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Abstract

Wave phenomena which are seen along the surface of a semi-infinite elastic solid

when subjected to an impulsive line force in the direction normal to its surface have

been studied. The results obtained are as follows.

(1) Immediately after the impulsive force is removed, the vertical displacement

is downward in the neighbourhood of the origin, and it is upward outside that down-

ward domain. (§3)

(2) In the downward (upward) domain, the horizontal displacement is toward

(away from) the origin. (§4)

(3) The surface deformations thus produced are propagated with the velocity of

RAYLEIGH wave without conspicuous changes in form. (§3 and §4)

(4) The wave length of the RAYLEIGH wave is proportional to the time of duration

of the impulse, and is of the same order of extent as that of the downward domain

at the moment when the force is removed. (§3)

§1. Wave phenomena which are seen along

the surface of a semi-infinite elastic solid

when subjected to an external impulsive force

were studied by H. LAMB (1904). His results

are chiefly concerned with the phenomena

which are to be observed at the places far

distant from the wave origin. The deforma-

tion of the elastic solid in the neighbourhood

of the origin was not studied in his paper.

On the other hand, an experimental approach

to this problem has recently been made by

K. KASAHARA (1952, 1953). In his experiments,

an apparently curious phenomenon has been

found in the neighbourhood of the origin.

He has stated: "When an impulsive vertical

force acts downwards on the surface of an

elastic medium, a part of the surface within

a certain region begins in upward motion.

The disturbance which occurs in such a way

is propagated as time passes on. Such a

phenomenon seems rather curious from the

stand point of the theory of the statical de-

formation of elastic bodies. Because, as

BOUSSINESQ has studied, every part of the

surface of a semi-infinite elastic body sub-

jected to an external vertical force acting

downwards at a point, is displaced downwards

and no part showing upward displacements

can exist on the surface. In fact, a statical

experiment carried out on the same medium

produces such results". KASAHARA has shown

theoretically the possibility of swelling up of

the surface of an elastic solid when subjected

to an impulsive downward force, but has

failed to bring a unified view in connecting

this upward motion with the phenomena ob-

served at the places far distant from the

origin (1953). It is the purpose of the present

paper to show a simple way of calculating

the surface displacement of the elastic solid

at any time and at any point and to fill up the

gap between the knowledges concerning two

extremes above cited.

§2. It was shown by LAMB (1904, his

equation (93)) that the vertically downward

displacement υ0 at (x, y=0, t) due to the
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vertically downward force Q(t) at the origin (x=0, y=0) is given as follows.

(2.1)

In (2.1), x is the distance of the point from

the origin and t is the time, a and b in (2.1)

are

(2.2)

respectively and the symbol p denotes the

principal part of the integral which follows
it. It is to be noted that the equation (2.1)
is valid for any x and t. Equation (2.1) can
be rewritten as follows.

(2.3)

in which V(θ')=V(θ/a) is

(2.4)

The value of V(θ') for the case λ=μ is given

in the LAMB'S paper. We reproduce it in

Fig.1.

We shall now calculate the value of υ in

the case whenQ

(t0)=const Q, for -τ〓t0≦ τ

and Q(t0)=0, otherwise. (2.5)

Putting t=τt' t0=τt0' (2.6)

in (2.4), we have

(2.7)

This is the formula by which the value of

Fig. 1. The function V(θ')

υ0 at any x and t can be calculated. The

hatched area which is shown in Fig. 1 re-

presents the integral on the right hand side

of (2.7) corresponding to a certain t'. In

executing this integration for various values

of t', we come across a difficulty when the

domain of the integral ∫(-V(θ'))dθ' includes

θ'=1.88… At θ'=1.88… the integrand

-V(θ') in (2 .7) becomes infinite of the order

of (θ'-1.88…)-1. This difficulty is similar

to that encounterd in executing the integral

∫+1 dx -1 x, for instance. The limiting Process

by the aid of the principal value expressed

the symbol p in (2.7) removes the difficulty

stated above. Thus making use of (2.7), we

can calculate the value of -υ0 (upward dis-

placement) for any x and t. The results of

calculation for the case when λ=μ are shown

in Fig. 2.

§3. As is seen in Fig. 2, the vertical dis-

placement at t=0 or t=τ is downward for

x/τVP〓0.49 or x/τVP〓0.98 respectively. It is of
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Fig. 2. Upward deformation -υ0

interest to note that the linear extension of

the downward domain is proportional to τ

(half the time of duration of the downward

force). Thus if we make τ→ ∞, we have the

downward displacement everywhere on the

surface of the elastic solid. This is nothing

but the result obtained by BOUSSINESQ in the

case of a statical downward force. There is

a domain of the upward displacement outside

the downward domain above stated. In the

two dimensional problem as ours, the points

of zero displacements lie on a straight line

x=const. at a fixed time. As time passes on,

this line of zero displacement, i.e., the

boundary line between the upward and the

downward domains is propagated from the

origin with the velocity of RAYLEIGH wave.

On the other hand, the front of the upward

displacement is propagated from the origin

with the velocity of P wave (compressional

wave). The origin times of these two "waves"

are both t=-τ. Thus the upward (and also

of the downward) domain increases in its

extent according to time. The peak of the

upward displacement is propagated from the

origin with the velocity of RAYLEIGH wave.

The origin time of this upward peak is also

t=-τ, i.e., at the time when the vertical force

begins to act. The trough of the downward

displacement is propagated from the origin

also with the velocity of RAYLEIGH wave,

The origin time of this trough is t=+τ, i.e.,

at the time when the vertical force is re-

moved. The time interval at any point be-

tween the arrival times of the upward peak

and the downward trough is 2τ. The corre-

sponding "wave length" L of the RAYLEIGH

wave is VR・4τ, that is, the RAYLEIGH wave

velocity times twice the time of duration of

the downward force. As was stated at the

beginning of the present section, the domain

of the downward displacement at t=τ is

characterised by the relation |x|〓0.98τVP.

and the width D of the domain of the down-

ward displacement is 2×0.98τVP. Making

use of the relation VR=0.53 VP for the case

when λ=μ, we have D=3.7τVR. This is

approximately equal to the wave length

L=4τVR of the generated RAYLEIGH wave.

In Fig. 2 are shown only the displacements

up to the time t=5τ. The approximate pattern

of the displacement for t'>5, however, can

be obtained as follows. The front of the up-

ward displacement is at x=VP(t+τ). The
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peak of the upward displacement and the

trough of the downward displacement are at

x=VR(t+τ) and VR(t-τ) respectively. The

displacement in the neighbourhood of the

origin decreases gradually as time goes on.

In other respect, the pattern of the displace-

ment is similar to that at t≧5τ.

The curve of displacement at x=0 is shown

in Fig. 3.

Fig. 3. Displacement at the origin

For the large values of t=τt', the curve is

expressed approximately by the equation

(3.1)

The equation (3.1) is obtained as follows.
From (2.4), we have

(3.2)

for the large θ'. Inserting (3.2) into (2.7), we

get the equation (3.1). It can readily be seen

that all of the numerical results above ob-

tained are closely connected to the infinity

point at θ'=1.88… of the function -V(θ')

in Fig. 1. This infinity point at θ'=1.88…

is, in turn, closely connected to the RAYLEIGH

wave velocity for the case when λ=μ. In

fact, the numerical factor O.53 in the relation

VR=0.53VP is nothing but the reciprocal of

this 1.88… It is therefore expected that the

similar results as those obtained above will

be obtained for the elastic solid for which

λ〓 μ. KASAHARA'S experiment referred to at

the beginning of the present paper is made

with an elastic solid (agar-agar) for which

λ=4～5μ. Adopting this value of λ/μ, his

experimental results agree quite well with the

above theoretical results. According to KASA-

HARA, for example, the peak of the upward

deformation in his experiment is propagated

with the velocity of abaut 1cm/5m sec

=200cm/sec . (see Fig. 4 in his paper II) and

this is seen from Table II in the same paper

of his to be about the velocity of the RAYLEIGH

wave in his experiment, just as is expected

from our calculations.

§4. By the similar methods as adopted in

the preceding sections, we can calculate the

horizontal displacement u0(x, y=0, t). The

equation by which the value of u0 is to be

calculated is as follows

(4.1)

in which δ is the DIRAC'S function, and

(4.2)

The equation (4.1) and (4.2) are derived from

the equation (92) in the LAMB'S paper, and

the value of U(θ') for the case when λ=μ

was calculated also in the LAMB'S paper. Thus

making use of (4.1), we can calculate the

value of u0 for any x and t. The results of

calculation for the case when λ=μ are shown

in Fig. 4.

As is seen from Fig. 4, the horizontal dis-

placement at t=0 or t=τ is towards the origin

for x less than about O.57τVP or 1.15τVP re-

spectively. This domain of inward displace-

ment roughly corresponds to the downward

domain referred to at the beginning of the last

section. Outside this domain, there is also a



Propagation of Tremors over the Surface of an Elastic Solid . 31

Fig. 4. Horizontal Displacement u0

domain in which the horizontal displacement

is outward from the origin. In the "outward

domain", the vertical deformation is upward.

The front of this horizontal displacement is

propagated with the velocity of P wave. The

origin time of this wave is t=-τ. The

principal part of the horizontal displacement

at t is limited in the interval

VR(t-τ)〓x〓VR(t+τ).

The value of u0 in this part is about

-0.7 Q/√3πμ. The front and rear of the

principal part are propagated from the origin

with the velocity of RAYLEIGH wave. The

origin time of these front and rear waves are

t=-τ and t=τ respectively.

§5. Throughout the present study, a line

source of wave has been assumed, and the

problem has been treated as a two-dimensional

one. In the two-dimensional problem as ours,

it is to be noted that the waves are propa-

gated without conspicuous changes in form.
In a three-dimensional problem with a point

source of force, this is not the case . This
latter problem will be studied in another

paper.
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