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Abstract 

The problem of reflection and refraction phenomenon due to plane 

waves incident obliquely at a plane interface between uniform 

elastic solid half-space and microstretch thermoelastic diffusion 
solid half-space has been studied. It is found that the amplitude 

ratios of various reflected and refracted waves are functions of 

angle of incidence, frequency of incident wave and are influenced 

by the microstretch thermoelastic diffusion properties of the me-

dia. The expressions of amplitude ratios and energy ratios are 

obtained in closed form. The energy ratios have been computed 

numerically for a particular model. The variations of energy ratios 

with angle of incidence are shown for thermoelastic diffusion me-

dia in the context of Lord-Shulman (L-S) (1967) and Green-

Lindsay (G-L) (1972) theories. The conservation of energy at the 

interface is verified. Some particular cases are also deduced from 

the present investigation. 
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1 INTRODUCTION 

Theory of microstretch continua is a generalization of the theory of micropolar continua.The theory 
of microstretch elastic solids has been introduced by Eringen [7–10]. This theory is a special case of 

the micromorphic theory. In the framework of micromorphic theory, a material point is endowed 

with three deformable directors. When the directors are constrained to have only breathing-type 
microdeformations, then the body is a microstretch continuum [10]. The material points of these 

continua can stretch and contract independently of their translations and rotations. A microstretch 
continuum is a model for a Bravais lattice with its basis on the atomic level and two-phase dipolar 

solids with a core on the macroscopic level. Composite materials reinforced with chopped elastic 

fibers, porous media whose pores are filled with gas or inviscid liquid, asphalt, or other elastic inclu-
sions and solid–liquid crystals, etc., are examples of microstretch solids. The theory is expected to 
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find applications in the treatment of the mechanics of composite materials reinforced with chopped 

fibers and various porous materials.  
Eringen [9] developed the theory of microstretch thermoelastic solids and derived the equations 

of motions, constitutive equations, and boundary conditions for thermo-microstretch fluids and ob-

tained the solution of the problem for acoustical waves in bubbly liquids. During the last four dec-
ades, wide spread attention has been given to thermoelasticity theories which admit a finite speed 

for the propagation of a thermal field. Lord and Shulman [18] reported a new theory based on a 
modified Fourier’s Law of heat conduction with one relaxation time. A more rigorous theory of 

thermoelasticity by introducing two relaxation times has been formulated by Green and Lindsay 

(G-L) [13]. A survey article of various representative theories in the range of generalized thermoe-
lasticity have been brought out by Hetnarski and Ignaczak [14]. 

Diffusion is defined as the spontaneous movement of the particles from a high concentration re-
gion to the low concentration region and it occurs in response to a concentration gradient expressed 

as the change in the concentration due to change in position. Thermal diffusion utilizes the transfer 

of heat across a thin liquid or gas to accomplish isotope separation. Today, thermal diffusion re-
mains a practical process to separate isotopes of noble gases(e.g. xexon) and other light isotopes(e.g. 

carbon) for research purposes. In most of the applications, the concentration is calculated using 
what is known as Fick’s law. This is a simple law which does not take into consideration the mutual 

interaction between the introduced substance and the medium into which it is introduced or the 

effect of temperature on this interaction. However, there is a certain degree of coupling with tem-
perature and temperature gradients as temperature speeds up the diffusion process. The thermod-

iffusion in elastic solids is due to coupling of fields of temperature, mass diffusion and that of strain 
in addition to heat and mass exchange with the environment. 

Nowacki[19-22] developed the theory of thermoelastic diffusion by using coupled thermoelastic 
model. Dudziak and Kowalski [6] and Olesiak and Pyryev [23], respectively, discussed the theory of 

thermodiffusion and coupled quasi-stationary problems of thermal diffusion for an elastic layer. 

They studied the influence of cross effects arising from the coupling of the fields of temperature, 
mass diffusion and strain due to which the thermal excitation results in additional mass concentra-

tion and that generates additional fields of temperature. Gawinecki and Szymaniec [11] proved a 
theorem about global existence of the solution for a nonlinear parabolic thermoelastic diffusion 

problem. Gawinecki et al. [12] proved a theorem about existence, uniqueness and regularity of the 

solution for the same problem. Uniqueness and reciprocity theorems for the equations of generalized 
thermoelastic diffusion problem, in isotropic media, was proved by Sherief et al. [24] on the basis of 

the variational principle equations, under restrictive assumptions on the elastic coefficients. Due to 
the inherit complexity of the derivation of the variational principle equations, Aouadi [2] proved 

this theorem in the Laplace transform domain, under the assumption that the functions of the prob-

lem are continuous and the inverse Laplace transform of each is also unique. Sherief and Saleh [25] 
investigated the problem of a thermoelastic half-space in the context of the theory of generalized 

thermoelastic diffusion with one relaxation time. Kumar and Kansal [16] developed the basic equa-
tion of anisotropic thermoelastic diffusion based upon Green-Lindsay model. 

Borejko [4] discussed the reflection and transmission coefficients for three-dimensional plane 

waves in elastic media. Wu and Lundberg [28] investigated the problem of reflection and transmis-
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sion of the energy of harmonic elastic waves in a bent bar. Sinha and Elsibai [27] discussed the re-

flection and refraction of thermoelastic waves at an interface of two semi-infinite media with two 
relaxation times. Singh [26] studied the reflection and refraction of plane waves at a liquid/thermo-

microstretch elastic solid interface. Kumar and Pratap [15] discussed the reflection of plane waves in 

a heat flux dependent microstretch thermoelastic solid half space. 
 In the present paper, the reflection and refraction phenomenon at a plane interface between an 

elastic solid medium and a microstretch thermoelastic diffusion solid medium has been analyzed. In 
microstretch thermoelastic diffusion solid medium, potential functions are introduced to the equa-

tions. The amplitude ratios of various reflected and transmitted waves to that of incident wave are 

derived. These amplitude ratios are further used to find the expressions of energy ratios of various 
reflected and refracted waves to that of incident wave. The graphical representation is given for 

these energy ratios for different direction of propagation.  The law of conservation of energy at the 
interface is verified. 

 

2 BASIC EQUATIONS 

Following Sherief et al. [24], Eringen [10] and Kumar & Kansal [17].The equations of motion and 

the constitutive relations in a homogeneous isotropic microstretch thermoelastic diffusion solid in 
the absence of body forces, body couples, stretch force, and heat sources are given by  

 

λ + 2µ + K( )∇ ∇.

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and constitutive relations are 
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where 

λ , µ ,α ,β ,γ ,K ,λ
o
,λ
1
,α

o
,b
o
,  are material constants, ρ  is the mass density , 


u = u

1
,u
2
,u
3( )  is 

the displacement vector and 

ϕ = ϕ

1
,ϕ

2
,ϕ

3( )  is the microrotation vector, ϕ *  is the microstretch 

scalar function, T and T
0
 are the small temperature increment and the reference temperature of 

the body chosen such that T T
0
1,  C is the concentration of the diffusion material in the 

elastic body. K *  is the coefficient of the thermal conductivity, C*  the specific heat at constant 

strain, D is the thermoelastic diffusion constant. a, b are, respectively, coefficients describing the 

measure of thermodiffusion and of mass diffusion effects, β
1
= 3λ + 2µ + K( )α

t1
,

β
2
= 3λ + 2µ + K( )α
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are coefficients of linear thermal expansion and α
c1
,α

c2
 are the coefficients of linear diffusion 

expansion. j  is the microintertia, j
o
 is the microinertia of the microelements, σ

ij
 and m

ij
 are 

components of stress and couple stress tensors respectively, λ
i

*  is the microstress tensor, 

e
ij

=
1

2
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+ u

j ,i( )
⎛
⎝⎜

⎞
⎠⎟

 are components of infinitesimal strain, e
kk

 is the dilatation, δ
ij
 is the 

Kronecker delta, τ 0 ,τ 1  are diffusion relaxation times with τ 1 ≥ τ 0 ≥ 0  and τ
0
,τ
1
 are thermal 

relaxation times with τ
1
≥ τ

0
≥ 0 . Here τ

0
= τ 0 = τ

1
= τ 1 = γ

1
= 0  for Coupled Thermoelasitc 

(CT) model, τ
1
= τ

1
= 0,  ε =1,γ

1
= τ

0
 for Lord-Shulman (L-S) model and ε = 0,  γ

1
= τ 0 where

τ
0
> 0  for Green-Lindsay (G-L) model. 

In the above equations, a comma followed by a suffix denotes spatial derivative and a super-

posed dot denotes the derivative with respect to time respectively.    
The basic equations in a homogeneous isotropic elastic solid are written as 

 

λ e + µe( )∇.∇
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 (9) 

 

where λ e , µe  are Lame’s constants, u
i

e  are the components of the displacement vector 

u
e , ρ e  

is density corresponding to the isotropic elastic solid. 
The stress- strain relation in isotropic elastic medium are given by  
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where  e
ij

e
=
1
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u
i , j
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⎞
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 are components of the strain tensor, e
kk

e  is the dilatation. 

   

3 FORMULATION OF THE PROBLEM 

We consider an isotropic elastic solid half-space (M1) lying over a homogeneous isotropic, mi-

crostretch generalized thermoelastic diffusion solid half-space (M2). The origin of the cartesian 

coordinate system (x
1
, x
2
,x
3
)  is taken at any point on the plane surface (interface) and x

3
-axis 

point vertically downwards into the microstretch thermoelastic diffusion solid half-space. The 

elastic solid half-space (M1) occupies the region 
  
x

3
< 0  and the region 

  
x

3
> 0  is occupied by the 

microstretch themoelastic diffusion solid half-space (M2) as shown in Fig.1. We consider plane 

waves in the x
1
− x

3
 plane with wave front parallel to the x

2
-axis. For two-dimensional problem, 

we have 

 

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3
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2
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u
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Figure 1   Geometry of the Problem 
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We define the following dimensionless quantities  
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where 
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=
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ρ
, ω *  is the characteristic frequency of the medium,  

Upon introducing the quantities (12) in equations (1)-(5), with the aid of (11) and after sup-

pressing the primes, we obtain 
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We introduce the potential functions φ andψ  through the relations 
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in the equations (13)-(18), we obtain 
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For the propagation of harmonic waves in x
1
− x

3
 plane, we assume 
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The system of equations (27), (30)-(32) has a non-trivial solution if the determinant of the co-
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and 
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The general solution of equation (33) can be written as  

 

ϕ = ϕ
i

i=1

4

∑  (34) 

 

where the potentials ϕ
i
, i =1,2,3,4  are solutions of wave equations, given by 

 

∇2
+
ω 2

V
i

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ϕ
i
= 0, i =1,2,3,4  (35) 

 

Here V
i

2
,i =1,2,3,4( )  are the velocities of four longitudinal waves, that is, longitudinal dis-

placement wave (LD), mass diffusion wave (MD), thermal wave (T) and longitudinal mi-

crostretch wave (LM) and derived from the roots of the biquadratic equation in V 2 , given by 

 

  

B
4
V
8
− B

3
ω
2
V
6
+ B

2
ω
4
V
4
− B

1
ω
6
V
2
+ω

8( ) = 0  (36) 

       

Making use of equation (34) in the equations (27), (30)-(32) with the aid of equations (26) and 

(35), the general solutions for ϕ ,T ,ϕ *
and C are obtained as  
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(ϕ ,T ,ϕ *,C) = (1,k
1i
,k
2i
,k
3i
)ϕ

i

1

4

∑  (37) 

 

where 
* 6 * 4 2 * 2 4 * 6 * 4 2 * 2 4

1 6 7 8 2 9 10 11

* 8 * 6 2 * 4 4 2 * 6 * 4 2 * 2 4 * 6

3 14 12 13 1 2 3 4

( ) , ( ) ,

( ) ( ), ( ), 1,2,3,4

d d

i i i i i i

d d

i i i i i i i

k g g V g V k k g g V g V k

k g g V g V V k k g g V g V g V i

ω ω ω ω ω ω

ω ω ω ω ω ω

= − + = − + +

= − + − = + + + =

 
The system of equations (28)-(29) has a non-trivial solution if the determinant of the coeffi-

cients ψ ,ϕ
2

⎡⎣ ⎤⎦
T

 vanishes, which yields to the following polynomial characteristic equation 

 

∇
4
+ A

*
∇
2
+ B

*
= 0  (38) 

 
where  

 

A
*
= ω 2ζ

1
+ζ

1

*ζ
2
− 1−δ 2( ) ζ3 +ω

2( )( ) 1−δ 2( )ζ1 , B
*
=ω 2 ω 2

−ζ
3( ) 1−δ 2( )ζ1  

 
The general solution of equation (38) can be written as  

 

ψ = ψ
i

i=5

6

∑  (39) 

 

where the potentials ψ
i
, i =1,2  are solutions of wave equations, given by 

 

∇2
+
ω 2

V
i

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ
i
= 0, i = 5,6  (40) 

 

Here V
i

2
,i = 5,6( )  are the velocities of two coupled transverse displacement and microrota-

tional (CD I, CD II) waves and derived from the root of quadratic equation in V 2 , given by  

 

B
*
V
4
− A

*
ω
2
V
2
+ω

4( ) = 0  (41) 

                           

Making use of equation (39) in the equations (28)-(29) with the aid of equations (26) and (40), 

the general solutions for ψ and ϕ
2

are obtained as  

 

ψ ,ϕ
2{ } = 1,n

1i{ }ψ
i

i=5

6

∑  (42) 
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where 

n
1i
=

ζ
2
ω 2

ζ
3
−ω 2( )Vi

2
+ζ

1
ω 2

for i = 5,6  

Applying the dimensionless quantities (12) in the equation (9) with the aid of (11) and after 

suppressing the primes, we obtain 
 

α e
2

− β e
2

c
1

2

⎛

⎝
⎜

⎞

⎠
⎟

∂ee

∂x
1

⎛

⎝⎜
⎞

⎠⎟
+
β e

2

c
1

2
∇2
u
1

e
= u

1

e
 (43) 

 

α e
2

− β e
2

c
1

2

⎛

⎝
⎜

⎞

⎠
⎟

∂ee

∂x
3

⎛

⎝⎜
⎞

⎠⎟
+
β e

2

c
1

2
∇2
u
3

e
= u

3

e
 (44) 

 

where  

e
e
=

∂u
1

e

∂x
1

+
∂u

3

e

∂x
3

⎛

⎝⎜
⎞

⎠⎟
 

and  

α e
= λ e + 2µe( ) ρe ,  β e = µe ρe  are velocities of longitudinal wave (P-wave) and trans-

verse wave (SV-wave) corresponding to M1, respectively.  

The components of u
1

e  and u
3

e  are related by the potential functions as:   

 

u
1

e =
∂ϕ e

∂x
1

-
∂ψ e

∂x
3

, u
3

e =
∂ϕ e

∂x
3

+
∂ψ e

∂x
1

, (45) 

 

where ϕ e  and ψ e  satisfy the wave equations as 

 

∇2ϕ e =
 

ϕ e

α 2
, ∇2ψ e=

 

ψ e

β 2
, (46) 

 

and  α =α
e
c
1
, β = β e c

1
. 

 

4 REFLECTION AND REFRACTION 

We consider a plane harmonic wave (P or SV) propagating through the isotropic elastic solid 

half-space and is incident at the interface x
3
= 0  as shown in Fig.1. Corresponding to each inci-

dent wave, two homogeneous waves (P and SV) are reflected in an isotropic elastic solid and six 
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inhomogeneous waves (LD, MD, T, LM, CD I and CD II) are transmitted in isotropic mi-

crostretch thermoelastic diffusion solid half-space. 
In elastic solid half-space, the potential functions satisfying equation (46) can be written as 

φ e = A
0

e
e
iω x

1
sinθ

0
+x
3
cosθ

0( )/α−t{ }
+ A

1

e
e
iω x

1
sinθ

1
+x
3
cosθ

1( )/α−t{ }
 (47) 

 

ψ e
= B

0

e
e
iω x

1
sinθ

0
+x
3
cosθ

0( )/β−t{ }
+ B

1

e
e
iω x

1
sinθ

2
+x
3
cosθ

2( )/β−t{ }
 (48) 

 

The coefficients A
0

e

 ( B
0

e ), A
1

e  and B
1

e  are amplitudes of the incident P (or SV), reflected P 

and reflected SV waves respectively. 
Following Borcherdt [3], in a homogeneous isotropic microstretch thermoelastic diffusion half-

space, potential functions satisfying equations (35) and (40) can be written as 
 

ϕ ,T ,ϕ *,C( ) = 1,k
1i
,k
2i
,k
3i{ }

i=1

4

∑ B
i
e
(

A
i
.

r )
e
i (

P
i
.

r −ωt ){ }

 (49) 

 

( )
{ }

6
( . )( . )

2

5

, {1, } ii
i P r tA r

ip i

i

n B e e
ω

ψ φ
−

=

=∑
vr rr

 
(50) 

 

The coefficients B
i
, i =1,2,3,4,5,6  are the amplitudes of refracted waves.  The propagation 

vector
 


P
i
, i =1,2,3,4,5,6  and attenuation 

 


A
i
 factor ( i =1,2,3,4,5,6 ) are given by 

 

 


P
i
 =ξ

R
x̂
1
+dV

i R
x̂
3
, 
 


A
i
 =−ξ

I
x̂
1
−dV

i I
x̂
3
, i =1,2,3,4,5,6    (51) 

    
where 

 

dV
i
=dV

i R
+ i dV

i I
= p.v.

ω 2

V
i

2
−ξ 2

⎛

⎝
⎜

⎞

⎠
⎟

1

2

, i =1,2,3,4,5,6  (52) 

 

and     
                                                                          

ξ =ξ
R
+ iξ

I
 is the complex wave number. The subscripts R and I denote the real and imaginary 

parts of the corresponding complex number and p.v. stands for the principal value of the complex 

quantity derived from square root. ξR ≥ 0 ensures propagation in positive x
1
-direction. The com-

plex wave number ξ in the microstretch thermoelastic diffusion medium is given by 

 

ξ =
 


P
i
sin ′θ

i
− i

A
i
sin( ′θ

i
− γ

i
)  i =1,2,3,4,5,6    (53) 
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where γ
i
, i =1,2,3,4,5,6  is the angle between the propagation and attenuation vector and θ

i

′
, 

i =1,2,3,4,5,6  is the angle of refraction in medium II. 

5 BOUNDARY CONDITIONS 

The boundary conditions are the continuity of stress and displacement components, vanishing of 

the gradient of temperature, mass concentration, the tangential couple stress and microstress 
components. Mathematically these can be written as 

Continuity of the normal stress component  

 

33 33
= ,

e
t t

 
(54) 

 

Continuity of the tangential stress component        
 

t
31

e
= t

31
,  (56) 

                             
Continuity of the tangential displacement component   

 

u
1

e
= u

1
, (57) 

 

Continuity of the normal displacement component        
 

u
3

e
= u

3
, (58) 

 
Vanishing the gradient of temperature 

 

∂T

∂x
3

= 0 , (59) 

 

Vanishing the mass concentration 

 

∂C

∂x
3

= 0 , (60) 

 

Vanishing of the tangential couple stress component 

 

m
32
= 0  (61) 

 
Vanishing of the microstress component 
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λ
3

*
= 0  (62) 

 

Making the use of potentials given by equations (47)-(50), we find that the boundary condi-
tions are satisfied if and only if 

 

ξ
R

 = 
ω sinθ

0

V
0

= 
ω sinθ

1

α
= 

ω sinθ
2

β
                 (63) 

 

and   

 

ξ
I

= 0. (64) 

 
where 

 

V
0
= 

α , for incident P −wawe

β, for incident SV −wawe
⎧
⎨
⎩

                                       (65) 

 

It means that waves are attenuating only in x
3
-direction. From equation (53), it implies that 

if

A
i
≠ 0 , then γ

i

'
= ′θ

i
, i =1,2,3,4,5,6 , that is, attenuated vectors for the six refracted waves 

are directed along the x
3
-axis. 

Using equations (47)-(50) in the boundary conditions (54)-(62) and with the aid of equations 

(19), (45),  (63)-(65), we get a system of eight non-homogeneous equations which can be written 
as  

 

d
ij

j=1

8

∑ Z
j
= g

i
 (66) 

 

where Z
j
= Z

j
e
iψ

j
*

, Z
j
,ψ

j

*
, j =1,2,3,4,5,6,7,8  represents amplitude ratios and phase shift of 

reflected P-, reflected SV-, refracted LD-, refracted MD-,  refracted T-, refracted LM-, refracted 

CD I -, refracted CD II - waves to that of amplitude of incident wave, respectively. 
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,

for ( j =1,2,3,4,5,6)  
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Here p.v. is evaluated with restriction dVjI ≥ 0 to satisfy decay condition in the microstretch 

thermoelastic diffusion medium. The coefficients g
i
, for (i =1,2,3,4,5,6,7,8)  on the right side of 

the equation (66) are given by 

 

(i) For incident P-wave 

 

g
i
= (−1)id

i1
, for (i =1,2,3,4) g

i
= 0 , for (i = 5,6,7,8),  (67) 

 
(ii)For incident SV-wave 

 

  
g

i
= (−1)i+1d

i2
, for (i = 1,2,3,4) g

i
= 0 , for (i = 5,6,7,8),  (68) 

 

Now we consider a surface element of unit area at the interface between two media. The rea-
son for this consideration is to calculate the partition of energy of the incident wave among the 

reflected and refracted waves on the both sides of surface. Following Achenbach [1], the energy 
flux across the surface element, that is, rate at which the energy is communicated per unit area of 

the surface is represented as 

 

P
∗ =

 
t
lm
l
m
u
l
 (69) 

 

Where t
lm

is the stress tensor, l
m

 are the direction cosines of the unit normal l̂  outward to 

the surface element and 
 
u
l
 are the components of the particle velocity. The time average of P∗  

over a period, denoted by < P
∗ >, represents the average energy transmission per unit surface 

area per unit time. Thus, on the surface with normal along x
3
-direction, the average energy in-

tensities of the waves in the elastic solid are given by 

 

< P
∗e > = Re

  
< t >

31

e .Re ( u
1

e ) + Re< t >
33

e .Re ( u
3

e )                      (70) 

 

Following Achenbach [1], for any two complex functions f and g, we have  
 

< Re (f).Re (g) > = ½ Re (f g )                                             (71) 

 

The expressions for energy ratios Ei, i = 1, 2 for the reflected P and reflected SV are given by  

 

  

E
i
= −

< P
i

∗e
>

< P
0

∗e
>

for (i = 1,2)  (72) 

 

where     
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< P

1

∗e
> =

ω 4ρ e
c

1

2

2α
Z

1

2

Re(cosθ
1
) , 

  

< P
2

∗e
> =

ω 4ρ e
c

1

2

2β
Z

2

2

Re(cosθ
2
)  

 

and 

(i)For incident P- wave  
 

  

< P
0

∗e
> = −

ω 4ρ e
c

1

2
cosθ

0

2α
, (73) 

 
 

 (ii)For incident SV- wave  
 

  

< P
0

∗e
> = −

ω 4ρ e
c

1

2
cosθ

0

2β
,   (74) 

 

 
are the average energy intensities of the reflected P-, reflected SV-, incident P- and incident SV-

waves respectively. In equation (72), negative sign is taken because the direction of reflected 
waves is opposite to that of incident wave. 

For microstretch thermoelastic diffusion medium, the average energy intensities of the waves 

on the surface with normal along x
3
-direction, are given by 

 

 

< P
ij

*>=Re
  
< t >

31

( i) .Re( u
1

( j ) )+Re< t >
33

(i ) .Re( u
3

( j ) ) 

+Re< m >
32

(i ) .Re( φ
2

( j ) )+Re< λ
3

*
>
(i ) .Re( ϕ *( j ) ) 

(75) 

 

 

The expressions for the energy ratios E
ij
for (i, j =1,2,3,4,5,6)   for the refracted waves are 

given by 

 
 

  

E
ij
=
< P

ij

∗
>

< P
0

∗e
>

for (i, j = 1,2,3,4,5,6)  ,   (76) 

 

 
where   
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The diagonal entries of energy matrix Eij in equation (76) represent the energy ratios of the 

waves, whereas sum of the non-diagonal entries of Eij give the share of interaction energy among 
all the refracted waves in the medium and is given by  

 

ERR = ( E
ij
−

j=1

6

∑
i=1

6

∑ E
ii
)   (77) 

 
The energy ratios Ei, i = 1, 2, diagonal entries and sum of non-diagonal entries of energy ma-

trix Eij , that is, E
11
,E

22
,E

33
,E

44
,E

55
,E

66
 and ERR yield the conservation of incident energy 

across the interface, through the relation 

 

E
1
+ E

2
+ E

11
+ E

22
+ E

33
+ E

44
+ E

55
+ E

66
+ E

RR
=1 (78) 

 

6 NUMERICAL RESULTS AND DISCUSSION 

The analysis is conducted for a magnesium crystal-like material. Following [8], the values of phys-
ical constants are  

 

λ = 9.4×10
10
Nm

-2
,µ = 4.0×10

10
Nm

-2
, K =1.0×10

10
Nm

−2
,

ρ =1.74×10
3
Kgm

−3
, j = 0.2×10

−19
m
2
,γ = 0.779×10

−9
N

 

 
Thermal and diffusion parameters are given by  

 

C* =1.04×103JKg −1K −1, K*
=1.7×106 Jm−1s−1K −1,α

t1
= 2.33×10−5K -1,α

t2
= 2.48×10−5K -1,

T
0
= .298×103K,τ

1
= 0.01,τ

0
= 0.02,α

c1
= 2.65×10−4m3Kg-1,α

c2
= 2.83×10−4m3Kg-1,

a = 2.9×104m2s−2K -1,b = 32×105Kg-1m5s−2 ,τ 1 = 0.04,,τ 0 = 0.03,D = 0.85×10−8Kgm−3s

 

 

and, the microstretch parameters are taken as 

 

jo = 0.19 ×10
−19

m
2
,α
o
= 0.779 ×10

−9
N ,b

o
= 0.5 ×10

−9
N ,λ

o
= 0.5 ×10

10
Nm

−2
,λ
1
= 0.5 ×10

10
Nm

−2  

 

Following Bullen [5], the numerical data of granite for elastic medium is given by 
 

ρe = 2.65×103Kgm−3
,α e

= 5.27×10
3
ms

−1
,β e = 3.17×103ms−1  

 

The Matlab software 7.04 has been used to determine the values of energy ratios E
i
, i =1,2  

and energy matrix E
ij
, i, j =1,2,3,4,5,6  defined in the previous section for different values of 

incident angle (θ
o
) ranging from 00  to 900  for fixed frequency ω = 2×π ×100 Hz . Correspond-
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ing to incident P wave, the variation of energy ratios with respect to angle of incident have been 

plotted in Figures (2)‐(10). Similarly, corresponding to SV waves, the variation of energy ratios 
with respect to angle of incident have been plotted in Figures (11)‐(19). In all figures of mi-

crostretch thermoelastic diffusion medium the graphs for L-S and G-L theories are represented by 

the word MDLS and MDGL respectively. 
 

 

Incident P-wave 

Figs.2-10 depicts the variation of energy ratios with the angle of incidence (θ
0
) for P waves. 

Fig.2 exhibits the variation of energy ratio E
1
 with the angle of incidence (θ

o
). It shows that 

the values of E
1
 for both cases MDLS and MDGL decrease with the increase in θ

o
 from 00  to 

50
0  and then increase as θ

o
 increase further. Fig.3 depicts the variation of energy ratio E

2
 with 

θ
o
 and it shows nearly opposite behavior to the that of E

1
, the values of E

2
 increase with the 

increase in θ
o
 from 00  to 500  and then decrease monotonically within the range 500 ≤θ

0
≤ 90

0  

for both the cases. Fig.4 depicts the variation of energy ratio E
11

 with θ
o
 and it shows that the 

values of E
11

 for the case of MDGL are similar to MDLS but the corresponding values are differ-

ent in magnitude. Fig.5 exhibits the variation of energy ratio E
22

 with θ
o
 and it shows that the 

values of E
22

 for MDLS point toward the opposite oscillation with MDGL respectively within the 

range 100 ≤θ
0
≤ 80

0 . In this case the value of E
22

 is magnified by 105 .  

Fig.6 depicts the variation of energy ratio E
33

 with θ
o
 and it indicates the values of E

33
 for 

the case of MDLS are very large as compared to the MDGL within the whole range of θ
o
, though 

the maximum value of E
33

 can be noticed within the range 300 ≤θ
0
≤ 40

0  for both the cases. In 

this case the value of E
33

 is magnified by 106 .  Fig.7 depicts the variation of energy ratio E
44

 

with θ
o
. It shows that the values of E

44
 for both cases MDLS and MDGL increase with the in-

crease of θ
o
 from 00  to 700  and then decrease as θ

o
 increase further. In this case the value of 

E
44

 is magnified by 105 .  Fig.8 exhibits the variation of energy ratio E
55

 with θ
o
 and it indi-

cates the behavior of the graph is nearly equivalent to that of fig.4 but the corresponding values 

are different in magnitude.  Fig.9 shows the variations of E
66

 with θ
o
 and it indicates that the 

value of E
66

 for both MDLS and MDGL shows a small change within the range 00 ≤θ
0
≤10

0  

and then increase sharply within the range 110 ≤θ
0
≤ 65

0  and decrease further. Fig.10 shows the 

variation of interaction energy ratio E
RR

 with θ
o
 and it indicates the values of E

RR
 for the case 

of MDLS are less as compared to MDGL within the whole range of θ
o
. The values of interaction 

energy decrease initially with the increase in values of θ
o
 and attain a minimum within the range 
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of 500 ≤θ
0
≤ 60

0 , for the rest of the range the graph of E
RR

 shows a smooth growth and attain a 

maximum value at the end of the range.  

 
Figure 2   Variation of energy ratio E1 w.r.t. angle of incidence  

P-wave 

 

 
Figure 3   Variation of energy ratio E2 w.r.t. angle of incidence  

P-wave 

 
Figure 4   Variation of energy ratio E11 w.r.t. angle of incidence 

P-wave 

 

 
Figure 5   Variation of energy ratio E22 w.r.t. angle of incidence 

P-wave 

 



 R. Kumar et al. / Propagation of waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space   1103 

Latin American Journal of Solids and Structures 10(2013) 1081 – 1108 

 

 
Figure 6   Variation of energy ratio E33 w.r.t. angle of incidence 

P-wave 

 
Figure 7   Variation of energy ratio E44 w.r.t. angle of incidence 

P-wave 

 
Figure 8   Variation of energy ratio E55 w.r.t. angle of incidence 

P-wave 

 

 
Figure 9   Variation of energy ratio E66 w.r.t. angle of incidence 

P-wave 

 

 
Figure 10   Variation of energy ratio ERR w.r.t. angle of incidence P-wave 
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Incident SV-wave 

Figs.11-19 depicts the variation of energy ratios with the angle of incidence (θ
0
)  for SV 

waves. 

Fig.11 represents the variation of energy ratio E
1
 with θ

0
 and it indicates that the values of 

E
1
 for both cases MDLS and MDGL increase for smaller values of θ

0
, whereas for higher values 

of θ
0
,  the values of E

1
 decrease and finally become constant. It is noticed that the values of E

1
 

in case of MDGL remain more in comparison to the MDLS case. Fig.12 shows the variation of 

energy ratio E
2
 with θ

0
. and it indicates that the values for both cases MDLS and MDGL de-

crease when 0 ≤θ
0
<10  and for 10 ≤θ

0
< 30  the values of E

2
 increases and for higher values of 

θ
0
 the values E

2
 become dispersionless. It is noticed that for smaller values of θ

0
 the values of 

E
2
in case of MDLS remain more whereas for higher values of θ

0
 reverse behavior occurs. Fig.13 

shows that the values of E
11

 for both cases MDLS and MDGL show an oscillatory behavior for 

initial values of θ
0
, whereas for higher values of θ

0
,  the values of E

11
 become dispersionless. It is 

evident that that the values of E
11

 in case of MDLS remain more in comparison to the MDGL 

case. Fig.14 exhibits the variation of energy ratio E
22

 with θ
0
 and it indicates that the values of 

E
22

 oscillates for smaller values of θ
0
 although for higher values of θ

0
, the values of E

22
 become 

constant. In this case the value of E
22

 is magnified by 102 .  Fig.15 depicts the variation of en-

ergy ratio E
33

 with θ
0
 and it is noticed that the behavior and variation of E

33
 is similar as E

22

with difference in their magnitude values. In this case the value of E
33

 is magnified by 102 . 

Figs.16-18   show the variation of energy ratio E
44
,E

55
 and E

66
 with θ

0
 and it is evident that 

the behavior and variation of E
44
,E

55
 and E

66
 are similar as E

11
 whereas magnitude values of 

E
44
,E

55
 and E

66
 are different from E

11.
 and in all these three figure the magnitude of energy 

ratios are magnified by 102 . Fig.19 represents the variation of E
RR

 with θ
0
 and it shows that 

the values of E
RR

 decrease for smaller values of θ
0
 whereas for higher values of θ

0
 the values of 

E
RR

 slightly increase. It is noticed that the values of RR
E  in case of MDGL remain more for 

higher values of θ
0
. 

 
Figure 11   Variation of energy ratio E1  w.r.t. angle of incidence 

 
Figure 12   Variation of energy ratio E2  w.r.t. angle of incidence 
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SV-wave 

 

SV-wave 

 

 
Figure 13   Variation of energy ratio E11  w.r.t. angle of incidence 

SV-wave 

 

 
Figure 14   Variation of energy ratio E22  w.r.t. angle of incidence 

SV-wave 

 

 
Figure 15   Variation of energy ratio E33  w.r.t. angle of incidence 

SV-wave 

 

 
Figure 16   Variation of energy ratio E44  w.r.t. angle of incidence 

SV-wave 

 

 
Figure 17   Variation of energy ratio E55  w.r.t. angle of incidence 

SV-wave 

 

 
Figure 18   Variation of energy ratio E66  w.r.t. angle of incidence 

SV-wave 
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Figure 19   Variation of energy ratio ERR  w.r.t. angle of incidence SV-wave 

 

 

7 CONCLUSION 

In the present article, the phenomenon of reflection and refraction of obliquely incident elastic 
waves at the interface between an elastic solid half-space and a microstretch thermoelastic diffu-

sion solid half-space has been studied. The six waves in microstretch thermoelastic diffusion me-
dium are identified and explained through different wave equations in terms of displacement po-

tentials. The energy ratios of different reflected and refracted waves to that of incident wave are 

computed numerically and presented graphically with respect to the angle of incidence.  
From numerical results, we conclude that the effect of angle of incidence on the energy ratios 

of the reflected and refracted waves is significant. It is evident that, the values of energy ratios 
attained their optimum values within the range 40 ≤θ

0
< 60  in almost all figures related to L-S 

and G-L theories. Moreover, in majority of cases, the magnitude of energy ratios for L-S theory 

are more as compared to G-L theory and vanishes at the grazing incidence. The sum of all energy 
ratios of the reflected waves, refracted waves and interference between refracted waves is verified 

to be always unity which ensures the law of conservation of incident energy at the interface. 
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