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ABSTRACT
We analyze the global hydrodynamic Ñow in the ocean of an accreting, rapidly rotating, nonmagnetic

neutron star in a low-mass X-ray binary during a type I X-ray burst. We use both analytical arguments
and numerical simulations of simpliÐed models for ocean burning. Our analysis extends previous work
by taking into account the rapid rotation of the star and the lift-up of the burning ocean during the
burst. We Ðnd a new regime for the spreading of a nuclear burning front, where the Ñame is carried
along a coherent shear Ñow across the front. If turbulent viscosity is weak, the speed of Ñame propaga-
tion is km s~1, where h is the scale height of the burning ocean, g is the localvflameD (gh)1@2/ft

n
D 20

gravitational acceleration, is the timescale for fast nuclear burning during the burst, and f is thet
nCoriolis parameter, i.e., twice the local vertical component of the spin vector. If turbulent viscosity is

dynamically important, the Ñame speed increases and reaches the maximum value, vflamemax D (gh/ft
n
)1@2 D

300 km s~1, when the eddy overturn frequency is comparable to the Coriolis parameter f. We show that,
as a result of rotationally reduced gravity, the thermonuclear runaway which ignites the ocean is likely
to begin on the equator. The equatorial belt is ignited at the beginning of the burst, and the Ñame then
propagates from the equator to the poles. Inhomogeneous cooling (equator Ðrst, poles second) of the hot
ashes drives strong zonal currents which may be unstable to the formation of Jupiter-type vortices ; we
conjecture that these vortices are responsible for coherent modulation of X-ray Ñux in the tails of some
bursts. We consider the e†ect of strong zonal currents on the frequency of modulation of the X-ray Ñux
and show that the large values of the frequency drifts observed in some bursts can be accounted for
within our model combined with the model of homogeneous radial expansion. Additionally, if vortices or
other inhomogeneities are trapped in the forward zonal Ñows around the propagating burning front, fast
chirps with large frequency ranges (D25È500 Hz) may be detectable during the burst rise. Finally, we
argue that an MHD dynamo within the burning front can generate a small-scale magnetic Ðeld, which
may enforce vertically rigid Ñow in the frontÏs wake and can explain the coherence of oscillations in the
burst tail.
Subject headings : accretion, accretion disks È hydrodynamics È instabilities È

nuclear reactions, nucleosynthesis, abundances È stars : neutron È X-rays : bursts

1. INTRODUCTION

Accreting neutron stars (NSs) in low-mass X-ray binaries
(LMXBs) undergo type I X-ray bursts as a result of ther-
monuclear runaways in pure helium or mixed hydrogen/
helium layers (Hansen & van Horn 1975 ; Maraschi &
Cavaliere 1976 ; Woosley & Taam 1976 ; for reviews see
Lewin, van Paradijs, & Taam 1995 ; Bildsten 1998). Spher-
ically symmetric models of such runaways successfully
explain general features of type I X-ray bursts, such as burst
Ñuences (D1039 ergs), timescales for accretion between
bursts (approximately a few hours), and burst durations
(D10 s). However, spherically symmetric models cannot
account for the lateral spreading of thermonuclear Ñames
and its interplay with NS rotation, and recent observations
have brought this issue into focus.

Since the timescale for accretion between bursts is much
longer than the burst duration, it is unlikely that identical
conditions exist over the whole stellar surface for the
burning instability to start simultaneously (Shara 1982).
Therefore, burning should start locally at some point, cre-
ating a brightness asymmetry, and spread over the entire
surface of the star. As nuclear burning spreads around the
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star, one would then expect to see a rotational modulation
of the X-ray Ñux, with the frequency of the modulation
equal to that of the NS spin. Such highly coherent (QD few
thousand) ““ burst oscillations ÏÏ have indeed been observed
with RXT E in nine di†erent bursters for many bursts with
rise times of less than 1 s (see van der Klis 2000 for a review
and Muno et al. 2001 for the most recent tally). The inferred
NS spins are between 250 and 650 Hz.l

sThe discovery of burst oscillations, while conÐrming the
basic expectations of millisecond spins of accreting NSs and
asymmetry of nuclear burning, has brought about a host of
new questions. Firstly, burst oscillations are seen only from
some of the D50 known Galactic LMXBs, and only some
bursts from the same source show oscillations. For NSs
with Hz, oscillations are seen only during strongl

s
D 600

bursts with photospheric radius expansion, while for l
s
D

300 Hz, oscillations are equally as likely to be seen during
weak or strong bursts (Muno et al. 2001). Secondly, oscil-
lations are most commonly seen during tails of bursts,
when, presumably, the entire accreted fuel layer has been
burned and the obvious asymmetry is no longer present.
Finally, the frequency of burst oscillations drifts upward by
*lD several Hz during the burst.

A simple model for the drift of the burst oscillation fre-
quency has been proposed by Strohmayer et al. (1997) and
recently considered quantitatively by Cumming & Bildsten
(2000) and Cumming et al. (2002). Since the vertical sound
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crossing time through the burning layer (microseconds) is
much smaller than the nuclear burning time (greater than a
fraction of a second) on which the burst evolves, the outer
layers of the NS are always in hydrostatic balance. When
the burning layer is hot, it expands hydrostatically by
*zD tens of meters while conserving angular momentum
and, hence, lags behind the NS by During*l/l

s
B 2*z/R.

the tail of the burst, a postulated temperature inhomoge-
neity gives rise to oscillations, and, as the layer cools down
and contracts, we observe an upward frequency drift by *l
of a few Hz, roughly consistent with observations. However,
recent works by van Straaten et al. (2001), Galloway et al.
(2001), Wijnands, Strohmayer, & Franco (2001), and
Cumming et al. (2002) suggest that purely radial hydrostatic
expansion may not be sufficient to explain rather large *l-
values observed in some bursts (see discussion in ° 4.3).

It has long been expected that NSs in LMXBs are pro-
genitors of millisecond radio pulsars (for a review see Bhat-
tacharya 1995). Detection of burst oscillations has certainly
bolstered the idea that accreting NSs can reach periods
similar to those seen in millisecond radio pulsars. However,
except for one source, there is no convincing evidence of
millisecond pulsarÈlike D109 G magnetic Ðelds in LMXBs.
Only SAX J1808.4[365 (Wijnands & van der Klis 1998 ;
Chakrabarty & Morgan 1998) shows coherent Hzl

s
\ 401

pulsations in persistent emission, which is consistent with
the fact that a 108È109 G magnetic Ðeld channels accretion
onto magnetic polar caps and creates a permanent bright-
ness asymmetry on the NS (Psaltis & Chakrabarty 1999 ;
though, since persistent Ñux modulation is only a few
percent, a weaker Ðeld could perhaps be sufficient). None of
the other LMXBs show such pulsations in persistent emis-
sion, implying that, if they do have magnetic Ðelds, they
must be weaker than at least 109 G. Moreover, the presence
of frequency drifts during bursts may place even more strin-
gent constraints on the magnetic Ðeld. If the radial lift-up
model described above were correct, it would imply that the
ocean and atmosphere of the NS can make up to tburst*lD
10 revolutions around its interior. The magnetic Ðeld, if
present in the shearing layer, will be ampliÐed by the shear.
A simple estimate (Cumming & Bildsten 2000) shows that
even an B106 G magnetic Ðeld might be dynamically
important in this situation. Throughout this work, we
neglect the dynamical e†ects of the NS magnetic Ðeld and
only brieÑy discuss possible MHD e†ects at the end.

In this paper we abandon the requirement of spherical
symmetry and consider instead the two-dimensional
spreading of the nuclear Ðre around the NS surface. We
study hydrodynamic Ñows that arise in the burning ocean
due to the combination of its inhomogeneous lift-up and the
rotation of the star. We analyze how these Ñows a†ect the
spreading of Ðre around the NS surface. First we consider
the local conditions around the Ñame front at the interface
between the hot, burned ashes and cold, unburned fuel,
exposing the nontrivial e†ects of rotation and viscosity on
the propagation of the Ñame front. Armed with the under-
standing of local conditions, we then construct a global
scenario for X-ray bursts.

The burning front during type I X-ray bursts can propa-
gate either by deÑagration (Fryxell & Woosley 1982b ;
Hanawa & Fujimoto 1984 ; Bildsten 1995) or by detonation
(Fryxell & Woosley 1982a ; Zingale et al. 2001). Detonation
is possible when the timescale for nuclear burning is less
than the vertical sound crossing time. This requires a large

column of accumulated fuel (D100 m) before the runaway
starts and, hence, rather low accretion rates of [10~11.5

yr~1, i.e., 1È2 orders of magnitude less than theM
_observed accretion rates in most bursters. However, direct

numerical simulations of the type performed by Fryxell &
Woosley (1982a) and especially by Zingale et al. (2001), if
extended into the parameter regime relevant for most of the
observed sources (i.e., higher accretion rate and, hence, def-
lagration rather than detonation), are the only deÐnitive
way to model X-ray bursts.

In most bursts, the helium/hydrogen ocean burns by
spreading of a deÑagration front ; its propagation speed is
set by the rate of heat transport across the front. Fryxell &
Woosley (1982b) argue that in bursts with quick (less than 1
s) rise, which are of most interest to us, heat is conducted
sideways by convection. They give three di†erent phenom-
enological estimates of the speed of the front (see eqs. [3]
and [4] and the bottom line of the left column on page 333
of their paper) :

1. The width of the front is equal to the length scale of a
convective roll, taken to be approximately the scale height
h. The front speed is then

vflame D
h
t
n
\ 104 cm s~1

A h
103 cm

BA0.1s
t
n

B
, (1)

where is the timescale of nuclear burning during the burst.t
nThis estimate is based on the earlier work of Ruderman

(1981).
2. Heat is transported by turbulent convective di†usion,

with a kinetic di†usion coefficient where is theD\ hv
c
, v

ccharacteristic convective speed. The front speed is then

vflame D JD/t
n
\ 2 ] 105 cm s~1

]
CA h

103 cm
BA v

c
5 ] 106 cm s~1

BA0.1s
t
n

BD1@2
. (2)

3. The turbulence scale is much larger than the front
width, in which case the burning front becomes wrinkled,
accelerating heat transport. In this case (Williams 1965)

vflameD v
c
D 5 ] 106 cm s~1 . (3)

Cases 1 and 2, with typical expected s, h D 103t
n
D 0.1

cm, and cm s~1, give burst rise times longerv
c
D 5 ] 106

than the ones observed. Case 3 is, as Fryxel & Woosley
(1982a) argue, the upper limit for the front velocity, but it
seems that it is the only one of the three estimates which can
account for the observed short rise times of bursts.

In this paper we present a new mode of heat transport
across the front which does not depend on a large turbu-
lence scale and on wrinkling of the front and can also
explain the observed short rise times of type I X-ray bursts.
The hot, burned ashes have a larger scale height than the
cold fuel. This vertical lift-up of the ocean as the Ñame
propagates around the star leads to a horizontal pressure
gradient. Previous work (Strohmayer et al 1997 ; Cumming
& Bildsten 2000) only considered the situation in which the
entire ocean is burned and has lifted up, and, hence, the
horizontal pressure balance is already restored. We argue
that, as the thermonuclear Ñame propagates around the
star, the lift-up of the ocean behind the front drives a di†er-
ential shear across the front. This shear transports entropy
from the hot ashes to the fuel and, hence, propagates the
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front. The speed of the Ñame depends on the strength of the
frictional coupling (e.g., due to convection) between the dif-
ferent layers (from top to bottom) of the burning ocean.

In ° 2 we estimate analytically the following :

1. In the case of the weak frictional top-bottom coupling,
the width of the front * is given by the Rossby adjustment
radius aR :

*D aR\ Jghhot
f

\ 2 km
CA g

2 ] 1014 cm s~2
BA hhot

103 cm
BD1@2

]
A2000 rad s~1

f
B

, (4)

where g is the gravitational acceleration at the NS surface,
is the scale height of the burned ocean, and f\ 2) cos hhhotis the local Coriolis parameter () is the angular frequency of

the NS and n/2 [ h is the latitude). The speed of the front is

vflame D
*
t
n
\ Jghhot

ft
n

\ 2 ] 106 cm s~1
A *
2km

BA0.1s
t
n

B
, (5)

which gives a rise time of D0.7 s for burning to spread from
the equator to the poles (see eq. [24]).

2. Let be the timescale of frictional coupling betweentfrthe top and the bottom of the ocean ; if thetfrD hhot/vclayers of the ocean are dynamically coupled by convection.
If the coupling is strong, i.e., friction modiÐes thetfr [ t

n
,

structure of the burning front and its propagation speed.
Maximum speed is reached when and is given bytfr B 1/f

vflamemax D
Aghhot

ft
n

B1@2

\ 3 ] 107 cm s~1

]
CA hhot

103 cm
BA2000 rad s~1

f
BA0.1s

t
n

BD1@2
(6)

(eq. [34] gives the expression for the burning front speed
when the frictional coupling strength is arbitrary). The burst
rise time is D0.1 s in this case.

In ° 3 we set up and solve numerically a two-layer
shallow water model which contains the essential physics of
how a stably stratiÐed ocean responds to inhomogeneously
applied heating. We use this two-layer model to simulate
ignition and propagation of the deÑagration front, for both
weak and strong frictional coupling. Our simulations are in
agreement with the analytical estimates of the front speed in
° 2. The shallow water model also provides us with the
theoretical estimate of the size of the initial ignition spot on
the NS surface. However, we are unable to determine the
strength of friction from the Ðrst principles, and we leave it
as a free parameter of our model. Hopefully, future direct
numerical simulations will address this issue.

Armed with our understanding of Ñame propagation, in
° 4 we set out to construct a global scenario for X-ray
bursts. We argue that, as a result of rotationally reduced
gravity, the thermonuclear runaway is likely to begin in the
equatorial region. We then show that, as a result of the

reduced Coriolis parameter at the equator, the Ñame propa-
gates faster along the equator than away from the equator.
Thus, a possibly inhomogeneous equatorial belt is ignited at
the beginning of the burst rise, and the Ñame proceeds to
burn from the equator to the poles. Inside the burning front
there are strong zonal currents going forward relative to the
starÏs rotation, and there are weaker backward zonal Ñows
in the cooling wake of the front. A burning inhomogeneity
observed as a Ñux modulation during the burst will be
trapped in the backward zonal Ñows, thus the observed
modulation frequency is smaller than the NS spin. As the
ocean cools, the zonal Ñow slows down, and the modulation
frequency asymptotes to the NS spin frequency. This sce-
nario for the burst frequency drift is an extension of the
radial lift-up scenario proposed by Strohmayer et al. (1997)
as modeled in detail by Cumming & Bildsten (2000).

We speculate that di†erential zonal currents can be
unstable to the formation of vortices of the type observed in
the atmospheres of giant planets. These vortices may be the
cause of oscillations in the X-ray Ñux in the tail of the burst.
In addition, if there are vortices trapped in the strong
forward zonal currents in the burning front, we expect to see
a chirp with a large frequency span (D25È500 Hz) during
the rise of the burst. Finally, we also suggest that the
burning front may generate, via an MHD dynamo, a mag-
netic Ðeld BD 109 G, with the ocean scale height as the
characteristic coherence length. This magnetic Ðeld can
quench the vertical shear in the backward zonal Ñow and
thus may be responsible for the observed coherence of burst
oscillations in the burst tail.

2. PROPAGATION OF THE FLAME : ANALYTICAL

ARGUMENTS

2.1. Vertical Force Balance
During the burst, the burning material reaches tem-

peratures of D2 ] 109 K, degeneracy in the helium layer is
lifted, and the burning ocean expands by 10È40 m, many
scale heights of the cold preburst ocean (Joss 1977 ; see
Cumming & Bildsten 2000 for the most recent calculations).
This vertical expansion is very subsonic. However, since
only a part of the star is burning at a given time, the hori-
zontal pressure imbalance leads to nontrivial hydrody-
namic Ñows, as we now discuss.

Consider a propagating burning front, as illustrated in
Figure 1, where the ocean behind the burning front is
already hot, while the ocean ahead of the front is still cold.

FIG. 1.ÈIllustration of a burning front moving from the hot to the cold
region in the atmosphere/ocean.
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Let the ocean, for simplicity, reside on a plane, with x and z
being the horizontal and the vertical coordinates, respec-
tively ; z is taken to increase upward. Since the vertical
sound crossing time is much smaller than the characteristic
nuclear burning timescale during the burst, verticalt

n
,

hydrostatic equilibrium is always a good approximation
(we also neglect the vertical component of the Coriolis
force ; see ° 2.2). Therefore,

ALp
Lz
B
x

\ [go , (7)

where p(x, z) is the pressure and o(x, z) is the density. From
equation (7) we see that the separation between constant
pressure surfaces scales as 1/o. The hot ocean is less dense
than the cold one, so the pressure surfaces diverge as they
traverse the front from the cold into the hotter part (see Fig.
1). This implies that the horizontal pressure gradient Lp/Lx
(indicated by horizontal arrows in Fig. 1) increases with
height inside the burning front. This di†erence in the hori-
zontal pressure gradient drives a shear Ñow and circulation
across the front.

Let us quantify the above argument. Let /(x, z) be the
e†ective gravitational potential per unit mass, d/\ g dz.
The horizontal3 acceleration of a Ñuid element due to the
pressure gradient is given by

apressure \ [ 1
o(x, /)

CLp(x, /)
Lx

D
Õ

. (8)

Furthermore,

ALp
Lx
B
Õ
\ [

ALp
L/
B
x

AL/
Lx
B
p
\ o(x, /)

AL/
Lx
B
p

. (9)

Therefore, from equations (8) and (9), we have

apressure\ [
AL/
Lx
B
p

. (10)

Equation (10) is easy to understand : the height //g of sur-
faces of constant pressure decreases from the hot to the cold
part of the ocean, so is directed from the hot regionapressureto the cold region (arrows in Fig. 1). Di†erentiating equa-
tion (10) with respect to ln p at constant x and using equa-
tion (7), we get

ALapressure
L ln p

B
x

\ [p
A L
Lx
B
p

AL/
Lp
B
x

\
CL(p/o)

Lx
D
p
\
CL(c

s
2/c)

Lx
D
p

, (11)

where is the speed of sound and c is the adiabatic index ofc
sthe gas. As an example, for an ideal chemically homoge-

neous gas

Lapressure
L ln p

\ R
k
ALT

Lx
B
p

, (12)

where T is the temperature and k is the mean molecular
weight of the gas. The term on the right-hand side of equa-
tion (12) is the forcing term for the vertical shear ; it is
determined by the horizontal temperature gradient.

3 A horizontal surface is a surface of constant / ; in plane-parallel
geometry with constant g, setting /\ const is equivalent to z\ const.

2.2. Horizontal Force Balance and Flame Propagation in the
Ocean without Friction

Let us now write down the horizontal momentum equa-
tion. In a frame rotating with the star, a Ñuid element
moving with velocity experiences the Coriolis acceler-¿
ation, where X is the angular velocityaCoriolis\ [2X Â ¿,
of the star. In general, the Coriolis vector 2X has both
vertical and horizontal components in the local frame of the
ocean. In what follows we shall neglect the horizontal com-
ponent of the Coriolis vector (this is commonly known as
the ““ traditional approximation ÏÏ in geophysics ; see, e.g.,
Pedlosky 1987). In doing so, we neglect two terms in the
momentum equation. First, in the equation for the vertical
force balance (° 2.1) we neglect the vertical component of
the Coriolis force due to horizontal motion, D)v. As we
shall see below, so this component of thevmaxD (gh)1@2,
Coriolis force is negligible compared to gravity so long as
)> (g/h)1@2\ 4 ] 105(h/103cm)~1@2, which is always satis-
Ðed for NSs in LMXBs. Second, we neglect the horizontal
component of the Coriolis force due to radial motion,

which is small compared to the horizontal CoriolisD)v
z
,

force due to horizontal motion, D)v. This can be seen as
follows : during the burst, the ocean expands vertically on
the nuclear timescale and the vertical velocity ist

n
, v

z
D h/t

n
.

Therefore, the horizontal Coriolis acceleration due to radial
motion is much less then the horizontal Coriolis acceler-
ation due to horizontal motion so long as 1/t

n
> (g/h)1@2.

This condition is always satisÐed for type I X-ray bursts.
With the above approximations, and in the absence of

viscosity (this assumption is alleviated in ° 2.3), the horizon-
tal force balance is

apressure \ d¿
dt

] f Â ¿ , (13)

where is the horizontal component of the velocity and¿
is the vertical Coriolis vector.f \ 2) cos hzü

Accreting NSs which display type I X-ray bursts are typi-
cally spinning with frequencies of a few hundred Hz. Thel

scharacteristic timescales of the burst light curves are orders
of magnitude greater than the rotation period of the NS: a
typical burst rise time is 0.1È1 s, and a typical burst cooling
time is 5È100 s. Theoretical calculations (see Bildsten 1998
for a review) suggest that the nuclear burning timescale
during a typical burst is s, still much greater thant

n
D 0.1

Therefore, during the burst the ocean Ñow must be in1/l
s
.

quasi-geostrophic equilibrium (Pedlosky 1987) everywhere
except for the immediate vicinity of the equator. Quasi-
geostrophic equilibrium implies that inertial external forces
acting on a Ñuid element in the horizontal direction (in
particular, due to the horizontal pressure gradient) are
almost exactly balanced by the horizontal component of the
Coriolis force.

One can see this by noting that the second term on the
right-hand side of equation (13) is dominant. We can
rewrite this equation as

¿ \ [ 1
f 2 f Â apressure ] 1

f 2 f Â
d¿
dt

. (14)

To zeroth order,

¿ \ ¿geostrophic\ [ 1
f 2 f Â apressure . (15)
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Substituting this expression into the right-hand side
of equation (14), we get the Ðrst-order correction to the
velocity :

¿ \ ¿geostrophic] ¿ageostrophic

\ [ 1
f 2 f Â apressure]

1
f 2

dapressure
dt

. (16)

The Ðrst term in equation (16) represents the dominant geo-
strophic Ñow in the direction along the front line and per-
pendicular to the pressure gradient. The second term is the
ageostrophic component of the velocity, which is perpen-
dicular to the front line. Di†erentiating equation (16) with
respect to ln p and using equation (12), we get

L¿geostrophic
L ln p

\ [ 1
f 2 f Â

L(p/o)
Lx

(17)

and

L¿ageostrophic
L ln p

\ 1
f 2

L
L ln p

dapressure
dt

. (18)

Equation (17) is commonly referred to as the thermal
wind relation in the meteorology/geophysics literature. It
implies that the di†erence in geostrophic velocity dvgeostrophicbetween the top and the bottom of the ocean somewhere in
the middle of the front is related to the di†erence in p/o
between the hot and the cold parts of the ocean :

dvgeostrophic \ vgeostrophictop [ vgeostrophicbottom

D
(p/o)hot[ (p/o)cold

f*
B

ghhot
f*

, (19)

where is the scale height of the ocean behind the fronthhotwhich has just undergone a thermonuclear runaway, * is
the width of the front, and we used the fact that hhot? hcold.Likewise, we can use equation (18) to estimate the charac-
teristic ageostrophic shear dvageostrophic\ ¿ageostrophictop

somewhere in the middle of the front. Since[ ¿ageostrophicbottom
the front passes through a given Ñuid element on the time-
scale of order we replace d/dt by in our order-of-t

n
, 1/t

nmagnitude estimates. Then

L¿ageostrophic
L ln p

\ d¿ageostrophic D
1

f 2t
n

Lapressure
L ln p

D
ghhot
f 2t

n
*

nü .

(20)

Here is the unit vector perpendicular to the front line.nü
The quantity is the characteristic speed of thedvageostrophicshear Ñow perpendicular to the burning front. How does it

relate to the Ñame propagation speed? Generally, Ñames
propagate by transporting entropy from the hot, burned
material to the cold, unburned fuel, and their speed is set by
the time it takes to transport this heat across the width of
the front. In the case of slow, laminar deÑagration fronts
(see, e.g., Bildsten 1995) heat is transported by conduction,
while for convective fronts discussed by Fryxell & Woosley
(1982b), heat is advected by the turbulent motion of the
Ñuid and then mixed into the fuel. In our case, however, it is
the shear Ñow, that moves the hot materiald¿ageostrophic,ahead of the front (this happens at the top of the burning
ocean) and pulls the cold fresh fuel into the burning front
(this happens at the bottom of the ocean).

We assume that vertical mixing occurs within the front
and that this mixing transports heat between the hot
burning Ñuid moving forward on the top and the cold Ñuid
on the bottom. This mixing could be due to either convec-
tion or various shear instabilities. Indeed, one-dimensional
numerical simulations, starting with Joss (1977), show that
X-ray bursts are strongly convective, with a convective
overturn timescale of D10~3 s. If convection is present
within the front, it will efficiently mix entropy in the vertical
direction. However, while in one dimension the hot burned
Ñuid has no place to go but to mix with the cold unburned
fuel, in more than one dimension convection may be
quenched by the sideways propagation of the hot material
on top of the cold material.4 In addition to the possibility of
convection, the geostrophic Ñow within the front possesses
strong vertical shear, with velocity di†erence of dvD

across a scale height (see eqs. [17] and [25]), which(ghhot)1@2corresponds to the Richardson number of order unity. The
front with such strong shear may be unstable to the Kelvin-
Helmholtz instability. Finally, the interface between the
shearing layers is not exactly horizontal but has a slope of
order Such Ñow may be unstable to thehhot/*[ 10~2.
baroclinic instability (Fujimoto 1988 ; Cumming & Bildsten
2000). The nonlinear development of these or other insta-
bilities might result in efficient vertical mixing. The presence
of efficient vertical mixing within the front is the most
uncertain part of our model ; it must be addressed directly
by future numerical simulations. However, given the large
amount of shear in the burning front, such mixing is not at
all unreasonable.

We therefore believe that the vertical thermal mixing
timescale within our geostrophic front is muchtmixingsmaller than (e.g., the convective overturn timescale ist

n10~3 s). In the foregoing, we assume that the entropy
advected forward by the ageostrophic Ñow is quickly mixed
in the vertical direction. If the thermal mixing timescale

within the front is nonnegligible, then the generaltmixingargument laid out in this paper is unchanged, except that all
estimates should use instead of justt

n
] tmixing t

n
.

If entropy mixing is efficient, then the front propagation
speed is the velocity with which entropy is transported, i.e.,
the characteristic speed of the ageostrophic shear Ñow:

vflameD dvageostrophicD
ghhot
f 2t

n
*

. (21)

The width of the propagating front is (e.g., Fryxell &
Woosley 1982b)

*D vflame t
n
. (22)

Substituting this into equation (21) and solving for the front
speed and width, we get

vflame D
(ghhot)1@2

ft
n

B 20 km s~1
A hhot
103 cm

B1@2A2000 rad s~1
f

B

]
A0.1 s

t
n

B
(23)

4 We thank Lars Bildsten and Andrew Cumming for making this point.



No. 2, 2002 THERMONUCLEAR FLAMES ON NEUTRON STARS 1023

and

*D
(ghhot)1@2

f
B 2 km

A hhot
103 cm

B1@2A2000 rad s~1
f

B
(24)

for g \ 2 ] 1014 cm s~2. From equation (19) the character-
istic geostrophic velocity inside the front is of order the
gravity wave speed in the hot material :

vgeostrophicB (ghhot)1@2 . (25)

Note that the width of the front is equal, to the order of
magnitude, to the Rossby adjustment radius (Pedlosky
1987).

2.3. Horizontal Force Balance and Flame Propagation in the
Ocean with Friction

In the previous subsection we have assumed that there
are no viscous forces acting on Ñuid elements and hence
that the top and the bottom of the burning ocean are free to
slip past each other. However, there is likely to be some
vertical mixing within the front, as a result of turbulence
driven by convection or by strong shear (see the discussion
in the previous subsection). This mixing will exchange
momentum between the top and the bottom of the ocean ;
we must, therefore, consider what e†ect viscous-type fric-
tion within the ocean will have on the propagation of the
burning front.

Let us return to the horizontal force balance equation
(13) and include viscosity :

apressure \ d¿
dt

] f Â ¿[ aviscous , (26)

where we have added to the right-hand side the acceleration
of the Ñuid element due to viscous stress. We now consider
the di†erence in between the bottom and the top ofapressurethe burning ocean, where we take the top to be roughly 1
scale height above the bottom. From the previous equation
we have

apressuretop [ apressurebottom \ d¿top
dt

[ d¿bottom
dt

] f Â (¿top [ ¿bottom)

[ (aviscoustop [ aviscousbottom ) . (27)

We assume that e†ective viscosity dynamically couples the
top and the bottom of the burning ocean and model this
coupling by introducing a linear friction term:

aviscoustop [ aviscousbottom \ [ 1
tfr

(¿top[ ¿bottom) . (28)

If friction is mediated by turbulent eddies, then 1/tfr \where is the characteristic velocity of theb1 vturb/h, vturblargest turbulent eddy and is a number of order unity.b1On the left-hand side of equation (27) we use equation (12)
to get

apressuretop [ apressurebottom D
dapressure

d ln p
D
CL(p/o)

Lx
D
p
D g

hhot
*

nü .

(29)

Finally, as in ° 2.2, we replace in equation (27) the time
derivative d/dt by where g is a number of order unity.g/t

n
,

With the above simpliÐcations, the shear Ñow d¿\¿top

obeys[ ¿bottom

g
hhot
*

nü D
C

f Â dv ]
A 1
tfr

] g
t
n

B
d¿
D

. (30)

Scalar multiplication of the above equation by yieldsd¿

g
hhot
*

(d¿ Æ nü ) D
A 1
tfr

] g
t
n

B
(dv)2 , (31)

while application of the Pythagorean theorem to equation
(30) yields

(dv)2D
Aghhot

*
B2 1

f 2] (1/tfr ] g/t
n
)2 . (32)

Therefore, the component of the shear Ñow across the front
is just

d¿ Æ nü D
ghhot(1/tfr ] g/t

n
)

[ f 2] (1/tfr] g/t
n
)2]* . (33)

As argued in ° 2.2, the speed of the front is determined by
the speed of the shear Ñow across the front line, i.e., vflameDThen, using in equation (33), we getd¿ Æ nü . *D vflame t

n

vflameD
Cghhot

t
n

1/tfr] g/t
n

f 2] (1/tfr] g/t
n
)2
D1@2

. (34)

The typical parameter values relevant for the burning
ocean are g \ 2 ] 1014 cm s~2, cm, s,hhot \ 103 t

n
\ 0.1

and f \ 2000 rad s~1. For purposes of illustration, we take
the eddy velocity to be equal to the typical convective veloc-
ity inferred from one-dimensional models of X-ray bursts

cm s~1 and set the frictional timescalevturb\ v
c
\ 5 ] 106

to We then obtain the numerical value oftfr hhot/vturb.km s~1. This corresponds to a burst rise timevflameD 200
(equator to pole spreading) of D0.1 s.

In Figure 2 we show the speed of the Ñame front asvflamea function of the strength of the dimensionless frictional
coupling constant, The Ðlled circles represent the(tfr f )~1.
results of our model simulations, which are discussed in the
next section. The solid line is a Ðt made using the functional
form of equation (34) and adjusting the values of andhhot t

nto match the simulation. The agreement between the model
simulations and the analytical formula for the speed propa-
gation is very good, which means that the analytical esti-
mates capture the physics contained in the problem quite
well.

In Figure 2, three regimes of the front speed are evident.
When frictional coupling is very weak (i.e., andtfr ? t

n
tfr ?1/f), the front speed asymptotes to a constant value given by

equation (24), i.e., we recover the result of ° 2.2 for friction-
less Ñame propagation. When friction is important (i.e.,

there are two distinct regimes, depending ontfr [ t
n
),

whether the coupling frequency is smaller or greater1/tfrthan the Coriolis parameter f. When (friction is1/tfr > f
small), then

vflameD
Aghhot

ft
n

1/tfr ] g/t
n

f
B1@2

, (35)

while if friction is strong (1/tfr ? f ),

vflameD
Aghhot tfr

t
n

B1@2
. (36)
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FIG. 2.ÈFront speed as a function of friction strength, Filled(tfr f )~1.
circles represent the results of the shallow water simulation (° 3.7), and the
solid line is the Ðt using the analytical expression for the front speed (eq.
[34], ° 2.3).

For a Ðxed frictional coupling timescale the front speedtfr,is always a decreasing function of f ; for a Ðxed f the front
speed attains a maximum value when friction is acting on
the rotation timescale, 1/tfr\ f :

vflamemax D
Aghhot

ft
n

B1@2
. (37)

Comparison with equation (24) shows that the maximum
speed is a factor of larger than the front speed( ft

n
)1@2D 15

without friction. The increase of the front speed when fric-
tion is introduced into the ocean can be qualitatively under-
stood as follows. Without friction, the dominant component
of the Ñuid velocity, is exactly parallel to thevgeostrophic,front, and the cross-front velocity, is a factor ofdvageostrophic,smaller. The presence of friction modiÐes geostrophicft
nbalance so that the geostrophic shear Ñow has a component

perpendicular to the front. However, if friction becomes too
large, it will suppress the shear, and the front will stall. The
cross-front component of geostrophic shear is maximized
when friction and Coriolis force have the same magnitude,
1/tfrB f.

In the above analytical estimates we neglected the e†ect
of the magnetic Ðeld that may be present on the NS surface.
What is the magnitude of a B Ðeld that would have dynami-
cal consequences? This B Ðeld would have to alter the
leading-order geostrophic balance (see eqs. [13] and [26]),
i.e., If viscous coupling is neg-BdynamicalD (4novgeostrophic2 )1@2.
ligible, andvgeostrophicD (ghhot)1@2,

BdynamicalD 1012 G
A o
106 g cm~3

B1@2A hhot
103 cm

B1@2
, (38)

i.e., magnetic energy density needs to be comparable to the
hydrostatic pressure in order to a†ect geostrophic Ñow.
Conversely, if convective viscosity is such that vflame\then and the abovevflamemax , vgeostrophicD gh/f*D (ghhot/ftn)1@2,estimate is a factor of smaller. Even in order to( ft

n
)1@2D 15

a†ect the Ðrst-order correction to the geostrophic balance,
i.e., the cross-front circulation, the magnetic pressure has to
be comparable to The smallest ageostrophicovageostrophic2 /2.
velocity is attained in the case of no friction, vageostrophic D

(see eqs. [21] and [24]), which still requires(ghhot)1@2/ftn G in order to a†ect the details of the cross-BdynamicalZ 109
front circulation. As discussed in ° 1, it is unlikely that
accreting NSs in LMXBs possess surface magnetic Ðelds of
this magnitude.

The argument above applies to the instantaneous e†ect of
magnetic Ðeld on the Ñow and does not take into account
the nonlinear evolution of magnetic Ðeld in the (possibly
turbulent) shear Ñow and the back-reaction of the evolved
Ðeld on the Ñow (see, e.g., Kluzniak & Ruderman 1998 ;
Spruit 1999 ; Cumming & Bildsten 2000). Detailed consider-
ation of this issue is beyond the scope of this paper. In ° 4 we
only brieÑy speculate on magnetic Ðeld generation by an
MHD dynamo in the burning front.

In the next section we construct an explicit two-layer
shallow water model for Ñame propagation, which we
designed to include the essential physics described in this
section. Our numerical simulations conÐrm the analytical
results presented here.

3. PROPAGATION OF THE FLAME : NUMERICAL MODEL

3.1. Motivation and Basic Description of the
Two-L ayer Model

In this section we outline one particular approach to
modeling hydrodynamic Ñows in a stratiÐed plane-parallel
atmosphere5 in the presence of localized heat sources and
sinks (thermal forcing). The thermodynamic state of a
parcel of Ñuid in the atmosphere will be described using its
temperature, T , pressure, p, and potential temperature, h \

where is some constant reference pressure and iT (p0/p)i, p0is related to the adiabatic index of the gas, c, as i \ 1 [ 1/c.
Potential temperature can be interpreted as the temperature
which a parcel would have if it were adiabatically brought
from pressure p to the reference pressure (Holton 1992).p0It is equal to exp s, where s is the speciÐc entropy of the
parcel. In a stably stratiÐed atmosphere potential tem-
perature should increase or be constant with height.
Another property which follows from the deÐnition of h is
that for Ðxed pressure it is proportional to the speciÐc
volume of the gas : h P (1/o)p(1~i). For the particular case
i \ 1 which will be utilized below, potential temperature is
equivalent to the speciÐc volume of a parcel of Ñuid.

Now we can begin to evaluate the qualitative e†ects of
heating on an atmospheric column. From the heat equation
we have

d ln h
dt

\ J
c
p
T

, (39)

where J is the net rate of heating (or cooling) per unit mass,
which, in our case, is the di†erence between the nuclear
energy generation rate and the radiative cooling rate. The

5 Henceforth we use the terms ““ atmosphere ÏÏ and ““ ocean ÏÏ inter-
changeably.
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e†ect of heat input, therefore, is to change the potential
temperature of the element of Ñuid. Such a change, coupled
with maintenance of vertical hydrostatic balance in the
column, leads to hydrodynamic circulation. As a simple
example of how such a circulation arises, consider two
columns of gas of equal column density but of di†erent
potential temperature positioned next to each(h1[ h2)other (see Fig. 3, left panel). Each of the columns is assumed
to be in vertical hydrostatic equilibrium. This situation can
arise if column 1 is strongly heated, so that its entropy is
instantly increased relative to the entropy of column 2. This
conÐguration, however, is not stable : the Ñuid with higher
entropy will end up on top of the Ñuid with lower entropy,
and the atmosphere will become stably stratiÐed (see Fig. 3,
right panel). The dynamics of this adjustment can be quali-
tatively described as follows. Initially, let the tops of the
columns be at the same outside pressure ; the bottom pres-
sure then will also be the same since the column densities
are equal for both columns. At higher altitude the pressure
in column 1 is larger than in column 2 at the same height
because the density in column 1 is lower than that of
column 2 (see Fig. 1). At Ðrst the Ñuid will Ñow from column
1 toward column 2 along the top, and not along the bottom
where the pressures are the same. As the high-entropy Ñuid
accumulates on top of column 2, the pressures at the
bottom no longer match, and there will be a Ñow of Ñuid
from column 2 toward column 1 along the bottom as well.
This circulation will continue until the equilibrium state
shown in the right panel of Figure 3 is achieved. Note that
we assumed that this equilibration is happening adia-
batically, so that the Ñuids of di†erent entropy maintain
their identity and in the end do not mix but stratify.

The entropy stratiÐcation described above suggests a
useful analogy for the e†ect of a heat source in the atmo-
sphere. Since higher entropy Ñuid ends up on top of the
lower entropy Ñuid, we can treat entropy (or potential
temperature) as a generalized vertical coordinate. The
action of the heat source is then to pump Ñuid from a low
entropy level to a high entropy level while conserving mass.
The isentropic levels generally do not coincide with the
levels of constant height, and there will be a circulation of
Ñuid. If the motion outside the heat source is adiabatic, it is
impossible for the Ñuid to cross the isentropic level again,
and the motion will be along the isentropes.

Henceforth, we will adopt a particularly simple, yet
powerful, model which uses the equation of state with i \ 1

FIG. 3.ÈAdjustment to equilibrium in a Ñuid with an entropy gradient.
L eft : Initial conÐguration with two columns of equal mass with uniform
potential temperature in vertical hydrostatic balance. Upper sur-h1[h2faces are at the same external pressure but not at the same height. Right :p

t
,

Final conÐguration : entropy stratiÐcation. Higher entropy Ñuid is on top,
and the interface is at pressure 12(p

t
] p

b
).

(c] O). The Ñuid with such an equation of state is quasi-
incompressible : it does not allow adiabatic motions which
involve compression and rarefaction and has an inÐnite
speed of sound. However, for i \ 1, the potential tem-
perature is equal to the speciÐc volume of the Ñuid, and
heating will lower the density of the Ñuid while conserving
its mass.

Following Ooyama (1969), we consider an atmosphere
consisting of two layers of incompressible Ñuid of di†erent
density, with density ratio The lighter Ñuid isv4 o2/o1\ 1.
assumed to be in the top layer (layer 2). A Ñuid element is
allowed to be in one of the two possible density states, oro1The heating is assumed to be located at the interfaceo2.between the two layers (which is not necessarily a surface of
constant height) ; the physical e†ect of the heating is to
convert the ““ cold ÏÏ dense material of density into theo1““ hot ÏÏ light material of density transferring the Ñuido2,from the lower (cold) to the upper (hot) layer. The equations
of motion for the two layers are then given by the shallow
water system of equations (Pedlosky 1987) individually for-
mulated for each layer. The crucial distinction of our model
is the interlayer coupling source/sink term in the mass con-
tinuity equation, as well as the friction between the layers :

Lh1
Lt

] $
@@

Æ h1 ¿1\ [v(Q
`

[ Q~) , (40)

Lh2
Lt

] $
@@

Æ h2 ¿2\ Q
`

[ Q~ , (41)

Lv1x
Lt

] ¿1 Æ $
@@
v1x \ [g+

x
(h1 ] vh2) ] fv1y

[ v
h1

(Q~] k
f
)(v1x[ v2x) , (42)

Lv2x
Lt

] ¿2 Æ $
@@
v2x \ [g+

x
(h1 ] h2) ] fv2y

[Q
`

] k
f

h2
(v2x [ v1x) , (43)

Lv1y
Lt

] ¿1 Æ $
@@
v1y \ [fv1x[ v

h1
(Q~] k

f
)

] (v1y [ v2y) , (44)

Lv2y
Lt

] ¿2 Æ $
@@
v2y \ [fv2x[ Q

`
] k

f
h2

] (v2y [ v1y) (45)

(cf. eqs. [3.5]È[3.7] of Ooyama 1969). Here and are theh1 h2heights of the cold and hot layers, respectively. We consider
the dynamics on an x-y plane with To$

@@
\ (L/Lx, L/Ly).

keep the problem tractable, we will allow variation only in
the x-direction, so that we have a slab geometry in x with
possible tangential velocity Depending on the case underv

y
.

consideration, the plane of the simulation will be oriented in
various ways on the NS surface. The heating rate Q4 J/g
represents the Ñux of material from the lower to the upper
layer and has dimensions of velocity (for the derivation of
eqs. [40]È[41] see Appendix A). The quantities andQ

`
Q~are deÐned as follows : if the heating rateQ

`
\Q, Q~\ 0

Q[ 0, and if Q\ 0. The terms on theQ~\ [Q, Q
`

\ 0
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right-hand side of the above equations which are pro-
portional to and represent the fric-k

f
(v1[ v2) Q

B
(v1[ v2)tion between the two layers, the former due to (perhaps

convective) viscosity and the latter due to momentum-
conserving transport of material from one layer to another.

In general, the heating rate depends on the temperature
at the point where the heat source is applied. Ooyama
(1969) argues that for the shallow water model it is reason-
able to assume that the temperature of the Ñuid can be
represented by its height. His argument is roughly as
follows : an adiabatic temperature rise in a normal Ñuid
happens when the Ñow is converging, but a converging Ñow
in a shallow water Ñuid results in a rise of its height. Like-
wise, an increase of the temperature due to heat input corre-
sponds to addition of Ñuid to a shallow water layer and
hence corresponds to an increase of its height. Thus, the
temperature increase in a normal Ñuid, due to both com-
pression and the heat input, corresponds to the height
increase in a shallow water Ñuid. In our model we shall
assume that the temperature at the interface where the
heating occurs is set by the height of the second, light layer
through a simple relationship T \ gh2/cp.In the following three subsections we consider how our
model responds to localized sources of heat. This will help
us develop intuition which will be useful in analyzing the
ignition and spreading of the burning front.

3.2. L ocalized Heating in a Nonrotating Atmosphere
without Friction

In a nonrotating atmosphere the e†ective Coriolis
parameter f is zero, and this may be interpreted as the
burning in a region along the rotational equator of an NS.
Consider a part of the atmosphere of a large lateral extent
with the two-layer Ñuid described above in the equilibrium
conÐguration with, for example, initially. The Ñuidh1\ h2is allowed to freely leave and enter the domain through the
sides. For a d-function heat source and zeroQ\Q0 d(x)
friction between the layers we can Ðnd a steady(k

f
\ 0)

state solution that will be achieved after an initial transient.
The solution will have a uniform divergent Ñow at the upper
layer, satisfying and a uniform con-h2 v2x \ Q0[#(x) [ 12],vergent Ñow at the bottom layer, with h1 v1x o\[vQ0[#(x)

where #(x) is a step function. The equilibrium value[ 12],of after the transient Ñow traverses the domain of inter-h2,
est, is larger by than the initial thickness of theDQ0/(gh) 1@2
upper layer, while layer 1 is contracted by a similar amount.
The main property of this solution is that, even though the
heat source is continually operating, the temperature (or
thickness) of the layers does not change in time after the
initial transient has died out. The heating drives opposing
winds in both layers, and the heating energy goes into
raising the Ñuid from the bottom to the top. For small
heating rates, the shearing Ñow between theQ0/h [ (gh)1@2,
two layers is stable to Kelvin-Helmholtz instability as a
result of buoyant stratiÐcation.

This solution is valid until the outÑow has reached the
end of the lateral extent of the atmosphere, at which point
layer 2 will grow at the expense of depleting layer 1. Such
lowering of layer 2, i.e., the presence of high-entropy Ñuid at
a lower height, represents simple heating of the whole atmo-
sphere that we eventually expect from a heat source. There-
fore, in order to have the heat source continuously increase
the temperature locally, as is required for a local thermonu-
clear runaway, one needs a way of containing the outÑow

over some spatial length scale. In the absence of lateral
boundaries, this feat is accomplished by rotation of the star,
friction, or both.

3.3. L ocalized Heating in a Rotating Atmosphere
3.3.1. General Considerations

The main new feature introduced into the dynamics in a
rotating atmosphere is that when friction is absent, all dis-
turbances do not relax to a state of minimum potential
energy, in contrast to a nonrotating atmosphere. Instead,
disturbances tend to relax rapidly (in a time of the order of
one rotation period) to a state of geostrophic balance,
where all pressure gradients are balanced by the Coriolis
force acting on Ñuid moving along the isobars. A famous
example is known as the Rossby adjustment problem (Gill
1982) : a uniformly rotating Ñuid of constant density is rel-
eased with an initial step in its height distribution. A tran-
sient ensues, in which the Ñuid starts to spread. The spread
is slowed down, however, by the action of the Coriolis force,
and the Ñuid oscillates around the equilibrium conÐgu-
ration, radiating gravity waves. The end result is a state of
equilibrium with nonzero kinetic energy in the Ñow such
that the adjusted pressure gradient is balanced by the
Coriolis force. A simple way of understanding the spatial
scale on which the equilibration occurs is to consider the
momentum equations for a single incompressible layer of
constant depth with a perturbationH0 h \ H0] dh :

dv
x

dt
\ [g

L
Lx

(H0] dh) ] fv
y

, (46)

dv
y

dt
\ [fv

x
. (47)

Equation (47) can be integrated to give i.e., thev
y
\ f*x,

transverse velocity of the Ñuid element is proportional to
the displacement from its initial position. Substituting this
into equation (46) with the assumption of geostrophic
balance and estimating the pressure gradient as wegH0/*x,
obtain the characteristic length over which the pressure gra-
dient is spread : This is the Rossby radius of*x \ (gH0)1@2/f.deformation for a rotating atmosphere of scale height H0.After the transient, the initial step in height of the Ñuid will
transform into a gradual slope over the length scale of
Rossby radius.

The above argument is valid only if the horizontal dis-
placement of the Ñuid element, *x, is of the same order of
magnitude as the length scale over which the pressure gra-
dient is spread. This is true only for large initial pertur-
bation, However, the conclusion that the pressuredh DH0.gradient is spread over the Rossby radius turns out to be
valid even if the initial perturbation is not large. For a small
perturbation, the spread of the pressure gradient does not
involve actual motion of a Ñuid element over *x but is
communicated via gravity waves. In the presence of rota-
tion, the gravity waves are dispersive, with dispersion rela-
tion where For wavelengthsu2\ f 2] c

g
2 k2, c

g
\ (gH0)1@2.shorter than the Rossby radius, gravity waves are unaf-

fected by rotation and leave the region of disturbance, while
for wavelengths longer than the propagation speedsc

g
/f,

become very small. Only the long-wavelength component of
the initial perturbation is left behind, and even for small
initial perturbations the geostrophic balance is eventually
established on the length scale of the Rossby radius,
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We refer the reader to Gill (1982) for further(gH0)1@2/f.details.

3.3.2. L ocalized Heating in a Rotating Atmosphere without Friction

We now study the Ñows in a rotating atmosphere forced
by a localized heat input. We concentrate on the top layer
of the isentropic model discussed above. If we assume that
the density contrast between the two layers is large enough
(v> 1), then the height of level 1 does not change appre-
ciably during the evolution. In that case, the linearized
equations for the top layer of thickness h \H0] dh
become

Lh
Lt

] H0
L
Lx

v
x
\ Q(x, t) , (48)

Lv
x

Lt
\ [g

L
Lx

h ] fv
y
, (49)

Lv
y

Lt
\ [fv

x
. (50)

We will further refer to models tracking only the top Ñuid
layer as one-layer models. We Ðnd that they contain most of
the essential physics of the two-layer system. If the timescale
of heating is much slower than the time it takes gravity
waves to propagate over the characteristic Rossby radius
(i.e., 1/f ), at each moment in time the system will be in
approximate geostrophic balance. We thus omit the time
derivative in equation (49) ; this also automatically Ðlters
out transient gravity waves. The system of equations can
now be combined to yield a single equation for the height of
the layer :

h [ aR2
L2h
Lx2\

P
0

t
Q(x, t@)dt@ . (51)

This is a forced Klein-Gordon equation, where the source
term is provided by the total heating at a particular point.
The GreenÏs function for the left-hand side of the equation
is Therefore, for a constantG(x o f)\ 1/2aR e~@ x~f @ @aR.
d-function heating Q(x, t) the Ñuid follows a\Q0 d(x)
growing vortex sheet solution :

h(x, t)\ Q0 t
2aR

e~@ x @ @aR , (52)

v
x
(x, t)\ sgn x

Q0
2H0

e~@ x @ @aR , (53)

v
y
(x, t)\ [sgn x

Q0 tf
2H0

e~@ x @ @aR . (54)

A few points should be made about this solution. It shows
that, for constant heating, the height of the layer (or its
temperature) grows linearly in time in a region of character-
istic size equal to the Rossby radius around the heat source.
Aside from nonlinear e†ects, the size of the area a†ected by
heating does not change as the height increases. Therefore,
the pressure gradient increases linearly with time. The
velocity transverse to the pressure gradient (geostrophic
velocity also grows linearly with time. If we were to solvev

y
)

the same problem with cylindrically symmetric localized
heating, the geostrophic Ñow would create a vortex-like
circulation around the source of heating. When theQ0[ 0,
heated region is the area of high pressure, and hence the

sense of geostrophic velocity in the layer is anticyclonic
(opposite to the sense of rotation of the star), and cyclonic in
a low-pressure region for the case of cooling. The discontin-
uity in velocity at x \ 0 is an artifact of the d-function
forcing. Since realistic forcing is distributed over a Ðnite
area, the velocity should smoothly go to zero at the center
of heating. Another feature of the solution is the presence of
a nonzero Ñow away from the source of heating (and the
opposite for cooling). This Ñow is not due to the pressure
gradient as such, but rather due to a time rate of change in
the pressure gradient as the central pressure rises or falls.
Such a Ñow is known as the isallobaric wind (Holton 1992)
and is not itself in geostrophic balance. However, this wind
plays an important role in the adjustment to balance as can
be seen from equation (50). In order for the geostrophic
velocity to change in response to modiÐed conditions, there
must be a nonzero ageostrophic velocity (see eq. [18]). Since
all quantities in the above solution exponentially decay at
distances larger than the Rossby radius, the e†ects of
heating are thus localized as a result of rotation.

3.3.3. L ocalized Heating in a Rotating Atmosphere with
Strong Friction

When there is (turbulent) viscosity in the system, fric-
tional forces need to be added to the right-hand side of
equations (49) and (50) :

Lh
Lt

] H0
L
Lx

v
x
\ Q(x, t) , (55)

Lv
x

Lt
\ [g

L
Lx

h ] fv
y
[ v

x
tfr

, (56)

Lv
y

Lt
\ [fv

x
[ v

y
tfr

. (57)

Here is the coefficient of frictional drag (see ° 2.3). For1/tfr we can neglect the time derivatives on the1/tfr, f ? 1/t
nleft-hand side of equations (56) and (57). We then get

Lh
Lt

] D
L2h
Lx2\ Q(x, t) , (58)

v
x
\ [ D

H0

Lh
Lx

, (59)

v
y
\ [ftfr vx , (60)

where

D\ tfr gH0
1 ] ( ftfr)2

. (61)

Equation (58) is a di†usion equation with the source term
Q and the di†usion coefficient D. For a localized heating
Q(x, t) switched on at t \ 0, the solution is given\ Q0 d(x)
by

h(x, t) \ Q0
S t

4nD
F
A x

2JDt

B
, (62)

where

F(q) \ q
P
q

= 1
q12

e~q12 dq1 . (63)

The height (i.e., temperature) and velocity perturbations are
concentrated within the di†usion length dx \ (Dt)1@2.
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3.3.4. Implications for Burst Ignition L ength Scale

What can we learn from the atmospheric response to
localized heating? We saw that for a frictionless rotating
atmosphere, the temperature perturbation is conÐned to the
Rossby adjustment radius, hence the ignition of the burst is
likely to happen on that scale. When there is strong friction,
the temperature perturbation is conÐned to the di†usion
length scale. In this case, we therefore expect the ignition to
happen on the scale where D is the di†u-dxignitionD (Dt

n
)1@2,

sion coefficient given by equation (61) and is the charac-t
nteristic nuclear burning timescale. As we saw in the previous

section, and as will be conÐrmed by simulations in the next
section, these ignition length scales are of the same order as
front widths in respective cases (see eqs. [22] and [34]). The
only di†erence is that in the case of the front propagation
the important scale height is that of the hot part of the
ocean, whereas for the ignition the scale height is that ofH0the unheated, cold ocean.

3.4. Burning Front Propagation
When we numerically solve the system of equations (40)È

(45) with a temperature-sensitive heating function, we Ðnd
that a local runaway can develop into a propagating
burning front solution. In order to simulate conditions rele-
vant to the case of an NS atmosphere during a burst, we
consider heating due to a 3a helium-burning reaction and
one-zone cooling due to blackbody radiation (see, e.g.,
Cumming & Bildsten 2000) :

Q\ 5.3] 1021 ergs g~1 s~1 o52 Y 3
T 83

exp
A[44

T8

B
[ acT 4

3iy2 .

(64)

Here is the density in units of 105 g cm~3 (which weo5evaluate including degenerate corrections), Y is the helium
abundance obeying isdY /dt \ v3a/(5.84] 1017ergs), T8the temperature in units of 108 K, and i is the opacity,
which, for simplicity, we take to be a constant, 0.03 cm2 g~1.
Hydrogen, if present in the NS envelope, will burn and
release energy as well. However, for NSs in LMXBs con-
sidered here, accreting at yr~1, the NSM0 Z 2 ] 10~10 M

_envelope is so hot (T [ 8 ] 107 K) that hydrogen burns via
the hot CNO cycle, whereby the rate-limiting steps are not
proton captures but beta decays (see Bildsten 1998 for
review). Under these conditions, the hydrogen-burning rate
is independent of the temperature of the envelope and is
thermally stable. It is the thermally unstable helium burning
that is responsible for the runaway during the burst, which
justiÐes using the 3a rate as the heating function. While
being representative of the conditions in a type I burst, this
function is by no means complete. In particular, we
neglected the electron screening of the 3a reaction (Fushiki
& Lamb 1987), as well as further energy release due to
nuclear evolution beyond carbon. We Ðnd, however, that
the physics of front propagation is independent of
the details of a particular heating function as long as this
function has a rise, has a single peak, and decays at high
temperatures.

For our initial state we consider the atmosphere of pure
helium with column depth y \ 5.4] 108 g cm~2 at the
point of ignition. The temperature at the start of the
runaway (determined as the point where temperature deriv-
atives of heating and cooling match) is TheT8 \ 1.64.
height of the top Ñuid layer, which in our model represents

temperature, is normalized in units of the scale height of the
unperturbed atmosphere. In order to set o† the runaway,
we raise the temperature at one location on our grid on a
scale much smaller than the Rossby radius. The sequence of
snapshots of subsequent evolution of layer height
(temperature), instantaneous net heating Q(x, t), and ageos-
trophic and geostrophic velocities in the top layer is shown
in Figure 4 in the one-layer limit of our model (v\ 0).6 In
this simulation, the Coriolis parameter is constant every-
where on the grid and is representative of a star with 250 Hz
rotation frequency at 45¡ latitude. First we discuss simula-
tions for the case without interlayer friction in eqs.(k

f
\ 0

[40]È[45]).
The initial height perturbation introduces potential

energy, about of which is radiated into gravity waves, and23the rest ends up in a geostrophically balanced Ñow which is
established within a rotation period and has a characteristic
length scale of a Rossby radius. As expected, the initial stage
of growth is similar to the d-function response described
above : the vortex intensiÐes while maintaining its width.
Since in the beginning of the runaway the heating is a
strongly increasing function of temperature, the dominant
contribution to vortex intensiÐcation comes from the fastest
growing central part. The heating function given by equa-
tion (64) goes through a peak during the runaway at about
9 ] 108 K for our parameters before cooling catches up
with heating at about 2 ] 109 K. When the central tem-
perature moves past the peak heating and the tails of the
vortex start undergoing the fast part of the runaway, a
double-peaked structure of the heating function appears as
seen in Figure 4. As the heating peaks separate, the vortex
begins to spread and the structure of a burning front
appears : a localized area with the runaway heating which
moves into the unburned material at a constant speed. The
burning is accompanied by a rise in layer thickness, so that
there is a substantial pressure gradient in the direction of
motion of the front. In the absence of friction, this pressure
gradient is closely balanced by the Coriolis force acting on
the Ñow generated parallel to the front. As discussed in ° 2,
the unbalanced ageostrophic component is present and
necessary to drive the change in the much larger geo-
strophic Ñow: It is the ageos-dvgeostrophic/dt \ [fvageostrophic.trophic Ñow (typically smaller in magnitude by a factor of
order compared to its geostrophic1/ft

n
D 2 ] 102

counterpart) which is responsible for the front propagation.

3.5. Structure and Speed of the Front
The temperature at a location ahead of the front

increases as a result of two e†ects : inÑux of the ageostrophic
wind of hot material across the front and local thermonu-
clear energy generation. The local heating rate due to ther-
monuclear reactions, which sensitively depends on the
temperature, will start to grow if the temperature pertur-
bation is sufficient to push the Ñuid parcel into the runaway
regime. We are assuming that the temperature and column

6 For our numerical method we use second-order accurate Ðnite di†er-
encing of model equations. This allows us to cut down on numerical di†u-
sion that can artiÐcially increase front speeds. Since the underlying
equations support fast-moving dispersive gravity waves, special attention
is paid to boundary conditions. To allow for integration times longer than
the gravity wave crossing time, we introduce an absorbing boundary layer
(Romate 1992) that dissipates the gravity waves of wavelength smaller than
the size of the boundary layer. To prevent reÑection of longer wavelengths,
we add the nonreÑecting condition that eliminates backward-going char-
acteristics at the boundary (Thompson 1987).
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FIG. 4.ÈOne-layer model of the evolution of a localized source of heating into two propagating burning fronts. Shown from top to bottom are the
temperature (scale height) of the layer in units of 108 K, the instantaneous heating rate (in units of 5 ] 1019 ergs g~1 s~1), the cross-front ageostrophic
velocity and the geostrophic velocity parallel to the front (velocities are in units of gravity wave speed of the cold material, 1.5] 108 cm s~1). Time isv

x
, v

yincreasing left to right with frames separated by 0.125 s.

depth in the Ñuid are such that by raising the temperature
sufficiently the runaway will start. In this case, since the
temperature well inside the burning front is high enough for
a runaway, we are guaranteed that even if the Ñuid before
the front is colder than the point of marginal stability, it will
cross into the runaway as the front approaches. When the
friction is absent, the Ñuid motion across the front is driven
by the time rate of change in the pressure gradient : v

x
\

[(g/f 2)(d/dt)+h (see eq. [20]). As the front approaches, the
pressure gradient increases in magnitude (it is negative for a
front moving to the right) and reaches the maximum at the
point of peak heating. The Ñuid is thus pushed through the
front, igniting material ahead, and the pressure gradient is
performing work to accelerate this Ñuid to the geostrophic
velocity. The width of the front is thus set by the magnitude
of the Coriolis force which turns the cross-front Ñuid
motion into the Ñow parallel to the front. Since the scale
height inside the front can change by factors of order 10 for
strong bursts, nonlinear e†ects become important. Typi-
cally, however, the characteristic front thickness is of the
order of the Rossby radius in the hot material behind the
front (D3 km for our parameters ; see eq. [24]). Since the
burning must be complete inside the front width, the speed
of the front should be such that it moves one Rossby radius
in a characteristic nuclear time. For our parameters, it takes
0.1È0.2 s to go through the fast part of the 3a burning,
which yields an estimate of 15È30 km s~1 for the front
speed. Behind the location of peak heating the temperature
continues to rise, but the magnitude of the pressure gradient
starts to decrease, and the isallobaric wind is directed
opposite to the motion of the front. The relative amount of
cross-front Ñuid motion in the forward and backward direc-
tions can dramatically inÑuence the speed of propagation of
the front and depends on frictional e†ects due to (turbulent)
viscosity and on drag due to momentum-conserving trans-
port of Ñuid between layers. We shall refer to the latter e†ect
as momentum coupling.

Figure 5 shows the internal structure of two fronts com-
puted in the one-layer approximation with identical heating
functions but di†ering in the strength of momentum
coupling. Front A (Fig. 5a) is computed without the terms
proportional to in equations (40)È(45)(v2x,y[ v1x,y)(momentum-nonconserving front), while front B (Fig. 5b) is
computed with momentum-coupling terms retained.
Viscous friction is turned o† in both cases Physi-(k

f
\ 0).

cally, case A represents the situation in which the Ñuid from
the cold layer is being injected into the hot layer at the
velocity of the hot layer, while in B the Ñuid is injected
maintaining the velocity of the cold layer (which is zero for
one-layer case v> 1). In the latter case, as the injected Ñuid
is accelerated to the velocity of the hot layer, it exerts drag
on the hot layer, which is reÑected in the friction-like veloc-
ity dependence in the coupling terms in equations (40)È
(45).7

The two fronts move with di†erent speeds : front A
achieves 20 km s~1, while front B has a speed of 60 km s~1.
The main qualitative di†erence in the structure of these
fronts is the variation of ageostrophic velocity with posi-v

xtion inside the front. For front A the cross-front displace-
ment of a Ñuid element is symmetric, with a Ñuid particle
returning to the same x-coordinate after the front passes,
while for front B the ageostrophic component is asym-
metric, skewed toward higher forward velocity. With
stronger cross-front circulation front B achieves a larger
speed of propagation. The cause of the larger ageostrophic
velocity in case B is the modiÐcation of the geostrophic
balance brought by the momentum-coupling drag. The isal-

7 Such drag converts some energy from the Ñow in the hot layer into
heat. According to our model, heating represents injection of Ñuid into the
top layer, so, if one is to be precise, the heating function should be renor-
malized to account for the frictional heating. When included in simula-
tions, however, such renormalization accounted for no more than a 25%
increase in front speeds, while not a†ecting the qualitative picture. Hence-
forth we will ignore the frictional heating.
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FIG. 5.ÈInternal structure of burning fronts in the one-layer model. Shown are the temperature of the layer, the instantaneous heating rate (in units of
5 ] 1019 ergs g~1 s~1), the cross-front ageostrophic velocity and the tangential geostrophic velocity (velocities in units of gravity wave speed in the coldv

x
, v

ymaterial, 1.5 ] 108 cm s~1). (a) Front without the drag due to momentum coupling. (b) Momentum-coupling drag included.

lobaric wind relationship is now v
x
\[(g/f 2)[(d/dt)+h

] (Q/h)+h]. Since the two terms in this formulaQ/h D 1/t
n
,

are of the same order of magnitude, and the cross-front
wind is enhanced where the magnitude of the pressure gra-
dient is growing with time (ahead of the peak heating) and
diminished where the pressure gradient is falling. As the
heat transport depends on the cross-front circulation, the
momentum-conserving front should exhibit larger speed of
propagation. This is consistent with the results obtained in
° 2, where it was shown that, in general, friction can increase
the front speed.

The nature of the temperature overshoot in Figure 5a can
also be attributed to the di†erences in ageostrophic veloci-
ties between the two fronts. In front A, the hot Ñuid Ñows
toward the back of the front as much as it does in the
forward direction. This Ñow increases the temperature of
the Ñuid at the back of the front beyond the equilibrium
value. After the helium fuel is depleted, the material cools by
radiation, and a ““ cooling tail ÏÏ develops because of the time
delay in the start of cooling due to the Ðnite speed of the
front. Momentum-conserving fronts also develop cooling

tails, but because of the larger propagation speed, the front
moves through a larger distance before the fuel depletes
enough for cooling to dominate heating (see discussion in
° 4.3).

We can derive a formal expression for the front propaga-
tion speed by transforming equations (40)È(45) for the one-
layer model to the frame comoving with the front.
Expressing the ageostrophic component as a sum of con-v

xstant front speed and a residual and assuming that inv
f

v
x
@ ,

the comoving frame the front is not evolving in time, we
obtain

L
Lx

(hv
x
@ ) \ Q , (65)
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As can be seen from Figure 5, the geostrophic velocity v
yreaches an extremum inside the front. Denote all values at

this point with an asterisk. At the extremal point, v
x
@ o

*
\

and we can solve the above[v
f
[ v

y
*[Q(h*) ] k

f
]/h*,

system of equations for the speed of the front :

v
f
\ [

CQ(h*)[ h*(L/Lx)v
x
o
*

(L/Lx)h o
*

] v
y
*
f

Q(h*)] k
f

h*
D

. (68)

Momentum-coupling and viscous friction e†ects are con-
tained in the second term on the right-hand side of equation
(68). Without them the speed of front propagation is con-
trolled by the e†ective heating and the pressure gradient at
the peak of the geostrophic velocity. The e†ective heating

is the nuclear energy generation minusQ(h*)[ h*(L/Lx)v
x
o
*the heat carried by the cross-front Ñow. When the pressure

gradient at the peak is approximated as we get thath*/aR,

the front speed is set by the characteristic front width
divided by the e†ective burning time, as in equation (6). The
momentum-coupling drag term is of the same order of mag-
nitude as the Ðrst term in equation (68) and increases the
speed of propagation and the width of the front by a factor
of 2È3.

3.6. Multilayer Dynamics
Although illustrative, the one-layer model represents the

motion of only the hot layer of Ñuid and does not capture
all of the dynamics of the front. In order to better under-
stand the propagation of the deÑagration front through the
NS atmosphere, we numerically solve the time-dependent
system of equations (40)È(45) for two layers of isentropic
Ñuid. Figure 6a demonstrates the structure of the developed
momentum-conserving burning front without interlayer
friction propagating from left to right. In this particular run
the density contrast v was set to 0.2, with the initial thick-

FIG. 6.ÈInternal structure of burning fronts in the two-layer model with v\ 0.2. Shown are the thickness (temperature) of the layers with layer 2 (solid
lines) added to layer 1 (dashed lines), the instantaneous heating rate (in units of 5 ] 1019 ergs g~1 s~1), the cross-front ageostrophic velocity and thev

x
,

tangential geostrophic velocity for two layers (velocities are in units of gravity wave speed of the cold material 1.5] 108 cm s~1). (a) Momentum-v
yconserving front without viscous friction For demonstration purposes, and for the bottom layer are increased by factors of 2 and 5,(kü

f
\ 0). v

x
v
yrespectively. (b) Momentum-conserving front with friction for the bottom layer is increased by factor of 5.(kü

f
\ 1) ; v

y
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ness of the lower layer chosen to be 3 times the thickness of
the top layer. The Ðrst panel shows the evolution of layer
thickness through the front. As the Ñuid is pumped to a
higher entropy state, layer 2 expands and layer 1 contracts ;
the ratio of contraction to expansion is proportional to the
density contrast. We take the horizontal location of the
peak in the heating rate as the center of the front. From the
plot of the ageostrophic velocities we see that there is a
divergence of the Ñuid at the top level and a convergence at
the bottom level. The low-entropy Ñuid is drawn toward the
center of the front and after ignition outÑows in the high-
entropy layer. The motion of Ñuid at the lower layer can
also be interpreted as a response to the gradient in the
column depth across the front created by divergence of the
light Ñuid on top. In addition to creating convergence
toward the center, the overpressure ahead of the front
center also forces some Ñow to go in the direction of front
motion. This ““ snowplow ÏÏ e†ect will become important in
the regime of strong top-bottom coupling (see the next
subsection).

The dominant component of motion in both layers is the
geostrophic velocity (third panel of Fig. 6a). The direction of
this Ñow is di†erent between the layers : divergence at the
top generates anticyclonic motion, while convergence at the
bottom generates cyclonic motion. The Ñuid velocity in the
upper level is larger than that in the lower level. The relative
velocities in the two layers depend on the density contrast
and the interlayer friction.

3.7. Frictional E†ects
We have argued in ° 2 that friction between the top and

the bottom of the atmosphere modiÐes the geostrophic
balance within the front and changes the velocity of the Ñow
across the front. The cross-front velocity attains properties
of a di†usive Ñow governed by the di†usion constant given
by equation (61). Of course, the di†usion analogy is only
formal and refers to the spreading of pressure gradients with
time in the presence of friction. Depending on the strength
of frictional coupling, the speed of the front may be either
enhanced or diminished (see eq. [35]). Recall that in our
analytical estimates (° 2) we parametrized the strength of
friction by the coupling time while in our two-layertfr,model, described by equations (40)È(45), the friction
strength is parameterized by where is a constant.k

f
/h, k

fTo facilitate the comparison between analytical and
numerical results, we deÐne, for our one-layer model, the
characteristic timescale of frictional coupling as tfr\ h*/k

f
,

where h* is the layer height at the peak of the geostrophic
velocity inside the front (in the presence of friction this is
approximately but not exactly the location of peak heating).
In Figure 2 we plot the speed of the front obtained from
one-layer simulations versus the dimensionless friction
parameter and show the Ðt using the analytickü 4 (tfr f )~1
formula for the front speed in equation (34).

There are several distinct regimes depending on how the
timescale of frictional forcing compares to the characteristic
timescales of the problem. When (or1/f\ t

n
\ tfr kü \ 0.01

for our parameters), the e†ects of friction are insigniÐcant
and the speed is close to the value obtained in ° 3.5 after
including momentum coupling (D60 km s~1). For 1/f \

the speed increases astfr \ t
n

(0.01\ kü \ 1) [kü /(1 ] kü 2)]1@2
in agreement with equation (34). The friction in this regime
acts to reduce the geostrophic velocity, which extends the
front over a larger spatial scale. The cross-front di†usion

constant given by equation (61) is maximum when friction
acts on the rotation timescale and at this value thekü \ 1,
front speed reaches the peak value (464 km s~1 for our
parameters). The structure of the two-layer model at kü \ 1
is shown in Figure 6b. The main distinction of this case from
the case of zero friction (Fig. 6a) is the form and the larger
magnitude of the ageostrophic speed, which implies very
strong cross-front circulation. In the top layer the Ñow is
purely in the forward direction with a strong return current
in the bottom layer. The value of the geostrophic speed is
clearly reduced compared to the no-friction case, and the
strong coupling between the layers causes the Ñow on the
bottom to have the same anticyclonic direction as the Ñow
in the top layer.

When the friction is further increased the cross-(kü [ 1),
front di†usion (eq. [61]) diminishes and the front speed
decreases. The cross-layer coupling now acts to reduce the
ageostrophic component of velocity by making both layers
move together. This ““ snowplow ÏÏ e†ect eventually stalls the
front when the friction is very large. Rather than create
circulation across the front, the pressure gradient between
the hot and cold material tries to push forward the whole
cold atmosphere, which makes the front steepen and slow
down.

It is interesting to speculate whether the extraordinarily
high front speeds of hundreds of kilometers per second
observed in simulations can be expected to occur in reality.
One does not expect a well-deÐned burning front to arise if

where is the timescale on whichtprop \ t
n
, tprop D nR/vfrontthe formed front would cross the half-circumference of the

NS. In other words, it makes no sense to talk about a
well-deÐned front with a width that is larger*D vfront tnthan the size of the star. This implies that if vfrontZ nR/t

n
D

300 km s~1, the front never forms and the star is essentially
ignited simultaneously. Depending on the physical source
of friction in the NS atmosphere, there could then be two
possible scenarios for the spread of nuclear burning. If the
strong friction is temperature dependent and increases
when the local perturbation grows into runaway (as may be
the case for convective friction), the runaway will begin with
no friction present and, therefore, will be conÐned to a hot
spot of the size of the Rossby radius. As the runaway prog-
resses, the friction will increase and the temperature pertur-
bation will quickly (D0.1 s) spread over the NS surface. If,
however, the friction is strong and present all of the time
during the runaway (e.g., if a magnetic Ðeld is threading the
fuel), an initial hot spot may not appear at all. Rather, the
temperature perturbation spreads away from the heat
source faster than the local thermonuclear runaway can
develop, and the whole surface is likely to ignite almost
simultaneously in a spherically symmetric fashion.

4. GLOBAL HYDRODYNAMICAL FLOWS DURING X-RAY

BURSTS AND CONNECTION TO OBSERVATIONS

4.1. L ikely L ocation of Burst Ignition
So far we have assumed that the preburst conditions are

identical everywhere on the NS. However, because the star
rotates, the e†ective gravity felt by the Ñuid elements near
the equator is somewhat (up to D25%) smaller than that
felt by the Ñuid elements near the poles. As we now argue,
this asymmetry implies that, even if accretion is perfectly
spherically symmetric, the fuel near the equator is likely to
reach ignition conditions Ðrst.
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We assume that, prior to a burst, the accreted material is
brought into corotation with the rest of the star either by
e†ective hydrodynamic viscosity produced by Rayleigh-
Taylor or baroclinic instability (Fujimoto 1988), by weak
hydromagnetic stresses, or even by microscopic viscosity
(Cumming & Bildsten 2000). The timescales for the Ðrst two
processes are small compared to the interval between the
bursts, so this assumption is probably accurate as a zeroth-
order approximation. We also assume that the gas depos-
ited onto the star can redistribute to achieve hydrostatic
balance,8 and, as argued in ° 1, we assume that magnetic
Ðelds, if present on the surface, do not create a permanent
asymmetry by channeling the accretion Ñow.

In hydrostatic equilibrium, the pressure at the bottom of
the accreted ocean should be the same everywhere,

pbottom\ m(j)geff(j)\ const , (69)

where m(j) is the accreted column density, j 4 n/2 [ h is
the latitude, and is the e†ective gravitationalgeff \ o+/ o
acceleration. Here / is the sum of the gravitational poten-
tial, and the centrifugal potential, )2R2cos2 j/2. The/gr,e†ective gravity on the equator is less than that on thegeffpoles as a result of rotation of the star : dgeff/geff D ()/uK)2,
where is the Keplerian angular frequency at the NSuKsurface. For an NS rotating at 300È600 Hz, the relative
di†erence is a few percent (up to Therefore, the column14).
depth m(j) to a surface of a given pressure is a factor of

higher on the equator than on the poles. Nowdgeff/geffconcentrate on two Ñuid elements, both at a pressure pbottom,
one of which is located on the equator while the other one is
somewhere at a latitude Imagine that an additionalj D 0.
amount of gas is accreted and is allowed to come to corota-
tion and redistribute itself on the surface of the star in order
to achieve hydrostatic balance. Our Ñuid elements will now
be compressed to a pressure (since they arepbottom] *p
assumed to be in hydrostatic balance, they must have the
same pressure). However, as is evident from equation (69),
the increase in the column depth, *m(j), must be larger on
the equator than away from it. Therefore, fuel arriving on
the equator will reach a given column depth faster than the
fuel located o†-equator. In other words, the local accretion
rate is inversely proportional to the local e†ective gravity
strength,

m5 (j)\ m5 0
g0

geff(j)
, (70)

where is the average local accretion ratem5 0 \M0 /(4nR2)
and is the average acceleration of gravity, chosen sog0

8 Inogamov & Sunyaev (1999) have considered the spreading of
material accreted onto a rotating NS from a thin equatorial disk. They
have concentrated on the hot radiation pressureÈdominated Ñuid at the
very top of the atmosphere, which has not had time to frictionally couple
to the rest of the star. The nuclear fuel participating in an X-ray burst is
below the hot radiating layer considered by Inogamov & Sunyaev (1999).
We therefore expect that the midlatitude ““ rings of Ðre ÏÏ found by Inoga-
mov & Sunyaev (1999) will not a†ect the location of burst ignition.

that the integral over the surface of the star
The local e†ective accretion/~n@2n@2 12 cos j[g0/g(j)]dj \ 1.

rate seen on the equator is at least a few percent higher than
that seen at the poles.

At a given local accretion rate, which determines the
thermal proÐle of the accreted ocean, a certain critical
column depth is necessary for the thermal instability and a
thermonuclear runaway (see Bildsten 1998 for a review of
spherically symmetric ignition conditions). As we argued
above, the critical column depth necessary for a runaway
will be achieved Ðrst close to the equator. We can therefore
expect that ignition happens close to the rotational equator.

4.2. Burning Front Propagation on a b-Plane
The speed of the front propagation is larger near the

equator,9 where f ] 0, than near the poles, where
(see eqs. [24] and [34]). To understandf ] f max \ 2)

qualitatively the e†ect of the latitude dependence of the
Coriolis parameter, we model front propagation on an x-y
plane oriented with x-axis east and y-axis north. The
Coriolis parameter is taken to be f \ by, where b \ 2)/R.
This approximates a rotating sphere in the equatorial
region and is known in geophysical literature as the equato-
rial b-plane.

4.2.1. One-Dimensional Simulations of Equatorial Ignition

We begin in one dimension with the simulation axis
oriented along the y-axis from the equator to the north pole
(and allow variation in quantities only along this direction).
We solve a one-layer shallow water model without friction,
which is initialized by increasing the temperature on the
equator. A series of snapshots in time is shown in Figure 7.
Since the Coriolis parameter is zero on the equator, it is not
possible to establish geostrophic balance there. Gravity
waves from the initial perturbation then propagate toward
the pole until they are reÑected from the region with a Ðnite
Coriolis parameter at approximately y \ aRE 4

This distance is called the equatorial Rossby[(gh)1@2/b]1@2.
radius and is the characteristic width of the equatorial
waveguide for gravity waves. The trapped gravity waves are
ampliÐed by thermonuclear energy release on each pass.
For our choice of initial conditions, after about

passes the wholet
n
(gh)1@2/aRE\ t

n
[b(gh)1@2]1@2 D 102È103

equatorial waveguide region undergoes a runaway and two
geostrophically supported burning fronts propagate toward
the poles as ““ walls of Ðre.ÏÏ The propagating fronts steepen
and slow down as expected because of the increasing f. For
burning on a rotating NS the width and speed of the front

9 Our equations break down at the equator because the horizontal
Coriolis force due to vertical motion, is no2) cos jv

z
B 2) cos j(h/t

n
),

longer negligible compared to the Coriolis force due to horizontal motion,
However, this breakdown occurs only for latitudesfv

g
B 2) sin j(gh)1@2.

(for typical values of h and i.e., very near thej ¹ (h/g)1@2(1/t
n
)D 10~5 t

n
),

equator.

FIG. 7.ÈIgnition and propagation on b-plane. Frames are separated by 0.06 s.
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decrease by a factor of 2)/[b(gh)1@2]1@2B 4 as the front
propagates from the equator to the pole.

4.2.2. Two-Dimensional Model for Front Propagation

From equation (34) we can infer the front speed on the
b-plane :

vflame(x8 , y8 )\ veq
1

J1 ] y8 2
, (71)

where and is the speed ofx8 \ (btfr)x, y8 \ ftfr \ (btfr)y, veqthe front at the equator. We have assumed for simplicity
that if this is not the case, then in the above expres-tfr > t

n
;

sions must be replaced bytfr tfr tn/(tn ] gtfr).As was discussed in ° 3.3, ignition happens over a patch of
a Ðnite size which is determined by the Coriolis parameter
and the strength of friction in the atmosphere. However, for
the current discussion, we assume that ignition is highly
localized near some point on the b-plane. In Figure 8 we
show how the front line develops depending on the location
of the ignition point, where is the Coriolisy0\ f0 tfr, f0parameter at the ignition location. To compute the evolu-
tion of the front line, we used the Fast Marching Method on
a triangulated mesh (Sethian & Vladimirsky 2000) with
speed function given by equation (71).10 Below, we
comment separately on the case in which the ignition point
is on the equator and the case in which the atmosphere is
ignited at some nonzero latitude.

4.2.3. Equatorial Ignition (Fig. 8a)

The front is roughly a circle until it reaches i.e.,o y8 o ^ 1,
until it reaches the latitude where and the frontfB 1/tfrspeed is signiÐcantly reduced. Burning then quickly spreads
along the equator, and the front line is nearly parallel to the
equator when the Ñame reaches For a typicaly8 \ ftfrD 6.
strongly accreting NS in an LMXB the Coriolis parameter
at the pole is 4È7 ] 103 rad s~1, and the typical frictional
coupling strength is anywhere between 10 s~1 for pure1/tfrmomentum coupling and 103 s~1 for frictional coupling by
strong convective turbulence. Our simple two-dimensional

10 We thank Alexander Vladimirsky for introducing us to this powerful
method and helping to produce Fig. 8.

model then indicates that the front becomes parallel to the
equator as soon as it reaches the midlatitudes, or perhaps
even closer to the equator.11

What is the observational signiÐcance of this result ? The
asymmetry between north-south and east-west front propa-
gation speeds and the dependence of the speed on the con-
vective coupling strength may explain why only a fraction
of X-ray bursts show detectable nearly coherent oscillations
during the burst rise. Indeed, during the burst rise, while the
Ñame, ignited at a spot, is still spreading around the star,
rotational modulation of the X-ray Ñux should be evident.
Yet it is observed only in some bursts. A possible explana-
tion previously proposed in the literature (Miller 2000 and
references therein) is that the oscillations in the X-ray Ñux
are washed out when the burst X-rays scatter o† a hot cloud
which is thought to surround strongly accreting NSs. This
explanation, however, does not resolve why there are oscil-
lations in some bursts and no oscillations in others. Muno
et al. (2001) recently concluded that, in fast (D600 Hz) rota-
tors (as inferred from the burst oscillation frequency12),
only the strong radius expansion bursts show oscillations
during the rise, whereas for slower rotators (D300 Hz) there
is no such correlation.

In our model, the equatorial front speed is larger than
that at the poles, and, as argued in ° 4.1, the burst is likely to
ignite at the equator. If the disparity between the front
speed at the equator and the poles is large (i.e., if 2)tfr ? 1),
then the entire equatorial belt is likely to ignite in the begin-
ning of the burst, and the asymmetry in burning which is
needed for burst oscillations may disappear. Increasing the
burst strength enhances the frictional coupling (makes tfrshorter) and makes the burning pattern more asymmetric,
thus making the burst oscillations during the rise more
likely. This means that equatorially ignited strong bursts
are more likely to be asymmetric than weak bursts. What
about the dichotomy between fast (600 Hz) and ““ slow ÏÏ (300

11 When the front is parallel to the equator, the Ñows associated with
the front are also parallel to the equator ; such Ñows are referred to as zonal
currents in geophysical literature. In this paper we do not consider in detail
the nonaxisymmetric instabilities which may be present when the strength
of the zonal current is latitude dependent, but see ° 4.4.

12 For one of the bursters, there is evidence that it spins at half of the
burst oscillation frequency (Miller 1999 ; see also Strohmayer 2001).

FIG. 8.ÈTwo-dimensional propagation of burning front on b-plane for di†erent ignition locations. Contour lines reÑect front position at equal time
intervals. (a) Equatorial ignition. (b) and (c) Ignition at higher latitudes. The dimensionless coordinates and are deÐned in ° 4.2.x8 y8
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Hz) rotators? For slow rotators, the reduction in equatorial
gravity due to rotation, discussed in ° 4.1, is a factor of 4
smaller, so there may be a signiÐcant probability that bursts
ignite o† the equator and, hence, are more asymmetric
regardless of burst strength.

4.2.4. Nonequatorial Ignition (Figs. 8b and 8c)

Ignition at higher latitudes can happen as a result of a
variety of causes such as the variation in relative fraction of
unburnt fuel over the surface that may depend on the
history of previous bursts or peculiarities of the accretion
Ñow (e.g., magnetic channeling). After nonequatorial igni-
tion the front is roughly a circle so long as the distance to
the ignition point is less than 1. Beyond this(*x8 2] *y8 2)1@2
distance, the front becomes increasingly deformed. As the
edge of the Ñame approaches the equator, the front acceler-
ates, and the equatorial belt is quickly ignited. After this, the
evolution is similar to the equatorial ignition case discussed
above.

4.3. Zonal Flows and Frequency Drifts
A salient feature of burst oscillations is their presence in

the tails of bursts, presumably after the entire ocean has
been burned, as well as the increase of the oscillation fre-
quency as the star cools. We speculate on the possible origin
of the inhomogeneity in the ashes that gives rise to the
oscillations in ° 4.4 ; here we discuss the implications of our
global X-ray burst scenario on the frequency of these oscil-
lations. In addition, we predict that yet unidentiÐed oscil-
lations may be present during the burst rise as well.

The burning front leaves hot ashes in its wake. These hot
ashes then cool on a characteristic timescale deÐned astcool,If burning starts in the equatorialdhhot/dt D hhot/tcool.region, as we have argued, then the equator has a head start
in cooling, and in the cooling wake the equatorial tem-
perature will be the lowest, increasing toward the poles.
This temperature gradient will drive a zonal thermal wind
directed backward relative to the NS rotation. If an inho-
mogeneous feature (e.g., a vortex ; see the next subsection) is
trapped in this backward zonal Ñow, the frequency of the
Ñux modulation due to this feature will appear lower than
the NS spin frequency. The speed of the backward Ñow can
be estimated as follows :

vflow D
g
f

Lh
Lx

D
g
f

hhot
tcool vflame

. (72)

The drift frequency corresponding to the Ñow is given by

udrift\
vflow

R sin h
D

uK2
) sin (2h)

hhot
tcool vflame

. (73)

In the midlatitude where is the timescalevflameD R/trise, triseof the burst rise. The angular speed of the drift in the mid-
latitude is then

udrift
)

D
AuK

)
B2 trise

tcool

hhot
R

\ 3.6
hhot
R
A lK
2 kHz

B2A300 Hz
l
s

B2Atrise
1s
BA10s

tcool

B
. (74)

Here and are surface Keplerian and spin frequency,lK l
srespectively. For comparison, the frequency due to the

radial expansion of the burning layer (Strohmayer et al.

1998 ; Cumming & Bildsten 2000) is

Audrift
)
B
liftvup

D
hhot
R

. (75)

The geostrophic drift from equation (75) and the lift-up drift
from equation (75) are independent of each other, since the
lift-up drift is related to the horizontal component of the
spin vector which we have neglected in our calculations.
Both drifts must be present in real bursts. One e†ect is not
obviously dominant over the other ; the ““ free ÏÏ parameters
in equation (75) decide which e†ect is more important for a
particular burst.

Recently van Straaten et al. (2001), Galloway et al. (2001),
Wijnands et al. (2001), and Cumming et al. (2002) showed
that the lift-up drift is insufficient to explain the observed
magnitude of the frequency drifts in some bursts. Perhaps
the geostrophic wind could provide the missing piece. A
signiÐcant amount of modeling of burst light curves is
required to make a more detailed comparison with obser-
vations ; this is the subject of our current research.

Note that from equation (73) one can infer signiÐcantly
larger drifts close to the pole and the equator than the
midlatitude drifts given by equation (75). However, close to
the equator the geostrophic balance is broken, and equa-
tion (73) is no longer valid. The origin of divergence of udriftat the pole is that we formally take the distance to the pole
to zero, while keeping nonzero Perhaps, physicallyvflow.
one should not consider distances to the pole closer than
the width of the burning front.

Like the lift-up drift, the geostrophic drift velocity asymp-
totes to zero as cooling continues, since the scale heights at
the equator and the pole equalize. Thus, the Ðnal X-ray
modulation frequency asymptotes to the NS spin. A pos-
sible observational signature that can distinguish the two
e†ects is the time dependence of the drift frequency. Con-
sider an atmosphere undergoing blackbody cooling in the
tail of the burst. The scale height of the atmosphere then
decreases with time as whereh(t) \ hhot(1 ] t/t

c
)~1@3, t

c
\

is the characteristic cooling time at thec
p
iy2/(3acT 03)maximum expansion when the temperature is ForT0. T0\

K, y \ 5.4] 108 g cm~2, and i \ 0.03 cm2 g~1, this109
cooling time is 2 s. Since the geostrophic speed depends on
the gradient of the scale height, the X-ray oscillation fre-
quency due to geostrophic drift should change with time as

u(t)
)

\ 1 [udrift0
)

1
(1] t/t

c
)4@3 , (76)

where is the drift frequency at the start of cooling.udrift0
Here we assumed that the feature that gives rise to the
X-ray oscillations remains at the same latitude for the entire
duration of the cooling tail of the burst and is carried by the
geostrophic Ñow (however, see ° 4.4 regarding the possi-
bility of latitudinal drifts which can modify eq. [76]).

On the other hand, the frequency drift due to the radial
expansion of the atmosphere depends on the scale height of
the column, rather than its gradient. The oscillation fre-
quency asymptotes to the NS rotation frequency as 1

Since it is likely that in real[ (uliftvup0 /))(1 ] t/t
c
)~1@3.

bursts both the lift-up and the geostrophic drifts are present,
the X-ray oscillation signal will have a time dependence
corresponding to a superposition of the two e†ects. If both
drifts are of the same order of magnitude, di†erent time
dependence of the two e†ects will result in the initial stage
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of the frequency evolution being dominated by the geo-
strophic drift, while the late stage will be dominated by the
lift-up drift. We note that the time scalings given above
assume a very simplistic model of the evolution of the atmo-
spheric scale height during the cooling. Clearly, more
detailed simulations are necessary for robust comparisons
with observations.

As demonstrated in °° 2 and 3, the dominant Ñow during
the burst rise is a geostrophic current directed parallel to
the front line. For the moment, let us assume that the fric-
tion within the front is weak. Then the geostrophic current
is given by cm s~1 and is inde-v

g
D (ghhot)1@2D 1.5È3 ] 108

pendent of latitude (this follows from eqs. [19] and [24]). If
there is a temperature inhomogeneity entrained in this
current (similar to the inhomogeneities responsible for oscil-
lations in cooling tails of bursts which were discussed
above), we may expect a Ñux modulation at a frequency
higher than the spin frequency ; it will appear as an upper
sideband of the main burst oscillation frequency during the
rise. When the front is at a latitude j, the frequency of this
sideband is As the Ñame propagates towardv

g
/(2nR cos j).

higher latitudes and carries the inhomogeneity along, the
frequency chirps up.

The time evolution of this chirp is easy to estimate. The
speed of the front depends on latitude as v

f
\ v

f
pole/sin j,

where is the speed of the front nearv
f
pole D (ghhot)1@2/(2)t

n
)

the pole. Expressing the front speed as wev
f
\ Rdj/dt,

solve this equation for the front latitude as a function of
time : where The time evolu-cos j \ 1 [ t/t

p
, t

p
\ R/v

f
pole.

tion of the sideband frequency is then

lchirp\ v
g

2nR cos j
\ lchirpeq

1 [ t/t
p

. (77)

Here is the sideband frequency in thelchirpeq \ (gh)1@2/2nR
region of equatorial belt, which, for typical parameters in
our simulations, ranges from 25 to 50 Hz. The Ðnal fre-
quency of the chirp depends on how close to the pole the
front stops propagating. If we take this halting distance to
be one Rossby radius km, the Ðnal frequency of theaRpoleD 1
chirp is 10 times the equatorial value, or 250È500 Hz.

When friction is present, the speed of the zonal Ñow
within the front is

vgeostrophicD
ghhot
f*

D
ghhot

ft
n
vflame

, (78)

where is given by equation (34). We have thenvflame

vgeostrophicD
Aghhot
t
n
/tfr

B1@2 ( f 2] 1/tfr2 )1@2
f

. (79)

Close to the equator, where the Coriolis parameter f is small
compared to the rate of frictional coupling the chirp1/tfr,frequency decreases as the front moves away from the
equator. However, as soon as the front reaches the region
with the chirp frequency increases as the frontfD 1/tfr,moves farther toward the pole. When f is comparable to or
greater than the magnitude of the chirp frequency is1/tfr,smaller by a factor of than what it would be ifD(t

n
/tfr)1@2the friction was absent. If measured, the time dependence

and the magnitude of the chirp frequency could be used to
discern the importance of the e†ective viscosity during the
burst.

4.4. Vortices and Oscillations in the Tail
So far we have not addressed the nature of the pertur-

bations that lead to the oscillations in the X-ray Ñux in the
burst tail. The speed of the cooling Ñow described in the
previous subsection is latitude dependent (see eq. [72]).
Thus, we can expect a strong zonal shear, of the type that is
observed in the atmospheres of giant planets. Such a zonal
shear is known to be unstable to formation of vortices ;
sometimes, like in the case of Jupiter, these vortices become
large and occupy a signiÐcant fraction of the atmospheric
surface. We speculate that these vortices do form in a
cooling wake of an X-ray burst and are responsible for
modulation of the X-ray Ñux in a burst tail. Currently we
are constructing a two-dimensional shallow water simula-
tion to address this scenario. Two-dimensional simulations
will also allow us to study several other important e†ects
which are not contained in the one-dimensional model. In
particular, in the presence of a meridionally varying
Coriolis parameter, vortices tend to acquire a drift even if
there is no background Ñow. This e†ect is known as ““b-
drift ÏÏ in the geophysical literature (see, e.g., Chan & Wil-
liams 1987) and is responsible for the northwest drift of
tropical hurricanes on the Earth. The direction of the drift
depends on the sense of rotation of the vortex, with cyclones
drifting northwest and anticyclones southwest. In order to
estimate the velocity of this drift, we use the empirical
formula from Smith, Li, & Wang (1997) : vbvdriftDwhere is the radius where the maximum Ñuidr
m
(v

m
b)1@2, r

mvelocity relative to the vortex guiding center is reached.v
mFor a ““ hot spot ÏÏ (anticyclonic) vortex with a radius equal

to the Rossby radius (D1 km) and maximum internal speed
cm s~1 on a star with b \ 4 ] 10~3 cm~1 s~1, thev

m
D 108

drift speed is of order 600 km s~1. Depending on the direc-
tion of drift on the surface of the star, this e†ect can yield an
X-ray oscillation frequency of up to 10 Hz lower than the
spin frequency of the star. It remains to be seen how
burning inside the vortex and potential nonaxisymmetric
instabilities (e.g., development of spiral arms) modify this
estimate and a†ect the evolution of vortices in two dimen-
sions.

4.5. MHD Dynamo and Coherence of Pulsations
The burning front may be an ideal environment for an

MHD dynamo:13 it is likely to have both turbulence and, at
least initially, strong shear ; additionally, the typical eddy
overturn time is much less than The equipartition valuet

n
.

of the magnetic Ðeld is

BeqD 1J4nov
c

^ 3 ] 109
A o
106 g cm~3

B1@2A v
c

106 cm s~1
B

G , (80)

where, for concreteness, we have assumed that the turbu-
lence is of convective origin. The coherence length of the
dynamo-generated magnetic Ðeld is of the same order of
magnitude as the ocean scale height.

As discussed in ° 1, oscillations observed in the tails of
X-ray bursts are highly coherent, with Q-values of a few
thousand over the duration of the burst (van der Klis 2000).

13 We thank Maxim Lyutikov for alerting us to this fact.
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Both lift-up (Strohmayer et al. 1998 ; Cumming & Bildsten
2000) and geostrophic models for the drift have difficulty
accounting for this coherence : the burning ocean is strongly
sheared, with the top of the scale height moving at a di†er-
ent speed than the bottom. Cumming & Bildsten (2000)
argued that convection might enforce the vertically rigid
rotation of the burning ocean, although they pointed out
that this is far from certain since convective turnover time is
comparable to the spin period. Numerical models of bursts
indicate that strong convection is indeed present when the
ocean is ignited and rises but dies quickly when the fuel is
exhausted and cooling begins. It therefore seems unlikely
that the coherence of burst oscillations in the cooling tail of
the burst could be accounted for by convectively enforced
vertically rigid rotation.

We propose a di†erent idea. The B Ðeld generated by the
burning front will dynamically couple the top and the
bottom of the cooling ocean14 on the timescale (see, e.g., ° 4
of Cumming & Bildsten 2000)

tcoupleD
4nohvflow

B2 D
hvflow

v
c
2

\ 0.01 s
A h
103 cm

BA vflow
3 ] 107 cm s~1

B

]
A106 cm s~1

v
c

B2
, (81)

which is typically much shorter than the duration of the
oscillations. Moreover, the coherence of the oscillations,

is of the order of magnitude of observedQD tcool/tcouple,values. We therefore argue that the vertically rigid rotation
necessary for the burst coherence may be enforced by the
small-scale magnetic Ðeld generated by the dynamo in the
burning front sweeping through the ocean during the burst
rise. Note that after the burst this small-scale magnetic Ðeld
is conÐned to the new ashes, while the freshly accreted
matter can remain unmagnetized.

5. CONCLUSIONS

We have constructed a new model for the spreading of
deÑagration fronts during type I X-ray bursts. In contrast to
previous models, we take into account the horizontal
hydrodynamical Ñows arising as a result of the radial
expansion of the burning atmosphere/ocean and the action
of the Coriolis force due to rapid rotation typical for strong-
ly accreting NSs in LMXBs. Our mechanism of heat trans-
port relies on coherent hydrodynamical Ñows across the
front that are set up as the Ñuid attains momentum balance,
and it achieves speeds of front propagation in excess of tens
of kilometers per second, necessary to account for the
observed subsecond rise times of X-ray bursts. Previous
workers invoked large-scale convective turbulence (on
scales much larger than the vertical scale height) in order to
obtain comparable front speeds. The speed of the front is
analytically estimated in equation (24) for the case in which
convective viscosity is not important and in equation (34)
for the case in which the layers of the burning ocean are
frictionally coupled (by, e.g., convection).

14 It seems reasonable to assume that the small-scale magnetic Ðeld,
with a coherence length of D10 m (the ocean scale height), will not have a
substantial e†ect on the large-scale (D1 km, roughly the width of the front)
lateral shear.

In addition to the analytical arguments, we constructed
and numerically evolved a two-layer shallow water model
of the burning layers. Our simulations agree very well with
our analytical estimates, and we found that the physics of
propagation of geostrophically supported fronts is indepen-
dent of the details of the heating function, as long as it is a
single-peaked function of temperature. This agreement
gives us conÐdence that our results are valid for models
with more realistic microphysics.

We have outlined the behavior of global hydrodynamical
Ñows in the NS atmosphere/ocean during the burst and
showed that these Ñows may explain many of the features of
observed bursts. The very short rise times of X-ray bursts
are easily accounted for if the speed of the burning front is
set by the requirement of geostrophic balance. The lack of
burst oscillations in many bursts may be due to the fact that
the speed of the burning front is very dependent on the
location on the NS surface and favors rapid propagation
along near-equatorial latitude bands that wipes out asym-
metry, rather than simple spreading of a hot spot that main-
tains asymmetry. The rather large frequency drifts of burst
oscillations in tails of some bursts can be accounted for only
if the lift-up drift due to the radial expansion (Strohmayer et
al. 1997 ; Cumming & Bildsten 2000 ; Cumming et al. 2002)
is combined with the geostrophic drift due to zonal Ñows in
the cooling wake of the burning front. We argue that the
burning front will generate a strong (D109 G) small-scale
magnetic Ðeld and that this magnetic Ðeld will enforce a
vertically rigid Ñow of the ocean in the wake of the burning
front. The vertical rigidity of the Ñow explains the observed
high degree of coherence of the burst oscillations during the
cooling tails of bursts, after convection has subsided and
can no longer account for the coherence. We conjecture that
strong zonal currents during the burst may lead to the for-
mation of vortices of the type observed in the atmospheres
of giant planets. These vortices may be responsible for
X-ray Ñux oscillations in the burst tail. In addition, we
predict the presence of yet unobserved chirps during rises of
bursts. Detection of such chirps (which could have been
missed in previous observations because of the large fre-
quency spans that they cover) will tell us about the details of
burning front propagation, such as its velocity or the lati-
tudinal extent of the surface of the star that is covered by
nuclear burning.

Our model is incomplete in several respects. We showed
that the burning front on a rotating NS is a site of strong
vertical and horizontal di†erential shear and that this shear
Ñow can transport entropy across the front. However, we
omitted the small-scale mixing and heat di†usion, and thus
we have not showed that this heat can indeed be delivered
into the cold fuel, heat it up, and ignite it as the burning
front propagates. Since Ñows with strong shear tend to have
both local and global hydrodynamical instabilities, we are
conÐdent that such heat exchange does occur and is robust.
Only two- or three-dimensional hydrodynamical simula-
tions will be able to authoritatively settle this issue, and we
have outlined how our results would be modiÐed if the
mixing exists but is not as efficient as we have assumed. In
addition, such simulations will be useful for understanding
the dynamical (frictional) coupling between the layers of the
burning ocean, which, as we showed, has a substantial e†ect
on the speed of propagation of the burning front. Finally,
further modeling of the global nonaxisymmetric instabilities
arising in the horizontal shear Ñows may conÐrm our con-



1038 SPITKOVSKY, LEVIN, & USHOMIRSKY

jecture of trapped vortices as the origin of Ñux modulation
at late times during X-ray bursts.

In this paper we have demonstrated the usefulness of the
shallow water model for understanding X-ray bursts. Two-
dimensional simulations utilizing the shallow water model
on a sphere will complement future vertically resolved
hydrodynamical simulations and will allow us to generate
realistic light curves and make more reÐned predictions of
frequency behavior of burst oscillations.
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APPENDIX A

FORMAL DERIVATION OF MODEL EQUATIONS

The shallow water equations (40)È(45) for incompressible Ñuid can be derived as a formal limit of the Euler equations for
compressible Ñuid. This is useful for establishing the connection between the entropy sources in compressible Ñuid and mass
sources which are used to simulate heating in the incompressible case. Using the continuity equation and the ideal gas law, the
heat equation (39) can be rewritten as

(1[ i)
dT
dt

\ [iT $ Æ ¿] J
c
p

, (A1)

where i \ 1 [ 1/c. In the limit of an incompressible Ñuid, c] O and i ] 1. We can then equate the right-hand side of
equation (A1) to zero. We consider a layer of uniform temperature and height h, which in our model is equal to the scaleT0height Integrating equation (A1) in the vertical direction over the layer height, we getc

p
T0/g.
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We assume a hard surface at the bottom of the layer and use as the velocity of the surface. This(v
z
o
z/0\ 0) v

z
o
z/h

\ dh/dt
yields the continuity equation as in equations (40)È(41) with e†ective mass source Q\ J/g representing heating. The momen-
tum equations (42)È(45) directly follow from the Euler equations for a constant density layer in hydrostatic balance.
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