Propagation of Rayleigh Waves in the Earth

Z. Alterman, H. Jarosch and C. L. Pekeris
"As when the massy substance of the Earth quivers."-C. Marlowe, Tamburlaine the Great. Pt. 2, I. I.

Abstract

Summary The propagation of Rayleigh waves in the Earth is investigated in the whole range of periods T from about ios up to one hour. Three methods are necessary in order to cover this range of periods effectively. The standard flat Earth method, with neglect of gravity, gives values for the phase velocity C correct to within a per cent up to $T=50$ s only, and for the group velocity U up to $T=250$ s. The method of the flattening of the Earth, with neglect of gravity, has the i per cent accuracy limits for C and U at 300 and 400 , respectively. Inclusion of gravity effects in the flattening of the Earth approximation does not alter the above limits. For $T>300(n<25)$ one must determine the period $T(n)$ of free oscillation of the Earth as a function of the order of the spherical harmonic n. This involves the solution of a system of differential equations of the sixth order, in which the gravitational effects are included. The wave penetrates appreciably into the core already at $T=600$. Using the above three methods in their respective ranges of validity, we have evaluated $C(T)$ and $U(T)$ for (1) Bullen's Model B, (2) the Jeffreys-Bullen Model, as modified by Dorman, Ewing and Oliver, and (3) the Gutenberg Model. The observed Rayleigh group velocity data of Ewing and Press for $T<380$ s and the phase velocity data of Nafe and Brune for $T<300$ s agree with the values computed for the Gutenberg model, but not for the other models. This substantiates a previous conclusion reached by Takeuchi, Press and Kobayashi and by Dorman, Ewing and Oliver that the observed Rayleigh wave data provide evidence in support of Gutenberg's lowvelocity layer. The few observed Rayleigh group velocities between $T=400$ and 600 are substantially lower than the theoretical values for all the three models.

1. Introduction

In a previous investigation (Alterman, Jarosch \& Pekeris 1959) subsequently referred to as I, methods were developed for determining the periods of free oscillation of the Earth as represented by models based on earthquake data and on other geophysical information concerning the internal constitution of the Earth. Our initial aim was to test a conjecture of Benioff (1954) that the $57-\mathrm{min}$
oscillation which he observed on the records of the Kamchatka earthquake of 1952 is a free spheroidal oscillation of the Earth. This study, which dealt primarily with oscillations of spherical harmonic order $n=2$, was then extended also to the dynamical theory of Earth tides (I, and Pekeris \& others 1959). Recent advances (Benioff \& Press 1958) made in the design of long-period seismographs hold out the hope of extending the observed seismic spectrum up to the one-hour limit. Already Ewing and Press (Benioff \& Press 1958, and Ewing \& Press 1956) have succeeded in recording Rayleigh waves of a period T of 630 s . The propagation of waves of periods of 600 s and higher is governed by the free modes of oscillation of the Earth of spherical harmonic order n ranging from 10 to 2 . The amplitude of these modes extends from the surface of the Earth down into the core and their motion is governed not only by the elastic restoring forces but also by forces arising from the perturbed gravitational field. The analysis of these modes has therefore to be made by solving the systems of 6 differential equations $\mathrm{I}(28)$ to $\mathrm{I}(33)$ and $\mathrm{I}(35)$ to $\mathrm{I}(39)$ in the mantle and core respectively. This complete normal mode method must be used for periods $T>400 \mathrm{~s}$, ($n<\mathrm{I}_{1}$). In the range of $400>T>300(17<n<25)$ the amplitude of the normal modes becomes negligibly small throughout the core, so that it is sufficient to carry out the integrations only from the bottom of the mantle to the surface. In this restricted normal mode method one imposes the condition at the core boundary of the vanishing of all of the components of the displacements, and of the stresses.

In the period-range of $300>T>50(25<n<200)$ the analysis can be considerably simplified by taking account of the approach to flat Earth conditions, without, however, altogether neglecting the still appreciable effect of the sphericity of the Earth. This is accomplished by the use of the Earth-flattening approximation. In this method the space metric is transformed so as to make the surface of the Earth flat and to curve rays which were originally straight. The effect of the sphericity of the Earth turns out to be equivalent to the superposition on the given velocity-depth function of a perturbation term which varies linearly with depth. In the period ranges where the Earth-flattening approximation applies we have found that the gravitational forces may be neglected.

Finally, for periods $T<50 \mathrm{~s}$, the standard flat Earth approximation with neglect of gravity is valid. This method has been used extensively by Stoneley (1953), and recently by Press \& Takeuchi (1960), and by Dorman, Ewing \& Oliver (1960). The regions of applicability of the various methods are summarized in Table 1.

Table 1
Ranges of applicability of various methods

Range of period T in seconds	Range of n	Method	Core included	Gravity included
$3220>T>400$	$17>n>2$	Complete normal mode	Yes	Yes
$400>T>300$	$25>n>17$	Restricted normal mode	No	Yes
$300>T>50$	$200>n>25$	Earth flattening approxi- mation	No	No
$50>T$	$n>200$	Flat earth	No	No

The limits set for the applicability of the various approximate methods were obtained by comparing results obtained for the phase velocity C with those derived from the complete normal mode theory. It turns out that the group velocities U come out more accurately by the approximate methods than do the phase velocities C.

We have carried out the analysis of propagation of Rayleigh waves in the Earth for three models whose properties are described in Tables 2, 3, and 4 and in Figures I and 2. The "Jeffreys-Bullen" Model is taken from a paper by Dorman, Ewing \& Oliver (1960). In their method of calculation of dispersion of Rayleigh waves, the Earth is represented by a system of homogeneous layers. They have determined the properties of these layers so as to follow the average properties of the Jeffreys-Bullen Model. The "Bullen" Model is based on the data given (Bullen 1950) for Bullen's Model B, with linear interpolation at intermediate points. The properties of the top layer of 33 km thickness are taken from the paper by Press \& Takeuchi (1960). The data on the step-function model designated as the "Gutenberg" Model are taken from the paper by Dorman, Ewing \& Oliver (1960) and from Bullen's book An Introduction to the Theory of Seismology, p. 218. This model differs from the other two by having a low-velocity layer.

2. The normal mode solution

In studying the propagation of Rayleigh waves of periods $T>300$ s we must follow the method of normal modes described in I. The periods of free spheroidal oscillations for Bullen's Model B were there given in Table 4 for $n=2,3$, and 4 . We have extended this analysis to higher values of n, and the results are shown in Table 5 of the present paper. The direct result of the eigenvalue problem is the period $T(=2 \pi / \sigma)$ for a given value of n. The normal mode is then represented by a standing oscillation of the form

$$
\begin{equation*}
V=\exp (i \sigma t) F(r) P_{n}(\cos \theta) \tag{I}
\end{equation*}
$$

Such a standing oscillation can be conceived as the result of a superposition of two waves travelling in opposite directions. For large n this decomposition can be accomplished by the use of the asymptotic expansion of $P_{n}(\cos \theta)$:

$$
\begin{align*}
V \rightarrow F(r)(2 n \pi \sin \theta)^{-1} & \left\{\exp \left(i\left[\sigma t-\left(n+\frac{1}{2}\right) \theta+\frac{\pi}{4}\right]\right)+\right. \tag{2}\\
& \left.+\exp \left(i\left[\sigma t+\left(n+\frac{1}{2}\right) \theta-\frac{\pi}{4}\right]\right)+O(\mathrm{I} / n)\right\} .
\end{align*}
$$

The first term in the braces represents a wave travelling in the positive θ-direction:

$$
\begin{equation*}
x=a \theta, \quad C=\frac{a \sigma}{\left(n+\frac{1}{2}\right)}, \quad k=\frac{\sigma}{C}=\frac{\left(n+\frac{1}{2}\right)}{a} . \tag{3}
\end{equation*}
$$

A group velocity U can be derived from

$$
\begin{equation*}
U=\frac{d(k C)}{d k}=a \frac{d \sigma}{d n} \tag{5}
\end{equation*}
$$

The values of U given in Table 5 were obtained by finite differencing of $\sigma(n)$. For

Fig. r.-Variation with depth $a-r$ of the compressional velocity C_{p} for models Bullen B, "Jeffreys-Bullen" and Gutenberg.

Fig. 2.-Variation with depth $a-r$ of the shear velocity C_{s} for models Bullen B, "Jeffreys-Bullen" and Gutenberg.

Table 2

Properties of the Bullen B Earth Model

$a-r$	ρ	C_{p}	C8	μ	λ	g
km	$\mathrm{g} / \mathrm{cm}^{3}$	km/s	km/s	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$\mathrm{cm} / \mathrm{s}^{2}$
\bigcirc	$2 \cdot 76$	$6 \cdot 10$	$3 \cdot 54$	3.45	3.37	982
33	$2 \cdot 82$	$6 \cdot 10$	$3 \cdot 54$	$3 \cdot 52$	3.45	985
33	$3 \cdot 32$	$7 \cdot 75$	$4 \cdot 35$	$6 \cdot 28$	$7 \cdot 38$	985
80	$3 \cdot 36$	7.89	4.42	$6 \cdot 56$	$7 \cdot 77$	986
80	3.87	7.89	4.42	$7 \cdot 56$	$8 \cdot 95$	986
100		$7 \cdot 95$	4.45			
200	3.94	$8 \cdot 26$	4.60	$8 \cdot 34$	10.21	985
300		$8 \cdot 58$	4.76			
400	4.06	$8 \cdot 93$	4.94	9.90	12.55	983
413		$8 \cdot 97$	4.96			
600	4.18	10.25	$5 \cdot 66$	13.39	17.13	980
800	$4 \cdot 30$	11.00	$6 \cdot 13$	$16 \cdot 16$	19.71	978
1000	4.41	II 42	$6 \cdot 36$	17.84	21.84	976
1200	$4 \cdot 52$	11.71	$6 \cdot 50$	19.10	23.79	976
1400	$4 \cdot 63$	I 199	$6 \cdot 62$	20.29	25.98	976
1600	4.74	12.26	$6 \cdot 73$	21.47	$28 \cdot 31$	978
1800	$4 \cdot 84$	12.53	$6 \cdot 83$	22.58	$30 \cdot 83$	982
2000	4.94	12.79	$6 \cdot 93$	23.72	$33 \cdot 36$	987
2200	$5 \cdot 03$	13.03	$7 \cdot 02$	24.79	$35 \cdot 82$	997
2400	5.13	13.27	$7 \cdot 12$	26.01	$38 \cdot 32$	1010
2600	$5 \cdot 22$	13.50	$7 \cdot 21$	27.14	$40 \cdot 86$	1029
2700	$5 \cdot 27$	13.57	$7 \cdot 26$	$27 \cdot 74$	41'57	1042
2800		13.64	730			
2898		13.64	730			
2898		$8 \cdot 10$				
2900	$5 \cdot 57$			$29 \cdot 68$	44.26	1069
2900	$9 \cdot 74$				63.94	1069
3000	$9 \cdot 90$	$8 \cdot 22$			$66 \cdot 89$	1041
3200	$10 \cdot 20$	$8 \cdot 47$			$73 \cdot 18$	1006
3400	10.47	$8 \cdot 76$			$80 \cdot 34$	960
3600	$10 \cdot 72$	$9 \cdot 04$			87.61	913
3800	10.95	$9 \cdot 28$			94.30	865
4000	11.16	$9 \cdot 51$			100.93	815
4200	11.36	9.70			$106 \cdot 89$	765
4400	11.54	$9 \cdot 88$			112.65	718
4600	11.71	10.06			118.51	670
4800	11.87	10.25			124.71	628
4982	12.00	10.44			$130 \cdot 79$	599
5121	15.00	9.47			134.52	563
5121	15.00	11.16			186.82	563
5700		11.26				
6371	17.90	11.38			$228 \cdot 92$	-

Table 3

Properties of Jeffreys-Bullen Earth Model as modified by Dorman, Ewing \mathcal{E} Oliver (1960)

$a-r$	ρ	C_{p}	C_{s}	μ	λ
km	$\mathrm{g} / \mathrm{cm}^{3}$	km / s	km/s	${ }^{10}{ }^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$
\bigcirc					
	$2 \cdot 65$	$5 \cdot 57$	$3 \cdot 36$	$2 \cdot 99$	$2 \cdot 24$
15					
	$2 \cdot 87$	$6 \cdot 50$	$3 \cdot 74$	$4^{\circ} 1$	$4 \cdot 10$
33					
	$3 \cdot 33$	$7 \cdot 78$	$4 \cdot 36$	$6 \cdot 33$	747
50					
	3.35	$7 \cdot 83$	$4 \cdot 39$	$6 \cdot 46$	$7 \cdot 63$
75					
	$3 \cdot 37$	$7 \cdot 92$	4.44	$6 \cdot 64$	7.85
110					
	3.41	$8 \cdot 04$	449	$6 \cdot 87$	$8 \cdot 29$
150					
	3.45	8.19	4.56	7•17	$8 \cdot 79$
200					
	$3 \cdot 49$	$8 \cdot 35$	$4 \cdot 64$	7.51	9.31
250					
	$3 \cdot 53$	8.50	472	$7 \cdot 86$	$9 \cdot 78$
300					
	$3 \cdot 57$	$8 \cdot 67$	$4 \cdot 80$	$8 \cdot 23$	$10 \cdot 38$
350					
	$3 \cdot 62$	$8 \cdot 86$	490	$8 \cdot 68$	11.02
413					
	$3 \cdot 70$	9.14	$5 \cdot 04$	940	12.11
450					
	$3 \cdot 89$	$9 \cdot 65$	$5 \cdot 31$	10.97	14.29
550					
	4-13	$10 \cdot 25$	5.66	13.21	16.91
650					
	$4 \cdot 32$	10.68	$5 \cdot 93$	15.19	18.89
750					
	$4 * 49$	1100	6-13	16.87	$20 \cdot 58$
850					
	$4 \cdot 62$	11.28	$6 \cdot 29$	$18 \cdot 28$	22.23
1000					
	477	11.57	$6 \cdot 44$	19.65	$24 \cdot 13$
1200					
	4.92	1199	$6 \cdot 62$	21.54	27.58
1 600					
	5•14	12.53	$6 \cdot 83$	23.95	32.71
2000					
	$5 \cdot 34$	13.03	7-02	$26 \cdot 32$	$38 \cdot 03$
2400					
	5•54	13.50	7.21	$28 \cdot 80$	$43 \cdot 37$
2800	$5 \cdot 69$	13.64	730	$30 \cdot 32$	$45 \cdot 22$

Table 4
Properties of the Gutenberg Earth Model

$a-r$	ρ	C_{p}	C_{8}	μ	λ	g
km	$\mathrm{g} / \mathrm{cm}^{3}$	km/s	km/s	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$\mathrm{cm} / \mathrm{s}^{2}$
-						
	$2 \cdot 74$	$6 \cdot 14$	$3 \cdot 55$	3.45	3.42	982
19						
	3.00	$6 \cdot 58$	$3 \cdot 80$	433	432	983
38						
	$3 \cdot 32$	$8 \cdot 20$	$4 \cdot 65$	7-18	7.97	984
50						
	3.34	8-17	$4 \cdot 62$	713	$8 \cdot 04$	985
60						
	3.35	$8 \cdot 14$	4.57	7.00	$8 \cdot 20$	985
70						
	$3 \cdot 36$	8-10	$4 \cdot 51$	6.83	$8 \cdot 38$	986
80						
	337	$8 \cdot 07$	4.46	$6 \cdot 70$	$8 \cdot 54$	986
90						
	$3 \cdot 38$	$8 \cdot 02$	4.41	$6 \cdot 57$	$8 \cdot 59$	986
100						
	$3 \cdot 39$	$7 \cdot 93$	437	$6 \cdot 47$	$8 \cdot 37$	986
125						
	3.41	$7 \cdot 85$	435	6.45	$8 \cdot 11$	987
150						
	3.43	$7 \cdot 89$	$4 \cdot 36$	$6 \cdot 52$	$8 \cdot 31$	988
175						
	$3 \cdot 46$	$7 \cdot 98$	$4 \cdot 38$	$6 \cdot 64$	$8 \cdot 76$	989
200						
	3.48	8-10	4.42	$6 \cdot 80$	9.23	989
225						
	3.50	8.21	4.46	$6 \cdot 96$	$9 \cdot 67$	990
250						
	$3 \cdot 53$	$8 \cdot 38$	$4 \cdot 54$	$7 \cdot 28$	10.24	991
300						
	3.58	$8 \cdot 62$	$4 \cdot 68$	$7 \cdot 84$	$10 \cdot 92$	992
350						
	$3 \cdot 62$	$8 \cdot 87$	$4 \cdot 85$	$8 \cdot 52$	11.45	993
400						
	$3 \cdot 69$	9.15	$5 \cdot 04$	$9 \cdot 37$	12.15	995
450						
	$3 \cdot 82$	$9 \cdot 45$	$5 \cdot 21$	$10 \cdot 37$	13.38	996
500						
	4.01	9.88	5.45	11.91	$15 \cdot 32$	997
600						
	$4 \cdot 21$	10.30	$5 \cdot 76$	13.97	$16 \cdot 73$	998
700						
	$4 \cdot 40$	10.71	6.03	$16 \cdot 00$	$18 \cdot 47$	998
800						
	$4 \cdot 56$	11.10	$6 \cdot 23$	1770	$20 \cdot 79$	997
900						
	$4 \cdot 63$	11.35	$6 \cdot 32$	$18 \cdot 49$	$22 \cdot 66$	995
1000						
	474	$11 \cdot 60$	$6 \cdot 42$	19.54	24.71	993
I 200						
	$4 \cdot 85$	II 193	$6 \cdot 55$	20.81	27.41	990
1400						
	$4 \cdot 96$	$12 \cdot 17$	$6 \cdot 69$	22.20	29.06	986

Table 4-continued

$a-r$	ρ	C_{p}	C_{s}	μ	λ	g
km	$\mathrm{g} / \mathrm{cm}^{3}$	km/s	km/s	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$	$\mathrm{cm} / \mathrm{s}^{2}$
	$4 \cdot 96$	12.17	$6 \cdot 69$	$22 \cdot 20$	29.06	986
1600 ($6.80{ }^{\text {c }}$						
	$5 \cdot 07$	12.43	$6 \cdot 80$	23.44	31.45	983
1800 年 183						
	5•19	12.67	$6 \cdot 90$	24.71	33.90	982
2000						
	$5 \cdot 29$	12.90	$6 \cdot 97$	$25 \cdot 70$	$36 \cdot 63$	981
2200 (200 (0)						
	$5 \cdot 39$	13.10	7.05	$26 \cdot 79$	$38 \cdot 92$	984
2400 (200						
$\begin{array}{llllll}2600 & 5.49 & 13.32 & 7 \cdot 15 & 28 \cdot 07 & 41 \cdot 27\end{array}$						
	5•59	13.59	$7 \cdot 23$	29.22	$44 \cdot 80$	997
2800 (29.29						
	$5 \cdot 69$	13.70	$7 \cdot 20$	29.50	47.80	1011
2898	$9 \cdot 40$	$8 \cdot 10$			6171	I 037
3000	$9 \cdot 55$	$8 \cdot 23$			$64 \cdot 72$	1015
3500	$10 \cdot 15$	$8 \cdot 90$			$80 \cdot 42$	908
4000	$10 \cdot 7$	9.50			96-58	800
4500	11.2	9.97			111.39	631
4982	II 5	$10 \cdot 44$			125.34	469
5121	12.0	$10 \cdot 75$			$138 \cdot 66$	422
6371	12.3	II 3 I			157.34	\bigcirc

small values of n, of course, the expansion (2) is not valid and the usual concept of group-velocity requires modification. The distribution of amplitude with depth in the normal modes is shown in Figures 3 to 6 . It is seen that for $n=10$ ($T=591$) the amplitude in the core is still appreciable. On the other hand, for $n>17$ the amplitude in the core becomes negligibly small, and we may confine the integration to the mantle.

3. The Earth flattening approximation

For periods around 300 s the amplitude of the free oscillations is not only negligibly small in the core but also in the lower part of the mantle. It is, however, still not permissible to neglect altogether the curvature of the Earth. Referring to Figure 7, the sphericity of the Earth makes itself felt through the circumstance that a pulse originating on the surface at the point A can reach a point C sooner by travelling along the chord $A D C$ rather than along the arc $A B C$. The flattening of the Earth approximation (Pekeris 1946; Pryce 1953; Koo \& Katzin 1960) transforms the problem of propagation over a sphere to one over a flat Earth while still retaining the features of the inherent geometry of the sphere. This is accomplished by transforming the space-metric so as to make the surface flat and the rays curved. If the travel time along the ray $A D C$ in the transformed flat space of Figure 7 is to be

Fig. 3.-Distribution of radial displacement U in the normal spheroidal modes of orders $n=10,18$, and 30 in model Bullen B.

Fig. 4.-Distribution of horizontal displacement V in the normal spheroidal modes of orders $n=10,18$ and 30 in model Bullen B.

Fig. 5.-Distribution of radial displacement U in the normal spheroidal modes of orders $n=10$ to 200 in model Bullen B.

Fig. 6.-Distribution of horizontal displacement V in the normal spheroidal modes of orders $n=$ no to 200 in model Bullen B.
less than along the ray $A B C$, then the velocity must increase with depth. The amount of this velocity variation with depth can be established from the form which the differential equations for the sphere take on for large values of n. The procedure can be demonstrated most directly for the free torsional oscillations.

Fig. 7.-The flattening of the Earth approximation.

In that case the radial component of motion u vanishes, and the horizontal components v and w are derived from one function ψ

$$
\begin{equation*}
v=\frac{\mathbf{I}}{\sin \theta} \frac{\partial \psi}{\partial \phi} \exp (i \sigma t), \quad w=-\frac{\partial \psi}{\partial \theta} \exp (i \sigma t) \tag{6}
\end{equation*}
$$

which obeys the differential equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}+\frac{\mathbf{1}}{\mu} \frac{d \mu}{d r}\left(\frac{\partial \psi}{\partial r}-\frac{\psi}{r}\right)+\left[\frac{\sigma^{2}}{c^{2}}-\frac{\mathbf{I}}{r^{2}}\left(\frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial \psi}{\partial \theta}+\frac{\mathbf{I}}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right)\right]=0 \tag{7}
\end{equation*}
$$

where c denotes the shear velocity:

$$
\begin{equation*}
c^{2}=\mu / \rho_{0} \tag{8}
\end{equation*}
$$

Putting now

$$
\begin{equation*}
\psi(r, \theta, \phi)=U(r) P(\theta) \exp (i m \phi) \tag{9}
\end{equation*}
$$

we get

$$
\begin{gather*}
\frac{d^{2} P}{d \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{d P}{d \theta}-\frac{m^{2}}{\sin ^{2} \theta} P+a^{2} k^{2} P=0, \tag{10}\\
\frac{d^{2} U}{d r^{2}}+\frac{2}{r} \frac{d U}{d r}+\frac{\mathrm{I} d \mu}{\mu} \frac{d \mu}{d r}\left(\frac{d U}{d r}-\frac{U}{r}\right)+\left(\frac{\sigma^{2}}{c^{2}}-\frac{a^{2} k^{2}}{r^{2}}\right) U=0 . \tag{If}
\end{gather*}
$$

Here a denotes the radius of the Earth, and we have written $a^{2} k^{2}$ instead of the customary separation constant $n(n+1)$ with the intention of relinquishing the requirement that P be finite at $\theta=0$ and $\theta=\pi$. The plan is to build up a solution satisfying the source-condition and the outgoing wave condition from a series which converges rapidly everywhere except near the points $\theta=0$, and $\theta=\pi$, where each term of the series becomes singular. The limiting form of equations
(10) and (II) as $a k \rightarrow \infty$ is obtained by using as horizontal and vertical coordinates

$$
\begin{equation*}
x=a \theta, \quad h=a-r \tag{12}
\end{equation*}
$$

and neglecting terms of order r / a, except when they are multiplied by the large factor k^{2} :

$$
\begin{align*}
\frac{d^{2} P}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d P}{d x}+\left(k^{2}-\frac{m^{2}}{x^{2}}\right) P & =0 \tag{13}\\
\frac{d^{2} U}{d h^{2}}+\frac{\mathrm{I}}{\mu} \frac{d \mu}{d h} \frac{d U}{d h}+\left[\frac{\sigma^{2}}{c^{2}}-k^{2}\left(1+2 \frac{h}{a}\right)\right] U & =0 . \tag{14}
\end{align*}
$$

The appropriate form for ψ in (9) is now

$$
\begin{equation*}
\psi=U(h) H_{m}^{(2)}(k x) \exp (i m \phi) \tag{15}
\end{equation*}
$$

where $H_{m}^{(2)}(k x)$ denotes the Hankel function of the second kind, and U is a solution of equation (r4). For given functions $c(h)$ and $\mu(h)$ the boundary value problem (14) determines the frequency σ as a function of the wave number k, thus establishing the dispersion relation for Love waves.

Equation (14) resembles the equation for the propagation of Love waves on a flat Earth, except for the factor $[\mathrm{r}+2(h / a)]$ which arises from the curvature of the Earth. Now since $k \simeq\left(\sigma / c_{0}\right)$, we have

$$
\begin{equation*}
\frac{\sigma^{2}}{c^{2}}-2 k^{2} \frac{h}{a} \simeq \frac{\sigma^{2}}{\{c[\mathrm{I}+(h / a)]\}^{2}} \tag{16}
\end{equation*}
$$

The flattening of the Earth approximation thus effectively introduces a linear increase of velocity with depth.

In the case of spheroidal oscillations, the modifications of equations $\mathrm{I}(28)$ to I(33), which are introduced by the Earth flattening approximation, can be derived simply by writing

$$
\begin{gather*}
u=\frac{\partial \psi}{\partial r}+\frac{\mathrm{I}}{r^{2} \sin \theta} \frac{\partial \Omega}{\partial \theta}, \quad v=\frac{I}{r} \frac{\partial \psi}{\partial \theta}-\frac{\mathrm{I}}{r \sin \theta} \frac{\partial \Omega}{\partial r}, \quad w=0 \tag{17}\\
\psi=F(r) P_{n}(\theta), \quad \Omega=H(r) \sin \theta \frac{\partial P_{n}}{\partial \theta} . \tag{18}
\end{gather*}
$$

It is then found that the functions $U(r)$ and $V(r)$ of equations $I(26)$ and $\mathrm{I}(27)$ are given by

$$
\begin{align*}
& U(r)=\frac{d F}{d r}-\frac{n(n+\mathrm{I})}{r^{2}} H, \tag{19}\\
& V(r)=\frac{\mathrm{I}}{r}\left(F-\frac{d H}{d r}\right) . \tag{20}
\end{align*}
$$

When (19) and (20) are substituted into equations $I(28)$ to $I(33)$ the flattening of the Earth approximation is effected by writing

$$
\begin{equation*}
\frac{n(n+1)}{r^{2}} \rightarrow k^{2}\left(1+\frac{2 h}{a}\right) . \tag{21}
\end{equation*}
$$

The same result can, however, be obtained directly from $\mathrm{I}(28)$ to $\mathrm{I}(33)$ by using as variables $r y_{3}$ and $r y_{4}$ instead of y_{3} and y_{4}, as is suggested by the $1 / r$ factor in (20).

We thus get

$$
\begin{align*}
-\frac{d y_{1}}{d h} & =\frac{y_{2}}{(\lambda+2 \mu)}+\frac{\lambda}{(\lambda+2 \mu)} k^{2}\left(\mathrm{I}+\frac{2 h}{a}\right)\left(r y_{3}\right) \tag{22}\\
-\frac{d y_{2}}{d h} & =-\sigma^{2} \rho y_{1}+k^{2}\left(\mathrm{I}+2 \frac{h}{a}\right)\left[\rho g\left(r y_{3}\right)+\left(r y_{4}\right)\right]-\rho y_{4}, \tag{23}\\
-\frac{d\left(r y_{3}\right)}{d h} & =-y_{1}+\frac{\left(r y_{4}\right)}{\mu} \tag{24}\\
-\frac{d\left(r y_{4}\right)}{d h} & =g \rho y_{1}-\frac{\lambda y_{2}}{(\lambda+2 \mu)}+\left[-\rho \sigma^{2}+\frac{4 \mu(\lambda+\mu)}{(\lambda+2 \mu)} k^{2}\left(\mathrm{I}+\frac{h}{a}\right)\right]\left(r y_{3}\right)-\rho y_{5}, \tag{25}\\
-\frac{d y_{5}}{d h} & =4 \pi G \rho y_{1}+y_{6}, \tag{26}\\
-\frac{d y_{6}}{d h} & =-4 \pi G \rho k^{2}\left(\mathrm{I}+\frac{2 h}{a}\right)\left(r y_{3}\right)+k^{2}\left(\mathrm{I}+\frac{2 h}{a}\right) y_{5} . \tag{27}
\end{align*}
$$

It is convenient to put these equations in non-dimensional form. Let λ^{*} denote the maximum value of λ in the Earth,

$$
\begin{align*}
& \lambda=\lambda^{*} \lambda_{1} \quad \mu=\lambda^{*} \mu_{1}, \quad g=g(a) g_{1}, \tag{28}\\
& \rho=\bar{\rho} \rho_{1}, \quad b=\frac{\bar{\rho} \sigma^{2} a^{2}}{\lambda^{*}}, \quad c=\frac{\bar{\rho}^{2} a^{2} C}{\lambda^{*}}, \tag{29}\\
& y_{1}=a z_{1}, \quad y_{2}=\lambda^{*} z_{2} \quad r y_{3}=a^{2} z_{3}, \tag{30}\\
& r y_{4}=a \lambda^{*} z_{4}, \quad y_{5}=a^{2} C \bar{\rho} z_{5}, \quad y=a C \bar{\rho} z_{6} . \tag{31}\\
& n(n+1)=a^{2} k^{2} \quad s=r / a .
\end{align*}
$$

Equations (22) to (27) then become

$$
\begin{align*}
& \frac{d z_{1}}{d s}=\frac{z_{2}}{\left(\lambda_{1}+2 \mu_{1}\right)}+\frac{\lambda_{1}}{\left(\lambda_{1}+2 \mu_{1}\right)} n(n+\mathrm{I})\left(\mathrm{I}+\frac{2 h}{a}\right) z_{3}, \tag{33}\\
& \frac{d z_{2}}{d s}=-b \rho_{1} z_{1}+n(n+\mathrm{I})\left(\mathrm{I}+\frac{2 h}{a}\right)\left[\frac{4 \pi}{3} c \rho_{1} g_{1} z_{3}+z_{4}\right]-c \rho_{1} z_{6}, \tag{34}\\
& \frac{d z_{3}}{d s}=-z_{1}+\frac{z_{4}}{\mu_{1}}, \tag{35}\\
& \frac{d z_{4}}{d s}=\frac{4 \pi}{3} c g_{1} \rho_{1} z_{1}-\frac{\lambda_{1}}{\left(\lambda_{1}+2 \mu_{1}\right)} z_{2}-b \rho_{1} z_{3}+\frac{4 \mu_{1}\left(\lambda_{1}+\mu_{1}\right)}{\left(\lambda_{1}+2 \mu_{1}\right)} n(n+\mathrm{I})\left(\mathrm{I}+\frac{h}{a}\right) z_{3}-c \rho_{1} z_{5}, \tag{36}\\
& \frac{d z_{5}}{d s}=4 \pi \rho_{1} z_{1}+z_{6} \tag{37}\\
& \frac{d z_{6}}{d s}=-4 \pi n(n+1)\left(\mathrm{I}+\frac{2 h}{a}\right) \rho_{1} z_{3}+n(n+1)\left(\mathrm{I}+\frac{2 h}{a}\right) z_{5} . \tag{38}
\end{align*}
$$

The boundary condition at the surface of the Earth $r=a$ is

$$
\begin{equation*}
z_{2}=0, \quad z_{4}=0, \quad z_{6}+(n+1) z_{5}=0 . \tag{39}
\end{equation*}
$$

At the boundary of the core we require the vanishing of all the z_{i}.

4. Discussion of results

Our results for the dispersion of Rayleigh waves in the Earth are given in Tables 5, 6 and 7 and in Figures 8 and 9 for Bullen's Model B; in Table 8 and Figure 10 for the "Jeffreys-Bullen" Model; and in Tables 9, 10 and 11 and Figure II for the Gutenberg Model. The regions of applicability of the various methods of approximation can be judged from the results for Bullen's Model B shown in Figure 8. The phase velocity curve C (dashed) and the group velocity curve U of the Earth flattening approximation begin to deviate from the exact normal mode curve (solid) at about $T=250$ s, while the plane Earth curve (dotted)
 plane Earth approximation turns out to be accurate up to about 250 s. Inclusion

Table 5

Period T, phase velocity C and group velocity U for Bullen's Model B obtained by the normal mode solution. The interpolation is based on the exact values, computed at intervals of $5 . n$ denotes the order of spherical harmonic. For $n<17$ the solution extends through the mantle and core; for $n>17$ the amplitude in the core is negligible.

\boldsymbol{n}	T min		C	U		$T \mathrm{~min}$		C	$\underset{\mathrm{km} / \mathrm{s}}{U}$
	Exact	Interpol.	km/s	km/s	n	Exact	Interpol.	km/s	
2	53.70		4.97		32		$4 \cdot 16$	4.94	
3	35.50		$5 \cdot 37$	$6 \cdot 75$	33		4.06	4.91	
4	25.73		$5 \cdot 76$	$7 \cdot 41$	34		3.97	4.88	
5	19.85		$6 \cdot 11$	$7 \cdot 73$	35	3.88		4.85	
6	$16 \cdot 12$		$6 \cdot 37$	$7 \cdot 64$	36		$3 \cdot 79$	4.82	
7	13.64		$6 \cdot 52$	$7 \cdot 20$	37		$3 \cdot 71$	$4 \cdot 80$	
8	11.95		$6 \cdot 57$	$6 \cdot 53$	38		3.63	4.77	
9	10.77		$6 \cdot 52$	$5 \cdot 85$	39		$3 \cdot 56$	475	
10	$9 \cdot 88$		$6 \cdot 43$	$5 \cdot 33$	40	3.49		4.73	
11	$9 \cdot 18$	9•16	$6 \cdot 32$	$5 \cdot \mathrm{I}$			3.45		$3 \cdot 84$
12	$8 \cdot 61$	$8 \cdot 57$	$6 \cdot 20$	4.80	41	3.42	3.42	4.70	
13	$8 \cdot 11$	$8 \cdot 08$	$6 \cdot 09$	$4 \cdot 66$	42		$3 \cdot 35$	4.68	
14	$7 \cdot 68$	$7 \cdot 67$	5.99	4.56	43		$3 \cdot 29$	$4 \cdot 66$	
15	$7 \cdot 30$		5.89	4.48	44		3.23	4.65	
16	$6 \cdot 96$	$6 \cdot 97$	5.81	$4 \cdot 40$	45	$3 \cdot 17$		4.63	
17	$6 \cdot 66$	$6 \cdot 66$	5.72	4.33	46		$3 \cdot 11$	4.61	
18	$6 \cdot 39$	$6 \cdot 39$	$5 \cdot 65$	4.27	47		3.06	$4 \cdot 60$	
19	$6 \cdot 14$	$6 \cdot 14$	5.57	4.21	48		3.00	$4 \cdot 58$	
20	$5 \cdot 91$		5.51	4.16	49		2.95	4.57	
21	5.70	$5 \cdot 69$	5.44		50	$2 \cdot 90$		$4 \cdot 55$	$3 \cdot 87$
22		$5 \cdot 48$	$5 \cdot 41$		51		2.85	4.54	
23		5.29	5.37		52		$2 \cdot 81$	$4 \cdot 53$	
24		5•12	5.32		53		$2 \cdot 76$	4.51	
25	4.96		5-28		54		$2 \cdot 72$	4.50	
26		4.82	$5 \cdot 22$		55	$2 \cdot 68$		4.49	$3 \cdot 88$
27		4.70	5•16		56		$2 \cdot 64$	4.48	
28		$4 \cdot 58$	$5 \cdot 11$		57		$2 \cdot 60$	$4 \cdot 47$	
29		4.47	5.06		58		$2 \cdot 56$	4.46	
30	437		5\%1		59		$2 \cdot 52$	4.45	
		4.31		3.88	60	$2 \cdot 48$		4.44	
31	$4 \cdot 26$	$4 \cdot 26$	4.98				2.47		3.89
					6r	2.45	2.45	4.43	

Table 6

Earth flattening approximation for Bullen's Model B σ-frequency, T-period, C-phase velocity, U-group velocity

$$
n(n+1)=a^{2} k^{2}
$$

n	σ	T	C	U	n	σ	T	C	U
	s^{-1}	s	km/s	km/s		s^{-1}	s	km/s	km/s
10	0.0106909	588	$6 \cdot 49$		151	0.0981202	64	$4 \cdot 13$	
		565		$5 \cdot 63$	200	0.127154	49	$4 \cdot 04$	
11	0.0115744	543	$6 \cdot 41$				49		371
					201	- 1127736	49	4.04	
12	0.0124334	505	$6 \cdot 34$		250	-. 155644	40	3.96	
		490		$4 \cdot 98$			40		$3 \cdot 55$
13	0.0132144	475	$6 \cdot 24$		252	-.156757	40	3.96	
					300	-.182878	34	3.88	
15	0.0146324	429	$6 \cdot 01$				34		3.39
		420		$4 \cdot 50$	302	0.183941	34	3.87	
16	0.0153382	410	5.92		400	0.233856	27	372	
20	0.0180421	348	$5 \cdot 61$				27		$3 \cdot 12$
		342		$4 \cdot 16$	402	0.234835	27	372	
21	0.0186946	336	5•54		500	0.281569	22	$3 \cdot 58$	
25	0.0211656	297	5.29				22		$2 \cdot 98$
		292		$4^{\cdot 11}$	504	-. 283439	22	$3 \cdot 58$	
26	0.021811 x	288	$5 \cdot 24$		600	0.327989	19	$3 \cdot 48$	
30	0.0243188	258	$5 \cdot 08$				19		2.95
		255		3.88	604	0.329841	19	$3 \cdot 48$	
31	0.0249272	252	5.04		806	0.424479	15	$3 \cdot 35$	
40	0.0303591	207	$4 \% 8$				15		3.03
		205		$3 \cdot 84$	808	0.425431	15	$3 \cdot 35$	
41	0.0309614	203	4•75		1000	0.518212	12	$3 \cdot 30$	
60	0.0424755	148	447				12		3.12
		147		3.89	1003	0.51968 I	12	$3 \cdot 30$	
61	0.0430858	146	4.46				12		3'12
100	0.0670392	94	4.25		1005	0.520661	12	$3 \cdot 30$	
		93		$3 \cdot 92$					
101	0.0676538	93	4.25						
150	0.0975178	64	4.13						
		64		$3 \cdot 84$					

Table 7

Plane Earth approximation for Bullen Model B σ-frequency, T-period, C-phase velocity, U-group velocity $n(n+1)=a^{2} k^{2}$

n	σ	T	C	U	
	s^{-1}	s	km/s	km/s	
10	0.00890939	705	$5 \cdot 4 \mathrm{I}$		
		670		$6 \cdot 20$	\bigcirc
II	0.00988325	636	$5 \cdot 48$		\%
		608		$5 \cdot 99$	\%
12	0.01082315	58 I	$5 \cdot 52$		
		558		$5 \cdot 72$	\%
13	$0 \cdot 01172077$	536	5•53		\%
15	0.01337545	469	5.50		
		457		$4 \cdot 87$	-
16	0.01413967	444	$5 \cdot 46$		
		433		$4 \cdot 67$	O
17	0.01487227	422	$5 \cdot 41$		O
20	0.01694783	371	5-27		$\stackrel{\sim}{2}$
		364		$4 \cdot 24$	
21	0.01761293	357	$5 \cdot 22$		$\stackrel{\square}{0}$
		350		$4 \cdot 18$	\pm
22	0.01826859	344	5•17		$\stackrel{\rightharpoonup}{N}$
25	0.02017568	311	$5 \cdot 04$		
		307		$4 \cdot 04$	
26	0.02081038	302	$5 \cdot 00$		N
30	0.02329257	270	$4 \cdot 87$		\subset
		266		$3 \cdot 89$	¢
31	0.02390364	263	$4 \cdot 83$		
40	0.02932744	214	$4 \cdot 61$		
		212		$3 \cdot 82$	
41	$0 \cdot 02992771$	210	$4 \cdot 59$		\bigcirc
60	0.04136692	152	$4 \cdot 36$		
		151		$3 \cdot 86$	
61	0.04197302	150	$4 \cdot 35$		¢
100	0.06580556	95	4*17		\bigcirc
		95		3.90	¢
101	0.06641823	95	$4 \cdot 17$		
200	0.1258999	50	4.00		$\stackrel{\square}{5}$
		50		371	N
	0.1264826	50	4.00		N

Table 8

Earth flattening approximation for Jeffreys-Bullen Model. σ-frequency, T-period, C-phase velocity, U-group velocity $n(n+\mathrm{I})=a^{2} k^{2}$

Table 9

Period T, phase velocity C and group velocity U for Gutenberg Model obtained by the normal mode solution. n denotes the order o, spherical harmonic. The interpolation is based on the exact values, computed at intervals of 5 . For $n<17$, the solution extends through the mantle and core; for $n>17$ the amplitude in the core is negligible.

	T min		C	U		T min		C	U
n	Exact	Interpol.	km/s	km/s	n	Exact	Interpol.	km/s	km/s
2	53'52		4.99		33		4.06	4.91	
3	$35 \cdot 33$		$5 \cdot 40$	$6 \cdot 82$	34		3.97	4.87	
4	$25 \cdot 54$		$5 \cdot 80$	$7 \cdot 52$	35	3.89		4.84	
5	19.66		$6 \cdot 17$	$7 \cdot 89$	36		$3 \cdot 8 \mathrm{r}$	4.80	
6	$15 \cdot 92$		$6 \cdot 45$	$7 \cdot 85$	37		3.73	477	
7	13.44		$6 \cdot 62$	$7 \cdot 47$	38		3.66	4.74	
8	11.74		$6 \cdot 69$	$6 \cdot 84$	39		$3 \cdot 59$	471	
9	$10 \cdot 54$		$6 \cdot 66$	6.16	40	$3 \cdot 52$		4.68	
ro	$9 \cdot 65$		$6 \cdot 59$	$5 \cdot 61$			3.49		$3 \cdot 58$
11	$8 \cdot 95$	$8 \cdot 93$	$6 \cdot 48$	5.23	41	3.45	3.45	4.65	
12	$8 \cdot 38$	$8 \cdot 35$	$6 \cdot 37$	4.97	42		$3 \cdot 39$	4.63	
13	$7 \cdot 90$	$7 \cdot 87$	$6 \cdot 26$	$4 \cdot 80$	43		$3 \cdot 33$	$4 \cdot 61$	
14	$7 \cdot 48$	$7 \cdot 46$	$6 \cdot 15$	4.67	44		$3 \cdot 27$	$4 \cdot 58$	
15	$7 \cdot 11$		$6 \cdot 05$	$4 \cdot 56$	45	$3 \cdot 22$		4.56	
16	$6 \cdot 78$	$6 \cdot 78$	$5 \cdot 96$	4.46	46		$3 \cdot 16$	4.54	
17	$6 \cdot 49$	$6 \cdot 49$	$5 \cdot 87$	4.35	47		$3 \cdot 11$	4.52	
18	6.23	$6 \cdot 23$	$5 \cdot 79$	$4 \cdot 26$	48		3.06	4.50	
19	6.00	6.00	$5 \cdot 71$	$4 \cdot 17$	49		$3 \cdot 1$	4.48	
20	$5 \cdot 78$		5.63	4.09	50	$2 \cdot 96$		4.46	$3 \cdot 61$
21	$5 \cdot 59$	$5 \cdot 59$	5.56		51		2.91	4.45	
22		$5 \cdot 40$	$5 \cdot 49$		52		$2 \cdot 87$	4.43	
23		$5 \cdot 24$	$5 \cdot 42$		53		$2 \cdot 82$	4.42	
24	$5 \cdot 08$	5.08	5.36		54		$2 \cdot 78$	$4 \% 0$	
		5.01		$3 \cdot 82$	55	$2 \cdot 74$		4.39	$3 \cdot 66$
25	$4 \cdot 94$		$5 \cdot 30$		56		$2 \cdot 70$	$4 \cdot 38$	
26		$4 \cdot 8 \mathrm{I}$	$5 \cdot 24$		57		2.66	$4 \cdot 36$	
27		4.68	5•18		58		2.62	4.35	
28		$4 \cdot 56$	5.13		59		$2 \cdot 58$	4.34	
29		4.45	5.08		60	$2 \cdot 55$		4.33	
30	$4 \cdot 34$		5.04				$2 \cdot 53$		$3 \cdot 67$
	$4 \cdot 29$			$3 \cdot 64$	61	2.51		$4 \cdot 32$	
31	$4 \cdot 24$	4.24	4.99						
32		4.15	4.95						

Table 10
Earth flattening approximation for Gutenberg Model σ-frequency, T-period, C-phase velocity, U-group velocity $n(n+\mathrm{I})=a^{2} k^{2}$

n	σ	T	C	U
	s^{-1}	s	km/s	km/s
10	0.0112644	558	$6 \cdot 83$	
		535		$6 \cdot 52$
II	0.0122873	511	$6 \cdot 81$	
		494		$5 \cdot 8 \mathrm{I}$
12	0.0131994	476	$6 \cdot 73$	
		462		$5 \cdot 19$
13	0.0140140	448	$6 \cdot 61$	
		437		473
14	0.0147563	426	$6 \cdot 48$	
		416		4.42
15	0.0154503	407	$6 \cdot 35$	
		398		$4 \cdot 22$
16	0.0161131	390	$6 \cdot 22$	
20	0.0186168	338	5•79	
		332		$3 \cdot 86$
21	0.0192227	327	$5 \cdot 70$	
30	0.0244724	257	$5 \cdot 11$	
		254		$3 \cdot 62$
31	0.0250403	251	$5 \cdot 06$	
40	0.0300884	209	473	
		207		$3 \cdot 57$
41	0.0306482	205	471	
60	0.0414016	152	436	
		15 I		$3 \cdot 66$
61	0.0419763	150	435	
100	0.0649582	97	$4 \cdot 12$	
		96		$3 \cdot 34$
101	0.0655616	96	4*12	
200	$0 \cdot 126078$	50	$4 \% 1$	
		50		$3 \cdot 89$
201	$0 \cdot 126689$	50	$4^{\circ} \mathrm{I}$	

Plane Earth approximation for Gutenberg Model $\sigma-$ frequency, T-period, C-phase velocity, U-group velocity $n(n+\mathrm{I})=a^{2} k^{2}$

\boldsymbol{n}	σ	T	C	U
	s^{-1}	s	km/s	km/s
12	0.0112840	557	$5 \cdot 75$	
		539		$6 \cdot 30$
13	0.0122726	512	579	
		494		$5 \cdot 97$
14	0.0132103	476	$5 \cdot 80$	
		461		5•57
15	0.0140852	446	579	
		434		475
16	0.0148923	422	$5 \cdot 75$	
		411		3.95
17	0.0156372	401	$5 \cdot 69$	
20	0.0176298	356	$5 \cdot 48$	
		350		3.95
21	0.0182502	344	$5 \cdot 4 \mathrm{I}$	
25	0.0206441	304	$5 \cdot 16$	
		300		3773
26	0.0212293	296	5.10	

of gravitational forces in the Earth flattening approximation makes but a small improvement, as shown by the points \odot.

A comparison of the theoretical group velocity curves of Rayleigh waves for various models with the observations of Ewing \& Press (1956) is shown in Figures 9 , 10 and ir. The theoretical group velocity curves for Bullen's Model B, as well as for the "Jeffreys-Bullen" Model, shown in Figures 9 and io, are distinctly higher than the observed values for periods greater than 50 s . On the other hand, the theoretical group velocity curve for the Gutenberg Model agrees with the observations for periods up to about 380 s. This agreement can be taken as evidence in favour of Gutenberg's low-velocity layer as was first demonstrated by Takeuchi, Press \& Kabayashi (1959), and by Dorman, Ewing \& Oliver (1960).

The few observed Rayleigh wave group velocities in the high-period region of 400 to about 630 s are much lower than the theoretical values for all the three models. It would be interesting to substantiate this by further observations. The observed phase velocities C of Nafe and Brune shown in Figure 11 agree very well with the theoretical normal mode solution for $T<300$. For $T>300 \mathrm{~s}$, the observed C values are higher than the theoretical.

Fig. 8.-Group velocity U and phase velocity C for Bullen's model B. exact normal mode theory, - - - Earth flattening approximation with neglect of gravity, plane Earth with neglect of gravity, \odot Earth flattening approximation with gravity included.

Fig. 9.-Theoretical group velocity U and phase velocity C of Rayleigh waves for Bullen's model. The dots are Rayleigh wave group velocities observed by Ewing \& Press (1956). \qquad normal mode solution, ---- Earth flattening approximation. The triangles are phase velocities observed by Nafe \& Brune (1960).

Fig. ro.-Theoretical phase velocity C and group velocity U of Rayleigh waves for the "Jeffreys-Bullen" model. The dots are Rayleigh group velocities observed by Ewing \& Press (1956) - - - - - Earth flattening approximation. The triangles are phase velocities observed by Nafe \& Brune (1960).

Fig. Ir.-Theoretical phase velocity C and group velocity U of Rayleigh waves for Gutenberg Model. The dots are Rayleigh group velocities observed by Ewing \& Press (1956). Curves G were computed by Dorman, Ewing \& Oliver. --ーー- Earth flattening approximation, Plane Earth approximation, ——_Normal mode solution. The triangles are phase velocities observed by Nafe \& Brune (1960).

Weizmann Institute of Science,

Rehovot,

Israel:

References

Alterman, Z., Jarosch, H. \& Pekeris, C. L., 1959. Proc. Roy. Soc. A, 252, 80.
Benioff, H., 1954. Trans. Amer. Geophys. Un., 35, 985.
Benioff, H. \& Press, F., 1958. Geophys. J., 1, 208.
Bullen, K. E., 1950. Mon. Not. R. Astr. Soc. Geophys. Suppl., 6, 50.
Dorman, J., Ewing, M. \& Oliver, J., 196o. Bull. Seismol. Soc. Amer., 50, 87.
Ewing, M. \& Press, F., 1956. Trans. Amer. Geophys. Un., 37, 213.
Koo, Y. C. \& Katzin, M., 1960. Jour. Res. Nat. Bur. Stand., 64D., 6 r.
Nafe, J. E. \& Brune, J. N., 1960. Bull. Seismol. Soc. Amer., 50, July.
(In a forthcoming publication the authors re-analyse their data and arrive at lower values for the phase velocity. The reduction amounts to about I per cent at a period of 200 s and increases to about 3 per cent at a period of 400 s.$)$
Pekeris, C. L., 1946. Phys. Rev., 70, 518.
Pekeris, C. L., Jarosch, H. \& Alterman, Z., 1959. Proceedings, Third International Symposium on Earth Tides, Trieste.
Press, F. \& Takeuchi, H., 1960. Bull. Seismol. Soc. Amer., 50, 8 1.
Pryce, M. H. L., 1953. Advances in Physics, 2, 67.
Takeuchi, H., Press, F. \& Kobayashi, N., 1959. Bull. Seismol. Soc. Amer., 49, 355. Stoneley, R., 1953. Bull. Seismol. Soc. Amer., 43, 127.

