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Abstract

The object of this paper is to provide variational formulas characterizing the speed of travelling
front solutions of the following nonlocal diffusion equation:

�u
�t

= J ∗ u − u + f (u),

WhereJ is a dispersion kernel andf is any of the nonlinearities commonly used in various models
ranging from combustion theory of ecology. In several situations, such as population dynamics, it
is indeed natural to model the dispersion of a population using such operators. Furthermore, since
travelling front solutions are expected to give the asymptotic behaviour in large time for solutions of
the above equation, it is of the interest to characterize their speed. Our results, based on elementary
techniques, generalize known results obtained for models involving local diffusion operators.
© 2004 Published by Elsevier Ltd.
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1. Introduction

In this article, we are concerned with variational formulas characterizing the speedc
of travelling frontsu arising in the study of a nonlocal reaction–diffusion model. More
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precisely, we study the solutions(u, c) of the following one dimensional integro-differential
equation:{

Lu − cu′ + f (u) = 0 onR,

u(x) → 0 asx → −∞,

u(x) → 1 asx → +∞,

(P)

whereL is a nonlocal diffusion operator of the form

Lu = J � u(x) − u(x) =
∫

R
J (x − y)u(y)dy − u(x), (1.1)

with J an even positive kernel of mass one andf a given nonlinearity. Our results apply to
more general operators of the form

Lu = auxx + b(J � u(x) − u(x)) + dux − eu(x), (1.2)

wherea, b, e�0, (a, b) �= (0,0) andd ∈ R. We will always assume in what follows that
J satisfies the following:

J ∈ W1,1(R), J �0, J (x) = J (−x) and
∫

R
J = 1. (H1)

The unknowns of this problemare the real numberc, which represents the speed of the front,
andu the profile of the front. The speedccan also be viewed as a nonlinear eigenvalue of the
problem. Travelling-front solutions are expected to give the asymptotic behavior in large
time for solutions of the following evolution problem (1.3), with say compactly supported
initial data.

�u
�t

= Lu + f (u). (1.3)

It is therefore of interest to characterize the speed of these solutions. Such types of equation
were derived in the early work of Kolmogorov–Petrovskii–Piscounov (KPP) (see[21]) on
the spread of a gene . The dispersion of the gene fraction at pointy ∈ Rn should affect the
gene fraction atx ∈ Rn by a factorJ (x, y)u(y)dy, whereJ (x, ·) is a probability density.
Restricting to a one-dimensional setting and assuming that such a diffusion process depends
only on the distance between two niches of the population, we end up with Eq. (1.3).
Eq. (1.3) also appears in the context of pattern formation in activator–inhibitor systems

such as{ �u
�t − uxx = f (u) − v,

−vxx + v = u.

Observe that we can inverse the second equation. We can thus rewritev in terms ofu.
Namely we havev = J � u with J (x) = 1

2e
−|x|, so that the system can be reformulated as

�u
�t

= uxx + J � u − u + g(u) for (x, t) ∈ R × R+, (1.4)

whereg(u) = f (u) + u. For more information, see the excellent book of Murray[23] and
[24]. In these two models the operatorA(u) := J �u−u represents the nonlocal diffusion
of the species through its environment.
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In this work, we study three types of nonlinearityf that we present below:f ∈ C1([0,1])
and

• Case A1: f is of bistable type if for some�>0, f satisfies

◦ f |(0,�) <0 andf |(�,1) >0,
◦ f (0) = f (1) = 0 andf ′(1)<0.

• Case A2: f is of ignition type if for some�>0,

◦ f |(0,�) ≡ 0 andf |(�,1) >0,
◦ f (0) = f (1) = 0 andf ′(1)<0.

• Case B: f is of monostable type iff (0) = f (1) = 0,f |(0,1) >0 andf ′(1)<0.

These three types of nonlinearities are commonly used in the literature to describemodels
of phase transition, nerve propagation, combustion, population dynamics and ecology : see
[1,3,12–15,19,21,25,28–30].
Undersomeadditional assumptionon thekernelJ, existenceand insomecasesuniqueness

of travelling-wave solutions have been investigated by Bates et al.[2] and Chen[7] in the
bistable case and completed by the work of one of the present authors[10], for the ignition
case. The monostable case is the object of a forthcoming publication[11]. We summarize
these results in the following theorem.

Theorem 1.1(Bates et al.[2] ; Coville [10] ; Coville and Dupaigne[11]).

• Let f be a nonlinearity of typeA1 or A2 and assume that J satisfies(H1) and the
following:∫

R
J (z)|z|dz< + ∞. (H2)

Then problem(P) admits a solution(u, c∗). This solution is unique in the following
sense: if (v, c′) is another solution thenc∗ =c′.Moreover, if c∗�0 thenu(x)=v(x+�)
for a fixed� and

• Let f be a monostable function and assume that J satisfies(H1) and the following
integrability condition

∀�>0,
∫

R
J (z)e�z dz< + ∞. (H3)

Then there exists a minimal speedc∗ >0 such that

◦ If c�c∗, then problem(P)admits a solution(u, c).Moreoveru′ >0.
◦ If c < c∗, then problem(P)admits no solution(u, c) such thatu′ >0.

Remark 1.1. The condition (H3) can be weakened : it is enough to assume that (H3) holds
for one given value of�>0.
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Theorem1.1 generalize known results for the standard reaction–diffusion problembelow,

�u
�t

= �u + g(u) in Rn × R+. (1.5)

This is due to the fact that the nonlocal operatorL sharesmany properties of the Laplacian
and in some limiting case reduces to it. Namely, assumeJ is compactly supported and let
J�(x) := 1

� J (
1
� x), with �>0 small. Foru ∈ C2(R):

J� � u − u = 1

�

∫
J

(
1

�
y

)
(u(x − y) − u(x))dy =

∫
J (z)(u(x − �z) − u(x))dz

= − �
∫

J (z)u′(x)z dz + �2

2

∫
z2J (z)u′′(x)dz + o(�2)

=C�2u′′(x) + o(�2),

where we used the fact thatJ is even in the last equality. Hence,

Cu′′ = lim
�→0

1

�2
[J� � u − u] .

The characterization by min–max formulas of the wave speedc in the context of (1.5) is
well known. In one space dimension, Eq. (1.5) reduces to an ordinary differential equation
and the speed of planar fronts satisfies the following min–max formulas.
LetX = {w ∈ C2(R)|w is increasing, w(+∞) = 1 andw(−∞) = 0}.

• For f of type A1 or A2, the speedc∗ satisfies

c∗ = min
w∈X sup

x∈R

{
w′′ + f (w)

w′

}
, (1.6)

c∗ =max
w∈X inf x∈R

{
w′′ + f (w)

w′

}
. (1.7)

• For f of type B, the minimal speedc∗ satisfies

c∗ = min
w∈X sup

x∈R

{
w′′ + f (w)

w′

}
. (1.8)

Min–max formulas for travelling fronts in systems of ODEs have been derived by
Kan–On, Mischaikow–Hudson andVolpert,Volpert,Volpert, see[20,22,26,27]. Hamel[17]
generalizedmin–max formulas to the setting ofmultidimensional travelling fronts in a cylin-
der. In the bistable case, Heinze et al.[18] have provided analogous variational formulas
for quite general operators.
Under some extra assumption, an explicit formula for the minimal speed can be given:
Kolmogorov et al.[21] proved in 1937 that the minimal speedc∗ is given by

c∗ = c∗
KPP = 2

√
f ′(0),
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if f is monostable and satisfiesf (s)/s�f ′(0) for s ∈ (0,1). This formula was recovered
by Berestycki and Nirenberg[4] using a different approach.Weinberger in[28] generalized
it to time-discrete models.
In the opposite situation, whenf approaches a Dirac mass centered at one, Zeldovich and

Frank–Kamenetskii (ZFK)[30] were able to give an asymptotic formula for the flame’s
front speed. In this case the speed is given by

c∗ = c∗
ZFK �

√∫ 1

0
f (s)ds.

More recently, Berestycki et al.[5] have shown that the asymptotic speed formulac∗
ZFK

holds for planar-front solutions of a system of ordinary differential equations. Other asymp-
totic formulas were derived in turbulent combustion: see Clavin and Williams[9]. Clavin
[8] also explains the transition fromc∗

KPP to c∗
ZFK .

In many cases, proofs rely deeply on shooting methods, phase plane analysis and good
asymptotics. Since our equation is nonlocal, we cannot carry out most of these techniques.
Nevertheless we can provide min–max formulas for the speed of travelling fronts of (1.3),
analog to those above. Namely we have the following variational characterization of the
wave-speed:

Theorem 1.2. Let L be the operator given by(1.1)defined onX := {w ∈ C1(R)|w is in-
creasing, w(+∞) = 1 andw(−∞) = 0}.

• Assume(H1) and(H2) hold. For f of typeA1 orA2, such that
∫ 1
0 f (s)ds �= 0 the speed

c∗ satisfies

c∗ = min
w∈X sup

x∈R

{
Lw + f (w)

w′

}
, (1.9)

c∗ =max
w∈X inf

x∈R

{
Lw + f (w)

w′

}
. (1.10)

• Assume(H1) and(H3) hold. For f of type B, the minimal speedc∗ satisfies

c∗ = min
w∈X sup

x∈R

{
Lw + f (w)

w′

}
. (1.11)

Remark 1.1. Theorem 1.2 remains valid for operatorsL given by (1.2), providedX is taken
to beX := {w ∈ C2(R)|w is increasing, w(+∞) = 1 andw(−∞) = 0}.

Remark 1.2. For f of type A2,
∫ 1
0 f (s)ds >0. For f of type A1, it may happen that∫ 1

0 f (s)ds = 0. In that case, it is known thatc∗ = 0, see[2].

The technique developed in this paper also applies to the traditional reaction–diffusion
problem, thus providing an alternate proof of these formulas. In the KPP-like situation we
were not able to give an exact explicit formula and only provide an upper bound in terms
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of a spectral formula. Namely, we show

c∗
KPP � inf

�>0

{
1

�

[∫
R
J (z)e�z dz − 1+ f ′(0)

]}
. (1.12)

Recently, equality has been obtained by Carr and Chmaj[6] in the case whereJ has
compact support andf (u) = u(1− u).

Method and plan

The proof relies on two simple ideas:

• The construction of solutions via the method of sub and supersolutions.
• A comparison principle for sub and supersolutions of a bistable problem.

Though elementary in nature, the proof of these results requires a number of lemmas which
we list and prove in Section 2. In Sections 3 and 4, we present the construction of a solution
via the method of sub and supersolutions. Theorem 1.2 is the object of the Sections 5 and 6.
Section 5 deals with the min–max formula in the bistable case while Section 6 is concerned
with the monostable case and the proof of inequality (1.12).

2. Linear theory

We start this section with two maximum principles for integro-differential operatorsL
defined on the real line by (1.1) or (1.2).

Theorem 2.1(Strong maximum principle). Letu ∈ C2(R) satisfy

Lu�0 in R (respectively, Lu�0 in R).

Then u may not achieve a positive maximum(resp. negative minimum) without being con-
stant.

This theorem immediately implies the following practical corollary:

Corollary 2.1. Letu ∈ C2(R) satisfy{
Lu�0 on R,

u → 0 |x| → +∞.

Then

• eitheru<0,
• eitheru ≡ 0.

Remark 2.1. Similarly, if Lu�0 then u is either positive or identically0.
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The corollary is a straightforward consequence of the strong maximum principle.

Proof of Theorem 2.1. If b=0 thenL is a standardelliptic operator, sowe restrict ourselves
to the case whereb>0.We argue by contradiction.Assume thatu is a nonconstant function
and achieves a positive maximum somewhere, say atx0.
Sinceu is aC2 function, we haveeu(x0)�0, u′(x0) = 0 andu′′(x0)�0. Furthermore,

since
∫

R J (z)dz = 1 andu(y) − u(x0)�0 for everyy in R, we haveJ � u(x0) − u(x0) =∫
R J (x0 − y)(u(y) − u(x0))dy�0. Therefore, we have at the pointx0:

au′′(x0) + b(J � u(x0) − u(x0)) + du′(x0) − eu(x0)�0 (2.1)

and by our assumption

au′′(x0) + b(J � u(x0) − u(x0)) + du′(x0) − eu(x0)�0. (2.2)

These two equations imply thateu(x0) = 0, au′′(x0) = 0 and

b(J � u(x0) − u(x0)) = b

(∫
J (x0 − y)(u(y) − u(x0))

)
dy = 0. (2.3)

By assumption,J is a smooth nonnegative function with
◦

supp(J ) /≡ ∅. Thus, we deduce
from (2.3) thatu(y) = u(x0) for all y in the setx0 + supp(J ). If J is supported byR we
obtain a contradiction immediately. If not, we can repeat the previous calculation for every
y in x0+supp(J ), thusu is constant on the sety+supp(J )whereybelongs tox0+supp(J ).
By doing so infinitely many times, we cover all ofR and thus end up withu(y)= u(x0) for
all y in R, which is a contradiction. �

Provideda is nonzero, we also have the following weak maximum principle:

Theorem 2.2(Weak maximum principle). Supposea >0 and letu ∈ H 1(R) satisfy the
following inequality in the weak sense:

Lu�0 on R.

Then for any compact subset� of R,

sup
�

u� sup
��

u+.

Remark 2.1. A functionu ∈ H 1(R) satisfiesLu�0 in theweaksense if for all nonnegative
� ∈ C∞

c (R),∫
R

−au′�′ + du′� − eu� + b(J � u − u)��0.

We shall use the following easy corollary:

Corollary 2.2. Let u satisfy the assumptions of Theorem 2.2, then u is nonpositive.



804 J. Coville, L. Dupaigne / Nonlinear Analysis 60 (2005) 797–819

Proof of Corollary 2.2. It is sufficient to show that for every positive�, u��. Now fix �
positive.
In one space dimension,H 1(R) ↪→ C0(R), soumust go continuously to zero at infinity.
Whence there existsr0 such that|u|�� for every|x|�r0. In particularu+(±r0)�� and

we may apply Theorem 2.2 with the compact set� = [−r0, r0].
We end up withu|�� sup

��
u+ ��. Thus,u�� onR. �

Proof of Theorem 2.2. The proof follows that of Theorem 8.1 in Gilbarg and Trudinger’s
book[16]. For convenience of the reader, we provide its details. Let� be a compact subset
of R. Assume by contradiction that

sup
�

u> sup
��

u+ = l.

Define a bilinear operatorL onH 1
0 (�) × H 1

0 (�) by

L(u, z) =
(∫

�
au′z′ − du′z − b(J ∗ u − u)z + euz

)
dx. (2.4)

By assumption,u satisfiesL(u, z)�0 for all nonnegativez ∈ H 1
0 (�) i.e.∫

�
au′z′ − b(J ∗ u − u)z�

∫
�
du′z −

∫
�
euz. (2.5)

Now letkbe such that sup�u>k� l. The functionv := (u− k)+ is nontrivial and satisfies

v =
{
u − k when u>k,

0 otherwise,
(2.6)

v′ =
{
u′ when u>k,

0 otherwise,
(2.7)

so that� := suppv′ ⊂ {u>k} ∩ suppu′ andv ∈ H 1
0 (�). Also, sincee�0,

−
∫
�
euv = −

∫
�
ev2 − k

∫
�
ev�0,

so that applying (2.5) withz = v we obtain∫
�
av′v′ − b(J ∗ u − u)v�C

∫
�

|v′|v. (2.8)

Claim 2.1.
∫
�(J ∗ u − u)v�0.

Proof. Extendv by

ṽ =
{
v in �,

0 otherwise.
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Clearly
∫
�(J ∗u−u)v=∫R(J ∗u−u)̃v and we only need to prove that

∫
R(J ∗u−u)̃v�0.

Observe that for any constant	 we haveJ ∗ 	 − 	 = 0 hence∫
R
(J ∗ u − u)̃v(x)dx =

∫
R
(J ∗ (u − k) − (u − k))̃v(x)dx

=
∫

R
J ∗ (u − k)̃v(x) −

∫
R
ṽ 2(x)dx

=
∫

R

∫
R
J (x − y)(u − k)(y)̃v(x)dy dx −

∫
R
ṽ 2(x)dx.

Since(u − k)(y)̃v(x)�(u − k)+(y)̃v(x) we have∫
R
(J ∗ u − u)̃v(x)dx

�
∫

R

∫
R
J (x − y)(u − k)+(y)̃v(x)dy dx −

∫
R
ṽ 2(x)dx

�
∫

R

∫
R
J (x − y)̃v(y)̃v(x)dy dx −

∫
R
ṽ 2(x)dx

� 1
2

(
2
∫

R

∫
R
J (x − y)̃v(y)̃v(x)dy dx −

∫
R
(̃v)2(x)dx −

∫
R
ṽ 2(y)dy

)
� − 1

2

(∫
R

∫
R
J (x − y)[̃v(y)2 − 2̃v(y)̃v(x) + ṽ(x)2]dy dx

)
� − 1

2

(∫
R

∫
R
J (x − y)[̃v(y) − ṽ(x)]2 dy dx

)
�0

and the claim is proved.�

From our claim we deduce the following inequality:∫
�
a(v′)2�C

∫
�

|v′|v
�C‖v′‖L2(�)‖v‖L2(�)

and end up with

‖v′‖L2(�)�C‖v‖L2(�). (2.9)

By the one-dimensional Sobolev embedding on compact subsets,

‖v‖L∞(�)�C‖v′‖L2(�). (2.10)

Thusv is inL∞(�) and since

‖v‖L2(�)� |�|1/2‖v‖L∞(�), (2.11)
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we can combine the last three equations to obtain

‖v‖L2(�)�C|�|1/2‖v‖L2(�). (2.12)

Therefore, we have

C−1/2� |�| = |suppv′|� |suppu′ ∩ {u>k}|, (2.13)

whereC is a constant which only depends on|�|, a and|d|.
SinceC is independent ofk, one can letk go to sup�u. By the dominated convergence

theorem, the right-hand side of (2.13) converges to|suppu′ ∩ {u = sup�u}|.
This implies that there exists a set of positive measure�+, whereu takes its maximum

value andu′ is not identically zero. Sinceu is in H 1, u′ = 0 a.e. on its level sets and we
obtain a contradiction.
This ends the proof. �
Next, we provide an elementary lemma to construct solutions to constant-coefficient

linear equations of the formLu = f .

Lemma 2.1. Letf ∈ C0(R) ∩ L2(R) and L defined by(1.1)or (1.2).Then there exists a
unique solutionv ∈ C0(R)∩L2(R) (additionallyv ∈ C1(R) if d �= 0,v ∈ C2(R) if a >0)
of {

Lv = f in R,

v → 0 x → −∞,

v → 0 x → +∞.

(2.14)

Proof. We assume first that(a, d) �= (0,0). Uniqueness follows from the maximum prin-
ciple. Next, applying Fourier transform to (2.14), we obtain

(−a|
|2 + b(Ĵ (
) − 1) + id
 − e)v̂ = F̂ .

Since‖J‖L1 = 1, |Ĵ |�1 and sinceJ is even,Ĵ is real-valued, so that

| − a|
|2 + b(Ĵ (
) − 1) + id
 − e|� | − a|
|2 + b(Ĵ (
) − 1) − e|
= a|
|2 + b(1− Ĵ (
)) + e�e >0.

If w is defined by

w := (−a|
|2 + b(Ĵ (
) − 1) + id
 − e)−1F̂ , (2.15)

it follows thatw ∈ L2(R) and thatv := F−1(w) ∈ L2(R) solves (2.14) in the sense
of distributions. By the dominated convergence theorem,J ∗ v ∈ C(R) and by elliptic
regularity applied to the operator̃Lv = Lv − J � v, v has the appropriate regularity for
(2.14) to hold in the classical sense.
Also, since eitheraord is nonzero, (2.15) implies that
w ∈ L2(R) so thatv ∈ H 1

0 (R) ⊂
C0(R).
Whena = d = 0, (2.14) can be rewritten as

v = 1

1+ e/b
(J � v + f ). (2.16)
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It follows easily from the dominated convergence theorem thatJ � v ∈ C0(R) whenever
v ∈ C0(R), so that the right-hand side of (2.16) is a (strict) contraction inC0(R) and admits
a unique fixed point. The fact thatv ∈ L2(R) can be obtained as above.�

3. Construction of a solution of (P)

In this section, we construct an increasing solution of problem (P ) whereL is defined by
(1.1), using ordered sub and supersolutions.

Definition 3.1. w is a supersolution of (P) ifw ∈ C2(R) and{
Lw − cw′ + f (w)�0 onR,

w → 0 asx → −∞,

w → 1 asx → +∞.

Subsolutions� are defined by reversing the above inequality.

Theorem 3.1. Assume there exist two nonnegative smooth functionsw and� such thatw
and� are respectively a super and a subsolution of(P ), satisfying��w. Assume further
that w is increasing, w ∈ L2(R−) and 1 − w ∈ L2(R+). Then, there exists a positive
increasing solution u of(P ).

Remark 3.1. Fora >0, if L is defined by (1.2), since the weak maximum principle holds,
the previous theorem remains true ifw and� are only assumed to be weak super and
subsolutions of (P ).

Remark 3.2. Alternatively, the assumption of monotony andL2 integrability onw can be
dropped and replaced by the same assumption on�.

We break down the proof into two steps. In the first step we construct a sequence of
functions starting from the supersolution. In the second we prove that this sequence has a
subsequence which converges to a solution of (P ).

Proof of 3.1.

3.1. Iteration procedure

Let w and� be nonnegative, respectively a super and a subsolution of (P ). Also let
�>0 be a parameter to be fixed later on.We claim that there exists a sequence of functions
{un}n∈N satisfying

u0 = w and forn ∈ N\{0},{
Lun+1 − �un+1 − cu′

n+1 = −f (un) − �un in R,

un+1 → 0, x → −∞,

un+1 → 1, x → +∞.

(3.1)
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We proceed as follows: letg ∈ C∞
c (R) be a nonnegative function with‖g‖L1(R) = 1 and

letG(x) = ∫ x

−∞ g(t)dt . Using the substitutionvn = un − G, (3.1) reduces to{
L̃vn+1 − �vn+1 = F(vn, x) in R,

vn+1 → 0, x → −∞,

vn+1 → 0, x → +∞,

(3.2)

whereL̃v = Lv − cv′ andF(v, x) = −f (v + G) − �v − L̃G.
Using Lemma 2.1 and induction, in order to prove thatvn is well-defined, it is enough to

show thatv0 ∈ L2(R)∩C0(R) and thatv ∈ L2(R)∩C0(R) �⇒ F(v, x) ∈ L2(R)∩C0(R).
On the one hand sinceG(x)= 0 whenever−x?1 (and similarlyG(x)= 1 for x?1), it

follows from the definition ofw thatv0 = w − G ∈ L2(R) ∩ C0(R).
On the other hand givenv ∈ L2(R) ∩ C0(R), sincef (0) = 0,

|f (v + G)|�‖f ′‖∞|v + G| ∈ L2(R−) and lim−∞ f (v + G) = 0

and sincef (1) = 0,

|f (v + G)|�‖f ′‖∞|v + G − 1| ∈ L2(R+) and lim+∞ f (v + G) = 0,

so thatf (v+G) ∈ L2(R)∩C0(R). ClearlyG′,G′′ ∈ L2(R). Finally, the following lemma
applied tou = G shows thatJ � G − G ∈ L2(R) and we can conclude that there exists a
well-defined solutionun of (3.1).

Lemma 3.1. Let u ∈ C1(R) ∩ L∞(R). Then

‖J � u − u‖L2(R)�C‖u′‖L2(R).

Proof of Lemma 3.1. Using the fundamental theorem of calculus, we have that

J �u(x) − u(x)=
∫

J (y)(u(x − y) − u(x))dy=
∫

J (y)y

(∫ 1

0
u′(x − ty)dt

)
dy.

By the Cauchy–Schwartz inequality, it follows that

|J � u(x) − u(x)|2�
∫

R

∫ 1

0
J (y)|y|(u′)2(x − ty)dt dy ·

∫
R

∫ 1

0
J (y)|y|dt dy

�C

∫
R

∫ 1

0
J (y)|y|(u′)2(x − ty)dt dy,

hence

‖J � u − u‖2
L2(R)

�C

∫
R
J (y)|y|

(∫ 1

0

∫
R
(u′)2(x − ty)dx dt

)
dy

�C‖u′‖2
L2(R)

. �
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3.2. Passing to the limit asn → ∞

Since� andw are ordered functions i.e.��w, it follows easily from induction and the
maximum principle that for alln ∈ N\{0},

��un�w. (3.3)

Also, if �>0 andzn(x) = un(x + �) − un(x),we have{
Lzn+1 − �zn+1 − cz′

n+1 = −(f + �)(un(x + �)) + (f + �)(un(x)) in R,

zn+1 → 0 |x| → ∞.
(3.4)

Choosing�>0 so large that−f − � is nonincreasing, it follows from induction, the max-
imum principle and the fact thatw is nondecreasing that for eachn ∈ N, zn�0 i.e.

x → un(x)is a nondecreasing function. (3.5)

Using (3.3), (3.5) and Helly’s lemma, it follows that a subsequence of(un) converges
pointwise to a nondecreasing functionu satisfying

��u�w.

By the dominated convergence theorem,J � un − un → J � u − u. Rewriting (3.1) as

−cu′
n+1 = un+1 − J � un+1 − �(un − un+1) − f (un), (3.6)

observing that the right-hand side in the above equation is uniformly bounded, we conclude
that {un} is bounded e.g. inC1(�), where� is an arbitrary bounded open subset ofR.
Henceu ∈ C1(R) and by Helly’s lemma,

un → u uniformly in R. (3.7)

Differentiating (3.6), we obtain similarly localC2 bounds onun so that

un → u in C2
loc. (3.8)

Using (3.8), it is now a trivial matter to pass to the limit in the equation. Furthermore,
since��u�w, u has the desired limits at infinity of (P ) and we have thus constructed an
increasing solutionu of (P ).

4. L2 estimates of solutions of (P )

Our goal in this section is to provideL2 estimates of monotone solutions of problem (P ).
Sinceu is uniformly bounded, an easy computation from (P ) shows that lim±∞u′ = 0.
Now we show thatu′ ∈ L2(R). Indeed, multiplying (P ) by u′ and integrating overR

yields∫
R

(
u′J � u −

(
u2

2

)′)
+ c

∫ (
u′)2 =

∫
f (u)u′ =

∫ 1

0
f (s)ds. (4.1)
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SinceJ is even,∫
R
u′J � u = [uJ � u]+∞−∞ −

∫
R
uJ � u′ = 1−

∫
R
u′J � u.

Hence,
∫

R(u
′J � u − (u2/2)′) = 0 and by (4.1),u′ ∈ L2.

Next, we show thatf (u) ∈ L2(R). We need the following lemma:

Lemma 4.1. Let u be a nondecreasing solution of(P ). Then, J � u − u ∈ L1(R). More
precisely,

‖J � u − u‖L1�
∫

R
J (z)|z|dz and

∫
R
(J � u − u) = 0.

Proof. Clearly,∫
R

|(J � u − u)|�
∫

R2
J (x − y)|u(y) − u(x)|dy dx. (4.2)

Sinceu ∈ C1(R),

|u(y) − u(x)| = |x − y|
∫ 1

0
u′(y + s(x − y))ds.

Plug this equality in (4.2) to obtain∫
R2

J (x − y)|u(y) − u(x)|dy dx

=
∫

R2
J (x − y)|x − y|

∫ 1

0
u′(x + s(y − x))ds dy dx. (4.3)

Make the change of variablesz = x − y, so that the right-hand side of (4.3) becomes∫
R2

J (z)|z|
∫ 1

0
u′(x − sz)ds dz dx. (4.4)

As all terms [in (4.4)] are positive, we may apply Tonnelli’s Theorem and permute the
order of integration. We obtain∫

R2
J (z)|z|

∫ 1

0
u′(x − sz)ds dz dx =

∫ 1

0

∫
R2

J (z)|z|u′(x − sz)dx dz ds

=
∫ 1

0

∫
R
J (z)|z|[u(+∞) − u(−∞)]dz ds

=
∫

R
J (z)|z|dz<∞.

These last computations show thatJ � u − u is an integrable function and give a bound
on itsL1 norm. Let us now compute

∫
R(J � u − u)dx. We have∫

R
J � u − udx =

∫
R2

J (x − y)(u(y) − u(x))dy dx.
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Let z = x − y so that∫
R2

J (z)(u(x − z) − u(x))dz dx =
∫

R2
J (z)(u(y) − u(y + z))dy dz.

Make the change of variablez → −z in the left integral and obtain

I1 :=
∫

R2
J (z)(u(x + z) − u(x))dz dx =

∫
R2

J (z)(u(y) − u(y + z))dy dz= : I2.

Fubini’s theorem applied to the last integral shows thatI1= −I2, henceI1= I2=0. �
Next, we integrate (P ) over[R,∞), whereR>0 is chosen so large thatf (u(x))>0 for

x >R. We get∫ ∞

R

(J � u − u) + cu(R) +
∫ ∞

R

f (u) = 0.

Using Lemma 4.1, we conclude thatf (u) ∈ L1(R,∞). Working similarly on(−∞,−R),
it follows thatf (u) ∈ L1(R). Using (P ),(4.1) and Lemma 3.1,implies thatf (u) ∈ L2(R).
We finally prove thatu ∈ L2(R−) and 1−u ∈ L2(R+). Using Lemma 2.1, we know that

there existsw ∈ L2(R) such thatv := w+G (withG ∈ C∞(R),G ≡ 0 in a neighbourhood
of −∞ andG ≡ 1 in a neighbourhood of+∞) solves{

Lv − cv′ + f (u) = 0, on R,

v → 0 asx → −∞,

v → 1 asx → +∞.

(4.5)

Since bothu andv solve (4.5), it follows from the maximum principle thatu ≡ v i.e.u
has the desired integrability.

5. Min–max formula: cases A1 and A2

In this section we prove the min–max formula for the asymptotic speed in the case
where the nonlinearity is of bistable or ignition type. The proof relies on the construction of
appropriate sub and supersolutions for the problem (P ), and a uniqueness theorem which
holds for solutions of (P ) only whenf is of bistable or ignition type.
We will prove the following:

Theorem 5.1. LetX = {w ∈ C1(R)| w increasing, w(+∞) = 1 andw(−∞) = 0}, then
the(unique) front speed is given by

c∗ = min
w∈X sup

x∈R

{
Lw + f (w)

w′

}
. (5.1)

Proof of Theorem 5.1.Definec1 by

c1 = min
w∈X sup

x∈R

{
Lw + f (w)

w′

}
, (5.2)

with X as above.
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Then we just have to show that

c∗ = c1. (5.3)

Since we know from the previous section that there exists an increasing solution(u∗, c∗)
to (P ), takingw = u∗ in the definition ofc1 yields

c1�c∗.

The main difficulty lies in the proof of the reverse inequalityc1�c∗. We argue by contra-
diction and assume thatc1<c∗. Let c be such thatc1�c < c∗. From the definition ofc1,
there exists a positive increasing functionw which satisfies{

Lw − cw′ + f (w)�0 in R,

w → 0, x → −∞,

w → 1, x → +∞.

(5.4)

Sincec < c∗, and(u∗)′ >0, u∗ satisfies{
Lu∗ − c(u∗)′ + f (u∗) = (c∗ − c)(u∗)′ �0 in R,

u∗ → 0, x → −∞,

u∗ → 1, x → +∞.

(5.5)

Observe that any translation ofu∗ andw are also respectively a sub and a supersolution
of the same problem. Therefore, if we can order two translations ofu∗ andw, we will be
done. Indeed, from the a priori estimates of Section 4 and Theorem 3.1, there would exist
a positive solution of the following problem:{

Lu − cu′ + f (u) = 0, in R,

u → 0, x → −∞,

u → 1, x → +∞,

(5.6)

which contradicts the uniqueness Theorem 1.1.�

The proof of Theorem 5.1 thus reduces to finding ordered translations ofw andu∗. We
claim the following.

Lemma 5.1. There exists constants a and b such thatw(s + a)�u∗(s + b).

Proof of Lemma 5.1. Without loss of generality, we may always assumew(0)= u∗(0)=
�/2.
Now we define some quantities that we will use to construct sub and supersolutions. Let

	 positive, such that

f ′(p)< − 2	 whenever|p − 1|< 	. (5.7)

Let 
 ∈ (0, 	/2) and definea(s) = 
e−	s .
ChooseM >0 andK >0 such that

w(
) − 1<
	
2

in (M − 1,+∞), (5.8)

w′(
)>K in [−1,M + 1]. (5.9)
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Define the following function:

b(s) = 
	̄
K

(1− e−	s),

where	̄ = 1+ max{f ′(p):−1�p�2}
	 .

We will assume further that
� min{�/2,K/	̄}.
We now define a sub and a supersolution as follows:

w̃(
, s) = w(
 + b(s)) + a(s), (5.10)

ũ(
, s) = u∗(
 − �), (5.11)

where�>0 is taken so large that

w(
) + a(0)>u∗(
 − �).

Let z(
, s) = (w̃ − ũ)(
, s). zsatisfies the next equations:

−�z
�s

+Lz−cz
�−a′(s)−w′(
, s)b′(s)+f (̃u(
, s))−f (w̃(
, s)−a(s)), (5.12)

z(
,0)>0 ∀
 ∈ R, (5.13)

z(±∞, s) = a(s) ∀s ∈ R. (5.14)

From (5.13, 5.14), by continuity, there existss0 = sup{s >0|z(
, s)>0 ∀
 ∈ R}.

Claim 5.1. s0 = +∞.

Proof of Claim 5.1. We argue by contradiction. If not,s0< + ∞ and there exists
0 ∈ R

such that

0= z(
0, s0) =min
R

z(
, s0). (5.15)

Next, we use a kind of localization of minimum lemma. More precisely we claim

Claim 5.2. Under the previous assumptions, we have
0> − 1.

Proof of Claim 5.2. LetZ(
) = z(
, s0), thenZ satisfies:

LZ − cZ
 = f (̃u(
, s0)) − f (w̃(
, s0) − a(s0)).

So at
0 we have,

(J � Z − Z)(
0)>0,

Z
(
0) = w̃(
0, s0) − ũ(
0, s0) = 0.

Thus,f (̃u(
0, s0)) − f (w̃(
0, s0) − a(s0))>0, which impliesf (̃u(
0, s0))>0.



814 J. Coville, L. Dupaigne / Nonlinear Analysis 60 (2005) 797–819

Recall that

ũ(
0, s0) = w̃(
0, s0),
⇒ u∗(
0 − �) = w(
0 + b(s0)) + a(s0).

Thus,

u(
0, s0) = w(
0 + b(s0)) + a(s0)> �

⇒ w(
0 + b(s0))> � − a(s0)>
�
2

⇒ 
0>w−1(
�
2
) − b(s0)

⇒ 
0> − 1. �

Remark 5.1. Claim 5.2 bounds from below the minimum ofz.

Now, observe that, at(
0, s0), zsatisfies:

−�z(
0, s0)
�s

+ Lz(
0, s0) − cz
(
0, s0)�0

and

−�z(
0, s0)
�s

+ [Lz − cz
](
0, s0)� − a′(s0) − w′(
0, s0)b′(s0)

+ f (̃u(
0, s0)) − f (w̃(
0, s0) − a(s0)).

So we end up with

Q = −a′(s0) − w′(
0, s0)b′(s0) + f (̃u(
0, s0)) − f (w̃(
0, s0) − a(s0))�0.

Since at(
0, s0) we have,

ũ(
0, s0) = w̃(
0, s0)

andf is a smooth function, we can rewriteQ as

Q = 
e−	s0
[
	 − 		̄

K
w′(
0 + b(s0)) + f ′(d)

]
�0 (5.16)

for somed ∈ [w̃(
0, s0) − a(s0), w̃(
0, s0)].
Now, from Claim 5.2, we are led to considering two cases:

1. Case: 
0 ∈ [−1,M].
Then,Qwould satisfy

0>
e−	s0
[
	
(
1−w′(
0+b(s0))

K

)
−w′(
0+b(s0))

K
max{f ′(p) −1�p�2}+f ′(d)

]
which contradicts (5.16).
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2. Case: 
0>M.
Then,Qwould then verify


e−	s0
[
	−		̄w′(
0+b(s0))

K
+f ′(d)

]
<
e−	s0

[
−	−		̄w′(
0+b(s0))

K

]
<0,

which also contradicts (5.16), thus proving Claim 5.1.�
From Claim 5.1, we havez(
, s)�0 for all (
, s) ∈ R × R+. Letsgo to infinity : we end

up withw(
 − a)�u∗(
 − b), wherea = 
	̄/K andb = �. This ends the proof of Lemma
5.1.

6. Min–max formula: the monostable case

In this section we prove the min–max formula for the minimal speed in the case where
the non linearityf is monostable. We are concerned with the following problem:{

Lu − cu′ + f (u) = 0, in R,

u → 0, x → −∞,

u → 1, x → +∞,

(6.1)

wheref is monostable andJhas a fast decay near infinity. Uniqueness of solutions no longer
holds in this situation. Nevertheless, the min–max formula still holds.

Theorem 6.1. LetX = {w ∈ C1(R)|w(+∞) = 1 andw(−∞) = 0}, then we have

c∗ = min
w′>0, w∈X

sup
x∈R

{
Lw + f (w)

w′

}
. (6.2)

Proof. We definec1 as in the previous section:

c1 = min
w′>0, w∈X

sup
x∈R

{
Lw + f (w)

w′

}
. (6.3)

Then again we just have to show,

c∗ = c1. (6.4)

As in theprevious section, sinceweknow from[10] that there exists an increasing solution
of (6.1), for the speedc∗, we obviously havec1�c∗. The main difficulty again lies in the
proof ofc1�c∗. Before, showingc1�c∗, we will characterize the behavior of the speed of
solutions of (6.1) whenf is of ignition type.

Lemma 6.1. Let f and g be two functions of typeA2, such thatf �g, f /≡ g, then the
corresponding speedscf , cg satisfycf > cg.

From thismonotone charaterization of the speed,weeasily obtain the following corollary:
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Corollary 6.1. There exists a sequence of approximations(fn)n∈N of f such that for each
n, fn is of typeA2 and the corresponding speedcn satisfies

lim
n→+∞ cn = c∗.

Proof of Corollary 6.1. Let (�n)n∈N be a sequence of positive numbers converging to 0
asn goes to infinity. And let��n satisfy the following assumptions:

• ��n ∈ C∞
0 (R),

• 0���n �1,
• ��n(s) ≡ 0 for s��n and��n(s) ≡ 1 for s�2�n,
• ��n is a monotone increasing sequence of function (i.e.��n ���p for p�n).
Now define a new functionf�n =f ��n . Sincef�n is of ignition type, there exists a unique

travelling wave solution(un, cn) of (6.5), cf.[7].{
Lun − cnu

′
n + f�n(un) = 0, in R,

un → 0, x → −∞,

un → 1, x → +∞.

(6.5)

By Lemma 6.1,{cn} is an increasing sequence. In fact(cn)n∈N is bounded byc∗:

Claim 6.1. ∀n ∈ N cn�c∗.

Proof. We argue by contradiction. Then, there existscn > c∗. Sinceun is monotone in-
creasing,un satisfies{

Lun − c∗u′
n + f�n(un)�0 in R,

un → 0 as x → −∞,

un → 1 as x → +∞.

(6.6)

Therefore(un, c∗) is a subsolution of (6.5). Similarly, observe thatf �f�n , therefore
(u∗, c∗) satisfies{

Lu∗ − c∗(u∗)′ + f�n(u
∗)�0 in R

u∗ → 0 as x → −∞,

u∗ → 1 as x → +∞.

(6.7)

Therefore(u∗, c∗) is a supersolution of (6.5). Sincef�n is of type A2, we can apply
Lemma 5.1 to get constantsaandbsuch thatu∗(s+a)�un(s+b). Then, as in the previous
section, we can apply Theorem 3.1, which implies the existence of a non trivial solution
(u, c∗) to (6.5) which contradicts the uniqueness of the solution(un, cn). This proves Claim
6.1. �

Since(cn) is a bounded increasing sequence, it converges to a constant�. From standard
a priori estimates, there exists a subsequence still denoted(un) which converges to an
increasing function̄u solution of (6.1).
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Sincec∗ = inf {c >0| (6.1) has a positive increasing solution}, we must have� = c∗,
which proves Corollary 6.1.�
Now, let us prove Lemma 6.1.

Proof of Lemma 6.1. Again, we argue by contradiction.Assume thatcf < cg. Then, since
they are increasing,uf andug will be respectively a super and subsolution of{

Lw − cgw
′ + f (w)�0 in R,

w → 0 as x → −∞,

w → 1 as x → +∞.

(6.8)

Sincef is of typeA2, we can use Lemma 5.1 and Theorem 3.1 to get a non trivial solution
(u, cg) of (6.8), which violates the uniquess Theorem 1.1. The strict inequality follows by
the same argument.�

We are now ready to prove the last inequality

c1�c∗. (6.9)

Proof of inequality (6.9). Weargue by contradiction, assuming that (6.9) is not true : there
existsc >0 such thatc1�c < c∗. Therefore, by the definition ofc1, there exists a positive
increasing functionw such that{

Lw − cw′ + f (w)�0 in R,

w → 0 as x → −∞,

w → 1 as x → +∞.

(6.10)

Now, by Corollary 6.1, there exists�n >0 un increasing andcn >0 such that{
Lun − cnu

′
n + f�n(un) = 0 in R,

un → 0 as x → −∞,

un → 1 as x → +∞.

(6.11)

Therefore, if we replacecn by c in (6.11),w andun become a super and a subsolution
of the problem. We can then apply Lemma 5.1 and Theorem 3.1 to get a solution of (6.11)
with speedc. But this contradicts the uniquess of the speed for problems with ignition
nonlinearities. This ends the proof of the min–max formula in the monostable case.�

We can give a more precise bound for the minimal speed, if in addition to the common
assumption thatf ismonostable, we assume further thatf ′(0)s�f (s). This newassumption
is known as the KPP assumption. When there are no integral terms, then it is known that
c∗ = 2

√
f ′(0), which can be also formulated as

c∗ =min
�>0

{
1

�
(�2 + f ′(0))

}
.
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We derive a similar formula when there is an integral term. Namely, we have

c∗ � min
�>0

{
1

�

(∫
R
J (z)e�z dz − 1+ f ′(0)

)}
= �.

There are hints that in fact there is equality in the above equation, but we were not able to
prove it. The proof relies on the same ideas: one assumes that the inequality is false then
picks a constantc ∈ (�, c∗), finds good super and subsolutions for an ignition-type problem
and concludes with the existence and uniqueness theorem.We omit the details of the proof
and just present the construction of the super solution. A straight forward computation
shows that exponential functions are eigenfunctions of the operatorLw + f ′(0)w :=
J � w − w − cw′ + f ′(0)w , i.e.([L + f ′(0)]e�x = h(�)e�x).
Therefore, sincef is of KPP type,

L(e�x) + f (e�x)�h(�)e�x, (6.12)

whereh(�) = ∫
R J (z)e�z dz − 1− c� + f ′(0).

Now use the definitions of� andc to find some� such thath(�)�0. Then argue as
above : since there exists a supersolution of the monostable problem (6.1), andcn → c∗,
we get a contradiction.�
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