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Propagation of Rayleigh surface waves with small
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Abstract. This paper investigates Rayleigh waves, propagating on the surface
of a visco-elastic solid under the linear theory of nonlocal elasticity. Dispersion
relations are obtained. It is observed that the waves are dispersive in nature for
small wavelengths. Numerical calculations and discussions presented in this paper
lead us to some important conclusions.
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1. Introduction

In the linear theory of classical elasticity, it is observed that Rayleigh waves propagating
on the surface of a semi-infinite isotropic elastic space are non-dispersive in nature (Love
1944). It is well-confirmed by experiment that the atomic theory of lattices predicts otherwise.
Maradudinet al (1971) considered the problem from the view point of lattice dynamics for
cubic crystals. Their investigations in this matter confirm the existence of dispersive character
in such waves. However, so far we know, there exists no systematic study of continuum theory
which may lead to similar conclusions in all such problems. A continuum approach to such
problems has special advantages due to many facts as stated by Eringen (1973) in his research
paper. Eringen (1973) investigated Rayleigh surface waves with small wavelengths under the
nonlocal theory of elasticity. From the conclusions made by Eringen (1973), we observe that
Rayleigh waves are definitely dispersive in nature while the rate of amplitude attenuations of
waves remain the same as in classical elasticity. Again, the effect of internal friction on the
propagation of plane waves in an elastic medium may also be considered owing to the fact
that dissipation accompanies vibrations in solid media due to the conversion of elastic energy
to heat energy (Ewinget al 1957). Several mathematical models have been used by many
authors (Ewinget al 1957; Hunter 1960) to accomodate the energy dissipation in vibrating
solids where it is observed that internal friction produces attenuation and dispersion and
hence the effect of the visco-elastic nature of the material medium in the process of wave
propagation cannot be neglected. The visco-elastic nature of a material medium has special
significance in wave propagation in a solid medium. The above considerations led the authors
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to study the Rayleigh waves in a visco-elastic solid semi-space under the recently proposed
linear theory of nonlocal elasticity. However, our present investigation involves the definition
of internal friction given by Voigt (1887) which may be stated as the visco-elasticity of Voigt-
type solids. Here, we consider only first order visco-elasticity. The theoretical results obtained
in this paper may be utilised in some relevant practical problems of waves and vibrations
in elasto-dynamics which play roles in areas like engineering sciences, earthquake sciences,
seismology, geophysics etc. Some numerical calculations, discussions and conclusions have
also been presented in their proper places. Authors believe that the problem in its present
form was not investigated before.

2. Basic equations

We consider an elastic half-space occupying a regionx2 ≥ O, withOx1x2x3 as the rectangular
Cartesian co-ordinate system where the originO is situated at any point on the plane boundary
andOx2 points vertically downwards that is towards the bulk of the material medium. Fol-
lowing Eringen (Ewinget al 1957; Daset al 1994) the constitutive equations of motion and
stress components for the propagation of waves in a first order visco-elastic Voigt-type solid
medium under the linear nonlocal theory of elasticity with no body forces may be presented
as follows:

τij,i = ρüj , (1)

τij =
(

λ0 + λ1
∂

∂t

)
ur,rδij +

(
µ0 + µ1

∂

∂t

) (
ui,j + uj,1

)
+

∫
V

[(
λ0

′ + λ1
′ ∂

∂t

)
ur,r ′δij +

(
µ0

′ + µ1
′ ∂

∂t

) (
ui,j + uj,i

)]
dV

(
x′) ,

(2)

whereτij , ui, ρ are stress tensor, displacement vector, mass density respectively.
λ0, λ1, µ0, µ1 = visco-elastic constants
λ0

′, λ1
′, µ0

′, µ1
′ = nonlocal visco-elastic moduli, each of which depends on|x − x′| for

homogeneous solids.

τij,i ≡ ∂τij

∂xi

, ui,j ≡ ∂ui(x, t)

∂xj

, ui,j ≡ ∂ui(x′, t)
∂x ′

j

, u = u1, u̇1 ≡ ∂ui(x, t)

∂t
,

üi ≡ ∂2ui(x, t)/∂t2, t = time,x = (X1, X2, X3), δij = 1 for i = j

= 0 for i 6= j.

The basic difference between classical and nonlocal elasticity is in the presence of the volume
integral in (2) which indicates that the stress at (x, t) depends on the strain at all other points
{x′} of the body, at timet . This signifies that the distant neighbours of a pointx have an role
to play in the propagation of waves.

3. Basic assumptions

To make the problem two-dimensional, one has to consider the domain ofX1 as− ∝< X1 <

+ ∝ and that ofX2 as 0< X2 < + ∝. Moreover, we assume that everything is uniform in
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theX3 direction. We consider here the possibility of a type of wave travelling in the direction
of X1 axis in such a manner that the disturbance is largely confined in the neighbourhood of
boundary and at any instant all particles on any line parallel toOX3 have equal displacement.
Due to the first assumption, the wave is a surface one which is an essential condition for
Rayleigh waves and the second assumption induces that all partial derivatives with respect to
X3 are zero. In this case, the volume integral in (2) is reduced to a surface integral overX1

′
andX2

′ in their ranges.

4. Boundary conditions

Since the boundary surfaceX2 = 0 is stress free, we have

τ21 = τ22 = 0, for X2 = 0; (3)

u1, u2 → 0, asX2 →∝ . (4)

5. Fomulation of the problem

In the light of basic assumptions, the dynamical equations of motion for Rayleigh waves may
be deduced from (1) as follows.

τ11,1 + τ21,2 = ρü1, (5)

τ12,1 + τ22,2 = ρü2, (6)

whereτ11, τ21, τ22 are deduced from (2). Hence, the mathematical formulation of the present
problem is to solve (5) and (6) under the above boundary conditions.

6. Solution of the problem

To solve the above problem, we apply the Fourier integral transform in the following form

uk(X1, X2, t) = 1

2π

+∝∫
−∝

+∝∫
−∝

ūk (ξ, X2, ω) e−i(ξx1+ωt) dξ dω. (7)

Substitution of this into (5), (6) and (2) gives

−iξ τ̄11 + τ̄21,2 + ρω2ū1 = 0, (8)

−iξ τ̄12 + τ̄22,2 + ρω2ū2 = 0, (9)

where,

τ̄11 = −iξ {(λ0 + 2µ0) − iω (λ1 + 2µ1)} ū1 + (λ0 − iωλ1)ū2,2

+
∝∫

0

[−iξ
{(

λ̄0
′ + 2µ̄′

0

) − iω
(
λ̄1

′ + 2µ̄′
1

)}
ū1 + (

λ̄0
′ − iωλ̄′

1

)
ū2,2′

]
d(x2

′), (10)

τ̄22 = −iξ (λ0 − iωλ1) ū1 + {(λ0 + 2µ0) − iω (λ1 + 2µ1)} ū2,2

+
∝∫

0

[−iξ
(
λ̄0

′ − iωλ̄′
1

)
ū1 + {(

λ̄0
′ + 2µ̄′

0

) − iω
(
λ̄1

′ + 2µ̄′
1

)}
ū2,2′

]
d(x2

′), (11)
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τ̄12 = (µ0 − iωµ1) ū1,2 − iξ (µ0 − iωµ1) ū2

+
∝∫

0

[(
µ̄0

′ − iωµ̄1
′) ū1,2′ − iξ

(
µ̄0

′ − iωµ̄1
′) ū2

]
d(x2

′). (12)

Following Eringen (1973), sinceλ0
′, µ0

′ andλ1
′, µ1

′ tends to zero rapidly as|x′ − x| →∝
we may assume the expressions forλ̄0

′, µ̄0
′ andλ̄1

′, µ̄1
′ in the following forms

λ̄0
′ = λ̄0(ξ)δ(|x2

′ − x2|), λ̄1
′ = λ̄1(ξ)δ(|x2

′ − x2|),
µ̄0

′ = µ̄0(ξ)δ(|x2
′ − x2|), µ̄1

′ = µ̄1(ξ)δ(|x2
′ − x2|). (13)

Using (13) in (10), (11) and (12), one obtains

τ̄11 = −iξ
[{(

λ0 + λ̄0
) + 2 (µ0 + µ̄0)

} − iω
{(

λ1 + λ̄1
) + 2 (µ1 + µ̄1)

}]
ū1

+ {(
λ0 + λ̄0

) − iω
(
λ1 + λ̄1

)}
ū2,2, (14)

τ̄22 = −iξ
[{(

λ0 + λ̄0
) − iω

(
λ1 + λ̄1

)}]
ū1 + [{(

λ0 + λ̄0
) + 2 (µ0 + µ̄0)

}
−iω

{(
λ1 + λ̄1

) + 2 (µ1 + µ̄1)
}]

ū2,2, (15)

τ̄22 = {(µ0 + µ̄0) − iω (µ1 + µ̄1)}
(
ū1,2 − iξ ū2

)
. (16)

Substitutingūk(ξ, x2, ω) = Ūk(ξ, ω)e−αx2, (17)

in (14), (15) and (16) and using these results in (8) and (9), we get the following two equations(
α2 − k2

h2
ξ2 + k2

)
Ū1 + iαξ

(
k2

h2
− 1

)
Ū2 = 0,

iαξ

(
k2

h2
− 1

)
Ū1 +

(
α2 k2

h2
− ξ2 + k2

)
Ū2 = 0, (18)

where

k2 = ρω2/ {(µ0 + µ̄0) − iω (µ1 + µ̄1)} , (19)

h2 = ρω2/
[{(

λ0 + λ̄0
) + 2 (µ0 + µ̄0)

} − iω
{(

λ1 + λ̄1
) + 2 (µ1 + µ̄1)

}]
.

EliminatingŪ1 andŪ2 from (18), we get a quadratic equation inα2 whose roots are given by

α2
1 = ξ2 − h2,

α2
2 = ξ2 − k2. (20)

Sinceū1, ū2 → 0 asx2 →∝, the solutions for̄u1, ū2 may be taken in the forms

ū1 = e−α1x2Ū11 + e−α2x2Ū12,

ū2 = γ1e
−α1x2Ū11 + γ2e

−α2x2Ū12, (21)

where

γj = −iξαj (k
2 − h2)

α2
j − h2ξ2 + h2k2

, j = 1, 2. (22)
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Using (21) in the boundary condition (3), we obtain the following equations

(α1 + iξγ1)Ū11 + (α2 + iξγ2)Ū12 = 0, (23)(
iξ

k2 − 2h2

h2k2
+ α1γ1

h2

)
Ū11 +

(
iξ

k2 − 2h2

h2k2
+ α2γ2

h2

)
Ū12 = 0.

Elimination ofŪ11 andŪ12 from (23) leads to the following frequency equation(
(k2/ξ2) − 2

)4 = 16
(
1 − (k2/ξ2)

) (
1 − (h2/ξ2)

)
. (24)

Equation (24) is the dispersion relation for Rayleigh waves propagating in a visco-elastic
semispace for nonlocal solids wherek2 andh2 are given by (19). The form of this frequency
equation (24) is identical to the corresponding equation of classical theory which is again
identical in form to the frequency equation for Rayleigh waves in a nonlocal elastic solid
as per the deduction made by Eringen (1973), though each ofk andh represents different
expressions for classical elasticity, nonlocal elasticity and nonlocal visco-elasticity.

7. Particular cases

Case (a):For the sake of numerical calculation, we extend the concept of the Poisson material
to includeλ0 = µ0, λ1 = µ1, λ̄0 = µ̄0, λ̄1 = µ̄1.

Hence, using the above in (19) and then solving (24), we get

k2/ξ2 = 0.8453 (approximately). (25)

Therefore

ω/ξ = cR1 (1 − iω ((µ1 + µ̄1)/(µ0 + µ̄0)))
1/2 , (26)

where

cR1 = 0.9194((µ0 + µ̄0)/ρ)1/2 .

In this case attenuation exponentsα1 andα2, are given by

α2
1/ξ

2 = 0.7182,

α2
2/ξ

2 = 0.1546. (27)

For visco-elastic solids,ξ being generally complex, settingξ = η + iδ it may be noted that
for the wave to be physically realistic, we should haveω/2π as frequency, where as, 2π/η is
the wavelength,c = ω/η is the phase velocity andδ is a decay coefficient.

Hence, using this value ofξ in (25) and equating real and imaginary parts, we get

η2 =
[
ρω2/0.8453

[
2µ0

(
1 + µ̄0

µ0

) {
1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}]]

×

1 +

{
1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}1/2


 (28)
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and

δ2 =
[
ρω2/0.8453

[
2µ0

(
1 + µ̄0

µ0

) {
1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}]]

×

{

1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}1/2

− 1


 . (29)

Therefore

c2/β2 = [
0.8453

{
2 (1 + (µ̄0/µ0))

(
1 + k2

)}]
/
{
1 + (

1 + k2
)1/2

}
, (30)

where

β2 = µ0

ρ
andk = ω

(
µ1 + µ̄1

µ0 + µ̄0

)
.

For nonlocal elastic solids in the absence of viscous nature of the material medium (28) gives

η2 = ρω2/0.8453µ0 (1 + µ̄0/µ0) , (31)

so that Rayleigh wave velocity under the theory of nonlocal elasticity without viscous effect
is given by

cR1 = 0.9194(µ0/ρ)1/2 (1 + (µ̄0/µ0))
1/2 . (32)

Replacingµ0 by µ, the Lame elastic constant, it is observed that (32) is in agreement with
that obtained by Eringen (1973). This equation expresses the fact that Rayleigh waves are
definitely dispersive, which is a deviation from our idea of classical elasticity.
Case (b):For another particular case, we extend the concept of the assumptions made by
Caloi (1948) and include

λi + (2/3)µi = 0,

λ̄i + (2/3)µ̄i = 0, i = 0, 1. (33)

Using (33) in (19) and then by solving (24) one obtains

k2/ξ2 = 0.4746 (approximately), (34)

Therefore

ω/ξ = cr1

(
1 − iω

µ1 + µ̄1

µ0 + µ̄0

)1/2

, (35)

where

cr1 = 0.6889((µ0 + µ̄0)/ρ)1/2.

And the attenuation exponents,α1 andα2 in this case are given by

α2
1/ξ

2 = 0.6441, (36)

α2
2/ξ

2 = 0.5254.
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Now, settingξ = η + iδ in (34) and equating real and imaginary parts, we get

η2 =
[
ρω2/0.4746

[
2µ0

(
1 + µ̄0

µ0

) {
1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}]]

×

1 +

{
1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}1/2


 (37)

and

δ2 =
[
ρω2/0.4746

[
2µ0

(
1 + µ̄0

µ0

) {
1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}]]

×

{

1 + ω2

(
µ1 + µ̄1

µ0 + µ̄0

)2
}1/2

− 1


 . (38)

Therefore

c2/β2 = [
0.4746

{
2 (1 + (µ̄0/µ0))

(
1 + k2

)}]
/
{
1 + (

1 + k2
)1/2

}
, (39)

where

β2 = µ0/ρ andk = ω ((µ1 + µ̄1)/(µ0 + µ̄0)) .

If we do not consider the viscous effect, (37) gives

η2 = ρω2/0.4746µ0 (1 + (µ̄0/µ0)) (40)

which is valid for nonlocal elastic solids.
Hence the Rayleigh wave velocity for nonlocal elastic solids in the above particular case

is

cr1 = 0.4889(µ0/ρ)1/2(1 + (µ̄0/µ0))
1/2. (41)

Equations (30) and (39) indicate that further dispersion of Rayleigh waves, over the dispersion
due to the nonlocal character of the elastic medium, occurs when the medium is a visco-elastic
one.

8. Conclusions

The formulae obtained in the bulk of the paper, which are valid for nonlocal visco-elastic
solids, may be used for the estimation of dispersion of general wave forms.

It is observed that dispersion of the Rayleigh wave velocity is further modulated in the case
of visco-elastic solids.
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