the receiver plane, and R−1

out is its wave-front curvature.
After tedious operation, we can obtain the following equations

ρ2
0

δ2out
=
e1ω

4
R + 4b1ω2

R + 2b1l2c + f1l
2
cω

2
R + g1l

2
cω

4
R

a1ω4
R + 2b1ω2

R + b1l2c + c1l2cω
2
R + d1l2cω

4
R

, (46)

1
σ2

out

=
e2l

2
cω

2
R + f2l

2
cω

4
R

a1ω4
R + 2b1ω2

R + b1l2c + c1l2cω
2
R + d1l2cω

4
R

, (47)

where

a1 = 8R2z2ρ2
0δ

2σ2, b1 = 16R2z2ρ2
0δ

2σ4, c1 = R2z2σ2
[
16ρ2

0σ
2 + δ2

(
8ρ2

0 + 32σ2
)]
,

d1 = 8k2Rzρ2
0δ

2σ4 + 4k2z2δ2ρ2
0σ

4 +R2
[
4k2ρ2

0δ
2σ4 + z2

(
4ρ2

0σ
2 + δ2

(
ρ2

0 + 8σ2
))]

,

e1 = ρ2
0R

2δ2σ2
(
16z2 + 8k2ρ2

0σ
2
)
, f1 = R2z2σ2

[
32ρ2

0σ
2 + δ2

(
16ρ2

0 + 48σ2
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,

g1 = 24k2Rzρ2
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2σ4 + 8k2z2ρ2
0δ

2σ4 +R2
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k2ρ2

0

(
24δ2 + 4ρ2

0

)
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(
8ρ2

0σ
2 + δ2

(
2ρ2
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,

e2 = 16k2R2ρ2
0δ

2σ4, f2 =4k2R2ρ2
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4k2ρ4

0δ
2
Iσ

4
I + z2ρ2

0

(
4ρ2
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2
I + δ2I

(
ρ2
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I
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0

(
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2
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(
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0 + 3σ2
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k2ρ2
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0+δ20
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0.25ρ2

0 + 2σ2
0

)) .
Through solving Eqs. (46) and (47), one can obtain the relations between ωR, lc, σs, δs, σout , δout ,

and one can determine the values of ωR, lc through measuring the values of σs, δs, σout , δout [124]. The
values of beam widths σs and σout can be measured by the CCD conveniently, and the values of the
coherence widths δs and δout can be measured by the method developed in [125]. Thus, GSM beam
provides a convenient way for remote detection.

6. CONCLUSION

We have presented a historical overview on propagation of optical beams in turbulent atmospheric and
introduced the basic theory for treating the propagation of optical beams in turbulent atmosphere.
Recent progress on propagation of partially coherent beam in turbulent atmosphere, the interaction
of partially coherent beam with a semirough target and corresponding inverse problem, has been
reviewed. It was shown that the use of partially coherent beam may overcome the turbulence-
induced beam degeneration, reduce the turbulence-induced scintillation, reduce the turbulence-induced
beam wander, thus it has great potential application in FSO communications and active laser radar
systems. Furthermore, partially coherent beam provides a convenient way for detecting a semirough
target in turbulent atmosphere. Recently, experimental generation and measurement of a partially
coherent beam with prescribed beam profile, polarization, phase and correlation function have been
developed rapidly [126–140], and we believe that partially coherent beams will be used in many practical
applications soon. A recent review on partially coherent beam propagation in atmospheric turbulence
can be found in [141], which presents the progress in this field from another aspect.
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