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Abstract— Motivated by attitude control and attitude esti-
mation problems for a rigid body, computational methods are
proposed to propagate uncertainties in the angular velocity and
the attitude. Uncertainties in the angular velocity and attitude
are described in terms of ellipsoidal sets that are propagated
through this nonlinear attitude flow. Computational methods
are proposed, one method based on a local linearization of the
attitude flow and two methods based on propagation of a small
(unscented) sample selected from the initial uncertainty ellip-
soid. Each of these computational methods is constructed using
a Lie group variational integrator, viewed as a discretization of
the attitude dynamics. Computational results are obtained that
indicate (1) the strongly nonlinear attitude flow characteristics
and (2) the limitations of each of these methods, and indeed any
method, in providing effective global bounds on the nonlinear
attitude flow.

I. INTRODUCTION

As an integrable system, the attitude dynamics of the free

rigid body are reasonably well understood. However, if there

is an attitude dependent potential that influences the rigid

body, then the dynamics can be surprisingly complex. In

this paper, such attitude dynamics are studied for a rigid

body with an inertially fixed pivot acting under the influence

of uniform and constant gravity; this model is subsequently

referred to as the 3D pendulum [1].

The objective of this paper is to study the nonlinear

attitude flow of the 3D pendulum dynamics by characterizing

the propagation of uncertainty for the attitude and angular

velocity in a deterministic sense; bounds on the uncertainty

are specified and propagated without an assumption on

their distribution. This line of research was motivated by

our prior work on deterministic attitude estimation [2], [3],

which is composed of deterministic uncertainty propagation,

measurement update, and filtering procedures.

Uncertainty propagation can also be studied within a prob-

abilistic framework using the Liouville partial differential

equation, a special case of the Fokker-Planck equation, but

this leads to significant solution difficulties [4]. However,

statistical properties of uncertainties are often unavailable or

are difficult to obtain in practice. It has been shown that de-

terministic estimation is more robust to noise distribution [5].
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In this paper, three computational methods for deter-

ministic attitude uncertainty propagation are numerically

compared; one method based on a local linearization of

the attitude flow and two methods based on propagation

of a small (unscented) sample selected from the initial

uncertainty ellipsoid. Our approach in this paper is to make

use of geometrically-exact computational tools that respect

the Lie group structure of the configuration space for the

rigid body attitude dynamics. This approach is based on the

recently introduced Lie group variational integrator for the

3D pendulum and on a framework for propagating suitably

defined uncertainty ellipsoids [6].

It turns out that these computational tools are useful in

some cases, but they have important limitations that arise

from the complex attitude dynamics of the 3D pendulum.

The results in this paper demonstrate the complex global

dynamics that can occur for an uncontrolled 3D pendulum.

In this way, the challenges of attitude control and estimation

are made clear, at least in the case where global results are

desired.

This paper is organized as follows. The 3D pendulum

model is described in Section II. Three computation ap-

proach for deterministic attitude uncertainty propagation are

presented in Section III, and their computational properties

are shown in Section IV. The global dynamic characteristics

of the 3D pendulum are discussed in Section V.

II. 3D PENDULUM

A rigid 3D pendulum is a rigid body supported by a

fixed, frictionless pivot, acted on by uniform gravitational

forces [1]. The supporting pivot allows the pendulum three

rotational degrees of freedom.

Two reference frames are introduced. An inertial reference

frame has its origin at the pivot; the first two axes lie in the

horizontal plane and the third axis is vertical in the direction

of gravity. A reference frame fixed to the pendulum body is

also introduced. The origin of this body-fixed frame is also

located at the pivot.

The configuration space is the special orthogonal group

SO(3),

SO(3) =
{

R ∈ R
3×3 |RT R = I3×3, detR = 1

}

,

where the rotation matrix R ∈ SO(3) represents the linear

transformation from the body-fixed frame to the inertial

frame.

The dynamics of the 3D pendulum are given by the Euler

rigid body equation that includes the moment due to gravity:

JΩ̇ = JΩ × Ω + mgρ × RT e3, (1)
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where the angular velocity in the body-fixed frame is denoted

by Ω ∈ R
3, the moment of inertia matrix is denoted by

J ∈ R
3×3, and the vector ρ ∈ R

3 represents the location of

the center of mass in the body-fixed frame. The constants m
and g denote the mass of the pendulum and the gravitational

acceleration, respectively. The kinematic equation is

Ṙ = RS(Ω). (2)

For a given vector a ∈ R
3, the 3×3 skew-symmetric matrix

S(a) is defined so that S(a)b = a × b for all b ∈ R
3.

There are two disjoint equilibria when the direction of

gravity in the body-fixed frame is collinear with the vector

ρ. We define

H =
{

(R,Ω) ∈ TSO(3)
∣

∣ RT e3 = ρ/ ‖ρ‖ ,Ω = 0
}

,

I =
{

(R,Ω) ∈ TSO(3)
∣

∣ RT e3 = −ρ/ ‖ρ‖ ,Ω = 0
}

as hanging equilibria and inverted equilibria, respectively.

Here, the tangent bundle of SO(3) is denoted by TSO(3),
which can be identified with SO(3) × R

3.

III. UNCERTAINTY PROPAGATION

An uncertainty ellipsoid on TSO(3) is defined by

E(R̂, Ω̂, P ) =
{

(R,Ω) ∈ TSO(3)
∣

∣ xT P−1x ≤ 1
}

,

where x = [ζ; δΩ] ∈ R
6 and ζ = log(R̂T R), δΩ = Ω −

Ω̂ ∈ R
3. The center of the ellipsoid is given by the rotation

matrix R̂ and the angular velocity Ω̂; the matrix P ∈ R
6×6

is the uncertainty matrix that characterizes the size and the

shape of the ellipsoid. In particular, if the initial attitude and

angular velocity are known to lie within an initial uncertainty

ellipsoid, we seek computational methods to propagate the

uncertainty so as to obtain an uncertainty ellipsoid, for the

current time, within which the current attitude and angular

velocity of the 3D pendulum are expected to lie.

We study three methods to propagate the uncertainty set

over the time interval [0, T ]. All three methods make use of

the Lie group variational integrator that is described by the

following discrete update equations [6],

hS(JΩk +
h

2
Mk) = FkJd − JdF

T

k , (3)

Rk+1 = RkFk, (4)

JΩk+1 = FT

k JΩk +
h

2
FT

k Mk +
h

2
Mk+1, (5)

to propagate the angular velocity and the attitude. The

subscript k denotes a variable corresponding to the kth

discrete timestep for a fixed integration step size h ∈ R, and

Fk ∈ SO(3) is the relative attitude between two adjacent

integration steps. The nonstandard moment of inertia matrix

is given by Jd = 1

2
tr [J ] I3×3 − J ∈ R

3×3, and the moment

due to gravity is denoted by Mk = mgρ × RT

k
e3 ∈ R

3. For

a given (Rk,Ωk), (3) is solved to find Fk ∈ SO(3). Then

(Rk+1,Ωk+1) is obtained by (4) and (5). This yields a map

(Rk,Ωk) 7→ (Rk+1,Ωk+1) and this process is repeated. The

use of the Lie group variational integrator is desirable since

it preserves the orthogonal structure of SO(3) without need

of local parameterization or constraints.

A. Uncertainty propagation using linearization on [0, T ]

In this method, the uncertainty ellipsoid is propagated

by updating both the center of the ellipsoid and the the

uncertainty matrix P . The center of the uncertainty ellipsoid,

denoted by R̂k, Ω̂k, is propagated according to the Lie group

variational integrator, initialized by the center of the initial

uncertainty ellipsoid. We then assume that the uncertainty el-

lipsoid is sufficiently small that the flow of points within the

uncertainty ellipsoid is well-approximated by the linearized

flow of the Lie group variational integrator about this center

solution, which we denote by

xk+1 = Akxk,

where xk = [ζk; δΩk] ∈ R
6 and the matrix Ak ∈ R

6×6

depends on R̂k, Ω̂k. The expression for Ak can be found

in [7]. Using this linearization, the uncertainty matrix is

propagated according to

Pk+1 = AkPkAT

k (6)

with initial condition given by the initial uncertainty matrix.

In this way, the uncertainty ellipsoid is propagated and

determined at time T .

B. Uncertainty propagation using unscented method on

[0, T ]

In this method, we compute the propagated uncertainty

ellipsoid by using the Lie group variational integrator to

propagate a small sample of points selected from the initial

uncertainty ellipsoid. Following the conventional wisdom, we

choose the 12 points corresponding to the intersection of the

boundary of the initial uncertainty ellipsoid and its principal

axes. This choice is informed by the fact that if the initial

uncertainty ellipsoid is propagated by a linear flow, it will

remain an ellipsoid, and it will coincide with the minimal

volume ellipsoid containing the the 12 intersection points

propagated by the same linear flow.

More explicitly, suppose that the initial uncertainty ellip-

soid is given by

E(R0,Ω0, P0).

Let λi ∈ R and φi = [φi

R
;φi

Ω] ∈ R
6 be the i-th eigen-

value and eigenvector, respectively, of the uncertainty matrix

P0 ∈ R
6×6 for i ∈ {1, 2 . . . , 6}. The intersection of the

corresponding principal axis and the ellipsoid boundary is√
λiφi. Then, the 12 intersection points are given by,

{(

R0 exp(±
√

λiφ̂i

R),Ω0 ±
√

λiφi

Ω

)}

i ∈ {1, 2, . . . , 6} .

We propagate these 12 initial conditions using the Lie group

variational integrator to determine the 12 values of the

attitude and angular velocity at time T . We then construct

a minimal volume ellipsoid that contains all 12 values of

the attitude and angular velocity at time T [8]. From this

minimal volume ellipsoid, the center of the ellipsoid, and

the uncertainty matrix at time T can be computed.
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C. Uncertainty propagation using unscented method with re-

sampling on [0, T ]

The unscented method propagates the same sampled points

obtained from the initial uncertainty ellipsoid throughout the

entire time period [0, T ]. In this modification, we partition

the time period [0, T ] into subintervals and we use the Lie

group variational integrator to propagate the 12 sample points

throughout each subinterval. At the end of each subinterval,

we construct a minimal volume ellipsoid that contains all 12

values of the attitude and angular velocity at the end of that

subinterval. We then select a new set of sample points located

on the principal axes of this new uncertainty ellipsoid. On

the first subinterval, the 12 initial values of the attitude and

angular velocity are obtained from the initial uncertainty

ellipsoid. In contrast to the previous method which initializes

the sample points at the start of the subsequent subinterval

by taking the propagated points from the end of the prior

subinterval, the current method obtains sample points by

resampling from the propagated uncertainty ellipsoid.

If the flow is linear, the re-sampling technique will yield

the same estimates as the usual unscented method. If, how-

ever, the flow is nonlinear, the re-sampling technique will

tend to yield a more conservative estimate, since it captures

the deformation of the ellipsoid in the nonlinear flow more

explicitly. Indeed, the difference between the two estimates

gives an indication of how nonlinear the flow is.

IV. NUMERICAL EXAMPLES

We apply these methods to the attitude dynamics of the

3D pendulum. The pendulum body is chosen as an elliptic

cylinder, and its properties are given by

J = diag[0.13, 0.28, 0.17] kg · m2, m = 1kg, ρ = 0.3e3 m.

We consider two initial conditions; the first initial condition

results in a near-oscillatory attitude flow while the second

initial condition results in a highly irregular attitude flow.

Oscillatory attitude flow: The initial uncertainty ellip-

soid is characterized by its initial center attitude and angular

velocity and initial uncertainty matrix, which are given by

R0 = I3×3, Ω0 = [3.0, 0.1, 0.1] rad/s,

P0 = diag
[

(5
π

180
)2[1, 1, 1], 0.012[1, 1, 1]

]

.

It is convenient for visualization to plot the flow of the

reduced attitude RT e3 on the two-sphere S
2. This is because

the 3D pendulum has an S
1 symmetry given by rotations

about the vertical axis, which allows the configuration space

to be reduced to the quotient space SO(3)/S
1 ≃ S

2 [9]. The

reduced attitude denotes the direction of gravity in the body-

fixed frame. Plots of the reduced attitude and the angular

velocity responses, corresponding to the initial conditions,

are shown in Fig. 1 for a time period of 10 seconds.

We apply the three methods to propagate the initial uncer-

tainty through this oscillatory attitude flow for 10 seconds.

The integration step size is h = 0.005, corresponding to

2000 time steps over the length of the simulation. For the

unscented method, we find the minimal volume covering
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Fig. 1. Reduced attitude and angular velocity for oscillatory attitude flow
(The center of the sphere is the hanging equilibrium where R

T
e3 = e3.)

0 2 4 6 8 10
0

50

100

150

time (sec)
tr

 P

(a) Magnitude of uncertainty matrix

0 2 4 6 8 10
0

20

40

60

80

100

time (sec)

P
o

in
ts

 i
n

 e
ll

ip
so

id
s 

(%
)

(b) Percentage of sample points con-
tained in the estimated uncertainty (%)

Fig. 2. Uncertainty propagation through oscillatory attitude flow (Lin-
earization: dotted, Unscented: blue, Unscented with re-sampling: red)

ellipsoid every 0.1 seconds. For the unscented method with

re-sampling, we find the minimal volume covering ellipsoid

every 0.1 seconds, and we choose new set of sample points

every 2.0 seconds. To provide a baseline for comparing the

performance of each method, we choose sample points in the

interior of the initial uncertainty ellipsoid. In particular, we

choose 144 points on the level set defined by xT P−1
0 x = 0.8,

and we numerically integrate each of them.

The magnitudes of the uncertainty matrix and the percent-

age of sample points (out of 144) contained in the computed

uncertainty ellipsoids are shown in Fig. 2. The propagation

of uncertainties in the reduced attitude are shown in Fig. 6.

For a short time period, the properties of all methods are

similar. The uncertainty ellipsoid computed by the unscented

method is larger than for the linearization method, reflecting

the nonlinear nature of the dynamics. The re-sampling in the

unscented method with re-sampling has the effect of enlarg-

ing the uncertainty ellipsoids. Thus, the magnitude of the

uncertainty ellipsoid increases rapidly, and the uncertainty

ellipsoid from the re-sampling method contains a greater

proportion of the sample points after 6 seconds.

The mean precentages of sample points contained in

the computed uncertainty ellipsoids are 28.9%, 39.8%, and

59.8%, respectively. This suggests that even for this os-

cillatory attitude flow, the nonlinear effects are so strong

that it is difficult to accurately propagate the uncertainty.

The computation times are 3.24, 45.18, and 45.84 seconds,

respectively on an Intel Pentium M 1.73GHz processor.
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Fig. 3. Reduced attitude and angular velocity for irregular attitude flow
(The center of the sphere is the hanging equilibrium where R

T
e3 = e3.)
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Fig. 4. Uncertainty propagation through irregular attitude flow (Lineariza-
tion: dotted, Unscented: blue, Unscented with re-sampling: red)

Irregular attitude flow: The initial uncertainty ellipsoid

is given by

R0 = I3×3, Ω0 = [4.14, 4.14, 4.14] rad/s,

P0 = diag
[

(5
π

180
)2[1, 1, 1], 0.012[1, 1, 1]

]

.

The reduced attitude on S
2 and the angular velocity responses

for 10 seconds corresponding to the center initial conditions

are shown in Fig. 3.

We apply the three methods to propagate the initial un-

certainty through this irregular attitude flow for 5 seconds.

The integration step size is h = 0.002, corresponding to

2500 time steps over the length of the simulation. For the

unscented method, we find the minimal volume covering

ellipsoid every 0.1 seconds. For the unscented method with

re-sampling, we find the minimal volume covering ellipsoid

every 0.1 seconds, and we choose new set of sample points

every 0.5 seconds. To compare the properties of each method,

we choose 144 initial sample points on the level set of

xT P−1
0 x = 0.8, and we numerically integrate them.

The magnitudes of the uncertainty matrix and the percent-

age of sample points (out of 144) contained in the computed

uncertainty ellipsoid are shown in Fig. 4. The propagation

of uncertainties in the reduced attitude are shown in Fig. 7.

For a short time period, the properties of all methods

are similar. The uncertainty ellipsoid computed by the lin-

earization method grows rapidly, but it encloses few points

after 1.5 second. The unscented method encloses more points

with smaller uncertainty ellipsoids than for the linearization

method, but it encloses few points after 3.5 second. The

re-sampling in the unscented method with re-sampling has

the effect of enlarging the uncertainty ellipsoids. Thus, the

size of the uncertainty ellipsoids increase rapidly, and the

uncertainty ellipsoid contains more sample points than the

other two methods.

The mean numbers of sample points contained in the com-

puted uncertainty ellipsoid are 10.7%, 26.3%, and 73.55%,

respectively. The computation times are 4.97, 43.50, and

45.56 seconds, respectively on an Intel Pentium M 1.73GHz

processor.

V. GLOBAL FEATURES OF THE ATTITUDE FLOW

The numerical results presented in the previous sec-

tion demonstrate the difficulty in obtaining accurate global

bounds on attitude solutions that are initialized in an un-

certainty ellipsoid. It is claimed that the source of this

difficulty is the nonlinear attitude flow of the 3D pendulum,

especially the fact that the flow can exhibit chaos and extreme

sensitivity to initial conditions. A conceptual description of

certain global features of the attitude flow is now provided.

As described in [9], the global dynamics of the 3D pen-

dulum are complicated. There is a 1D hanging equilibrium

submanifold of the 3D configuration manifold, consisting

of hanging equilibria that differ by a rotation about the

vertical. There is also a 1D inverted equilibrium submanifold

consisting of inverted equilibria. Each hanging equilibrium is

stable in the sense of Lyapunov. Each inverted equilibrium is

unstable, with a 2D stable manifold, a 2D unstable manifold,

and a 2D center manifold. Let M denote the union of all

the 2D stable manifolds corresponding to inverted equlibria.

This 3D set M plays an important role in understanding the

global dynamics of the attitude flow.

Every trajectory in M converges to the inverted equi-

librium manifold. Although the set M has measure zero,

its existence influences the dynamics of the 3D pendulum

attitude flow near M . Since M is constructed as the union

of the stable manifolds of unstable equilibria, trajectories

near M remain near M for an extended period of time. In

particular, the closer a trajectory is to M the longer it remains

near M . In fact, there are trajectories that remain close to

M for arbitrarily long time periods. This property is due to

the saddle character of each inverted equilibrium.

This can be illustrated by a numerical simulation of the 3D

pendulum. Fig. 5 show the attitude deviation from the hang-

ing equilibrium, measured by the quantity
∥

∥S−1(log R)
∥

∥,

and the angular velocity response for two close initial

conditions near the inverted equilibrium; the initial angular

velocities are the same, and the initial attitudes only differ by

0.0066 degrees. One initial condition is chosen to be slightly

nearer the set M . Note that both the attitude and the angular

velocity responses have different characteristics; the solution

that starts closer to M , denoted by dashed lines, remains

for more than 2 seconds near the inverted equilibrium, and

the angular velocity responses have almost opposite phase.

These differences are further increased as the initial condition

is chosen to be closer to the set M .
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Fig. 5. Effect of a stable manifold of an unstable equilibrium for the 3D
pendulum

It should be mentioned that it is difficult to determine

exactly the set M . One can make use of linear attitude

equations near an inverted equilibrium to approximate the

tangent space to the stable manifold of that equilibrium.

However, this provides only local information about M ;

the non-local properties of the set M are not understood.

In practice, to accurately compute the global structure of a

stable manifold, one relies on either (i) extremely high-order

Taylor approximations of the nonlinear stable manifold for

a neighborhood of the equilibrium, which is used to obtain

sample points on the stable manifold that are then propagated

backwards in time in order to compute the global structure of

the stable manifold [10], or (ii) set-oriented techniques based

on representing the nonlinear flow map for short times as a

Markov chain [11].

This argument demonstrates that the set M has a strong

influence on the 3D pendulum dynamics near M , with

high shearing and thus high sensitivity of the attitude flow

near M . This is one of the mechanisms leading to the

complex nonlinear dynamics of the 3D pendulum and makes

it impossible to efficiently compute accurate global bounds

on attitude solutions that are initialized in an uncertainty

ellipsoid.

VI. CONCLUSIONS

The Lie group variational integrator is known to provide

accurate long-term solutions of the rigid body equations in

the presence of an external potential for a given initial atti-

tude and angular velocity; these computed solutions exactly

conserve the theoretical conservation properties, namely the

symplectic structure, and the angular momentum component

about the vertical axis in the case for the 3D pendulum. In

addition, it exhibits very good energy behavior, with only

a very small bounded energy oscillation, for exponentially

long times. Furthermore, the Lie group variational integrator

is also known to exactly conserve orthogonality of the

computed attitude as a rotation matrix.

It is particularly important to use symplectic methods to

propagate individual trajectories in determining uncertainty

propagation in Hamiltonian systems since the Gromov non-

squeezing theorem [12] from symplectic geometry places

fundamental limits on how the uncertainty of a Hamiltonian

mechanical system evolves [13]. Consequently, inaccuracies

in the approximate ellipsoidal bounds computed according to

the three computational methods introduced do not arise from

computational difficulties with the Lie group variational inte-

grator. Rather, the inaccuracies in the approximate ellipsoidal

bounds arise from the fact that the attitude flow dynamics are

highly nonlinear, with regions wherein the dynamics cannot

be adequately approximated by linear dynamics.

With these qualifications, it is clear that the unscented

method with resampling is the most accurate of the three pro-

posed methods in propagating the uncertainty. This method

can provide a basis for analysis of control and estimation

problems for attitude systems such as the 3D pendulum.

For example, attitude estimation operates open loop be-

tween measurement times; the analysis in this paper demon-

strates the importance of the choice of inter-measurement

time in obtaining accurate propagation of the attitude flow

between measurement times.

The bottom line demonstrated by the development in this

paper is that guaranteed global bounds for attitude dynamics

defined by the 3D pendulum, or indeed for any attitude

dynamics with a nontrivial potential, are not achievable. That

is, there is no universal approach to global and uniform

approximation of the attitude flow dynamics.
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Linearization

Unscented method

t = 2.0 t = 4.0 t = 6.0 t = 8.0 t = 10.0

Unscented with re-sampling

Fig. 6. Uncertainty projected onto the reduced attitude on S2 for oscillatory attitude flow (The center of the sphere is the hanging equilibrium where
R

T
e3 = e3.)

Linearization

Unscented method

t = 1.0 t = 2.0 t = 3.0 t = 4.0 t = 5.0

Unscented with re-sampling

Fig. 7. Uncertainty projected onto the reduced attitude on S2 for irregular attitude flow (The center of the sphere is the hanging equilibrium where
R

T
e3 = e3.)
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