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Abstract

Propagation of transient electromagnetic fields in dispersive dielectric media
is studied. The dielectric medium is assumed to be linear, isotropic, and
homogeneous and is described by the Debye model. Incident fields are as-
sumed to be TEM plane wave pulses. The dielectric can assume the form
of infinite half space or infinite circular cylinder; either of which may be
homogeneous or stratified. The electric fields induced in the dielectric are
calculated from Time Domain Maxwell's equations using Finite Difference
Time Domain method. The results of this investigation can be used for geo-
physical probing, subsurface communication and for investigating possible
biological effects of pulsed electromagnetic fields.
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Chapter 1

Introduction

1.1 Motivation

The ever increasing use of electromagnetic devices has led to mounting con-
cern about the biological effects and potential hazards of electromagnetic
radiation. Most of ihe research in biological effects of eleciromagnetic radi-
ation has been done with continuous-wave radiation [1] [2]. Although there
has been concern over the hazards of pulsed radiation [2] [3], little work has
been done about it. Most of the work done with pulsed-wave radiation did
not include the dispersive dielectric properties of biological materials.

In addition, there has been an interest in the propagation of transient
electromagnetic waves through lossy dispersive dielectrics related to its ap-
plications in important real problems such as geophysical probing and sub-
surface studies of the moon and other planets [4] [5] [6] [7]-

Thus, there is a need for investigating the propagation of pulses into lossy
dispersive materials for developing suitable models of the human body and
geological structures.

1.2 Objective

The objective of this work is to investigate the propagation of pulsed elec-
tromagnetic fields in dispersive dielectrics.

The dielectric is assumed to be linear, isotropic, and homogeneous and is
described by the Debye model [31]. Incident fields are assumed to be TEM



(transverse electromagnetic) plane wave pulses. The dielectric can assume
the form of infinite half space or infinite circular cylinder; either of which
may be homogeneous or stratified.

The electric fields induced in the dielectric are calculated from time do-
main Maxwell’s equations using Finite-Difference Time-Domain method.

1.3 Present State of Knowledge

Transient fields in dispersive media have been the subject of a number of
investigations.

Some authors used analytical approximation techniques to study pulse
propagation problems. Wait [8] studied the distortion of a pulse propagating
through a dispersive medium using various approximate procedures based on
stationary phase principle. Fuller and Wait [4] calculated the unit-step im-
pulse response for a compound Debye dielectric model by taking the Laplace
Transform of the transfer function and then approximating the propagation
constant for short and long time behaviors.

Other authors studied the problem in the frequency domain. Sivaprasad
el al. [9] studied the reflection for a sine-squared pulse incident at normal and
oblique angles on a three-layer medium with the middle layer being a Debye
dielectric. Suzuki et al. [6] obtained the waves reflected by two dielectric
slabs for an incident pulse-modulated carrier wave analytically by expanding
the reflection coefficient of an elementary plane wave into a series expansion.
Bussey and Richmond [10] obtained a theoretical scattering solution in the
frequency domain for a plane wave incident normally on a lossy dielectric
multilayer circular cylinder of infinite length by assuming the solution to be
in the form of a Fourier series of Bessel functions of first and second kinds.

Still other authors evaluated the steady-state transfer-function as a func-
tion of frequency. King and Harrison [5] studied the transmission of an inci-
dent pulse of Gaussian shape from the air into the earth by evaluating the
steady-state transfer function over a frequency spectrum. Lin [11] studied
the interaction of electromagnetic transient radiation with biological materi-
als by developing a steady state transfer function at the interface of air and
a Debye medium. Lin et al. [12] {13] also determined the transmitted field
strengths in homogeneous spherical models of human and animal heads by
convolving the Fourier transform of the incident pulse with the steady-state



transfer function of the medium. The transmitted pulse in the time domain
was then obtained by an inverse Fourier transformation.

Durney et al. [14} [15] used Fourier Series Expansion technique to expand
the incident pulse train into a Fourier series to study the propagation of wave
in a dispersive dielectric half space irradiated by an electromagnetic plane
wave pulse train.

Very few authors studied the problem directly in the time domain. Lam
[16] investigated the reflected waveform of a unit-step signal incident on a
Debye dielectric half space and on an ice layer on water using an integro-
differential equation which was solved numerically by Finite Difference Time
Domain method. Bolomey et al. [17] studied the reflected field at the inter-
face of a Debye medium illuminated by a ramp incident field from the air
using Time Domain Integral Equation. Holland et al. 18] and Sullivan et al.
[19] used the Finite Difference Time-Domain method to calculate the electric
field and the SAR (Specific Absorption Rate) distribution in a model of the
human body. The dielectric was assumed to be nondispersive.



Chapter 2

Theory

2.1 Introduction

In this chapter, we shall discuss in detail the Finite Difference Time Do-
main method (FDTD method) for solution of the Time Domain Maxwell’s
equations in Debye media. We shall start from the examination of the Time
Domain Maxwell’s equations in a Debye medium and derive the expressions
for the electric flux density and its first and second derivatives with respect
to time. We shall then derive the numerical solution of the Time Domain
Maxwell’s equations for one and two-dimensional problems. We shall also
investigate the boundary conditions at the interface of two different media
in order to be able to treat the pulse propagation in inhomogeneous media.

2.2 Time Domain Maxwell’s Equations in a
Debye Medium

Source-free Time Domain Maxwell’s equations are:

V x B(z,y,2,t) = _.5_5_(”"5%1&9 (2.1)
V x H(z,y,2,t) = a—}:)—(:f—é%%’—ﬂ + a’ﬁ(m,y,z,t) (2.2)

10



where B(t) and D(t) are the inverse Fourier transforms of B(w) and D(w)
which are defined in the frequency domain:

Blw) = w(w)H(w) (2.3)
Dlw) = e(w)EW) (2.4)

The unknowns are the electric field E(t), and the magnetic field H{(t).
The medium is assumed homogeneous and isotropic within each layer.The
permeability is that of free space po. The conductivity o is constant. The

permittivity is assumed the form of Debye model with a single relaxation
time:
Ep — €

() = ¢ 4 0T €0
€(w) = €go T+ jrow

(2.5)
where € and €, are the low and high frequency permittivities, respectively,
and T, is the relaxation time.

Taking the Inverse Fourier Transform of (2.5), (2.3) and (2.4), one obtains
e(t), B(t) and D(t):

€ — €

(t) = eob(t) + = 2 ¢~ %o u(t)

B'(t) = Poﬁ(t)

o

[ t-p)EB)8.

-0

D(t)

Therefore, the electric flux density is:

To

D(t) = ewB(t)+ 2= 73-‘%’%“—3)5(3)43.

Suppose we write: B
D =D, z+ Djj+ D.7,
then:

Dult) = e Belt) + 7= [ & ult - A)EL(B)IE

11



By differentiating the above equation twice with respect to ¢ (see Appendix
A for details), we obtain the first and second derivatives of D,(t):

Q%Egt_) — B%t(t) Toeoo [E,.(t) _ %)f .S',(t)] (2.6)
where -
1 =
Se(t) =27 [ € ™ ul(t - B)E(B)dB

and At is the time increment.

The lower integration limit can be changed to 0 because of the causality
of the fields, and the upper integration limit can be changed to ¢ by omitting
the unit-step function u(t — 8) in the integrand. Thus we can rewrite S.(t)

as:
t

Sa(t) = — e“'_f_oﬁE,(ﬁ)dﬁ . (2.8)

To reduce the integral to a recursive form, we split it into two parts:

t—At

Sul j W E(B)B+ 5 je-'f»ﬂEztﬁ)dﬁ

t—At

We then integrate the second integral from ¢— At to ¢ by using the trapezoidal
rule [16] so that:
o

E.(8)dB + - [ N E.(t — At) + E,(t)]

A

and then by removing a constant ¢ =
tuting the integral with (2.8), we get:

outside the integral sign and substi-

A.!t—

(B)dB + - [ S E.(t— At)+ E,(t)] ,

12



and
S.(t) = RS- At + 3 [e% Buge - 80) + E(1)]

Let:

g=e

2l

and denote:

Ea:(m;y;z:t_) — E:("‘!J!k)
Se(z,y,2,t) «—— S2(3,5,k)

where the superscript n is the discretized time, and %, j, and k are the
discretized z, y, and z coordinates, respectively. Thus:

. . e 1 . . ..
S:(":Jsk) =g5; 1(":3:’“) + 5 [QE:_l("rJ: k) + E:(ty.'h k)] (2'9)

Similar expressions for D, S, and D,,S; can be derived using the same
technique.

So far, we have examined the Time Domain Maxwell’s equations in a
Debye medium and derived the expressions for the electric flux density and
its first and second derivatives in recursive forms. These expressions will be
extensively used in subsequent sections to calculate the electric and magnetic

fields.

13



2.3 Multi-layered Half Space

In this section, we shall study the one-dimensional problem of pulse propa-
gation in Debye media. We shall derive the integro-differential equation in a
Debye medium and study the boundary conditions at the interface of two dif-
ferent Debye media. We shall then derive the difference equations for points
in the Debye medium and points at the boundary of two different media.
We shall also discuss various aspects of the numerical solution including the
stability and the simulation of the infinite boundary.

2.3.1 Geometry and Assumptions

We wish to investigate the action of a plane-wave pulse in air with normal
incidence on a stratified dispersive medium. The incident pulse can be a
ramp signal, electromagnetic pulse (EMP), Gaussian pulse, or others. In the
kth layer, the conductivity o) is constant and the permittivity ex(¢) assumes
the Debye model. The permittivity for each layer can be written as:

€k0 — €koo — i
ex(t) = erood(t) + KO~ oo ut)

Tko
Air Stratified Dispersive Dielectric
E,
-4 e XY ] -
H,
z
Incident pulse Ho,€0 | €1,01 | €2,02 | €3,03 | €4,04

Figure 2.1: Stratified dispersive dielectric irradiated by a
plane wave pulse with normal incidence on the air/dielectric
interface

14



2.3.2 Mathematical Formulation
The Differential Equation

Since only E, and Hy exist for the one-dimensional problem (TEM), then
from (2.1) and (2.2), we can write the Maxwell’s curl equations in the k'
layer as:

8E.(z,t) OHy(zt)
0z = TR
_OHy(z,t) _ 0D,(z2,t)
e = o Tobelat)

or if we combine them and solve for the electric field, as:

FD:(xt) _ 1 FEa(nt) | 9E:=t)
at? po 0z° ML TR

(2.10)

Substituting ( 2.7) into (2.10) and simplifying, we have:

OB (z,t) 1 82E.(z,t) _ (o’k s ekm) OE,(z,t)
6t3 B HoC€keo azz €heo €hooTkD at

€ko — €koo €r0 — Ckeo
4+ ———FE.(z,t) - = ALS. (2t
e GO R A

Let

€k0 — €koo
€koo

1
Wy = =—
Tro

1
Y H#0o€koc

ar =

Cloa =

Then

E.(z,t) _ 5, O°E.zt) o OE(z,t)
ot? = ChoT g,z (ekw + kako) ot
+ arwiy Ex(z,t) — aawioALSa(2,t) (2.11)

15



Boundary Conditions

Boundary conditions at the interface are (see Fig. 2.2):

Eue,t) = Ba(sh,) (212)
8Es(2",t) _ 8E.(z%,t)
Oz - 8z (2.13)
Medium 1 Medium 2
i—1 i i+1
z |zt
AZ]_ e A22

Figure 2.2: Interface between two dis-
persive media

For medium 1, from (2.11) we have:

PE. (2t O?E.(2",t o 8E.(z",t
i T o
+ a1wiyEo(z7,t) — aywipAtSn{z",t), (2.14)

where

Sulet) = 5 [ €T B, 6)48
0

and for medium 2, from equation (2.11) we have:

O*E, (21, O*E_(z,t o 0E (zt,t
a(t= b - A a(z= - (Ei“’“”“) f?t X
+ Gawi  Eq(z¥, 1) — aqwi,AtS,a(27,8) , (2.15)

16



where
t
1 _t=8

Sea(z¥,t) = E—t./e = B (zt,8)dB
o

By using the Taylor’s Series Expansion, we can express E as:

BE.(z",t) 4 Az22 B2E,(27,t)

E.(2~ — Az,t) = Eg(27,t)— Az

Oz 2 022

OE.(z*,t) A2 PE(z*,t)
+ _ + (2", 2 0" Fa{2”,
Ez(z +A223t) = Er(z ,t)+AZz 0z -+ 9 Oz
and Q;%‘ as:

BE (2",t) 2 _ _ OE.(z",t)
L GRT PURLA RN ERes S
82 E,(z*,t) 2 + + 8E_(z%,t)
S = g [Be A - B )= An

Substituting the above equations into equations ( 2.14) and ( 2.15) to elimi-

nate Q;-;_’%‘, we subsequently obtain:

|

#E.(z7,t) _ 24, _ _ 8E.(z",t)
a4 = Az E (2~ — Az, t) — Ex(27,t) + Ale
O0E.(z~,¢
NESURETL
+ awi E (27,t) — awd AtS,(27,1) (2.16)
and
E (zt,t) 26, + + OE.(z%,t)
B = As Eo(2* + Bzp,t) — Eo(27,t) — Aa—o-
o3 OF,(z*,1t)
(Ezw + 02“’20) ot
+ awd Ea{2",t) — aqwi AtSea(27,t) . (2.17)

Using (2.12) and (2.13) to eliminate 2 in equations ( 2.16) and ( 2.17) and

simplifying, we obtain:

FEs(z,) oo | G\ [ 28 i ]
5t = \An T 2n) \BdAn - — Bo(27,t
at? (A21+Azz Aeihz, Eu(s™ - Bz t) - Beo(a™,0)

17



2 2
2cloo¢20c|

[E,,(z+ + Azy, t) — Ba(z7, t)]

AZ:[AZ;
2 2
_ |G (1 oo (2. OFs(z,t)
[Azz (Elm + alwlo) + A21 (sz + azwzo)] 6t

Goo 2 | Cleo 2
- -A-z—zalwm -+ E?ld.zwzo E',(z,t)

czm - C:zmo
— —‘;—zzﬂvlw:liﬂAtszl(z ,t) - KigazwzgoAtSsz(z‘}‘, t)} . (2~18)

2.3.3 FDTD Implementation

Suppose f(z) is a smooth function of  in an interval [y, %2] and Az is a
small increment of z. Then, the first and second derivatives of f(z) with
respect to  can be expressed in the forms of central differences as follows:

8f(z) _ flz + Az) ~ f(z = Ac)

Oz 2Az
and
o f(z) _ f(z + Az) - 2f(z) + f(z — Az)
Ox? Az?

Equation (2.11) can be rewritten in terms of difference equation as:

Ert(i) — 2Bp() + EoT'() _ , ER(i+1)—2E3() + BRGi— 1)

At? T ke Az}
(e BZ*(0) - B2()
B (ekw + akwko) 2At
+ auha B2(1) — oo ALST()
Or as:
n+lyse n-1g: CkaoAt 2 nys nes nee
aBRH() = —BEIG)+ (%20) (B2 + 1)~ 2B26) + B2 - 1)

+ 2E™(3) + ap(wiot)2ER(i) ~ ax(wwoAt)®S2(1),  (2.19)

where At is the time increment, Az, is the space increment in the k! layer,
and

At ( o
a = 1+ — (-——+akwko)
2 €koo

18



and S7(i) computed from (2.9) is:

S2(6) = 9S27H0) + 5 (9B + EL().

1
l

Az

Figure 2.3: Grid points for the FDTD solution. Pointi =1
is in air. Point i = 2 is at the interface. Point i1 = N is at
the far end.

For the Dielectric/Dielectric Interface, taking the Finite Difference for-
mulation of ( 2.18) and rearranging, we have:

22 Cao At
AZ%A22

EM(i+1)

aE() = —BEI()

263 ., Co oo AL
A21 AZ%

Ex(i-1)

oo e
+ [i?zal(wloAt)z + Klz—laz(w;nAt)z
92, 22, 200, t ( 1 1 .

-] oo oo 200 Eﬂ
+ A;a + AZz A21A22 AZ]_ + AZz) z(l)

oo .
- i;a,(wmAt)sSﬂ (‘b)

c? .
_ -‘-&—:El-a,z(wzuAt)SS:Z(z) , (2.20)

19



Air

Medium 1

AZU

A21

Figure 2.4: Interface between air and
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For the Air/Dielectric Interface (see Fig. 2.4):
In equation ( 2.20), put:

Cloo Co
oy = ]
a = 0
Cco = Cleo
T2 N
€ = €loo
az = &
Wiy = Wwio,
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For the Dielectric/Air Interface (see Fig. 2.5):
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In equation ( 2.20), put:
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<
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Il

oK
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a = ag
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then

2C%{wqut2 n(i _ 1)
AZ%{AZQ £

EZ(i+1)

aBI*M (i) = —PEI(i)+

2¢} 5 AL
AZKAZE

2c? 22
e | 20
AZK AZO
2ck c%Atz( 1 1 )] e
- + EZ(1
AzgAzyg \Azg Az 2)

2
- X ax(wrobt)*SIx (i) (2.22)
)

2
+ [ch—ak(wmAt)z +
20

where

2 4 v
ko | G Bt % (24 exwio)
Azg  Azp 2 Azp \€Ke

3 2 At e (o
_ Sk o _ A % ( K 4 apw )
g = Azg + Az 2 Az \€Koo KWKo

22



2.3.4 Practical Aspects of a Difference solution
Stability Criterion

For stability, the following condition must be satisfied (see Appendix B for
details):
Az < e At

Choosing:
Az = c oAt

results in three advantages [16]:

¢ The time increment At is the largest one permitted, thus allowing a
problem to be solved with the minimal number of time steps.

¢ The calculations at each step are reduced to a minimum because equa-
tion (2.19) simplifies greatly.

¢ The exact solution is obtained because the truacation error in (2.19)
vanishes.

Simulation of Infinite Boundary

For the far-end boundary, the infinite boundary can be terminated at the
point [16]:

N-1I
IENDZIob.+—-2—m+1,
where
Igyp = truncation point
I, = observation point
N = number of time step to be calculated.

When the above condition is satisfied, the back scattered signal originating
at the truncation point does not reach the observation point.
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2.3.5 Description of the Computer Program

A one-dimensional FDTD program has been developed based on the theory
presented in this section. The program has been written specifically for
a stratified half space filled with Debye media. The incident field in air
impinges normally on the air-dielectric interface. A FORTRAN listing of the
program may be found in Appendix C.

The program may be divided into two major sections: the data input
section, and the iteration section. The data input section is the part of the
program which prompts the user for the data necessary to define the problem,
and it also calculates the necessary coefficients to be used in the iteration
section. The iteration section is the part of the program which calculates the
electric fields at every point of the mesh based on the information obtained
in the data input section, and on the electric fields at previous time steps.
The iteration continues until a solution is obtained for every time step inside
the desired time window.

" The program outputs are either the electric field distribution at specific
times, or the electric field as a function of time at specific points in space.

In this section, we have derived the integro-differential equations for the
propagation in a Debye medium (2.11) and at the boundary of two different
Debye media (2.18). We have also presented these equations in explicit dif-
ference forms (2.19), (2.20), (2.21), and (2.22). These equations were used
in the computer program which calculated the transmitted fields in stratified
Debye half space (Appendix C). The stability criterion and the simulation of
infinite boundary developed above were also used in the program to ensure
the stable and accurate solution.
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2.4 Multi-layered Circular Cylinder

In this section, we shall examine the Time Domain Maxwell’s equations in
a Debye medium applied to two-dimensional problems. We shall also study
the boundary conditions at the interface of two different Debye media. The
explicit difference equations for points in a Debye medium will be derived.
The stability and the absorbing boundary conditions will also bz studied in
detail.

2.4.1 Geometry and Assumptions

The geometry under consideration (see Fig. 2.6) consists of an infinitely
long multilayered circular cylinder of dispersive dielectric in free space. We
consider a transient electromagnetic plane-wave incident from free space on
the cylinder.

Air

Ho, o

Incident pulse
E, @~

H,

Figure 2.6: Multi-layered circular cylinder exposed to a plane
wave pulse. E-field is parallel to the axis of the cylinder.

We distinguish two cases: The case in which the incident electric field

25



is parallel to the axis of the cylinder and the case in which the incident
magnetic field is parallel to the axis of cylinder, with the general case is a
linear combination of the two. In this section, we shall investigate only the
former case. The solution for the later case can be easily derived using the
same technique. As in the previous section, the dielectric in each layer is
assumed to be of the Debye model.

2.4,2 Mathematical Formulation
The Differential Equations

For the case in which the electric field is parallel to the z-axis, only E,, H,,
and H, exist. From Maxwell’s equations { 2.1} and ( 2.2), we have:

OE (z,y,t) OH.(z,y,t)
OE (z,y,t) _  OHy/(2,y1)
o= = BT g (224)
aHy(z’yit) _ aHz(miy:t) aDz(m’ ’y’t)

Il

Oz 8y Bt + orE.(z,y,t) (2.25)

Substituting (2.6) into (2.25) results in:

OH.(z,y,t) _ 1 8E.(z,y,t)
ot T e Oy
OH(z,y,t) 1 0E.(z,y,t)
T8 T pe 9
aEz_(zﬂL’t_) _ 1 [aHy(x:yit) OH.(z,y,t)
Tt T &wl| Oz 0Oy

€kp — € €r0 — €
- (0';, + M) E,(z,y,t)+ —k-o—.u,k-c'—'iAtS,(m,y,t)
Tko Tko



H
EECL.. H?

Medium 2
Interface along x-axis

Medium 1

Figure 2.7: Continuity at the interface along =-
axis. E-field is in the z direction. The wave prop-
agates in the +y direction.

Boundary Conditions

Consider the plane interface along z-axis separating medium 1 and medium
2 (see Fig. 2.7).

The continuity condition at the interface imposes the following conditions
(20]:

El = E!
0E; _ OE}
0z =~ Ox

1

H, = H}
OH, _ OH?
Oz Oz

H! = H?

From ( 2.23), we have:

om: _ om?

0y ~ Oy



Therefore, both E, and %E;‘ are continuous across the interface.
From ( 2.25), we have:

0H! OHX 8D &8D;
Pl TR T 4+ {0y — a1)E, (2.26)

This equation indicates that %" lhas a finite discontinuity across the inter-
face. Thus, if we choose the grid points such that H; ’s are on the interface,
the boundary conditions at the interface will be automatically satisfied.

2.4,3 FDTD Implementation

If we substitute central differences for the derivatives of E and H in equations
(2.23),(2.24), and (2.25), and if we denote:

E:(’*;J) e Ez('-")y:t) )

then we obtain:

n+l.",

ﬂ—l' . . » . . *
2T+ ) —He Y6543 1 EpG5+1) — BR(i)
At fo Ay
T L . . ﬂ-‘— . . . . 0 [
HY i+ 5,0 -H 2G+L3) 1 Eri+1,5) - EXG,4)
At ﬂ.o Aa:
EnH( 3 — En(i i _
2 (1‘:3)__ Ez("!J) _ 1 [__ (cr;,-}—eko €’=°°) E:(t,J)

At T €koo Tho
43 1 N - n l . .
Hy+:(t+;§:3)-Hy+=("_%1J)
Az
n 1’ . . n L . .
CHM GG+ ) - HE G- )
Ay
€10 — €koo are -
+ K0Tk AT, J)]

+

Tho

Note that E is defined on the mesh nodes but that H is defined between
these nodes. And, E and H are evaluated at alternate half-time steps.

We choose
Az = Ay = Al,
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Figure 2.8: The mesh for two dimensional FDTD.
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thus creating a grid mesh of equally spaced nodes (see Fig. 2.8). The mag-
netic field H and the electric field E are described using finite differences
as:

n+§:; .. l _ n—'?- L. l
Ha: (3,]+2) = » (1’1.*.2)
At
i § T _pngs s .
.uoaz[ P05 +1) - B2G, )] (2.27)
n 1 . 1 . “_l, ) 1 .
Hy 2 (i + 5od) = Hy i+ 5.9)
At . _ o
tod (BT (i +1,5) — EZ2(4,)] (2.28)
E:+l(i:j) = [I—At(ak +Ek°'_ehoo)] E:(t,J)
€kco €hoaThO
At ntl, 1, b 1,
* €roo Al {Hy i+ 2’3)_H” (i~ 2’3)
ntye o, 1 |
- [ z+2(z’3 + é)_ H:l:+=(h.7 - 5)]}
+ (fkoe— Ekm) (wrolAt)? S7(5, ) (2.20)
koo

where

.. aelge o, L netfe s nge s
5:(i,7) = g5; 1(1,J)+§(9E= 'i,§) + B2(3,4)) -

2.4.4 Practical Aspects of a Difference Solution
Stability Criterion

For any given cell size Al, there is a restriction on the step At to ensure
stability. This restriction can be described as [21]:

-1
1 1 ?
ma:At < A 9
¢ - (A:.-:E + Ay’) ’

where v, is the velocity of the propagating wave. Since the cylinder is in
{ree space:

Vmaz = €0,
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where ¢ is the velocity of light in free space, and

Az = Ay = Al

Thus the stability criterion can be written

CoAt S —=

as:

\/5 ?

or as:

At<1

E'E - Cu
Absorbing Boundary Conditions

The problem is an open problem, but beca

artificial boundaries produced by truncatin

are those suggested by Reynolds [26].
Suppose the wave equation is given by:

1% _ 0%

=

use the domain in which we com-
pute the field is limited, we must create absorbing boundary conditions at the
g the mesh to simulate the condi-
tions of unbounded space. For finite difference approximations of Maxwell’s
equations, absorbing boundary conditions have been described by a number
of authors [27], [21], 23], [24], [25], [26]. The absorbing conditions used here

*u

2 ot2  Oz?

oy?

where ¢g is the velocity of light in free space.

and suppose the domain is truncated at z

then the absorbing boundary conditions are:

=—aq,z=a,y=—band y = b,

108 a p 0 d _ _
(—c“;-é-g+a) (aa+5;)u—0,z:_a

10 _08\(ro _20
coOt Oy) \cpdt Oy
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Apply the absorbing boundary conditions for FDTD with the mesh size
(Imazs Jmaz), We have: ‘
For boundary 2 = 1:

ntl _ .. n n_ __ ﬂ—.l n L — n . — "'-.1 — ﬂ—.l
ullj - ullj + uzlj uzlJ + P [uzlﬂ' ult? (uaﬂ uzh" )]

where

For boundary ¢ = Ijp.r + 1

n+41 — n n — a1
Yaetli = Ulpagtli T Ulnari = Ylnazii

+p [“’I‘mu,j — Wget1,d (“}:..la—l,j - "':'::s.:')]
For boundary j = 1:
wpft = ufy 4 uly -yt +p [l — ofy — (w87 - g
For boundary j = Jmaz + 1

n+l — n n — gn-1
uinJm4z+1 - ui.Jmu:+1 +ui,Jmu= ui.t’mnz

n n n-—1 n-1
+p [“i.-r...u = U Tmast1 (“-'.Jm.:—1 - “i.Jm..u)]

Special boundary conditions for the corners of the mesh are:

ufi' = ul, +p(uf, - uf,)
UP 1 = Uittt P (u?m,,z - “?m,=+1,1)
U sl = Udmaet1 TP (“;.Jm: - u?.Jma:-i-l)
U i dmaett = Ulnadldmantt TP (“'Ilm,..nm - "'I:na.+1.Jmn.+1)

In summary, the entire domain of computation can be divided into two sub-
domains: a subdomain for the FDTD computation and a subdomain for the
absorbing boundary (see Fig. 2.9). In the subdomain for the FDTD com-
putation, the equations derived in section 2.4.3 are used. However, in the
subdomain for the absorbing boundary, the equations presented in section
2.4.4 must be used. A final remark is that the absorbing boundary conditions
are correct only for outgoing waves. Thus, to use the absorbing boundary
conditions, we must eliminate the incident field by subtracting it from the

total field.
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j = Jma:

Absorbing Boundary/
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Boundary

Domain for FDTD

Computation

— Absorbing
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Absorbing Boundary .

i=1 i=2

Figure 2.9: Domain for FDTD and the absorbing
boundaries: 1 = 1, i = I . +1, 7 = 1, and

J =Jmaz + 1.

t=Jnazr 1= Inaz +1
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2.4.5 Description of the Computer Program

A two-dimensional FDTD program has been developed based on the theory
presented in this section. The program has been written specifically for a
multilayereded circular cylinder filled with Debye media. The cylinder was
assumed 1o be infinite in the z direction. The incident wave was assumed to
be a +y directed plane wave whose electric field vector is in the z direction.
A FORTRAN listing of the program for a continuous incident wave may be
found in Appendix E and a FORTRAN listing of the program for a pulsed
incident wave may be found in Appendix F.

The program consists of two major sections: the data input section and
the iteration section. The data input section is the part of the program
which prompts the user for the data necessary to define the problem and
then calculates the necessary coefficients to be used in the iteration section.
The iteration section is the part of the program which calculates the electric
fields at every point of the mesh based on the information obtained in the
data input section and on the electric fields at previous time steps. The
iteration continues until a solution is obtained for every time step inside the
desired time window.

Tle program outptts are the electric field distributions along the diameter
parallel to the y-axis at specific times.

In this section, we have studied the Time Domain Maxwell’s equations
in a Debye medium applied to a two-dimensional problem and the boundary
conditions at the interface of two different Debye media. We have derived
the explicit difference equations for E;, Hy, and H,, for the case in which the
electric field is parallel to the z direction. We have proved, for this case, that
if we choose the grid points at the interface of two different media. properly,
the boundary conditions at the interface will be automatically satisfied. We
llave also studied the stability and the absorbing boundary conditions to
ensure a stable and accurate solution.
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Chapter 3

Numerical Results

3.1 Introduction

This chapter presents the numerical results of the FDTD method applied to
various dielectric structures and for different types of incident pulses.

Four cases of the one-dimensional problem were investigated. First, the
reflected fields at the interface of a homogeneous half space filled with a
Debye dielectric were calculated. The incident field was a time dependent
ramp function with various rise-times. Second, the transmitted waveforms
inside a homogeneous half space filled with muscle were computed at different
depths. The incident fields were EMP and Gaussian pulses. The third case
was similar to the second case except that the muscle was replaced by fat and
the incident field was an EMP pulse. Finally, the transmitted fields inside
a stratified half space filled with skin, fat, and muscle were calculated. The
incident field was an EMP pulse.

For the two-dimensional problem, the above four cases, with some changes
in geometry, were also studied. The changes were the substitutions of the
homogeneous half space by a homogeneous circular cylinder and the stratified
half space by a multilayered circular cylinder.

3.2 One-dimensional Problems

In this section, the geometry of the media was assumed to be in the form of
an infinite half space. The incident field irradiated normally from the air on
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the air-dielectric interface.

3.2.1 Homogeneous Half Space of Debye Medium

For compatison, the data used in this case were those used by Bolomey et al
[17]. The medium was assumed to havea conductivity ¢ = 0, a low frequency
permittivity o = 13, a high frequency permittivity €, = 2, and an angular
relaxation frequency wo = 10° rad, . The incident field was a ramp function
with various rise times ¢, = 1.5 ns, 0.1 nas, 0.02 ns, 8 ps, 2 ps, and 0.001 ps.
At was chosen to be equal to the rise time divided by 200. The reflected
fields at the air-dielectric interface were calculated for each rise time. The
program was time stepped to 800 time steps.

Figure 3.4 shows the reflected fields at the air-dielectric interface for var-
jous rise times. '

3.2.2 Homogeneous Half Space of Muscle

For comparison with the results obtained by Lin [t1], the medium which was
investigated was muscle. According to Lin, muscle has a conductivity o = 0,
a low frequency permittivity e = 2.55 x 108, a high frequency permitiivity
€ = 0.2 x 10%, and an angular relaxation frequency wg = 502.65 rad/s.

08 1.0
L. )

0.8

Electric Field [V/m]
0.4

0.0 q.a

o se0 | 1000 1500  200.0
Time [ns]

Figure 3.1: Incident EMP in airat z=02asa function of
time.
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Figure 3.5 shows the transmitted fields at various depths z =0, 1, 2, and
3 em for an EMP incident field characterized by [37):

Boft) = 1.05016 x (e40X19% — ¢=470X19%) (V/m)

The peak amplitude of the pulse is 1 V/m at t = 10 ns (see Fig. 3.1). The
At was chosen to be equal to 0.1 ns. The program was time stepped to 2000
time steps.

Figures 3.6 and 3.7 show the transmitted fields at various depths z =0,
10, 20, and 30 cm for Gaussian incident pulses with ¢, = 1 ps and ¢; = 50 pis,
respectively. The At was chosen to be equal to 0.01 s and 1 ps, respectively.

The program was time stepped to 1400 and 700 time steps, respectively. A
Gaussian pulse is given by [11}:

]
-

Eq(z,t) = e

where ¢, is the pulse width in time, cp is the velocity of light in free space,
and z = 0 at the interface (see Fig. 3.2).

Electric Field [V/m]
04 08 08 1.0

0.0 02
A L i

To -30 -30 -lo0 00 1o 20 30 4.0
Pulse width [t1]

Figure 3.2: Incident Gaussian Pulse in airat z =0 as a
function of time.
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3.2.3 Homogeneous Half Space of Fat

The medium which was investigated was fat which has a conductivity o =0,
a low frequency permittivity € = 46.9, a high frequency permittivity €x =
5.51, and an angular relaxation frequency wo = 5.55 x 10® rad/s. These
paramelers were obtained by converting the data collected by Stuchly [32]
into the Cole-Cole form using the least-square method. The At was chosen
to be equal to 0.1 ns. The program was time stepped to 1000 time steps.

Figure 3.8 shows the transmitted field at the air dielectric interface for
an EMP incidence. The half space is filled with fat, with dielectric constant
of €, = €9, or with dielectric constant of & = €x.

Figure 3.9 is the same as Fig. 3.8 but at a larger scale.

3.2.4 Stratified Half Space of Skin, Fat and Muscle

Skin layer with a thickness of 1 mm has a conductivity & = 0, a low fre-
quency permittivity o = 700, a high {requency permittivity €, = 41.7, and
an angular relaxation frequency wpy = 6.67 X 108 rad/s. Fat layer with a
thickness of 5 mm has a conductivity & = 0, a low frequency permittivity
€0 = 46.9, a high frequency permittivity €, = 5.51, and an angular relax-
ation frequency wp = 5.55 x 10® rad/s. Muscle layer with infinite thickness
has a conductivity ¢ = 0, a low frequency permittivity o = 6.15 X 10%, a
high frequency permitlivity e = 1.032 x 10°, and an angular relaxation
frequency wp = 22.353 x 10° rad/s. The parameters of skin, fat, and muscle
were obtained by converting the data collected by Stuchly [32] into the Cole-
Cole form using the least-square method. The At was chosen to be equal to
10 ps. The program was time stepped to 10,000 time steps.

Figure 3.10 shows the transmitted field as a function of time at various
depths z = 0, 1, 6, 10, and 20 mm.

Figure 3.11 shows the electric field disiributions in space at various times
t=0.1,0.2,1, 5, and 10 ns.

Figures 3.12 and 3.13 are the same as Fig. 3.10 but at larger scales to
observe multiple reflections.
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3.3 Two-dimensional Problems

In this section, the geometry of the media was assumed to be in the form of
a circular cylinder infinitely long in the 2z direction. The incident wave was
assumed to be a +y-directed plane wave whose electric field vector is in the z
direction. Because there is no variation of either scatterer geometry or inci-
dent fields in the z direction, this problem is treated as the two-dimensional
scattering of the incident wave, with only E., H., and H, fields present.

Absorbing Boundary

j = jmaz
Magnetic
| wall

I,I

Absorbing Dielectric '

Boundary scatterer | |(imaz + 3,752 + 1)

Air Incident
field
j=1 Absorbing Boundary
1=1 it =imax

Figure 3.3: Geometry of the scatterer relative to the grid.

The two-dimensional grid was used. The geometry of the scatterer relative
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to the grid is illustrated in Fig. 3.3. The cylinder axis was chosen as the line
(imaz3, (J—’—"z“—’)%, k). Because the scatterer was evenly symmetric about the
grid line § = imaz3, we had the symmetry condition:

EMimaz + 1,3} = E}(imaz, j)

Absorbing boundary conditions were used to truncate the grid at i = 1,
j =1, and j = jmaz.

3.3.1 Homogeneous Circular Dielectric Cylinder

For comparison, the data used for calculations in this case were those used
by Taflove et al [21]. The dielectric had a conductivity ¢ = 0, a relative
permittivity e, = 4. The incident field was a continuous, sinusoidal plane
wave of frequency f = 2.5 GHz. The diameter of the cylinder was one
wavelength in free space (12 cm).

" The geometry of the cylinder relative to the grid was the same as that
illustrated in Fig. 3.3 with imaz = 25, jmaz = 50. The cylinder axis was
chosen as the line (253, 251, k). Because the scatterer was evenly symmetric
about the grid line i = 25}, the symmetry condition was:

E7(26,5) = E7(25,5)

Absorbing boundary conditions were used to truncate the grid at ¢ = 1,
j =1, and j = 50.The incident wave was generated at line j = 3.
The grid coordinates inside the cylinder were determined by:

(G — 25;—)2 +(j - 25%)2)’5 <20

The node separation was chosen to be Al = 0.3 cm and the time increment
At = 5 ps. The program was time stepped to 500 time steps.

The envelope of E, for 460 < n < 500 is plotted in Fig. 3.14 with
the analytical solution calculated using the summed-series technique [10] for
comparison (see Appendix D). In Fig. 3.14, the radius of the cylinder was
normalized to 1.
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3.3.2 Homogeneous Circular Cylinder of Muscie

The medium which was investigated was muscle which has a conductiv-
ity ¢ = 0, a low frequency permitivity ¢, = 6.15 X 10°%, a high frequency
permitivity €, = 1.032 x 103, and an angular relaxation frequency we =
22.353 x 10° rad/s. The radius of the cylinder was 12 cm. The incident field
was a Gaussian pulse with ¢; = 1 ns.

The geometry of the cylinder relative to the grid was the same as that
illustrated in Fig. 3.3 with imaz = 25, jmaz = 50. The cylinder axis was
chosen as the line (25 %—, 25-1,‘;, k). Because the scatterer was evenly symmetric
about the grid line ¢ = 25%, the symmetry condition was:

Absorbing boundary conditions were used to truncate the grid at ¢ = 1,
j =1, and j = 50.The incident wave was generated at line j = 3.

The node separation was chosen to be Al = 0.6 em and the time increment
At = 10 ps. Then, the radius length was subdivided into 20 segments. Thus,
the grid coordinates inside the cylinder were determined by:

1
(- 255)2 +(j - 25-;—)2)% <20

The program was initialized at t = —4t; (—4 ns) and time stepped to
6 ns (1000 time steps).

Figure 3.15 shows the electric field distributions along the diameter par-
allel to the propagation direction of the incident pulse at various times ¢ = 1,
3, and 6 ns. In Fig. 3.15, the radius of the cylinder was normalized to 1.

3.3.3 Homogeneous Circular Cylinder of Fat

The parameters of the medium were those used in section 3.2.3. The radius of
the cylinder was 12 em. The incident field was either an EMP or a Gaussian
pulse of pulse width of 0.2 ns.

The geometry of the cylinder relative to the grid was the same as that
illustrated in Fig. 3.3 with imaz = 25, jmaz = 50. The cylinder axis was
chosen as the line (251,253, k). Because the scatterer was evenly symmetric
about the grid line i = 25}, the symmetry condition was:

E7(26,5) = E7(25,7)
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Absorbing boundary conditions were used to truncate the grid at i = 1,
j =1, and j = 50. The incident wave was generated at line j = 3.

The node separation was chosen to be Al = 0.6 cm and the time increment
At = 10 ps. Then, the radius length was subdivided into 20 segments. Thus,
the grid coordinates inside the cylinder were determined by:

1
((i-25,) +( - 25%)2)% < 20

For the Gaussian pulse, the program was initialized at ¢ = —4¢, (~0.8 ns)
and time stepped to 4 ns (480 time steps).

Figure 3.16 shows the electric field distributions along the diameter paral-
lel to the propagation direction of the incident pulse as the pulse propagates
through the cylinder at various times £ = 0, 0.5, 1, and 1.5 ns.

Figure 3.17 shows the electric field distributions along the diameter after
the pulse reaches the far end of the cylinder at various times t = 2.5, 3, 3.5,
and 4 ns.

For the EMP, the program was initialized at £ = 0 ns and time siepped
to 5 ns (500 time steps).

Figure 3.18 shows the electric fields along the diameter of the cylinder at
various times ¢ = 1, 2, 3, 4, and 5 ns. In Fig. 3.16, 3.17 and 3.18, the radius
of the cylinder was normalized to 1.

3.3.4 Multi-layered Circular Cylinder of Skin, Fat,
and Muscle .

The outer radius of the multilayered circular cylinder was 12 cm. The outer
layer was a layer of skin with a thickness of 0.2 em. The middle layer was a
layer of fat with a thickness of 1.2 em. The core with a radius of 10.6 cm was
filled with muscle. The parameters of the media were those used in section
3.9 4. The incident field was either an EMP or a Gaussian pulse of a pulse
width of 1 ns.

The geometry of the cylinder relative to the grid was the same as ihat
illustrated in Fig. 3.3 with imaz = 25, jmaz = 50. The cylinder axis was
chosen as the line (251,261, k). Because the scatterer was evenly symmetric
about the grid line i = 253, the symmetry condition was:

E7(26,5) = EZ(25,])
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Absorbing boundary conditions were used to truncate the grid at i = 1,
7 = 1, and j = 50.The incident wave was generated at line j = 3.

The node separation was chosen to be Al = 0.6 cm and the time increment
At = 10 ps. Then, the radius length was subdivided into 20 segments. Thus,
the grid coordinates inside the cylinder were determined by:

1
(- 255)°+ (5 - 255 ))} <20

For the Gaussian pulse, the program was initialized at t = —4t, (—4 ns)
and time stepped to 5 ns (900 time steps).

Figure 3.19 shows the electric field distributions along the diameter par-
allel to the propagation direction of the incident pulse as the pulse begins to
penetrate into the skin and fat layers. Time: t = —-2.5, -2, —1.5, —1, and
—0.5 ns.

Figure 3.20 shows the electric field distributions along the diameter par-
allel to the propagation direction of the incident pulse as the pulse penetrates
into the muscle layer. Time: t =0, 1, 2, 3, and 5 ns.

For the EMP, the program was initialized at ¢ = 0 ns and time stepped
to 5 ns (500 time steps). Figure 3.21 shows the electric fields along the main
diameter of the cylinder at various times t =1, 2, 3, 4, and 5 ns.

In Fig. 3.19, 3.20 and 3.21, the radius of the cylinder was normalized to
1.
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Chapter 4

Discussion

In this chapter, we shall discuss the results of numerical computations of the
problems presented in chapter 3.

The results presented in Fig. 3.4 agree very well with those obtained by
Bolomey [17] (see Appendix G for the results obtained by Bolomey.). It can
be seen from Fig. 3.4 that when the rise time of the ramp incident field is
small compared to the relaxation time 7, of the medium, the medium be-
haves as a dielectric of relative permittivity equal to €,. On the other hand,
when the rise time is large compared to the relaxation time, the medium be-
haves as a dielectric of relative permittivity equal to €. When the rise time
is comparable with the relaxation time, the waveform is distorted. Thus,
the dispersion occurs. These observations can be justified by putting the
permittivity of the dispersive medium equal to €, or € and calculating the
reflection coefficients at the interface in each case. The reflection coefficient

is given by:
R= Ve -1

Ve +1
Thus, for €, = g = 13, the reflection coefficient is 0.5657 which corresponds
to the curve {, = 1.5 ns in Fig. 3.4. For ¢, = €4, = Z, the reflection coefficient
is 0.1716 which corresponds to the curve ¢, = 0.001 ps in Fig. 3.4.

The results presented in Fig. 3.5 confirm these observations. Indeed,
the waveforms in this case wete not distorted because the time window used
(0.2 ps) was small compared to the relaxation time of muscle (12.5 ps).
The muscle then behaved as a dielectric of relative permittivity equal to
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€0 = 0.2 x 108, The transmission coefficient in this case is given by:

2
T=TJ=+1

which is equal to 4.46 x 1072 corresponding to the peaks of the transmitied
waveforms in Fig. 3.5.

The results presented in Fig. 3.6 and 3.7 agree very well with those
obtained by Lin [11] (see Appendix G for the results obtained by Lin.). In
Fig. 3.6, the muscle behaved as a dielectric with ¢, = 0.2 x 10° because
the pulse width was much shorter than the relaxation time of muscle. In
Fig. 3.7, the muscle behaved as a dielectric with ¢, = 2.55 x 10° because
the pulse width was much longer than the relaxation time of muscle. Alsoin
Fig. 3.7, one notices that although the incident pulse was entirely positive,
the transmitted pulse had both positive and negative contributions. The
negative contribution may be related to the reflection at the interface.

Figures 3.8 and 3.9 show the transmitted waveform at the interface for an
EMP incident on a homogeneous half space filled with fat. Similar waveforms
with fat replaced by dielectrics of relative permittivities equal to € = 5.51
and € = 46.9 were also introduced to demonstrate the short and long time
behavior of fat for an EMP. In Fig. 3.9, the dispersion of the transmitted
pulse can be observed during the time window 0 to 10 ns.

Figures 3.10 and 3.11 present the transmitted waveforms and the pen-
etration of an EMP incident in a stratified half space hlled with skin, fat,
and muscle. The waveform at z = 0 was the electric field at the interface
of the air and the skin layer. The waveform at z = 1 mm was the electric
field at the interface of the skin layer and the fat layer. The waveform at
» = 6 mm was the electric field at a node inside the fat layer. The waveforms
at z = 10 mm and z = 20 mm were the electric fields at nodes inside the
muscle layer.

The results presented in Fig. 3.12 and 3.13 show the multiple reflections
of the electric field as it has just penetrated into the stratified half space
filled with skin, fat, and muscle.

The results presented in Fig. 3.14 show relatively good agreement be-
iween the FDTD solution and the analytical solution [21]. The agreement
deteriorates near the interface.

The results presented in Fig. 3.15 show the penetration of a Gaussian
pulse incident on a homogeneous circular cylinder of muscle. One can observe
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the increase of the pulse strength as the pulse propagates toward the center
of the cylinder. The cause for this increase may be the superimposition of
the electric fields penetrating from all directions into the cylinder. One can
also observe the build-up of the electric field near the far end of the cylinder,

The results presented in Fig. 3.16 and 3.17 show the propagation of a
Gaussian pulse incident on a homogeneous circular cylinder filled with fat.
In Fig. 3.16, one can observe that the pulse amplitude increases as the pulse
propagates toward the far end of the cylinder. In Fig. 3.17, the electric ficld
distributions along the diameter after the pulse has reached the far end of
the cylinder were observed at various times. From Fig. 3.16 and 3.17, one
can conclude that the electric field inside the cylinder reaches maximum near
the far end of the cylinder when the pulse has just arrived there.

The results presented in Fig. 3.18 show the penetration of an EMP in-
cident on a homogeneous circular cylinder of fat. It can be seen from the
figure that the maximum pulse amplitude occurs after the pulse is reflected
back to the far end for the second time.

Figure 3.19 shows the formation of the transmitted pulse for a Gaussian
pulse incident on a multilayered circular cylinder of skin, fat, and muscle. It
can be seen that as the transmitted pulse is formed at the front end of the
cylinder, the electric field at the rear end of the cylinder is also building up.

A comparison between the results in Fig. 3.20 and those in Fig. 3.15
indicates that the electric field penetrations into muscle material in both
cases are almost the same in spite of the presence of the fat and skin layers
in the problem presented in Fig. 3.20.

Figure 3.21 shows the electric field penetration of an EMP incident on
a stratified circular cylinder filled with skin, fat, and muscle. Again, the
electric field at the far end of the cylinder begins to build-up early and
reaches approximately one third of the transmitted field at the front end at
t =05 ns.
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There are three main sources of error in the FDTD method. The first is
the imperfection of the absorbing boundary conditions. The second is the
stepped-edge approximation of the boundary of the cylinder. And, the third
is the numerical dispersion. Numerical dispersion is the distortion of the
pulse due to the change of the phase velocity with modal wavelength, direc-
tion of propagation, and the mesh resolution. Numerical dispersion reduces
subtantially with fine resolution mesh [38]. Thus, to improve the accuracy
of the solution, one can increase the resolution of the mesh. However, larger
mesh size requires more computer time and memory. Overall, the FDTD
solution may be considered accurate up to 500 time steps for the mesh size
of (25 x 50).

In general, the FDTD method presented in chapter 2 is very powerful.
It allows modeling of arbitrary-shaped structures and is easy to implement.
In addition, the method requires relative little computer time and memory.
One disadvantage of the method is that all the nodes of the mesh have
to be calculated regardless of whether the node is needed or not. Besides,
the imperfection of the absorbing boundary conditions does not allow the
method to be used to analyse the propagation of extremely short pulses in
high permittivity media. Huge number of time steps would be required to
allow the observation of the pulse propagation.
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Chapter 5

Conclusions

The primary objective of this study was to investigate the propagation of
pulsed electromagnetic fields in dispersive dielectrics. The FDTD technique
used for solving one and two-dimensional problems of propagation of pulsed
electromagnetic fields has been presented. Many problems of propagation
with different types of incident pulses, various kinds of dispersive media of
different geometries have been investigated.

Several new results have been obtained. For one-dimensional problem,
the electric fields in stratified half space of skin, fat, and muscle were com-
puted. For two-dimensional problem, the electric fields in homogeneous circu-
lar cylinder of muscle, homogeneous circular cylinder of fat, and multi-layered
circular cylinder of skin, fat, and muscle were also computed.

The results obtained indicate that the pulse does not disperse when the
pulse width is very small or very large compared to the relaxation time of the
medium. For two-dimensional problems, the results suggest that the pulsed
electromagnetic fields penetrate into a dispersive dielectric cylinder not only
from the direction of propagation of the incident pulse but also from all
other directions. Therefore, in many cases, the maximum pulse amplitude is
reached when the pulse has penetrated deep inside the cylinder.

In conclusion, the FDTD technique is applicable to most of one and two-
dimensional problems. However, the technique is not suitable for extremely
short pulses propagating in a medium of very high permittivily because a
huge number of time steps would be required to allow the observation of the
pulse propagation. Further study of the absorbing boundary conditions is
needed to overcome this limitation.
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Appendix A

Derivatives of Electric flux

The electric flux density is:
Blo,y,2t) = [ et-8)E(s,y,2,8)d8

Be,y.2,8) = ewBley,2,0)+ 22 [ % u(t~6)B(z,y,2,8)d8

To

bl + ]

Suppose:

—

D(z,y,z,t) = D.(z,y,2,t)%
Then:

€ — €

De(z,y,2,t) = € Ea(2,y,2,t) + -
0

[ & ult - B)E(z,y, 2,8)d8

Take derivative with respect to t on both sides:

BD,(:':,y,z,t) - ¢ c?Et(z,y,z,t)
ot - ot
€p — € 7 a _'T"‘ﬂ .
+ ~-—;;)—— J i {C uft —B)Ea:(m,ya‘:ﬂ)}dﬁ

58



0D, (z,y,2,t) _ OF,(z ,y,z t)

ot = G
o0 =8
= { ——--‘u.(t—[)’)}e o Em(m:y:z:ﬁ)dﬁ
dD.(z,y,2,t) O0FE.(z,y,2,t) € — €
ot = oo ot + To Bel2,9,2,)
€y — €xo _‘T";'E _
- Tg —[c € u(t ﬁ)E',,(m,'y,z, ﬁ)dﬁ

Take second derivative with respect to t:

3 Do(z,y,2,t) ] 0P E.(z,y, z,t) 4 0= €oo OF.(z,y,2,t)

ot2 - ot? To &t
€0 — €0 T e=g
T / 3 {e o u(t — )}E,(m,y,z.,ﬁ)dﬁ
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0 To
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Sa(2,y,2,t) = 7 ) € " ult-B)Eu(=,y,2,8)dB
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Appendix B

Stability Criterion

Suppose we have the wave equation:

O°E _ L0E _,
ot? 6z

Consider the Taylor series expansions:
Az GE(z) + Az? *E(2) +Aza E(z) Az 8E(z) +
0z 2 02 6 822 24 42t

_gaE(z) A2 PE(z) ARSE(z) AzA8'E(z)
E(z2—Az) = E(2) 5 T o a2 6 87 24 02
or

E(z+Az) = E(z)+

& E(z) 4 Azt 6“E(z)
02?2 12 924
8E(z) _ E(z+Az) —2E(z) + E(z — Az) AZ 8*E(z)
2 Az? 12 8:*
A similar expression can be obtained for the time variable ¢.

E(z + Az} + E(z — Az) = 2E(2) + AZ?

Substitute & a 2E and %:f into the wave equation and rearrange, we have:

- A2 At\?
En+1 En 1+2[1"(9A7)]E:‘+('CK'2_) [ ?+1+ ‘_1]+T (B].)
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where T is truncation error:

T = (cAtAz) [_1__ (cﬂ.\&)2 9*E(z) 8'E(z)

12 Az At - 524 + higher order terms

To find the stability criterion, let the solution of (B.1) be the form:
E:: _— ﬁn ejou'

where a and 3 are constant with a real.

Since number of time steps n can be increased without bound, 8 must be
less than 1 for a stable solution.
Substitute EP into (B.1), we have

2
ﬂn+1ejm' - __ﬁn-—lejai +92 [1 _ (Eg) ]ﬁnejai

cAt
n ja(i+1) n  ja(i-1)
+( v ) (Breiatit) 4 greiati-n)

Divide both sides by 8"1e’*, we have:
2 _ _y42li- &“)2 (Eéﬁ)z ja | g—ia
o= —i+2d (Az p+(5;) A= +e™)
: _ [ cAt) (A )’
g = 1+2L1 (A ]ﬁ +2 A cos{a)f

g = -1+2-_1—(%t) (l—cw(a))]ﬁ

or
At\?
2_9|1 -~ (E_) =
B [ 2 N sm()ﬂ-’rl 0
Let the roots of the above equation be 3, and G, then:
sAt\? |, «

P+ 8:=2 {1—2 ("A—z) sin (5)]

The requirements | 5, |< 1 and | Bz |< 1 imply:
cAt\? . , «
- —_ —) <
| 1 2(Az) szn(2)|_,1
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or

since « is real, we have:
or

This is the stability criterion for all real a.
If Az = cAt then

o _ (cAtha) [_;_345(2)_5_4“%_)

12 ¢t Ott az4

12 ¢t at? 0z2 |
+higher order {erms

c?

Thus, the truncation error reduces to zero.
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Appendix C

Computer Program for
Stratified Half Space of Lossy
Dispersive Media. The FDTD
Solution.

THIS PROGRAM COMPUTES THE REFLECTED WAVEFORM OF AN
EMP PULSE NORMALLY INCIDENT TO A N-LAYERED DISPERSIVE
DIELECTRIC HALF SPACE ASSUMES A DEBYE MODEL

C

C ND = THICKNESS ( NUMBER OF SPATIAL SEGMENTS )

C NSTEP1 = NUMBER OF TIME STEPS TO BE CALCULATED

C WODT = W0 x DT

C EPS = RELATIVE DIELECTRIC CONSTANT OF AIR

C EPS0 = RELATIVE LOW FREQ. DIELECTRIC

C EPSN = RELATIVE HIGH FREQ. DIELECTRIC

C CONDO = LOW FREQ. CONDUCTIVITY

o

INTEGER*4 ND(5),NZ(10),NJ(10),JMPZ(5)

INTEGER*4 NEND,NEND1,NSTEP1,IEND,IEND1,IBOUND

REAL*8 F0(10000),F1(10000),F2(10000),5UM(10000),SUM2(5),

REAL*8 Q1(5),Q2(5),Q3(5),Q4(5),Q5(5),Q6(5),S1(5),52(5), 53(5),54(5),
REAL*8 $5(5),DZ(5),EPS21(5),G(5),CONDR(5), THICK(5)

REAL*8 E0,C0,EPS,T,DT,EPSMAX,EPS0,EPSN,CONDO,W0,WO0DT, A,
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REAL*8 TEMP,FI0,FI1,FI2,DEPTH,TIME,V,Z,PI
CHARACTER*10 FNAME
EO(T)=1.05016D3*(DEXP(-4.D6*T)-DEXP(-4.76D8*T))
PI=4.D0*DATAN(1.D0)

C0=2.997925D8

EPS=1.0D0

TYPE *,’ ENTER NL( < 5 ), DT, NSTEP1, JMPN’
ACCEPT *, NL,DT,NSTEP1,JMPN

TYPE *, * ENTER NSP(< 10) and NTI(< 10)
ACCEPT *, NSP, NTI

NEND=2

TYPE *, ’ INTERFACE 1 AT SPATIAL POINT :',NEND
DO J=1,NL

TYPE 3, J

ACCEPT *, EPS0,EPSN,CONDO,THICK(J),W0
IF(NTLGT.0) THEN

TYPE *, ’ ENTER JMPZ FOR LAYER’)J

ACCEPT *, IMPZ(J)

ENDIF

V=C0/DSQRT(EPSN)

DZ(J)=V*DT

ND(J)=INT(THICK(J)/DZ(J))

TYPE *, ' LAYER',J, HAS',ND(J),’ SPATIAL POINTS’
WODT=W0*DT

G(J)=DEXP(-W0DT)
EPS21(J)=DSQRT(EPS/EPSN)
A=(EPS0-EPSN)/EPSN
CONDR(J)=CONDO*DT/EPSN+A*W0DT
Q1(J)=1.D0+0.5D0*CONDR(J)
Q2(J)=1.D0-0.5D0*CONDR(J)
Q3(J)=A*WODT*WO0DT

Q4(J)=Q3(J)*WoDT
Q5(J)=(EPS21(J)+Q1(3))/2.D0
Q6(1)=(EPS21(J3)+Q2(J)}/2.D0

IF(J.NE.1) THEN
TEMP=EPS21(J)*CONDR(J-1}+CONDR(J)
§1(J)=0.5D0%(1.D0-+EPS21(J)+0.5D0*TEMP)
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$2(J)=0.5D0*(1.D0+EPS21(J)-0.5D0*TEMP)
S3(J)=(EPS21(J)*Qa(J-1)+Q3(J))/2.D0
S4(J)=EPS21(J)*Q4(J-1)/2.D0

S5(3)=Q4(J)/2.D0

NEND=NEND-+ND(J-1)

TYPE *, * INTERFACE’,J;" AT SPATIAL POINT ’,NEND
ENDIF

EPS=EPSN

ENDDO

C

DO I1=1,NSP

TYPE *,’ ENTER DEPTH FOR SPATIAL POINT NUMBER’,I
ACCEPT *, DEPTH

J=0

NZ(I)=0

10 J=J+1

TEMP=DEPTH

DEPTH=DEPTH-THICK(J)

IF(DEPTH.LT.0.D0) THEN
NZ(1)=NZ(I)+INT(TEMP/DZ(J))+2

ELSE

NZ(I)=NZ(I)+ND(J)

GOTO 10

ENDIF

TYPE *, ' THE POINT NUMBER I§",NZ(1),’ IN LAYER’,J
TYPE *,’ ENTER FILE NAME’

ACCEPT 6, FNAME
OPEN(UNIT=I,NAME=FNAME,TYPE="NEW’)
WRITE(I,1) T*1.D9,F1(NZ(I))

ENDDO

DO I=1,NTI

TYPE *, 'ENTER TIME FOR TIME POINT NUMBER’,I
ACCEPT *, TIME

TYPE *, * ENTER FILE NAME’

ACCEPT 6, FNAME

NJ(I)=INT(TIME/DT)+1
OPEN(UNIT=NSP+I,NAME=FNAME,TYPE="NEW’)
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ENDDO

C

TYPE 5, NZ(NSP)-NEND

ACCEPT *, NEND1

NEND=NEND-+NEND1

TYPE *,’ THE LAST SPATIAL POINT WHICH IS ACCURATE IS, NEND
IEND=(NSTEP1+NEND)/2+1

TYPE *, ' NUMBER OF SPATIAL POINTS USED IS’,JEND
IEND1=IEND-1

DO 1=2,[END

SUM(I)=0.D0

F0(1)=0.D0

F1(1)=0.D0

ENDDO

C

C INCIDENT FIELDS TO THE AIR/DIELECTRIC INTERFACE AT T=0.0

C

J=1

T=0.D0

F10=0.D0

F11=0.D0

Fo(1)=FI0

F1(1)=FI1
F1(2)=EPS21(J)*F1(1)/Q5(J)
C

C FINITE DIFFERENCE SOLUTIONS START HERE
C

L=0

DO 100 N=2,NSTEP1
T=T+DT

FI2=E0(T)

I=1

IBOUND=ND(J)+2
F2(1)=Fi2+F1(2)-FI0
FI0=FI1

FI1=FI2
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C

C I=2 IS THE AIR/DIELECTRIC INTERFACE

C

I=2

SUM(2)=SUM(2)*G(1)-+(F0(2)*G(1)+F1(2))/2.D0
F2(2)=(-Q6(1)*F0(2)+F1(3)+EPS21(1)*F1(1)+0.5D0*(Q3(1)*F1(2)
6Q4(1)*SUM(2)))/ Q5(1)

C EFFICIENT MOVING TIME WINDOW CALCULATIONS ADOPTED
C

Z=0.D0

1F(N.EQ.NJ(L+1)) THEN

L=L+1

WRITE(NSP+L,1) Z,F2(2)

ENDIF

IF(N.LT.IEND1) MOVING=N+1

IF(N.GT.IEND1) MOVING=N-1

DO 20 I=3,MOVING

Z=Z+DZ(J)
SUM(I)=SUM(1)*G(J)+(FO(1)*G(J)+F1(1))/2.D0
IF(1.EQ.IBOUND) THEN

J=J+1
SUM2(J)=SUM2(J)*G(J)+(FO(1)*G(J)+F1(1))/2.D0
F2(1)=(-52(J)*FO(I)+ EPS21(J)*F1(I-1)+ F1(I+1)
+83(JY*F1(1)-S4(J)*SUM(1)-S5(J)*SUM2())/S1(J)
IBOUND=IBOUND+ND(J)

ELSE

F2(1)=(-Q2(J)*FO(1)+F1(I-1)+F1(1+1)
+Q3(J)*F1(1)-Q4(J)*SUM(I))/Q1(J)

ENDIF
IF((N.EQ.NJ(L)).AND.(MOD(I-2,JMPZ(J)).EQ.0)
AND.(I.LE.NEND)) WRITE(NSP+L,1) Z,F2(])

20 CONTINUE

C

C UPDATE THE FIELDS AT A NEW TIME STEPS
C

IF(MOD(N-1,JMPN).EQ.0) THEN
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DO K=1,NSP

WRITE(K,1) T*1.D9,F2(NZ(K))

ENDDO

ENDIF

DO I=1,MOVING

Fo(I)=F1(1)

FL(I)=F2(1)

ENDDO

100 CONTINUE

DO I=1,NSP-+NTI

WRITE(I,1) -999.,-999.

CLOSE(UNIT=I)

ENDDO

1 FORMAT(2(5X,F10.4))

3 FORMAT(’ Enter EPS0, EPSN, CONDO,THICK ,and WO for layer’,14)
5 FORMAT(’ Enter number of points after last interface ( > ’,16,’)’)
6 FORMAT(A20)

STOP

END
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Appendix D

Computer Program for
Multi-layered Circular
Cylinder of Lossy Dielectric
Exposed to a Continuous

Plane Wave. The Theoretical
Solution.

THIS PROGRAM CALCULATES THE THEORETICAL SOLUTION FOR
A LOSSY DIELECTRIC MULTILAYER CIRCULAR CYLINDER OF IN-
FINITE LENGTH EXPOSED TO A PLANE WAVE INCIDENT NOR-
MALLY TO THE AXIS CASE (E-FIELD // Z-AXIS)

C

COMPLEX*16 A(2,2),B(2),U,PHI,CI,CR,CZ,CM(2,5,20), TERM
COMPLEX*16 JN{20,300),YN(20,300),JN1(26,300),YN1(20,300)
COMPLEX*16 DJN1(20,10),DYN1(20,10),DJN(20,10),DYN(20,10)
COMPLEX*16 KR1(300),KR2(300)

COMPLEX*16 KL(5),ER(5),K0,X1(5),X(5)

REAL*8 RA(5),LAMDA(5),R(300),KL0(5)

REAL*8 FREQ,W,C,EPS0,MU0,P1,DR,THE,D,Q LAMDAO,ER1,ER2
INTEGER NR(5),NPOINT(5)
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C

P1=4.D0O*DATAN(1.D0)
CI=DCMPLX(0.D0,1.D0})
CR=DCMPLX(1.D0,0.D0)
CZ=DCMPLX(0.D0,0.D0)

C=2.997925D8

MU0=PI*4.D-7

EPS0=1.D0/(MUQ*C**2)

NL=1

TYPE *, ' NUMBER OF LAYERS IS’,NL
TYPE *, ' PLEASE ADJUST THE SIZE OF METRICE [A], [B] TO’,2*NL
FREQ=2.5D9

W=2.DO*PI*FREQ

LAMDAO=C/FREQ

K0o=W/C

D=0.D0

R(1)=0.D0

TYPE *, ' ENTER NUMBER OF TERMS M FOR Cm’
ACCEPT *, N

DO L=1,NL

TYPE 5, L

ACCEPT *, ER1,ER2,RA(L),NR(L)
ER(L)=DCMPLX(ER1,-ER2)
RA(L)=RA(L)*LAMDAO
KL(L)=W*CDSQRT(MUO*EPSO*ER(L))
IF(L.EQ.1) THEN

DR=RA(L)/NR(L)

NP=1

KR1(NP)=0.D0

DO I=1,NR(L)

NP=NP+1

D=D+DR

R(NP)=D

KR1(NP)=KL(L)*R(NP)

ENDDO

NP1=NP

NP2=0
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ELSE

DR=(RA(L)-RA(L-1))/NR(L)

DO I=1,NR(L)

NP=NP+1

NP2=NP2+1

D=D+DR

R(NP)=D

KR2(NP2)=KL(L)*R(NP)

ENDDO

ENDIF

NPOINT(L)=NP

ENDDO

KL(NL+1)=K0

C

C CALCULATE FOURIER COEFFICIENT CM’S
C

DO L=1,NL

X(L)=KL(L)*RA(L)
X1(L)=KL(L+1)*RA(L)

ENDDO '

CALL BESSEL(N+1,JN,YN,X,NL)
CALL BESSEL(N+1,JN1,YN1,X1,NL)
DO L=1,NL

DJN(1,L)=-JN(2,L)
DYN(1,L)=-YN(2,L)
DJIN1(1,L)=-JN1(2,L)
DYN1(1,L)=-YN1(2,L)

DO I=2,N
DJIN(I,L)=(IN(1-1,L)-JN(I+1,L))/2.D0
DYN(I,L)=(YN(I-1,L)-YN(I-+1,L))/2.D0
DJN1(I,L)=(IN1(I-1,L)-JN1(I+1,L))/2.D0
DYNI(I,L)=(YN(I-1,L)-YN1(I+1,L))/2.D0
ENDDO

ENDDO

C

C COMPUTE METRIX (A}, [B]

DO I=1,N
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DO L=1,NL

LL=2*L

A(LL-1,L)=JN(LL)
A(LL,L)=KL(L)*DIN(L,L)
IF(L.GT.1) THEN
A(LL-1,NL+L-1)=YN(L,L)
A(LL,NL+L-1)=KL(L)*DYN(LL)
ENDIF

IF(L.LT.NL) THEN
A(LL-1,L+1)=-JN1(I,L)
A(LL,L+1)=-KL(L+1)*DJN1(LL}
A(LL-1,NL+L)=-¥YN1(IL})
A(LL,NL+L)=-KL(L+1)*DYNI(L,L)
ELSE
A(LL-1,NL+L)=-(JN1(I,L)-CI*YNI(LL))
A(LL,NL+L)=-KL(L+1)*(DJN1(1,L)-CI*DYN1(LL}))
B(LL-1)=JN1(L,L)
B(LL)=KL(L+1)*DIN1(I,L)
ENDIF

ENDDOC

CALL DSIMQ(A,B,2*NL,KS)
IF(KS.EQ.1) STOP

CM(2,1,1)=CZ

DO LR=1,NL

CM(1,LR,I)=B(LR)
CM(2,LR+1,])=B(NL+LR)
B(LR)=CZ

B(NL+LR)=CZ

DO LC=1,2*NL

A(LR,LC)=CZ

A(NL+LR,LC)=CZ

ENDDO

ENDDO

TYPE *, I,CM(2,NL+1,])

ENDDO

C

C COMPUTE BESSEL'S FUNCTIONS ALONG THE RADIUS
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C

DO M=1,N

DO I=1,NP

JN(M,I)=0.D0

IN1(M,1)=0.D0

YN(M,1)=0.D0

YN1(M,I)=0.D0

ENDDO

ENDDO

CALL BES1(N,JN,KR1,NP1)

CALL BESSEL(N,JN1,YN1,KR2,NP2)

DO M=1,N

DO I=NP1+1,NP

IN(M,I)=IN1(M,-NP1)

YN(M,I)=YN1(M,I-NP1)

ENDDO

ENDDO

C

C COMPUTE E-FIELD BY SUMMING THE TERMS OF FOURIER SE-
RIES

C

OPEN(UNIT=1,NAME="ANMCYL.DAT' TYPE="NEW’)
L=NL+1

THE=PI

DO I=1,NP

J=NP-I+1

IF(L.NE.1 .AND. J.LE.NPOINT(L-1)) THEN

L=L-1

TYPE *, * INTERFACE BETWEEN LAYERS’L+1,’ and’,L
ENDIF

U=CM(1,L,1)*IN(1,J)+CM(2,L,1)*YN(1,J)

DO MM=2,N

PHI=CI*(MM-1)*(THE-PI/2.D0)

TERM=CM(1,L, MM)*IN(MM,J)+CM(2,L, MM)*YN(MM,J)
U=U+TERM*CDEXP(PHI)-(-1)** MM*TERM*CDEXP(-PHI)
C IF(J.EQ.1) TYPE 4, MM,IN(MM,J)

ENDDO
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TYPE 4, J,R(J*DCOS(THE)/RA(NL),CDABS(U)

WRITE(1,1) R(J)*DCOS(THE)/RA(NL),CDABS(U)

ENDDO

THE=0.D0

DO j=1,NP

IF(J.GT.NPOINT(L)) THEN

L=L+1

TYPE *, * INTERFACE BETWEEN LAYERS',L-1, ’ and’,L

ENDIF

U=CM(1,L,1)*IN(1,J)+CM(2,L,1)*YN(1,J)

DO MM=2,N

PHI=CI*(MM-1)*(THE-P1/2.D0)
TERM=CM(1,L,MM)*JN(MM,J)+CM(2,L,MM)*YN(MM,J)
U=U+TERM*CDEXP(PHI)-(-1)*MM*TERM*CDEXP(-PHI)
ENDDO

TYPE 4, J,R(J)*DCOS(THE)/RA(NL),CDABS(U)

WRITE(1,1) R(J)*DCOS(THE)/RA(NL),CDABS(U)

ENDDO

WRITE(1,1) -999.D0,-999.D0

CLOSE(UNIT=1)

1 FORMAT(F10.2,F10.3)

2 FORMAT(/,;’ WAVELENGTH IN FREE SPACE I§",F10.3, m’,/, ’ EN-
TER THE RADIUS OF THE CYLINDER [m]’)

3 FORMAT(’ Enter distance D [R] for plotting E-field line’,/, ’ and number
of points (odd)’)

4 FORMAT(I8,F10.2,F10.3)

5 FORMAT(3X,’Enter Erl ,Er2, Radius[Lamda0] and ’, 'Number of points
for layer’,13)

STOP

END

C

C

SUBROUTINE BESSEL(N,Jn,Yn X,K)

COMPLEX*16 Yn(20,300),Jn(20,300),X(300)

COMPLEX*16 CR,CI,SUM1,SUM2,SUM3,TERM,TERM3,A XS,ARG
REAL*8 PI, GAMMA FN,FN3,HLHNLHN

INTEGER SIGN
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PI=4.D0*DATAN(1.D0)
GAMMA=0.5772156649D0
CR=DCMPLX(1.D0,0.D0)

DO NN=1,N

NB=NN-1

FN=1.D0

HN=0.D0

DO I=1,NB

FN=FN/1

HN=HN+1.D0/1

ENDDO

IF(NB.EQ.0) THEN

FN3=0.D0

ELSE

'FN3=1.D0/(FN*NB)

ENDIF
ARG=CR*(PI/4.D0+NB*PI/2.D0)
DO J=1,K

XS=X(J)/2.D0
IF(CDABS(X(J)).GT.35.D0) THEN
Jn(NN,J)=CDCOS(X(J)-ARG)/CDSQRT(PI*XS)
Yn(NN,J)=CDSIN(X(J)-ARG)/CDSQRT(PI*XS)
ELSE

HI=0.D0

HNI=HN

SIGN=1

SUM1=CR*FN
SUM2=-CR*HN*FN
SUM3=CR*FN3

TERM=SUM1

TERM3=SUM3

A=XS**NB

1=0

100 I=I+1

HI=HI+1.D0/I
HNI=HNI+1.D0/(NB+I)
TERM=TERM/I*XS/(NB+I)*XS
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SUM1=SUM1-SIGN*TERM
SUM2=SUM2+SIGN*TERM*(HI+HNI)
IF(1.LE.NB-1) THEN
TERM3=TERM3/I*XS/(NB-I)*XS
SUM3=SUM3+TERM3 °

ENDIF

SIGN=-SIGN

IF(CDABS(TERM).GT.1.D-20 .OR.

(LLE.NB-1 .AND. CDABS(TERMS3).GT.1.D-20)) GOTO 100
In(NN,J)=SUM1*A
Yn(NN,J)=2.D0/PT*(Jn(NN,J)*(CDLOG(XS)+CR*GAMMA)
+0.5D0*(A*SUM2-SUM3/A))

ENDIF

ENDDO

ENDDO

RETURN

END

C

C

SUBROUTINE BES1(N,Jn,X,K)

COMPLEX*16 Jn(20,300),X(300),CR,SUML1,A, XS, TERM
REAL*8 PI, GAMMA,FN

INTEGER SIGN

P1=4.DO*DATAN(1.D0)
GAMMA=0.5772156649D0
CR=DCMPLX(1.D0,0.D0)

DO NN=1,N

NB=NN-1

FN=1.D0

DO I=1,NB

FN=FN/I

ENDDO

DO J=1,K

XS=X(J)/2.D0

IF(CDABS(X(J)).GT.35.D0) THEN
Ju(NN,J)=CDSQRT(1.D0/PI/XS) *CDCOS(X(J)
-CR*(P1/4.D0+NB*P1/2.D0))
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ELSE

SIGN=1

IF(NB.EQ.0) THEN

A=CR

ELSE

A=XS**NB

ENDIF

SUM1=CR*FN
TERM=CR*FN

I=0

100 1=1+]

TERM="I ERM/I*XS/(NB+I)*XS
SUM1=SUM1-SIGN*TERM
SIGN=-SIGN
IF(CDABS(TERM).GT.1.D-20) GOTO 100
Jn(NN,J)=A*SUMi

ENDIF

ENDDO

ENDDO

RETURN

END

C*********

C SUBROUTINE DSIMQ

C********

SUBROUTINE DSIMQ(A,B,N KS)
DIMENS!ON A(*),B(*)
COMPLEX*16 A B,BIGA SAVE,CZ
REAL*8 TOL
C—

CZ=DCMPLX(0.D0,0.D0)
TOL=0.D0

KS=0

JI=N

DO 65 J=1,N

JY=J+1

JI=JJ+N+1
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BIGA=CZ

1T=JJ-J

DO 30 I=J,N

1J=IT+!

IF(CDABS(A(17)) .GT. CDABS(BIGA)) THEN
BIGA=A(1])

IMAX=I

ENDIF

30 CONTINUE

IF (CDABS(BIGA)-TOL) 35,35,40
35 KS=1

RETURN

C—

40 T1=J+N*(J-2)

IT=IMAX-J

DO 50 K=J,N

I1=I1+N

12=11+IT

SAVE=A(I1)

A(11)=A(12)

A(12)=SAVE

50 A{I1)=A(I1)/BIGA
SAVE=B(IMAX)
B(IMAX)=B(J)
B(J)=SAVE/BIGA

C—-

IF(J-N) 55,70,55

55 IQS=N*(J-1)

DO 65 IX=JY,N

IXJ=IQS+IX

IT=J-IX

DO 60 JX=JY,N
IXJX=N*(JX-1)+IX
JIX=IXIX+IT

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JIX))
65 B(IX)=B(IX)-(B(J)*A(IXJ))
C—
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70 NY=N-1
IT=N*N

DO 80 J=1,NY
IA=IT-]
IB=N-]

IC=N

DO 80 K=1,J
B(IB)=B(IB)-A(IA)*B(IC)
JA=IA-N

80 IC=IC-1
RETURN
END
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Appendix E

Computer Program for
Multi-layered Circular
Cylinder of Lossy Dispersive
Media Exposed to a
Continuous Plane Wave. The
FDTD Solution.

THIS PROGRAM CALCULATES E-FIELD FOR A DISPERSIVE DIELEC-
TRIC MULTILAYER CIRCULAR CYLINDER OF INFINITE LENGTH
EXPOSED TO A NORMALLY INCIDENT PLANE WAVE PULSE US-
ING TDFD METHOD. CASE (E-FIELD // Z-AXIS)

C

REAL*8 EZ(200,400),HX(200,400),HY(200,400),EMAX(200,400)

REAL*8 EZ0(200,400),5UM(200,400)

REAL*8 AXN(3,400),AYP(2,200,3),AYN(200,3)

REAL*8 MUO,EPSO0,NU0,V0,LAMDAO

REAL*8 ER(5),ERS(5),ES(5),ESS(5),W0(5),5(5), WODT(5)

REAL*8 QEE(5),QEH(5),QES(5),RA(5),G(5)

REAL*8 EIPIALPHA,P,QH,RTX,DIST,RADILAMDA,A

REAL*8 FREQ,W,T,DT,DR,R,0X,0Y,V
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CHARACTER*20 MORE, FNAME

C
R(1,J,0X,0Y,DR)=DR*DSQRT((I-OX)**2+(J-0Y)**2)
PI=4.D0*DATAN(1.D0)

MU0=4.D-T*PI

V0=2.997925D8

EPS0=1.D0/(V0*V0*MU0)
NU0=DSQRT(MU0/EPS0)

FREQ=2.5D9

W=2.D0*PI*FREQ

LAMDAO=V0/FREQ

P=0.5D0

TYPE *, ' WAVELENGTH IN FREE SPACE IS’, LAMDAO
TYPE *, ' ENTER NUMBER OF LAYERS AND NUMBER OF SEG-
MENTS ALONG THE RADIUS’

ACCEPT *, NL,NR

T=0.D0

DO L=1,NL

TYPE 5, L

ACCEPT *, ES(L),ER(L),W0(L),S(L),RA(L)
ESS(L)=EPS0*ES(L)

ERS(L)=EPS0*ER(L)

RA(L)=LAMDAO*RA(L)

V=V0/DSQRT(ER(L))

IF(L.EQ.1) THEN

T=T+RA(L)/V

ELSE

T=T-+(RA(L)-RA(L-1))/V

ENDIF

ENDDO

RA(NL+1)=1.D10

DR=RA(NL)/NR

DT=P*DR/V0

TYPE *, ' PERIOD 1§, INT(T/DT)
NT=INT(T/DT)

TYPE *, ’ TIME WINDOW I§’,INT(6.D0*T/DT)
RTX=DT/DR
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DO L=1,NL

WODT(L)=WO(L)*DT
A=(ES(L)-ER(L})/ER(L)
QEE(L)=1.D0-DT*$(L)/ERS(L)-A*WODT(L)
QEH(L)=RTX/ERS(L)
QES(L)=A*WODT(L)**2
G(L)=DEXP(-WODT(L})

ENDDO

QEE(NL+1)=1.D0
QEH(NL+1)=RTX/EPS0
QES(NL+1)=0.D0

WODT(NL+1)=1.D0

QH=RTX/MUO

TYPE *, * ENTER IMAX, JMAX and NMAX’
ACCEPT *, IMAX,JMAX,NMAX
OX=IMAX-+0.5D0

OY=JMAX/2+0.5D0

TYPE *, ' ENTER J FOR THE EXCITATION LINE’
ACCEPT *, JEX

DO N=1,NMAX

EI=DSIN(W*N*DT)

C

C LINE OF EXCITATION

C

DO 1=2,IMAX+1
EZ(IJEX)=EZ(I,JEX)+EI

ENDDO

C

C ABSORBING BOUNDARY

C

DO J=2,JMAX
HY(1,J)=HY{i,3}+QH*(EZ(2,])-EZ(1,J))
EZ(1,0)=EZ(1,])+EZ(2,J)-AXN(2,J)
+P*(EZ(2,J)-EZ(1,J)-(AXN(3,7)-AXN(2,3)))
ENDDO

DO I=2,IMAX
HX(1,1)=HX(I,1)-QH*(EZ(1,2)-EZ(1,1))
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EZ(1,1)=EZ(1,1)+EZ(1,2)-AYN(1,2)
+P*(EZ(1,2)-EZ(1,1)-(AYN(I,3)-AYN(I,2)))

ENDDO

DO K=1,3

DO J=2,JMAX

AXN(K,J)=EZ(K,J)

ENDDO

DO I=2,IMAX.

AYN(L,K)=EZ(LX)

ENDDO

ENDDO

EZ(1,1)=E%(1,1)+P*(EZ(2,2)-EZ(1,1))
EZ(1,JMAX+1)=EZ(1,JMAX+1)+P*(EZ(2,JMAX)-EZ(1,JMAX+1))
C

C COMPUTE THE FIELDS FOR 1=2,IMAX and J=2,JMAX
C

MOVING=N+1

IF(MOVING.GT.JMAX) MOVING=JMAX

DO I=2,IMAX

DO J=2,MOVING

RADI=R(L,J,0X,0Y,DR)

L=0

20 L=L+1

IF(RADL.GT.RA(L)) GOTO 20
HX(LJ)=HX(LJ)-QH*(EZ(L,J+1)-EZ(L]))
HY(LJ)=HY(L))+QH*(EZ(I+1,)-EZ(1J))
EZ(LJ)=QEE(L)*EZ(LJ)+QES(L)*SUM(LJ)
+QEH(L)*((HY(I,J)-HY(I-1,3))-(HX(L,J)}-HX(1,J-1)))
SUM(I,J)=G(L}*SUM(LJ)+(EZ(I,J)+G(L)*EZ0(1,3))/2.D0
IF(LEQ.IMAX) EZ(IMAX+1,J)=EZ(IMAX,J)
IF(N.GE.(NMAX-NT/2) .AND. DABS(EZ(I,J)).GT.EMAX(1,J))
EMAX(I,J)=DABS(EZ(L,J))

ENDDO

ENDDO

DO I=2,IMAX
EZ(LIMAX+1)=EZ(IJMAX+1)+AYP(1,1,2)-AYP(2,1,2)
+P*AYP(1,1,2)-EZ(I,JMAX+1)-(AYP(2,1,3)-AYP(2,1,2)))
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ENDDO

DO K=1,3

DO 1=2,IMAX

IM=JMAX+2-K

AYP(2,L,K)=AYP(1,1K)
AYP(1,1,K)=EZ(1JM)

ENDDO

ENDDO

EZ(IMAX+1,1)=EZ(IMAX,1) |
EZ(IMAX+1,JMAX+1)=EZ(IMAX, JMAX+1)
JUMPI=(IMAX)/10+1
JUMPJ=(JMAX)/22+1
IF(MOD(N,50).EQ.0) THEN

TYPE 4, N,(I,]=1,IMAX+1,JUMPI)

DO J=1JMAX+1,JUMPJ

TYPE 3, J,(EZ(1,J),I=1,IMAX+1,JUMPI)
ENDDO

ENDIF

DO I=1,IMAX+1

DO J=1,JMAX+1

EZ0(1,J)=EZ(I,J)

ENDDO

ENDDO

C

ENDDO

C

10 TYPE *, ' ENTER DISTANCE (R] FROM CENTER FOR E-FIELD-
LINE PLOTTED’

ACCEPT *, DIST
DIST=DIST*RA(NL)/DR
IP=IMAX-INT(DIST)
JR=INT(DSQRT((RA(NL)/DR)**2-DIST**2))
JB=JMAX/2-JR+1

JE=JMAX/2+]R

TYPE *, IP,JB,JE

TYPE *, ' ENTER FILE NAME’
ACCEPT 2, FNAME



OPEN(UNIT=1,NAME=FNAME,TYPE="NEW’)
TYPE 1, ((J-OY)/NR,EMAX(IP,J),J=JB JE)
WRITE(L,1) ((J-OY)/NR,EMAX(IP,J),J=JB,JE)
WRITE(1,1) -999.D0, -999.D0

CLOSE(UNIT=1)

TYPE *, ' WANT ANOTHER FILE ? [Y/N]’
ACCEPT 2, MORE

IF(MORE.EQ.’Y’) GOTO 10

1 FORMAT(2(F10.3))

2 FORMAT(A20)

3 FORMAT(14,10(F7.3))

4 FORMATY{//,5X, N =",15,/,4X,10(I7))

5 FORMAT(/, ' ENTER ES, ER, W0, S, AND’ * RADIUS[LAMDAO] FOR
LAYER’,I3)

STOP

END
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Appendix F

Computer Program for
Multi-layered Circular
Cylinder of Lossy Dispersive
Media Exposed to a Pulsed

Plane Wave. The FDTD
Solution.

THIS PROGRAM CALCULATES E-FIELD FOR A DISPERSIVE DIELEC-
TRIC MULTILAYER CIRCULAR CYLINDER OF INFINITE LENGTH
EXPOSED TO A NORMALLY INCIDENT PLANE WAVE PULSE US-
ING TDFD METHOD. CASE (E-FIELD // Z-AXIS)

C

REAL*8 EZ(200,400),HX(200,400),HY/(200,400)

REAL*8 EZ0(200,400),SUM(200,400), EPLOT(200,400)

REAL*8 AXN(3,400),AYP(2,200,3),AYN(200,3)

REAL*8 MUN,EPS0,NU0,V0

REAL*8 ER(5),ERS(5),ES(5),ESS(5),W0(5),5(5), WODT(5)

REAL*8 QEE(5),QEH(5),QES(5),RA(5),G(5)

REAL*8 EIPI,ALPHA,P,QH,RTX,DIST,RADL,LAMDA,A

REAL*S T1,T,DT,DR,R,0X,0Y,V
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INTEGER NPLOT(5)

CHARACTER*20 MORE, FNAME

C

C RADIUS OF THE CYLINDER AS A FUNCTION OF I and J
C

R(L,J,0X,0Y,DR)=DR*DSQRT((I-OX }**2-+(J-0Y)**2)
C

P1-:4.D0*DATAN(1.D0)

MUG=4.D-T*PI

V0=2.507925D8

EPS0=1.D0/(V0*V0*MUO0)
NU0=DSQRT(MUO/EPS0)

P=0.5D0

C

C DATA INPUT

C

TYPE *, ' ENTER NUMBER OF LAYERS AND NUMBER OF SEG-
MENTS ALONG THE RADIUS’

ACCEPT *, NL,NR

T=0.D0

DO L=1,NL

TYPE 5, L

ACCEPT *, ES(L),ER(L),W0(L),S(L),RA(L)
ESS(L)=EPSO*ES(L)

ERS(L)=EPS0*ER(L)
V=V0/DSQRT(ER(L))

IF(L.EQ.1) THEN

T=T+RA(L)/V

ELSE

T=T+(RA(L)-RA(L-1))/V

ENDIF

ENDDO

RA(NL+1)=1.D10

DR=RA(NL)/NR

DT=P*DR/V0

NT=INT(T/DT)

TYPE *, ' TIME STEP I$’,DT
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TYPE *, * PROPAGATION TIME IS',INT(2.D0*T/DT)
TYPE *, ' ENTER NUMBER OF SNAPSHOTS’
ACCEPT *, NSNAP

DO LLL=1,NSNAP

TYPE *, ' ENTER TIME TO PLOT SNAPSHOT’,LLL
ACCEPT * NPLOT(LLL)

ENDDO

RTX=DT/DR

C .

C CALCULATIONS OF NECESSARY COEFFICIENTS FOR THE ITER-
ATION

C

DO L=1,NL

WODT(L)=WO(L)*DT

A=(ES(L)-ER(L))/ER(L)
QEE(L)=1.D0-DT*S(L)/ERS(L)- A*W0DT(L)
QEH(L)=RTX/ERS(L)

QES(L)=A*WODT(L)**2

G(L)=DEXP(-WODT(L))

ENDDO

QEE(NL+1)=1.D0

QEH(NL+1)=RTX/EPS0

QES(NL+1)=0.D0

WODT(NL+1)=1.D0

QH=RTX/MU0

c

C SET THE GRID SIZE, NUMBER OF TIME STEPS AND EXCITATION
LINE

C

TYPE *, ’ ENTER IMAX, JMAX and NMAX’
ACCEPT *, IMAX,JMAX,NMAX

OX=IMAX-0.5D0

0Y=JMAX/2+0.5D0

TYPE *, ' ENTER J FOR THE EXCITATION LINE'
ACCEPT *, JEX

C

C SET INITIAL TIME FOR GAUSSIAN PULSE ONLY
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C

T1=20.D-11

T=-80.D-11

C

LSN=1

DO N=1,NMAX

T=T+DT

C

C INCIDENT PULSE (EMP OR GAUSSIAN PULSE)
C

C EI=1.05016D0*(DEXP(-4.D6*T)-DEXP(-4.76D8*T))
EI=DEXP(-(T/T1)**2/2.D0).

C LINE OF EXCITATION

C

DO I=2,IMAX-+1
EZ(LJEX)=EZ(1JEX)+EI

ENDDO

C

C ABSORBING BOUNDARY CONDITIONS
C .
DO J=2,JMAX
HY(1,3)=HY(1,)+QH*(EZ(2,J)-EZ(1,J))
EZ(1,J)=EZ(1,1)+EZ(2,J)-AXN(2,J)
+P*(EZ(2,J)-EZ(1,0)-(AXN(3,1)-AXN(2,J)))
ENDDO

DO I=2,IMAX
HX(I,1)=HX(I,1)-QH*(EZ(1,2)-EZ(1,1))
EZ(1,1)=EZ(1,1)+EZ(L,2)-AYN(L,2)
+PH(EZ(1,2)-BZ(1,1)-(AYN(I,3)-AYN(L2)))
ENDDO

DO K=1,3

DO J=2,JMAX

AXN(K,J)=EZ(K,J)

ENDDO

DO I=2,JMAX

AYN(LK)=EZ(LK)
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ENDDO

ENDDO

EZ(1,1)=EZ(1,1)+P*(EZ(2,2)-EZ(1,1))
EZ(1,JMAX+1)=EZ(1,JMAX+1)+P*(EZ(2,JMAX)-EZ(1,JMAX+1))
C

C COMPUTE THE FIELDS FOR [=2IMAX and J=2 JMAX
C

MOVING=N+1

IF(MOVING.GT.JMAX) MOVING=JMAX

DO I=2,IMAX

DO J=2,MOVING

C

C SEARCH FOR THE LAYER OF THE CALCULATING POINT
C

RADI=R(L,J,0X,0Y,DR)

L=0

20 L=L+1

IF(RADLGT.RA(L)) GOTO 20

C

HX(LJ)=HX(1,J)-QH*(EZ(LJ+1)-EZ(LJ))
HY(1,J)=HY(1,J)+QH*(EZ(I+1,])-E%(1,J))
EZ(1,J)=QEE(L)*EZ(1,J)-+QES(L)*SUM(LJ)
+QEH(LY*((HY(L,J)-HY(I-1,J))-(HX(1,J)-HX(LJ-1)))
SUM(LJ)=G(L)*SUM(LJ)+(EZ(LJ)+G(L)*EZ0(LJ))/2.D0
IF(1.EQ.IMAX) EZ(IMAX+1,J)=EZ(IMAX,J)
IF(N.EQ.NPLOT(LSN)) EPLOT(I,J)=EZ(1J)

ENDDO

ENDDO

C

C ABSORBING BOUNDARY CONDITIONS

C

DO I=2,IMAX
EZ(1LIMAX+1)=EZ(LIMAX+1)+AYP(1,1,2)-AYP(2,1,2)
+P*(AYP(1,1,2)-EZ(1JMAX+1)-(AYP(2,1,3)-AYP(2,1.2)))
ENDDO

DO K=1,3

DO I=2,IMAX
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IM=IMAX+2-K

AYP(2,1,K)=AYP(1,LK)
AYP(1,LK)=EZ(LIM)

ENDDO

ENDDO

EZ(IMAX+1,1)=EZ(IMAX,1)
EZ(IMAX+1,JMAX+1)=EZ(IMAX,JMAX+1)
JUMPI=(IMAX)/10+1
JUMPJ=(JMAX)/22+1

IF(MOD(N,50).EQ.0) THEN

TYPE 4, N,T,(I,I=1,IMAX+1,JUMPI)

DO J=1,JMAX+1,JUMPJ

TYPE 3, J,(EZ(1,)),1=1,IMAX+1,JUMPI)
ENDDO

ENDIF

DO I=1,IMAX+1

DO J=1,JMAX+1

BZ0(1,J)=EZ(1,3)

ENDDO

ENDDO

C

IF(N.EQ.NPLOT(LSN)) THEN

LSN=LSN+1

10 TYPE *,’ ENTER DISTANCE [R] FROM CENTER ’, 'FOR E-FIELD-
LINE PLOTTED’

ACCEPT *, DIST

DIST=DIST*RA(NL)/DR
IP=IMAX-INT(DIST)
JR=INT(DSQRT((RA(NL)/DR)**2-DIST**2))
JB=JMAX/2-JR+1

JE=JMAX/2+JR

TYPE *, IP,JB,JE

TYPE *, ' ENTER FILE NAME’

ACCEPT 2, FNAME
OPEN(UNIT=1,NAME=FNAME,TYPE="NEW’)
TYPE 1, ((3-OY)/NR,EPLOT(IP,J),J=JB,JE)
WRITE(1,1) ((J-OY)/NR,EPLOT(IP,J),J=JB,JE)
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WRITE(L,1) -999.D0, -999.D0

CLOSE(UNIT=1)

TYPE *, ' WANT ANOTHER FILE ? [Y/N}’
ACCEPT 2, MORE

IF(MORE.EQ."Y’) GOTO 10

ENDIF

ENDDO

C

1 FORMAT(2(F10.3))

2 FORMAT(A20)

3 FORMAT(I4,10(F7.3))

4 FORMAT(//aSX)’N =15, T =,:E9'2$/:4x’10(17))
5 FORMAT(/, ’ Enter ES, ER, W0, S, &’ ’ Radius [m] for layer’,I3)
STOP

END
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Appendix G

Previously Obtained Results
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wpdf < 10~8,

Figure G.1: Results obtained by Bolomey.

93
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Figure G.2: Results obtained by Lin.

50

-10 A I N i L i " N A L

40 20 0 2 40 60 PO KO RO MO O WO 200
TIME jtec

Transmitted waveforms of Gaussian incident pulse aa a
function of time and depth for ¢, = 50 us.

Figure G.3: Results obtained by Lin.
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