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Abstract

The object of this paper is to provide variational formulas characterizing the speed of travelling
front solutions of the following nonlocal diffusion equation:

Ou

EzJ*u—u—l—f(u),
Where/J is a dispersion kernel anflis any of the nonlinearities commonly used in various models
ranging from combustion theory of ecology. In several situations, such as population dynamics, it
is indeed natural to model the dispersion of a population using such operators. Furthermore, since
travelling front solutions are expected to give the asymptotic behaviour in large time for solutions of
the above equation, it is of the interest to characterize their speed. Our results, based on elementary
techniques, generalize known results obtained for models involving local diffusion operators.
© 2004 Published by Elsevier Ltd.
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1. Introduction

In this article, we are concerned with variational formulas characterizing the speed
of travelling frontsu arising in the study of a nonlocal reaction—diffusion model. More
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precisely, we study the solutions, ¢) of the following one dimensional integro-differential
equation:

Lu—cu' 4+ f(u)=0 onR,
!M(X) —0 asx — —oo, P)
ux) —1 asx — +o00,

whereL is a nonlocal diffusion operator of the form
Lu:J*u(x)—u(x):/ J(x — y)u(y)dy — u(x), (1.2)
R

with J an even positive kernel of mass one dradgiven nonlinearity. Our results apply to
more general operators of the form

Lu=auy, +b(J xu(x) —u(x)) +du, —eu(x), (1.2)

wherea, b, e>0, (a, b) # (0,0) andd € R. We will always assume in what follows that
J satisfies the following:

Jewti®, J>0, J@)=J(-x) and /J=1~ (H1)
R

The unknowns of this problem are the real nunthevhich represents the speed of the front,
anduthe profile of the front. The speeatan also be viewed as a nonlinear eigenvalue of the
problem. Travelling-front solutions are expected to give the asymptotic behavior in large
time for solutions of the following evolution problem (1.3), with say compactly supported
initial data.

Ju

i Lu+ f(u). (1.3)

Itis therefore of interest to characterize the speed of these solutions. Such types of equation
were derived in the early work of Kolmogorov—Petrovskii—Piscounov (KPP)[&Hgon
the spread of a gene . The dispersion of the gene fraction at p@ifit” should affect the
gene fraction at € R" by a factorJ (x, y)u(y) dy, whereJ (x, -) is a probability density.
Restricting to a one-dimensional setting and assuming that such a diffusion process depends
only on the distance between two niches of the population, we end up with Eq. (1.3).

Eq. (1.3) also appears in the context of pattern formation in activator—inhibitor systems
such as

Observe that we can inverse the second equation. We can thus revimiteerms ofu.
Namely we have = J « u with J (x) = eI, so that the system can be reformulated as

0

a—l;:u”—}—J*u—u—l—g(u) for (x,71) eR xR, (1.4)
whereg(u) = f(u) + u. For more information, see the excellent book of Murf23] and
[24]. In these two models the operatef(u) := J xu — u represents the nonlocal diffusion

of the species through its environment.
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In this work, we study three types of nonlinearfithat we present belowt € C([0, 1])
and

e Case Alfis of bistable type if for some > 0, f satisfies

o f|(0,p) <0 andf|(p'1) >0,
o f(O)=f(1)=0andf’'(1) <O.

e Case A2fis of ignition type if for somep > 0,

o flo.p =0andf,.1 >0,
o F(0)= f(1)=0andf'(1) <O.

e Case Bfis of monostable type if (0) = /(1) =0,f 0.1y > 0 andf’(1) <O.

These three types of nonlinearities are commonly used in the literature to describe models
of phase transition, nerve propagation, combustion, population dynamics and ecology : see
[1,3,12-15,19,21,25,28-30]

Under some additional assumption on the kedpeistence and in some cases uniqueness
of travelling-wave solutions have been investigated by Bates Et]adnd Cher{7] in the
bistable case and completed by the work of one of the present a{t@qréor the ignition
case. The monostable case is the object of a forthcoming publidatiprive summarize
these results in the following theorem.

Theorem 1.1(Bates et al[2] ; Coville [10]; Coville and Dupaigng11]).

e Let f be a nonlinearity of typ&1 or A2 and assume that J satisfi¢d1l) and the
following:

/ J(2)|z] dz < + o0. (H2)

R

Then problem(P) admits a solution(u, ¢*). This solution is unique in the following
senseif (v, ¢’) is another solution thea* =c¢’. Moreover if ¢* = 0thenu(x) =v(x +1)
for a fixedr and

e Let f be a monostable function and assume that J satiéfié} and the following
integrability condition

VA>0, / J ()€ dz < + oo. (H3)
R
Then there exists a minimal spe€d> 0 such that

o If ¢ >c¢*, then problen{P) admits a solutior(u, ¢). Moreoveru’ > 0.
o If ¢ < ¢*, then problen{P) admits no solutioriu, c) such that.’ > 0.

Remark 1.1. The condition (H3) can be weakened : it is enough to assume that (H3) holds
for one given value of > 0.



800 J. Coville, L. Dupaigne / Nonlinear Analysis 60 (2005) 797-819

Theorem 1.1 generalize known results for the standard reaction—diffusion problem below,

Z—I; =Au+gm) in R"xRT. (1.5

This is due to the fact that the nonlocal operatehares many properties of the Laplacian
and in some limiting case reduces to it. Namely, assdimsecompactly supported and let
Jo(x) := 1J(1x), with ¢ > 0 small. Fou € C?(R):

1 1
Jexu—u=— / J (Ey) (u(x —y) —u(x)dy = / J (@) (ux —ez) —u(x))dz

2
&
= — s/ J(@u'(x)zdz + > / 22T (" (x) dz + o(e?)
=Ce%u" (x) + o(?),
where we used the fact thais even in the last equality. Hence,
Cu” = lim i[J * U — U]
u' = am o L u—ul.
The characterization by min—max formulas of the wave spardhe context of (1.5) is
well known. In one space dimension, Eq. (1.5) reduces to an ordinary differential equation
and the speed of planar fronts satisfies the following min—max formulas.

Let X = {w € C%(R)|w is increasingw(4o0) = 1 andw(—o0) = 0}.

e Forfof type Al or A2, the speed satisfies

c* =min sup{L/f(w)} , (1.6)
weX cR w

¢ =maxinf . cg {L{w} . a.7)
weX w

e Forf of type B, the minimal speed" satisfies

¢ =min sup{ w} . (1.8)

weX ycR w’

Min—max formulas for travelling fronts in systems of ODEs have been derived by
Kan-On, Mischaikow—Hudson and Volpert, Volpert, Volpert, [@822,26,27]Hamel[17]
generalized min—max formulas to the setting of multidimensional travelling fronts in a cylin-
der. In the bistable case, Heinze et[aB] have provided analogous variational formulas
for quite general operators.

Under some extra assumption, an explicit formula for the minimal speed can be given:

Kolmogorov et al[21] proved in 1937 that the minimal speetlis given by

cF=ckpp=2y1(0),
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if fis monostable and satisfig&s) /s < f/(0) for s € (0, 1). This formula was recovered
by Berestycki and Nirenbeifd] using a different approach. Weinberge{28] generalized
it to time-discrete models.

In the opposite situation, whémpproaches a Dirac mass centered at one, Zeldovich and
Frank—Kamenetskii (ZFK)30] were able to give an asymptotic formula for the flame’s
front speed. In this case the speed is given by

1
' =chpg > ‘//O f(s)ds.

More recently, Berestycki et gb] have shown that the asymptotic speed formgla,
holds for planar-front solutions of a system of ordinary differential equations. Other asymp-
totic formulas were derived in turbulent combustion: see Clavin and Willi@h<Clavin
[8] also explains the transition froa}, , , to ¢y ;.

In many cases, proofs rely deeply on shooting methods, phase plane analysis and good
asymptotics. Since our equation is nonlocal, we cannot carry out most of these techniques.
Nevertheless we can provide min—max formulas for the speed of travelling fronts of (1.3),
analog to those above. Namely we have the following variational characterization of the
wave-speed:

Theorem 1.2. Let L be the operator given kit.1) defined onX := {w € CL(R)|w is in-
creasing w(+o0) = 1 andw(—o0) = 0}.

e AssumdH1) and(H2) hold. For f of typeAl or A2, such thatfol f(s)ds # Othe speed
c* satisfies

L
¢* = min sup w , (1.9)
weX ycR w
L
¢* = maxinf Lw+ /) (1.10)
weX xeR w’
e AssumdH1) and(H3) hold. For f of type Bthe minimal speed* satisfies
L
¢* = min sup M (1.12)
weX (R w

Remark 1.1. Theorem 1.2 remains valid for operatargiven by (1.2), provideX is taken
tobeX := {w € C3(R)|w is increasingw(+oc) = 1 andw(—o0) = 0}.

Remark 1.2. For f of type A2, folf(s)ds > 0. Forf of type Al, it may happen that
fol f(s)ds =0. In that case, it is known that = 0, sed2].

The technique developed in this paper also applies to the traditional reaction—diffusion
problem, thus providing an alternate proof of these formulas. In the KPP-like situation we
were not able to give an exact explicit formula and only provide an upper bound in terms
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of a spectral formula. Namely, we show

pp< lr>1fo{3 UR J(x)e" dz — 1—|—f’(0)“. (1.12)

A

Recently, equality has been obtained by Carr and CH6jap the case wherd has
compact support anfl(u) = u(1 — u).

Method and plan
The proof relies on two simple ideas:

e The construction of solutions via the method of sub and supersolutions.
e A comparison principle for sub and supersolutions of a bistable problem.

Though elementary in nature, the proof of these results requires a number of lemmas which
we list and prove in Section 2. In Sections 3 and 4, we present the construction of a solution

via the method of sub and supersolutions. Theorem 1.2 is the object of the Sections 5 and 6.
Section 5 deals with the min—max formula in the bistable case while Section 6 is concerned

with the monostable case and the proof of inequality (1.12).

2. Linear theory

We start this section with two maximum principles for integro-differential operdtors
defined on the real line by (1.1) or (1.2).

Theorem 2.1 (Strong maximum principle Letu € C?(R) satisfy
Lu>0 in R (respectively Lu<0 in R).

Then u may not achieve a positive maximuesp. negative minimumvithout being con-
stant

This theorem immediately implies the following practical corollary:

Corollary 2.1. Letu € C?(R) satisfy

Lu>0 on R,
u—0 |x| > +oo.
Then
e eitheru <0,

e eitheru = 0.

Remark 2.1. Similarly, if Lu <0 then u is either positive or identically.
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The corollary is a straightforward consequence of the strong maximum principle.

Proof of Theorem 2.1. If b=0thenL is a standard elliptic operator, so we restrict ourselves
to the case where> 0. We argue by contradiction. Assume thé$ a nonconstant function
and achieves a positive maximum somewhere, say.at

Sinceu is aC? function, we haveru (xg) <0, u’(xg) = 0 andu” (xg) <0. Furthermore,
since [, J(z) dz = 1 andu(y) — u(xo) <O for everyy in R, we haveJ x u(xo) — u(xo) =
fR J(xo0 — y)(u(y) — u(xp)) dy <0. Therefore, we have at the point

au” (x0) + b(J * u(xo) — u(xo)) + du’(xo) — eu(xo) <0 (2.1)
and by our assumption
au" (xg) + b(J * u(xg) — u(xg)) + du’(xp) — eu(xg) >0. (2.2)

These two equations imply that (xg) = 0, au” (xg) = 0 and

b(J % u(xo) —u(xo)) =b (/ J(xo — y)(u(y) — u(Xo))) dy =0. (2.3)

By assumption,) is a smooth nonnegative function wisupgJ) = @. Thus, we deduce
from (2.3) thatu(y) = u(xo) for all y in the setxg + suppJ). If Jis supported byR we
obtain a contradiction immediately. If not, we can repeat the previous calculation for every
yin xo+sup@J), thusuis constant on the set-supp /) wherey belongs tocg+supgJ).

By doing so infinitely many times, we cover all Bfand thus end up with(y) = u(xg) for
allyin R, which is a contradiction. [

Provideda is nonzero, we also have the following weak maximum principle:

Theorem 2.2 (Weak maximum principle Suppose: > 0 and letu € H'(R) satisfy the
following inequality in the weak sense

Lu>0 on R.
Then for any compact subsetof R,

supu < supu™.

@ 0w

Remark 2.1. Afunctionu € H1(R) satisfied.u > 0 in the weak sense if for all nonnegative
¢ e Cx(R),

/ —au'¢ +du'¢p — eup +b(J xu —u)p>0.
R

We shall use the following easy corollary:

Corollary 2.2. Let u satisfy the assumptions of Theorem th&n u is nonpositive
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Proof of Corollary 2.2. It is sufficient to show that for every positive u <. Now fix o
positive.

In one space dimensiof}1(R) < Co(R), soumust go continuously to zero at infinity.

Whence there existg such thatu| < d for every|x| > rg. In particular:™ (£rg) <J and
we may apply Theorem 2.2 with the compact®et [—rg, ro].

We end up with|, < supu™ <4. Thusu<donR. O

dw

Proof of Theorem 2.2. The proof follows that of Theorem 8.1 in Gilbarg and Trudinger’s
book[16]. For convenience of the reader, we provide its detailsclbé a compact subset
of R. Assume by contradiction that

supu > supu™ =1.
@ 0w

Define a bilinear operato? on Hi (w) x Hi(w) by
Pu,z) = (/ au'7 — du'z —b(J xu —u)z + euz) dx. (2.4)
w
By assumptiony satisfies? (u, z) <0 for all nonnegative € Hol(a)) ie.

/ au'z’ —b(J xu —u)z< / du'z —/ euz. (2.5)
w w ()

Now letk be such that sypu > k >1. The functionv := (u — k)™ is nontrivial and satisfies

u—k when u=>k,
v= {O otherwise, (2.6)
/
, _ju' when u>k,
v= {0 otherwise, 2.7)
so thatl” := suppv’ C {u >k} Nsuppu’ andv € Hol(co). Also, sincee >0,
—/ euv:—/ evz—k/ ev <0,
w w w
so that applying (2.5) with = v we obtain
/ av'v' —b(J xu — u)véC/ [v'|v. (2.8)
w r

Claim 2.1. [ (J *u —u)v<0.

Proof. Extendv by

5= v oin o,
10 otherwise.
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Clearly [, (J su—u)v= [(J *u—u)vand we only need to prove tht (J s u —u)v <O0.
Observe that for any constamtve haveJ x oo — o = 0 hence

/ (J*xu —u)v(x)dx = / (J*xw—k) — (u—Kk)v(x)dx
R R
= / J o (u—k)v(x) — / 72(x) dx
R R
= f f J(x — y)(u — k) (y)V(x) dy dx — f 72(x) dx.
RJR R
Since(u — k)(y)T(x) < (u — k)T (y)v(x) we have
/ (J % u —u)v(x)dx
R
< / / TG = ) — )+ ()T dy dr —f 2(x) dx
RJR R
< / / J(x — )T V(x)dydx — / T2(x) dx
RJR R

<3 (2 / / J(x = T dy dx — / @®2(x) dx — / 520y) dy)
RJR R R

< —%( / / J(x—y)[my)z—26<y>v<x>+a<x>2]dydx)
RJR

( / / J(x—y)['ﬁ(y)—'ﬁ(x)]zdydx) <0
RJR

and the claim is proved. [

/

g_

Nl

From our claim we deduce the following inequality:

/ a(v/)chf [V |v

o r
SCIV L2 IVl L2
and end up with

”v/"LZ((u) SClvllery- (2.9)
By the one-dimensional Sobolev embedding on compact subsets,

vl Loo () < C||U/||L2(w)- (2.10)
Thusv is in L*(w) and since

ol 2y < ITIY2 (0] oo o). (2.11)
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we can combine the last three equations to obtain

ol 2y SCITM210ll 2. (2.12)
Therefore, we have

C7Y2L|I| = |supp'| < [suppu’ N {u > k)], (2.13)

whereC is a constant which only depends fanl, a and|d|.

SinceC is independent ok, one can lek go to sup,u. By the dominated convergence
theorem, the right-hand side of (2.13) convergelstppu’ N {u = sup,u}|.

This implies that there exists a set of positive measufewhereu takes its maximum
value andu’ is not identically zero. Sincais in HY, ' = 0 a.e. on its level sets and we
obtain a contradiction.

This ends the proof. O

Next, we provide an elementary lemma to construct solutions to constant-coefficient
linear equations of the formhu = f.

Lemma 2.1. Let f € Co(R) N L%(R) and L defined byl.1)or (1.2). Then there exists a
unique solutior € Co(R) N L2(R) (additionallyv € CL(R) if d # 0,v € C2(R) if a > 0)
of

Lv=f inR,

v—>0 x— —o0, (2.14)

v—>0 x—> +o0.

Proof. We assume first thdt:, d) # (0, 0). Uniqueness follows from the maximum prin-
ciple. Next, applying Fourier transform to (2.14), we obtain

(—alé? +b(J (&) — 1) +idé —e)d = F.
Since||J||;1 =1, |J|<1 and sincd is even,J is real-valued, so that

| —aléP+b(J (&) —1) +idé —e|=]| —aléP +b(J(E) —1) —e]
=aléP+b(L—J (&) +eze>0.
If wis defined by
wi= (—alEP 4+ b(J (&) — 1) +idé —e) 1F, (2.15)

it follows thatw € L2(R) and thatv := Z Y(w) € L2(R) solves (2.14) in the sense
of distributions. By the dominated convergence theorém,v € C(R) and by elliptic
regularity applied to the operatdrv = Lv — J x v, v has the appropriate regularity for
(2.14) to hold in the classical sense.

Also, since eitheaordis nonzero, (2.15) implies thdw € L2(R) sothat € H&(R) -
Co(R).

Whena = d =0, (2.14) can be rewritten as

1
v=1+e/b(J*v+f). (2.16)
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It follows easily from the dominated convergence theorem that € Co(R) whenever
v € Co(R), so that the right-hand side of (2.16) is a (strict) contractiafig(iR) and admits
a unique fixed point. The fact thate L2(R) can be obtained as abovel]

3. Construction of a solution of (P)

In this section, we construct an increasing solution of problBjnihereL is defined by
(1.1), using ordered sub and supersolutions.

Definition 3.1. w is a supersolution of (P) iy € C2(R) and

Lw—cw + f(w)<0 onR,
w— 0 asx —» —oo,
w— 1 asx — +oo.

Subsolutiong) are defined by reversing the above inequality.

Theorem 3.1. Assume there exist two nonnegative smooth functioasdys such thatw
andys are respectively a super and a subsolutiorf Bj, satisfyingyy <w. Assume further
that w is increasingw € L2(R7) and1 — w € L2(R"). Then there exists a positive
increasing solution u ofP).

Remark 3.1. Fora > 0, if L is defined by (1.2), since the weak maximum principle holds,
the previous theorem remains trueuifandys are only assumed to be weak super and
subsolutions of ).

Remark 3.2. Alternatively, the assumption of monotony ahd integrability onw can be
dropped and replaced by the same assumptiaf.on

We break down the proof into two steps. In the first step we construct a sequence of
functions starting from the supersolution. In the second we prove that this sequence has a
subsequence which converges to a solutionff (

Proof of 3.1
3.1. lteration procedure

Let w andy be nonnegative, respectively a super and a subsolutio®pfAlso let
/4> 0 be a parameter to be fixed later on. We claim that there exists a sequence of functions

{un},en Satisfying

up=w and forn € N\{0},

up+1 — 0, X — —00, (3.2)

{ Lupt1 — Atpy1 — cuty g = —f(up) — Aup  in R,
Up+1 —> 1, x — +o0.
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We proceed as follows: let € C2°(R) be a nonnegative function withg|| 1z, = 1 and
letG(x) = ffoo g(t) dt. Using the substitution,, = u, — G, (3.1) reduces to

Vpt1 — 0, X — —00, 3.2)

: Lvn+l - /lvrl+l = F(Un, x) In Ra
Upt1 — O, x — +o0,

whereLv = Lv — cv/ andF(v,x)=—f(w+G) — lv — LG.

Using Lemma 2.1 and induction, in order to prove thats well-defined, it is enough to
show thatg € L2(R)NCo(R) andthat € L2(R)NCo(R) = F (v, x) € L>(R)NCo(R).

On the one hand sind&(x) = 0 whenever-x > 1 (and similarlyG (x) = 1 for x > 1), it
follows from the definition ofw thatvg = w — G € L2(R) N Co(R).

On the other hand giveme L2(R) N Co(R), sincef(0) =0,

If 0+ &)< f lsolv + Gl € LAR™) and _liorgf(v +G)=0
and sincef (1) =0,

Ifw+ I f lsolv + G — 1 € LRT) and limf@w+6)=0,

sothatf (v+G) € L3(R)NCo(R). ClearlyG’, G” € L%(R). Finally, the following lemma
applied tou = G shows that/ * G — G € L%(R) and we can conclude that there exists a
well-defined solution,, of (3.1).

Lemma 3.1. Letu € C1(R) N L*°(R). Then

I % u = ull 2y < Cll'll o)

Proof of Lemma 3.1. Using the fundamental theorem of calculus, we have that

1

Jxu(x) —M(X)Z/ S (ux —y) — M(X))dyZ/ J(y)y (/o M/(x—fy)dt> dy.

By the Cauchy—Schwartz inequality, it follows that
1 1
e —uwP< [ [Crobiee-mady [ [

1
<C/Rfo Ty I@)2(x — ty) e dy,

hence

1
1 % = ul T2 <C | T ()?(x —1y)dudr ) dy
® R 0 JR
<Cl'13ogm. O
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3.2. Passing to the limit as — oo

Sinceys andw are ordered functions i.g.< w, it follows easily from induction and the
maximum principle that for alt € N\{0},

Y <u, <w. 3.3)
Also, if > 0 andz,, (x) = u, (x + 1) — u, (x),we have

Lzp1 — AZnt1 — CZ;H_]_ =—(f+Dup(x+1)+ (f +Dy(x)) inR, (3.4)
Znt1 — 0 |x| = oo. ’

Choosingl > 0 so large that- f — / is nonincreasing, it follows from induction, the max-
imum principle and the fact that is nondecreasing that for eagle N, z,, <0 i.e.

x — u,(x)is a nondecreasing function (3.5)

Using (3.3), (3.5) and Helly’s lemma, it follows that a subsequencé:pf converges
pointwise to a nondecreasing functiosatisfying

Yy<u<w.
By the dominated convergence theoreh¥ u,, — u,, — J xu — u. Rewriting (3.1) as
—cuty g =Upy1— J *upg1— Ay — uny1) — f(un), (3.6)

observing that the right-hand side in the above equation is uniformly bounded, we conclude
that {u,,} is bounded e.g. iC1(w), wherew is an arbitrary bounded open subsetFf
Henceu € C1(R) and by Helly’s lemma,

u, — u uniformly in R. 3.7)
Differentiating (3.6), we obtain similarly local? bounds ont, so that
Uy — u in C3. (3.8)

Using (3.8), it is now a trivial matter to pass to the limit in the equation. Furthermore,
sincey <u < w, U has the desired limits at infinity of{) and we have thus constructed an
increasing solutiom of (P).

4. L? estimates of solutions of P)

Our goal in this section is to provide? estimates of monotone solutions of problef) (
Sinceu is uniformly bounded, an easy computation frof) €hows that lim.q.u’ = 0.

Now we show thai’ € L?(R). Indeed, multiplying £) by u’ and integrating oveR
yields

/R(u’J*u _ (“—22>/> +c/(u’)zsz(u)u’=/olf(s)ds. (4.1)
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SinceJis even,

/u’]*u:[u]*u]fg—/uJ*u':l—/u’J*u.
R R R

Hence, [ (u'J *u — u?/2)") = 0 and by (4.1)u’ € L.
Next, we show thaf (1) € L?(R). We need the following lemma:

Lemma 4.1. Letu be a nondecreasing solution 6P). Then J « u — u € L1(R). More
precisely

|J*u—ulp1< /RJ(Z)IZIdZ and /R(J*u —u)=0.
Proof. Clearly,

L1 su=wi< [ 16yl — uwidyd (4.2)
Sinceu € CY(R),

lu(y) —u(x)| =|x -yl /Olu’(y +5(x — y)) ds.
Plug this equality in (4.2) to obtain

/RZ J(x = y)u(y) —u(x)|dy dx

= [ s = —y|/01u/<x+s<y—x>>dsdydx. (4.3)

Make the change of variables= x — y, so that the right-hand side of (4.3) becomes

1
/RZJ(Z)|Z|/() u'(x — sz) ds dz dx. (4.4)

As all terms [in (4.4)] are positive, we may apply Tonnelli's Theorem and permute the
order of integration. We obtain

1 1
/ J(z)|z|/ u/(x—sz)dsdzdx:/ / J(2)|z|u' (x — sz) dx dz ds
R? 0 o JRr?
1
:/ /J(z)lzl[u(+oo)—u(—oo)]dzds
0 JR

= f J(2)|z| dz < 0.
R

These last computations show thiat u — u is an integrable function and give a bound
on itsL! norm. Let us now computﬁR(J *xu — u) dx. We have

/J*u—udx:/ J(x — y)(w(y) —u(x))dydx.
R R?
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Letz =x — y so that

/ J@)u(x —2) —ux))dzdx = / J(@)(u(y) —u(y +z))dydz.
R? R?

Make the change of variable— —z in the left integral and obtain

Iy = /RZ J(@)u(x +2) —u(x))dzdx = /RZ J(@u(y) —uly +2))dydz=: I2.

Fubini’s theorem applied to the last integral shows that — I, hencely =1, =0. O
Next, we integrate) over[R, co), whereR > 0 is chosen so large thgiu(x)) > 0 for
x > R.We get

/OO(J*M—u)+cu(R)+/oof(u)=0.
R R

Using Lemma 4.1, we conclude thatu) € L1(R, co). Working similarly on(—oo, —R),

it follows that f (1) € L1(R). Using (P),(4.1) and Lemma 3.1,implies th#tu) € L2(R).
We finally prove that € L2(R™) and 1—u € L?(R*). Using Lemma 2.1, we know that

there existsv € L2(R) suchthaw := w+G (with G € C*(R), G = 0inaneighbourhood

of —oo andG = 1 in a neighbourhood 6f o) solves

Lv—cv + f(u)=0, onR,
:v —-0 asx — —oo, (4.5)
v—>1 asx — +oo.

Since bothu andv solve (4.5), it follows from the maximum principle that= v i.e.u
has the desired integrability.

5. Min—max formula: cases Al and A2

In this section we prove the min—max formula for the asymptotic speed in the case
where the nonlinearity is of bistable or ignition type. The proof relies on the construction of
appropriate sub and supersolutions for the probl&y é&nd a uniqueness theorem which
holds for solutions of @) only whenf is of bistable or ignition type.

We will prove the following:

Theorem 5.1. Let X = {w € CY(R)| w increasing w(+o0) = 1 and w(—o0) = 0}, then
the (uniqué front speed is given by

L
¢* =min sup{M}. (5.1)
weX ycR w
Proof of Theorem 5.1. Definec! by
L
L — min SUD{M}, (5.2)
weX R w

with X as above.
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Then we just have to show that
c=ct (5.3)
Since we know from the previous section that there exists an increasing sdaltitiari)
to (P), takingw = u* in the definition ofc! yields
<t
The main difficulty lies in the proof of the reverse inequalily> ¢*. We argue by contra-

diction and assume that < ¢*. Let ¢ be such that! <c < ¢*. From the definition of-1,
there exists a positive increasing functierwhich satisfies

w — 0, X — —00, (5.4)

iLw—cu/—}—f(u))éO in R,
w— 1 X — +o00.

Sincec < ¢*, and(u*)’ > 0, u* satisfies

Lu* —c(u®) + fw*) =(* —c)@*)’ >0 inR,
{u* — 0, X — —00, (5.5)
u* — 1, x — 4o0o.

Observe that any translation of andw are also respectively a sub and a supersolution

of the same problem. Therefore, if we can order two translation$ ahdw, we will be

done. Indeed, from the a priori estimates of Section 4 and Theorem 3.1, there would exist
a positive solution of the following problem:

Lu—cu' + f(u) =0, inR,
:u — 0, X — —00, (5.6)
u—1, x — 400,

which contradicts the uniqueness Theorem 111

The proof of Theorem 5.1 thus reduces to finding ordered translationsaofdu*. We
claim the following.

Lemma 5.1. There exists constants a and b such th&t + a) >u™(s + b).

Proof of Lemma 5.1. Without loss of generality, we may always assum@®) = u*(0) =
0/2.

Now we define some quantities that we will use to construct sub and supersolutions. Let
o positive, such that

f'(p) < —2x wheneverp — 1| <. (5.7)

Let u € (0, /2) and defina:(s) = ue™*.
ChooseM > 0 andK > 0 such that

W) —1< g in (M — 1, +00), (5.8)
w(&)>K in[-1 M+1]. (5.9)
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Define the following function:

b(s) = %&(1 —e™),

= max{f' (p):=1<p<2}
wherex =1+ 5 .

We will assume further that< min{0/2, K /a}.
We now define a sub and a supersolution as follows:

w(,s) =w(&+b(s) +als), (5.10)
ui,s)=u*(¢—n, (5.11)

wheret > 0 is taken so large that
w(&) +a(0) >u* (¢ — 7).

Letz (¢, s) = (w — u)(¢&, s). zsatisfies the next equations:

0 ~ ~
_6_§+Lz—czé <—=d'()—w' (& )V )+ [ @& )~ f (@& s)—als),  (5.12)

72(¢,00>0 VCeR, (5.13)
z(£o0, s) =a(s) Vs eR. (5.14)

From (5.13, 5.14), by continuity, there exists= sugs > 0/z(&, s) >0 V¢ € R}.
Claim 5.1. sg = +o0.

Proof of Claim 5.1. We argue by contradiction. If natg < + oo and there exist§g € R
such that

0= 2z(&p, s0) = mﬂ_\{[”Z(éSo)- (5.15)
Next, we use a kind of localization of minimum lemma. More precisely we claim
Claim 5.2. Under the previous assumptiqnge haveZy > — 1.

Proof of Claim 5.2. Let Z(¢) = z(¢, so), thenZ satisfies:

LZ —cZ:= f@(¢,50) — f(W(E, s0) — a(s0))-

So atéy we have,
(J*xZ—27)(o) >0,
Z:(&o) = w(&o, s0) — u(p, s0) =0.

Thus, f (U(&g, s0)) — f (W (&g, s0) — a(so)) > 0, which impliesf (i(&g, so)) > 0.
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Recall that

u(&o, s0) = w(&o, s0),
= u" (o — 1) = w(&y + b(s0)) + a(so).

Thus,
u(&o, 50) = w(&o + b(s0)) + also) > 0
= w(y+ b(s0)) > 0 — a(so) > g
0
= o> wil(z) — b(s0)
=&>-1 O

Remark 5.1. Claim 5.2 bounds from below the minimum of

Now, observe that, &€y, so), z satisfies:

. 51(5& SO)

5 + Lz(&p, s0) — cz¢(&p, 50) =0
S

and

_ 5Z(fo, SO)

A [Lz — cz¢] (o, s0) < — a(s0) — w' (o, 50)b' (50)

+ f@(&o, 50)) — f(W(Co, S0) — als0))-
So we end up with
0 = —a'(s0) — w'(&o, 50)b'(s0) + f (@(&o, 50)) — f(W(Eo, s0) — als0)) =0.
Since at(&y, so) we have,
u(&o, s0) = w(&o, 50)

andf is a smooth function, we can rewri@as
0 = e [ 2ulGo + biso) + 1 @] 0 (5.16)

for somed < [ (g, s0) — a(so), W(Eg, s0)].
Now, from Claim 5.2, we are led to considering two cases:

1. Case ¢y € [-1, M].
Then,Q would satisfy

0> g0 [a (1_ w/(fo+b(S0))) /' (&ot+b(s0))

e z max{ f'(p) —1<p<2}+f/(d)}

which contradicts (5.16).
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2. Caseéy> M.
Then,Q would then verify

p— [a_ oW (g?—b(m))—i—f’(d)} <y |:—o<— oW (fg{—l—b(so))} -0,

which also contradicts (5.16), thus proving Claim 5.11]

From Claim 5.1, we have(¢, s) >0 for all (¢, s) € R x RT. Letsgo to infinity : we end
up withw(¢& — a) >u*(& — b), wherea = ua/K andb = 1. This ends the proof of Lemma

5.1.

6. Min—max formula: the monostable case

In this section we prove the min—max formula for the minimal speed in the case where
the non linearityf is monostable. We are concerned with the following problem:

u — 0, X = —00, (6.1)

!Lu—cu/—i—f(u):O, in R,
u—1, X — +00,

wheref is monostable andlhas a fast decay near infinity. Uniqueness of solutions no longer
holds in this situation. Nevertheless, the min—max formula still holds.

Theorem 6.1. Let X = {w € C1(R)|w(4+00) =1 andw(—o0) = 0}, then we have
Lw+_f(w>} . 6.2)

¢*= min sup
w/

w'>0, weX yecR

Proof. We definec! as in the previous section:

1 Lw+—f(w)} . (6.3)

¢ct= min sup
w'>0, weX cr

w/
Then again we just have to show,
*_ 1
c=c. (6.4)
Asinthe previous section, since we know frfitl] that there exists an increasing solution

of (6.1), for the speed*, we obviously have! < c¢*. The main difficulty again lies in the
proof of ¢} > c*. Before, showing! > ¢*, we will characterize the behavior of the speed of

solutions of (6.1) wheiffis of ignition type.

Lemma 6.1. Let f and g be two functions of tyge, such thatf >g, f # g, then the
corresponding speeds, ¢, satisfyc > c,.

From this monotone charaterization of the speed, we easily obtain the following corollary:
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Corollary 6.1. There exists a sequence of approximatiofs,cn of f such that for each
n, f, is of typeA2 and the corresponding speegl satisfies

lim ¢, =c*.
n——+00

Proof of Corollary 6.1. Let (d,),cn be a sequence of positive numbers converging to 0
asn goes to infinity. And let;; satisfy the following assumptions:

%5, € Co°(R),

0<ys, <1,

%5, (s) = 0fors <o, andy;, (s) = 1fors>20,,

%5, IS @ monotone increasing sequence of functionyj.e< 15, for p>n).
Now define a new functiorfs, = £, - Sincefs, is of ignition type, there exists a unique
travelling wave solutioriu,,, ¢,,) of (6.5), cf.[7].

Luy — cquy, + f5,(uy) =0, in R,
u, — 0, X — —00, (6.5)
u, — 1, x — +o0.

By Lemma 6.1{c,} is an increasing sequence. In fact), cn is bounded by*:
Claim6.1. Vn e N ¢, <c*.

Proof. We argue by contradiction. Then, there exigts- ¢*. Sinceu, is monotone in-
creasingyu, satisfies

Lu, — c*uy, + f5,(uy) >0 in R,
{un -0 as x — —oo, (6.6)
u, - 1 as x — +oo.

Therefore(u,, c*) is a subsolution of (6.5). Similarly, observe thad fs, , therefore
(u*, c*) satisfies

Lu* — c*(u*) + f5,(u*)<0 in R
!u* -0 as x —» —oo, (6.7)
u* — 1 as x — +oo.

Therefore(u*, ¢*) is a supersolution of (6.5). Sincg, is of type A2, we can apply
Lemma 5.1 to get constaragndb such that:* (s +a) > u, (s + b). Then, as in the previous
section, we can apply Theorem 3.1, which implies the existence of a non trivial solution
(u, ¢*) to (6.5) which contradicts the uniqueness of the solutign ¢;,). This proves Claim
6.1. O

Since(c,) is a bounded increasing sequence, it converges to a consknm standard
a priori estimates, there exists a subsequence still deratgdwhich converges to an
increasing functiom solution of (6.1).



J. Coville, L. Dupaigne / Nonlinear Analysis 60 (2005) 797-819 817

Sincec* = inf{c > 0| (6.1) has a positive increasing solutjprve must have = ¢*,
which proves Corollary 6.1. [J
Now, let us prove Lemma 6.1.

Proof of Lemma 6.1. Again, we argue by contradiction. Assume that c,. Then, since
they are increasing, ; andu, will be respectively a super and subsolution of

Lw —cow' + f(w)<0 in R,
{w -0 as x — —oo, (6.8)
w—1 as x — +oo.

Sincef is of type A2, we can use Lemma 5.1 and Theorem 3.1 to get a non trivial solution
(u, cg) of (6.8), which violates the uniquess Theorem 1.1. The strict inequality follows by
the same argument.[]

We are now ready to prove the last inequality
>t (6.9)
Proof of inequality (6.9). We argue by contradiction, assuming that (6.9) is not true : there

existsc > 0 such that1 <c < ¢*. Therefore, by the definition afl, there exists a positive
increasing functionw such that

Lw—cw + f(w)<0 in R,
:w —-0 as x — —oo, (6.10)
w—1 as x — +oo.

Now, by Corollary 6.1, there exists, > 0 u,, increasing and,, > 0 such that

Luy, — cquy, + fs, (p) =0 in R,
iun -0 as x — —oo, (6.11)
u, > 1 as x — 4oo.

Therefore, if we replace, by cin (6.11),w andu,, become a super and a subsolution
of the problem. We can then apply Lemma 5.1 and Theorem 3.1 to get a solution of (6.11)
with speedc. But this contradicts the uniquess of the speed for problems with ignition
nonlinearities. This ends the proof of the min—max formula in the monostable cake.

We can give a more precise bound for the minimal speed, if in addition to the common
assumption thdtis monostable, we assume further tfiai0)s > f (s). This new assumption
is known as the KPP assumption. When there are no integral terms, then it is known that
¢* =2,/ f(0), which can be also formulated as

¢" =min {—%uz + f/(O))} :
A>0 | £
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We derive a similar formula when there is an integral term. Namely, we have

< min {} (f J()edz — 1+ f’(O))} —7.
2 \Jr

>0

There are hints that in fact there is equality in the above equation, but we were not able to
prove it. The proof relies on the same ideas: one assumes that the inequality is false then
picks a constant € (y, ¢*), finds good super and subsolutions for an ignition-type problem
and concludes with the existence and uniqueness theorem. We omit the details of the proof
and just present the construction of the super solution. A straight forward computation
shows that exponential functions are eigenfunctions of the opefato# f'(O)w :=
Jxw—w—cw + f/Ow,ie(L+ f(0)]e =hA)e).

Therefore, sincéis of KPP type,

LE™) + f(e¥)<h()e™, (6.12)

whereh(2) = [ J(2)€dz — 1 —cA+ f(0).

Now use the definitions of andc to find some/ such thath (1) <0. Then argue as
above : since there exists a supersolution of the monostable problem (6.%), and*,
we get a contradiction. [J
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