Propagation via Lazy Clause Generation*

Olga Ohrimenko?!, Peter J. Stuckey!, and Michael Codish?

L NICTA Victoria Research Lab, Department of Comp. Sci. and Soft. Eng.
University of Melbourne, Australia
2 Department of Computer Science, Ben-Gurion University, Israel

Abstract. Finite domain propagation solvers effectively represent the
possible values of variables by a set of choices which can be naturally
modelled as Boolean variables. In this paper we describe how to mimic a
finite domain propagation engine, by mapping propagators into clauses
in a SAT solver. This immediately results in strong nogoods for finite
domain propagation. But a naive static translation is impractical except
in limited cases. We show how to convert propagators to lazy clause
generators for a SAT solver. The resulting system introduces flexibility
in modelling since variables are modelled dually in the propagation en-
gine and the SAT solver, and we explore various approaches to the dual
modelling. We show that the resulting system solves many finite domain
problems significantly faster than other techniques.

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tack-
les hard combinatorial problems by interleaving search and restriction of the pos-
sible values of variables (propagation). The propagators that make up the core
of a finite domain propagation engine represent trade-offs between the speed of
inference of information versus the strength of the information inferred. Good
propagators represent a good trade-off at least for some problem classes. The
success of finite domain propagation in solving hard combinatorial problems
arises from these good trade-offs, and programmable search.

Propositional satisfiability (SAT) solvers are becoming remarkably powerful
and there is an increasing number of papers which propose encoding hard com-
binatorial (finite domain) problems in SAT (e.g. [20, 33]). The success of modern
SAT solvers is largely due to a combination of techniques including: watch lit-
erals, 1UIP nogoods and the VSIDS variable ordering heuristic [26].

In this paper we propose modelling combinatorial problems in SAT, not by
modelling the constraints of the problem, but by modelling/mimicking the prop-
agators used in a finite domain model of the problem. Variables are modelled in
terms of the changes in domain that occur during the execution of propagation.
We can then model the domain changing behaviour of propagators as clauses.

* This paper is an extension of results first published in [28,29].



Encoding finite domain propagation can test the limits of SAT solvers. While
modern SAT solvers can often handle problems with millions of clauses and hun-
dreds of thousands of variables, many problems are difficult to encode into SAT
without breaking these implicit limits. We propose a hybrid approach. Instead
of introducing clauses representing propagators a priori, we execute the origi-
nal (finite domain) propagators as lazy clause generators inside the SAT solver.
Propagators introduce their propagation clauses precisely when they are able
to trigger new unit propagation. The resulting hybrid combines the advantages
of SAT solving, in particular powerful and efficient nogood learning and back-
jumping, with the advantages of finite domain propagation, simple and powerful
modelling and specialized and efficient propagation of information.

Ezxample 1. Consider propagation on the constraint = + y = z where z, y and
z range over values from —1000 to 1000. In a finite domain propagation engine,
the propagator is a tiny and efficient piece of code. For example given that x
and y can take values only less than or equal to 5, the propagator determines
that z can take only values less than or equal to 10. The propagator is highly
efficient and invoked whenever the domains of x, y or z change.

Encoding this simple constraint using clauses on the Boolean variables
[v<d] where v € {z,y,2} and d € [—1000..1000] involves over 2 mil-
lion clauses, for example =[x < 5] V =y < 5] V [z < 10], and —[z < —500] V
—[y < —501]. This is a huge representation for such a simple constraint.?

In lazy clause generation, the domains of the integer variables are represented
using Boolean variables, so the Boolean variable [z < 5] represents that = can
take values only less than or equal to 5. Rather than build the representation of
the contraint statically before execution it is built lazily during search. During
search the propagator is run, and its results are converted to clauses which are
added to the SAT solver. For example when z < 5 and y < 5 the propagator
determines that z < 10, this becomes the clause =z < 5] V =y < 5] V [z < 10].
This clause is added to the SAT solver. Since during any execution many less
combinations of domains for z, y and z will occur than are actually possible,
only very few of the more than 2 million clauses will end up in the SAT solver.

The advantage of creating the clauses is that the SAT solver can then be used
to direct search using its specialized search methods, and more importantly the
SAT mechanisms for nogood learning and backjumping can be used. Moreover,
note that clauses added by a propagator are globally true and never need to be
retracted. For example, if z < 5 and y < 5 becomes untrue due to backtracking
then the propagation clause —[z < 5]V —[y < 5] V [z < 10] simple no longer fires
under unit propagation and z < 10 is no longer implied. Indeed the clause can
propagate in other ways: give x < 5 and z > 11 (equivalently -z < 10) the SAT
solver can determine that y > 6. And this is a true consequence of x + y = z.

We show that the lazy clause generation approach allows independence be-
tween the Boolean representation of integer variables and the propagators that

3 Smaller representations based on logarithmic encodings exist but they do not prop-
agate nearly as strongly.



act upon them. This representation independence leads to a new type of propa-
gation: mixing bounds representation and domain propagators. The new prop-
agator results in disjunctive propagation, where new information is created by
propagation which is disjunctive in nature, even though the propagator was not
disjunctive initially. Since the underlying SAT representation of propagation can
represent disjunctive information efficiently, it allows us to create new “disjunc-
tive propagators” from scratch.

We compare our hybrid solving approach to finite domain propagation-based
solving and static modelling and solving using SAT on a number of benchmark
problems. We show that our prototype implementation can significantly improve
on the carefully engineered SAT and finite domain propagation solvers. We also
illustrate how the separation of Boolean model of the problems from the style
of propagation can lead to improved behaviour of the hybrid approach.

The contributions of this work are:

— A formalization of propagators in terms of clauses, and the correspondence
result between using the propagators and SAT solving on the resulting
clauses;

— Design of a hybrid system for implementing propagation-based solving with
a SAT solver;

— Exploration of the modelling choices that arise from the hybrid system in-
cluding novel “disjunctive propagators” which create clauses in the SAT
solver earlier than standard propagators;

— The first system we are aware of that combines nogoods with bounds prop-
agators; and

— Experimental evidence of the significant potential of the hybrid approach.

The remainder of this paper is organized as follows. In Section 2 we give
our terminology for finite domain constraint solving and in Section 3 we give
our terminology for SAT problems and unit propagation. In Section 4 we intro-
duce atomic constraints and propagation rules as a way of understanding the
pointwise behaviour of propagators. Then in Section 5 we show how we can
represent propagators as clauses. In Section 6 we introduce the concept of lazy
clause generation, where we lazily build a clausal representation of a propaga-
tor. In Section 7 we explore some of the modelling choices that arise from the
dual viewpoint of variables as Boolean literals. In Section 8 we discuss issues in
implementing the lazy clause generation approach, and in Section 9 we show the
results of a number of experiments. We discuss related work in Section 10 and
then conclude.

2 Propagation-based Constraint Solving

We consider a typed set of variables V = V; U Vg made up of integer variables,
Vi, and sets of integers variables, Vg. We use lower case letters such as x and y
for integer variables and upper case letters such as S and T for sets of integers
variables. A domain D is a complete mapping from V to finite sets of integers,



for the variables in V;y, and to finite sets of finite sets of integers, for the variables
in Vs. We can understand a domain D as a formula Ayeyp(v € D(v)) stating for
each variable v that its value is in its domain.

Let D1 and Ds be domains and V' C V. We say that D is stronger than
Dy, written D1 C Ds, if Di(v) C Ds(v) for all v € V and that Dy and Dy are
equivalent modulo V', written D1 =y Do, if Di(v) = Dy(v) for all v € V. The
intersection of Dy and Dy, denoted D; M Dy, is the domain which maps every
v €V to Dy(v) N Da(v).

We use range notation: For integers [ and u, [ .. u] denotes the set of integers
{d | I < d < u}, while for sets of integers L and U, [L..U] denotes the set of
sets of integers {A | L C A C U}. A domain D is conver if D(T) is a range
for all T' € Vg. We restrict attention to convex domains. We assume an initial
domain D;,;; which is convex such that all domains D that occur will be stronger
ie. D E Dznzt

A waluation 6 is a mapping of integer and set variables to correspondingly
typed values, written {z1 +— d1,...,z, — d,,S1 — A1,...,Sn — An}. We
extend the valuation 6 to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation,
we define a valuation 6 to be an element of a domain D, written 6 € D, if
f(v) € D(v) for all v € vars(6).

A constraint is a restriction placed on the simultaneously allowed values for
a set of variables. We define the solutions of a constraint ¢ to be the set of
valuations 6 that make that constraint true, i.e. solns(c) = {0 | (vars(8) =
vars(c)) A (E6(c))}

We associate with every constraint ¢ a set of propagators, prop(c). A prop-
agator f € prop(c) is a monotonically decreasing function on domains that is
solution preserving for ¢. That is for all domains D C D;y;: f(D) E D and

{8 € D| 0 € solns(c)} ={0 € f(D)] 0 € solns(c)}.
This is a weak restriction since, for example, the identity mapping is a propagator
for any constraint. In this paper we restrict ourselves to set bounds propagators

that map convex domains to convex domains.

Example 2. A common propagator f for the constraint x # y is

D(v) —{d} if (v==a and D(y) = {d}) or
(v=y and D(z) = {d})
f(D)(v) =< D(v) if (v =2 and |D(y)| > 1) or
v=yand |D(z)| > 1) or

(
(v & {z,y})

Consider a domain D where D(x) = {3,4,5,6} and D(y) = {5}, then f(D)(x)
{3,4,6} and f(D)(y) = {5}

o



The output variables output(f) C V of a propagator f are the variables
changed by the propagator: v € output(f) if 3D T Dy, such that f(D)(v) #
D(v). The input variables input(f) C V of a propagator f are the variables
that can change the result of the propagator, that is the smallest subset V C V
such that for each D C Din;t and D' C Dypie: D =y D’ implies that f(D) N
D' = ,uiput(ry f(D') 11 D. Only the input variables are useful in computing the
application of the propagator to the domain.

Ezample 3. For the constraint ¢ = z1 + 1 < x5 the function f defined by
f(D)(x1) = {d € D(z1) | d < maxD(x2) — 1} and f(D)(v) = D(v),v # 1
is a propagator for c. Its output variables are {z1} and its input variables are
{z2}. Let D(z1) = {3,4,6,8} and D(z2) = {1,5}, then f(D)(z1) = {3,4} and
F(D)(@2) = {1,5}. O

A propagation solver for a set of propagators F and current domain D,
solv(F, D), repeatedly applies all the propagators in F' starting from domain D
until there is no further change in the resulting domain. solv(F, D) is the weakest
domain D’ C D which is a fixpoint (i.e. f(D’) = D’) for all f € F. In other
words, solv(F, D) returns a new domain defined by

solv(F, D) = gfp(\d.iter(F,d))(D) iter(F, D) = [ 1¢er f(D).

where gfp denotes the greatest fixpoint w.r.t C lifted to functions.

3 SAT and Unit Propagation

A proposition p is a Boolean variable from a universe of Boolean variables P.
A literal 1 is either: a proposition p, its negation —p, the false literal 1, or the
true literal T. The complement of a literal [, denoted —l, is —p if | = p or p if
[ = —p, while =1 = T and =T = L. A clause C is a disjunction of literals, which
we also treat as a set of literals. An assignment is either a partial mapping p
from P to {T, L} or the failed assignment {L}. An assignment pu is treated as
a set of literals A = {p | p(p) = T} U {-p | u(p) = L}. We define a lattice over
assignments as follows: A C A" iff A C A’ or A’ = {L}. The least upper bound
operation L is defined as ALUA" = AU A unless either: the union contains {p, —p}
for some literal p, or one of A, A" is { L}, in which case AU A" = {1}.

An assignment A satisfies a clause C if one of the literals in C appears in
A. A theory T is a set of clauses. An assignment is a solution to theory T if it
satisfies each C € T.

A SAT solver takes a theory T and determines if it has a solution. Com-
plete SAT solvers typically involve some form of the Davis-Putnam-Logemann-
Loveland algorithm [9] which combines search and propagation by recursively
fixing the value of a proposition to either T (true) or L (false) and using unit
propagation to determine the logical consequences of each decision made so far.
The unit propagation algorithm finds all unit resolutions of an assignment A
with the theory 7T'. Unit resolution of a clause C' = C’ U {l} with assignment



A, adds the literal [ to A if the negation of each of the literals in C’ occurs in
A, since this is then the only way to satisfy C' given the assignment A. Unit
propagation continuously applies unit resolution until the assignment A does
not change. It can be formally defined as follows:

_JAu{ly F,coCc=C'u{li}{l|leC'}CA
up(4,C) = {A otherwise

UP(A,T) = lip.(Aa. |_|C€T up(a, C))(A)

Ezample 4. Given the theory T = { —p1 Vpa VsV —ps V —ps, p1 V pa, paV s}
and the assignment A = {—po,p5} unit propagation on p; V ps adds p1, and on
ps V —ps adds pyg, then unit propagation with the first clause adds ps. Hence

UP(A,T) = {p1,-p2,p3,P4,D5}- 0

Modern DPLL SAT solvers combine very efficient unit propagation imple-
mented using watched literal techniques together with 1UIP nogoods and back-
jumping [26] to create very powerful solvers.

4 Atomic Constraints and Propagation Rules

Atomic constraints and propagation rules were originally devised for reasoning
about propagation redundancy [4,5]. They provide a way of describing the be-
haviour of propagators.

An atomic constraint represents the basic changes in domain that occur
during propagation. For integer variables, the atomic constraints represent the
elimination of values from an integer domain, i.e. z; < d, x; > d, x; # d or
x; = d where x; € V; and d is an integer. For set variables, the atomic constraints
represent the addition of a value to a lower bound set of integers or the removal
of a value from an upper bound set of integers, i.e. e € S; or e € S; where e
is an integer and S; € Vg. We also consider the atomic constraint false which
indicates that unsatisfiability is the direct consequence of propagation.

Define a propagation rule as C' — ¢ where C' is a conjunction of atomic con-
straints, and c is a single atomic constraint such that = C' — ¢. A propagation
rule C — ¢ defines a propagator (for which we use the same notation) in the
obvious way.

@ = oy = {17 <P} i T e m o e

In another words, C' — ¢ defines a propagator that removes values from D
based on c only when D implies C'. We can characterize an arbitrary propagator f
in terms of the propagation rules that it implements. A propagator f implements
a propagation rule C — c iff = D — C implies = f(D) — c for all D C Dy,;;.



Ezample 5. The propagator f, for constraint = # y of Example 2 implements
the following propagation rules (among many others) for D;pit(x) = Dinit(y) =
[l..u].

r=d—-y#d l<d<u
y=d—x#d l<d<u O

Many propagators are better characterized by atomic constraints using
bounds, e.g. x < d, although it is always possible to describe their behaviour
using only the atomic constraints z # d.

Ezample 6. A common propagator f for the constraint z; = x2 X 3 [23] is

f(D)(xz1) = D(x1) N[min S .. max 5]
where S = {(min D(z3)) X (min D(x3)), (min D(z2)) x (max D(z3)),
(max D(z2)) x (min D(z3)), (max D(z2)) x (max D(x3))}
f(D)(z2) = D(z2) if min D(z3) < 0 Amax D(z3) >0
D(z2) N [min S .. max S| otherwise
where S = {(min D(z1))/(min D(z3)), (min D(z1))/(max D(z3)),
(max D(z1))/(min D(z3)), (max D(x1))/(max D(z3))}

and symmetrically for z3.# Note that f does not enforce any notion of consis-
tency.

The propagator f implements the following propagation rules (among many
others) for Dim-t(xl) = Dinit(x2) = Dinit(fﬂg) = [—20 . 20]

.13222/\],‘3>3>—>$1>6
1 26A2320A23 <3 — 20 =2
$1<10A$2>6>—>$3<1
1 <10A29 29— 23 <1
To2 1Nz <1A2z32>2 —1A23<1—21<1 O

Let rules(f) be the set of all possible propagation rules implemented by f.
A set of propagation rules F' C rules(f) implements f iff solv(F, D) = f(D), for

This definition of rules(f) is usually unreasonably large, and full of redun-
dancy. For example the fourth propagation rule in Example 6 is clearly weaker
than the third. In order to reason more effectively about propagation rules for
a given propagator f, we seek a concise representation rep(f) C rules(f) that
implements f.

Ezample 7. The set of propagation rules given in Example 5 for the constraint
x # y define a minimal representation rep(f;) of the propagator f,. O

A propagation rule C' »— ¢ is directly redundant with respect to another
rule C — cif Djpiy EC' - CAe — ¢ and not Djps = C — C' A — e
A propagation rule r for propagator f is tight if it is not directly redundant
with respect to any rule in rules(f). Obviously we would prefer to only use tight
propagation rules in rep(f) if possible.

* Division by zero has to be treated carefully here, see [23] for details.



Ezample 8. Consider the reified difference inequality ¢ = z9g & 1 + 1 < 9
where Dinit(x()) = {0, 1}, Dinit(xl) = {O, 1, 2}, D,-Mt(xg) = {O, 1, 2} Then a set
of tight propagation rules rep(f) implementing the domain propagator f for c is

£L'1<0/\(E2>1>—>f£0:1 $122>—>£L’0:0
1 < 1Az 22— 29 121Nz <1 —a50=0
1 $2<0>—>.’L‘0:O
2 To=0Az1 <1 —29<1
1 ZZ?():O/\LE1§O>—>CC2§O
0 ZL'():O/\LE2>1>—>LB1>1

$0:0A$222>—>$1>2

1‘0:1>—>a)‘2

1?0=1>—>£L’1

2
l‘ozl/\l‘1>1>—>$2>
<
$0:1AI2<1>—>$1<

For constraints of the form zg < 21 + d < x2 we can build rep(f) linear in the
domain sizes of the variables involved. O

A bounds propagation rule only makes use of atomic constraints of the form
x < d, z > d and false. We can classify a propagator f as a bounds propagator
if it has a representation rep(f) which only makes use of bounds propagation
rules.

Ezample 9. The propagator in Example 8 is clearly a bounds propagator. A
bounds propagator f;, for the constraint x # y is defined by the propagation
rules for Djpi(x) = Dinit(y) = [1..u] where | < d < w:

r<dAhz>2dANy<d—y<d-—1
r<dAz>2dANy>2d—y>d+1
y<dAyzdhz<d—xz<d-—1
y<dANyzdhz>2d—x>d+ 1. O

5 Clausal Representations of Propagators

Propagators can be understood simply as a collection of propagation rules. This
gives the key insight for understanding them as conjunctions of clauses, since we
can translate propagation rules to clauses straightforwardly.

5.1 Atomic constraints and Boolean variables

Changes in domains of variables are the information recorded by a propagation
solver. For example, x = d is a change which fixes the value of x to domain value
d, and z < d is a change that restricts the value of x to be greater or equal
to domain value d. In this sense atomic constraints are the “decisions” made or
stored representing the sub-problem. In translating propagation to Boolean rea-
soning these decisions become the Boolean variables. For example, [+ = d] and
[z < d] denote Boolean variables which encode information about the possible
values of a variable & with d an element in a (finite) integer domain.

We adopt an encoding of integer domains as Booleans which is concise and
is well-matched to atomic constraints. It can be thought of as the combination



of two well-studied representations: the direct encoding (see e.g. [35]) where the
Boolean variables corresponding to integer variable z are of the form [z = d] for
each value d in the domain and clauses are added to ensure that at most one
such variable is true for a given xz; and the unary encoding (see e.g. [7,2]) where
the Boolean variables are of the form [z < d] and clauses are added to ensure
that [x < d] implies [z < d'] for all ' < d in the domain. A similar encoding
is proposed by Ansétegui and F. Manyd in [1] where it is called the regular
encoding. We encode set bounds domains as usual with Boolean variables of the
form [e € S| to represent that element e is in set S.

This choice of Boolean variables enables us to directly represent changes
to domains made by atomic constraints. We define a mapping lit of atomic
constraints to Boolean literals as follows:

lit(false) = L

th((ﬂZ # d) = _\[[ibl = d]] de Dinit(xz)

lit(x; < d) = [z; < d] min Djpie(2;) < d < max Dyt ()
lit(x; <d)=T d = max Djnit(x;)

lit(x; = d) = -Jz; <d— 1] min Dy (x;) < d < max Dipe(x;)
lit(x; 2d)=T d = min Dy, (x;)

lit(d € S;) =[d € 5] d € max D;,i(S;)

llt(d g Sz) = _||Id € SZH d € max Dimt(SZ)

where d is a value in the domain of variable z;: min Djpi(2z;) < d <
max Djnit(2;); and e € max D;ni+(S;i). Note that lit is a bijection except where
the result is T, hence it (1) is defined as long as [ # T.

There is a mapping from the domain of a variable v to an assignment on the
Boolean variables [z; < d], [x; = d], and [e € S;] defined as:

| [ Dlv) =2
assign(D,v) = {lit(c) | (v e D)) |= ¢,v € vars(c)} otherwise
{13 FveV.Dw) =92

assign(D) = U,y assign(D,v) otherwise

Ezample 10. Consider the domain D(z {1,3,4}, D(S) = [{1,2}..{1,2,4}]

) =
where Djpii(z) = [1..6] and D;pnit(S) = [@..{1,2,3,4,5}]. Since = € {1,3,4}
implies z # 2, x 2 1, 2 < 4, 2 < 5 and & < 6 then assign(D,z) =
{—[x =2],[x < 4], [x <5]}. Similarly since S € [{1,2}..{1,2,4}] implies
1 € S 2 € 5 3 ¢ S and 5 ¢ S we have assign(D,S) =
{HlGSH3H2€S}]’_'|I3€SI|’_‘[[5ES]]}'

5.2 Faithfullness of Domains

Given that we model constraint propagation in terms of Boolean variables of the
form [z; < d], [z; = d], and [e € S;], it is necessary to insure that the Boolean
representation faithfully represents possible values of an integer variable. For



example, the Boolean variables [z = 3] and [x < 2] cannot both take the value
T (true).

To maintain faithfulness for an integer variable x where Dj,;:(z) = [I..u],
we add two types of clauses: (a) for variables of the form [z < d]] we add clauses
to encode [z < d] — [z < d+ 1] (Eq 1, below); and (b) for variables of the form
[x = d] we add clauses to encode [z = d] < (Jx < d] A =]z < d —1]) (Eqgs 2-6,
below). In clause form, let DOM (x) be the following clauses:

Slze<dVzr<d+1] I<d<u-—1
Sr=dVvr<d] I<d<u
Slr=dValer<d-1] I<d<u
[x=1]V -]z <]
[r=d]V-fz<d]V[z<d-1] I<d<u
[x=u] V][r<u—-1]

The Boolean representation for set variables requires no additional clauses
for faithfulness hence we define DOM (S) = {} for a set variable S. Finally, we
define the set of clauses (for all variables): DOM = U{DOM (v) | v € V}.

The faithfulness clauses DOM (x) involve 2n Boolean variables and 4n clauses
where n is the size of the domain D, (x). In contrast, the direct encoding of
finite integer variables domains into SAT (which only involves the variables of
the form [z = d]]) enforces faithfulness either with O(n?) clauses

(Vi = d]) \ Ncay <ds<u (Sl = da] v =[x = da]) (7)

as described in [35] or takes the BDD approach described in [11] which requires
a linear number of clauses but also introduces 2n fresh variables (in addition to
the n original variables). Note that the regular encoding is linear, involves only
2n variables and has equally strong unit propagation as the quadratic encoding
of the direct approach.

Theorem 1. Let A be a set of literals on the variables [xr =d],l < d < wu.
Let T be the clauses of (7) Then UP(DOM (z),A) = {L} or UP(T,A) C
UP(DOM (z), A).

Proof. Let A’ = UP(DOM (), A). Assume A’ # {L} or we are done. The proof
is by induction over the execution of UP(T, A). Let A= A9 C A1 CAy C--- C
A, = UP(T,A) be a sequence of assignments computed by UP(T, A) where
A1 = A;U{l;} = up(A;, C;) for some I; and C; € T. Assume that A; C A’,i <
m. Consider A1 = Am U {lm} = up(Am, Cp). Suppose l,, = =[x = d] then
Cy, must be of the form -z =d] VvV -z =d'],d # d, so [x =d'] € 4,, C A"
Hence by (2) [z <d'] € A" and thus by (1) [x < d"] € A,d" > d', and by
(3) =z =d"] € A',d” > d'. Similarly by (3) -z <d —1] € A’ and thus
by (1) —[z <d'] € A,d" < d and by (2) -z =d"] € A',d" < d. Clearly
-z =d] € A’ since either d < d or d > d'.

10



Suppose l,;, = [z = d] then C,,, must be the first clause in (7) and [z = d'] €
Ay C A< d #d < u By (6) either d = v or [t <u—1] € A’, and then
by repeated use of (5) we have [z < d'] € A',d > d. By (4) either d = [ or
[z <] € A and again by repeated use of (5) we have =[xz < d'] € A',d' < d.
Finally using (5) (or (4) or (6) for the cases d =1 and d = u) we have [x =d] €
Al

A set of literals A can be converted to a domain:

%] A={L}
{d € Dinit(v) | V[c] € Awars(l) ={v}=v=dEcA
V=[] € Awars(l) = {v} = v=d E —~c}

otherwise

domain(A)(v) =

that is the domain of all values for v that are consistent with all the Boolean
variables related to v.

Ezample 11. Consider the set of literals A = { —[z =2], [z < 4]}, where
Dinit(x) =[1..6]thenxz =1z #2and z =1 | x < 2, similarly for z = 3
and x = 4, but not for x = 2, x = 5 and = = 6. Hence domain(A)(z) = {1, 3,4}.

With domain clauses DOM, unit propagation on a translated set of atomic
constraints generates all the consequences of the atomic constraints, i.e. faithfully
represents a domain.

The following lemma shows that for an assignment A, that any atomic con-
straints that are a consequence of the decisions in A appear directly in the unit
fixpoint of A with DOM.

Lemma 1. Let A’ = UP(@,AU DOM (v)). If domain(A)(v) = S # @ and
v €S Ec, then lit(c) € A'. If domain(A)(v) = @, A’ = {1}

Proof. We first consider a set variable v = T'. If domain(A)(T) = @ then either
A= {1} or A must contain [e € T and —[e € T since DOM (T') = @.

Suppose domain(A)(T) =S # @. Suppose T € S e € T, thene € (Jg.g 5.
Clearly then e € T € A otherwise we can take any element of d € S and then
d —{e} € domain(A)(T) by definition. The result for e ¢ T' is analogous.

Next we consider an integer variable v = x The proof is by cases. Let
domain(A)(x) = S # .

Suppose d € Dpit(x) — S, then € S =z # d. We show that -z = d] € A’.
Since d € Djnit(x) — S then there is a literal in A which disallows the value.
If it is (a) ~Jx =d] € A we are done; if it is (b) [x < d'] € A,d’ < d then
by unit propagation on (1) we have [xt < d—1] € A’ and then propagating
using (3) we have -z =d] € A’;if it is (¢) ~"[r <d —1] € A, d > d by
unit propagation on (1) we have =[xz < d] € A’ and then propagating using
(2) we have =[x =d] € A’; and if it is [xt =d'] € A,d # d we have either
[x<d] e A,d <dor ~xz<d —1¢€ A',d > d using the (2) or (3) and then
similar reasoning to case (b) and (c¢) applies.

11



Suppose z € S = = < d, we show that [z < d] € A’. Clearly we have
Sz =d] € A',¥d > d using the reasoning of the previous paragraph. Using
unit propagation on the (6) we have [z <u—1] € A’ and then using (5) we
have [z < d'] € A’,d’ > d. A similar argument applies if z € S = = > d forcing
fr<d -1 e, d<d

Finally suppose S = {d} and hence z € S |= x = d. Then using the pre-
vious paragraph we have [z < d] € A" and -z < d—1] € A’ and using unit
propagation on the (5) we have [z = d] € A’.

If domain(A)(x) = @&, we show that unit propagation also leads to {L}.
Either A’ = {1} and we are done or A’ # {{L}. For each d € Djn;+(x) we
have that d ¢ S, so using the argument above =[x =d] € A',d € Dini(z),
and hence using arguments above [z < d] € A’,l < d < u Then using the (4)
[x =1] V =[x < I] we have a contradiction. Hence A’ = {1}. O

The following theorem shows that give a set of atomic constraints ¢ on vari-
able v, then the domain D(v) that satisfies these constraints is isomorphic to
the result of unit propagation on the faithfulness clauses DOM and the Boolean
representation of the atomic constraints.

Theorem 2. Let C be a set of atomic constraints on variable v, and D(v) =
{d | v=d [ C} then assign(D,v) = UP(@,{lit(c) | c€ C} UDOM (v)).

Proof. Let A = UP(@,{lit(c) | ¢ € C} UDOM (v)). If C is unsatisfiable, then
assign(D)(v) = {L}. Clearly domain({lit(c) | ¢ € C},v) = @, and hence by
Lemma 1 we have A = {L1}.

Otherwise C is satisfiable, and assign(D)(v) = {lit(') | vars(c’) = {z},C |=
c'}.

We show A C assign(D)(v) by induction on the unit propagation. Clearly
the base case holds since the starting set is @. The first clauses lit(c),c € C can
only add a literal lit(c) which is in assign(D)(v). The clauses in DOM (v)) can
also add literals by unit propagation. Suppose the clauses 1 adds a literal, either
[x <d] € Aand it adds [x < d+ 1] or [z < d+ 1] € A and it adds [z < d].
In the first case since [ < d] € A C assign(D,v) we have that C' = z < d and
hence C' |= x < d+1 and the result holds. Similarly in the second case. C' = -z <
d 4+ 1 and hence C' = -z < d. Similar reasoning applies to unit propagations
arising from the clauses representing [z = d] < (Jz < d] A -[z < d —1]).

We show assign(D)(v) C A. Clearly domain({lit(c) | ¢ € C},v) = D(v).
Hence ¢’ where vars(c’) = {v},C = ¢ is such that v € D(v) = ¢’. By Lemma 1
we have that lit(c/) € A. O

Note that for the logarithmic encoding of an integer variable x as Booleans,
where Dipir(z) = [0.2F—1] is encoded as z = 2F![z>2F1 1] +
28=2[z mod 271 > 282 — 1] +... 4+ 2[x mod 4 > 1]+ [z mod 2 > 0], a sim-
ilar result to Theorem 2 is not possible since the encodings of atomic constraints
are not single literals.

12



5.3 Propagation Rules to Clauses
The translation from propagation rules to clauses is straightforward:
c(C — ¢) =Veec(mlit(d)) V lit(c)
Ezxample 12. The translation of the propagation rule:
To2 —1Nxs<1ANxg3 > —-1AN2x3<1l—21 <1

is the clause Cp = Jze < 2] V 7z < 1] V [z3 < 2] V =zs < 1] V [z1 < 1]
The advantage of the inequality literals is clear here: to define this clause using
only [z = d]] propositions for the domains given in Example 6 requires a clause
of =100 literals. O

The translation of propagation rules to clauses gives a system of clauses where
unit propagation is at least as strong as the original propagators.

Theorem 3. Let R be a set of propagation rules such that D' = solv(R, D). Let
A = UP(assign(D), DOMUJ{cl(r) | r € R}) then A = {L} or A D assign(D").

Proof. If A= {1} we are done so assume A is a set of literals. Let
D= Do, D1 = ’l’1(.D0)7 D2 = TQ(Dl), . Dn = Tn(Dn,1) = SOZU(R, D)

be a sequence of propagations of individual rules 7; € R leading to the fixpoint
D’ We show by induction on i that A D assign(D;). The base case is obvious
since A D assign(D) = assign(Dy).

Suppose that r; = c¢1 A+ A ¢y, — c. If the rule did not fire then D; = D; 4
and we are done. Otherwise the rule fired and hence D;_1 = ¢j,1 < j < m.
Hence lit(c;) € assign(D;—1). Now D; is the domain D;_; removing the values
for v that do not satisfy c.

Now —lit(c) V -+ V = lit(em) V lit(c) € cl(r;) and hence unit propagation
adds lit(c) to A.

Clearly A = UP(assign(D;—1)U{lit(c)}, DOM U|J{cl(r) | r € R}), because
assign(D) C assign(D;—1) U {lit(c)} € A. Now by Lemma 1 any ¢’ where v €
D;(v) = ¢ is such that lit(¢') € A. Hence assign(D;) C A. O

In particular if we have clauses representing all the propagators F' then unit
propagation is guaranteed to be at least as strong as finite domain propagation.

Corollary 1. Let rep(f) be a set of propagation rules implementing propagator
f. Let A = UP(assign(D), DOM UJ{cl(r) | f € F,r € rep(f)}). Then A = {L}
or A D assign(solv(F, D)). O

Ezample 13. Notice that the clausal representation may be “stronger” than the
propagator. Consider the propagator f for 1 = z2 X x3 defined in Example 6.
Then the clause Cjy defined in Example 12 is in the Boolean representation
of the propagator. Given =[xy < —2], [x2 < 1], ~[z3 < =2], ~[z1 < 1] we infer

=[xz < 1]. But given the domain D(zy) = [2..20], D(z3) = [—1..1], and
D(x3) = [—1..20] then f(D)(z3) # [2..20]. In fact the propagator f can
determine no new information. O

13



Given the Corollary above it is not difficult to see that, if it uses the same
search strategy as a propagation based solver for propagators F', a SAT solver
using clauses (J{cl(r) | f € F,r € rep(f)}) needs no more search space to find
the same solution(s).

But there is a difficulty in this approach. Typically rep(f) is extremely large.
The size of rep(f) for the propagator f for x1 = x5 x x3 of Example 6 is around
100,000 clauses. But clearly most of the clauses in rep(f) must be useless in any
computation, otherwise the propagation solver would make an enormous number
of propagation steps, and this is almost always not the case. This motivates
the fundamental idea of this paper which is to represent propagators lazily as
clauses, only adding a clause to its representation when it is able to propagate
new information.

6 Lazy Clause Generation

The key idea is, rather than a priori representing a propagator f by a set of
clauses, to execute the propagator during the SAT search and record which
propagation rules actually fired as clauses.

We execute a SAT solver over theory T' O DOM. At each fixpoint of
unit propagation we have an assignment A which corresponds to a domain
D = domain(A). We then execute (individually) each propagator f € F on
this domain obtaining a new domain D’ = f(D). We then select a set of propa-
gation rules R implemented by f such that solv(R, D) = D’ and add the clauses
{cl(r) | r € R} to the theory T in the SAT solver. In fact we add these clauses to
the SAT solver one by one because adding a single new clause may cause failure
which means the rest of the work is avoided.

Given the above discussion we modify our propagators, so that rather than
returning a new domain they return a set of propagation rules that would fire
adding new information to the domain.

Let lazy(f) be the function from domains to sets of propagation rules R C
rules(f) such that if f(D) = D’ then lazy(f)(D) = R where solv(R,D) = D',
and for each C' »— ¢ € R it is not the case that D |= ¢ (that is each rule in R
generates new information).

With the lazy version of a propagator defined we can define lazy propagation
as Algorithm 1. We repeatedly search for a propagator which is not at fixpoint
and add the clausal version of a propagation rule that will fire using the lazy
version of the propagator.

We are interested in minimal assignments that model a domain D to auto-
matically create lazy versions of propagators. Let A = UP(A, DOM (v)), then
an information equivalent assignment is any A’ where A = UP(A’, DOM (v)).
Define minassign(A,v) as the set A’ of minimal cardinality where A =
UP(A’, DOM (v)), and preferring positive equational literals, over inequality lit-
erals, over negative equational literals.

14



Algorithm 1: LAzY_PROP(A,F,T)
Input: A is an assignment, F' is a set of propagators, T is set of clauses
including DOM
Output: (A’,T’) an assignment A’ O A or {1} and a set of clauses 7" D T

1 repeat

2 A= UP(AT);

3 To :=1T;

4 D := domain(A) ;

5 for all f € F do

6 if f(D) # D then

7 let r € lazy(f)(D);
8 T:=TU{cl(r)};

9 break
10 until 7' =Ty ;
11 return (A,7T)

Example 14. The set A = {[z = 1], [z < 1], -]z > 2], ~[x = 0], -[z = 2]} is a
fixpoint of DOM (z) assuming D, (z) = [0..2]. minassign(A, z) = {[z = 1]},
since A = UP({[z = 1]}, DOM (x)).

The set A" = {[z <1],-[z=2]} is also a fixpoint of DOM (z). Here
minassign(A, ) = {[x < 1]} even though A’ = UP({-]x = 2]} is information
equivalent, because inequalities are preferred over negated equality literals. [

We can automatically create lazy(f) from f as follows. Let f(D) = D’ and
let C\, = minassign(D’,v) — assign(D,v) be the new information (propositions)
about v determined by propagating f on domain D. Then a correct set of rules
R = lazy(f)(D) is the set of propagation rules

Nveinpur(p) it ™1 (1) | U € minassign(D,v)} — lit (1)

for each v € output(f) and each l € C,

We can almost certainly do better than this. Usually a propagator is well
aware of the reasons why it discovered some new information. The following
examples illustrates how we can improve upon the default lazy version of a
propagator.

Ezample 15. Consider the propagator f for x1 = z2 X x3 defined in Example 6.
Applied to D(z1) = [—10..18], D(x2) = {3,5,6}, D(x3) = [1..3] it determines
f(D)(z1) = [3..18]. The new information is —[z; < 2]. The naive propagation
rule defined above is

12 —10ANx2y <S18Azo 23Nz #4N2o <6ANz3 =21 N23<3—x1 >3

It is easy to see from the definition of the propagator, that the bounds of z; and
the missing values in zo are irrelevant, so the propagation rule could be

.13223/\%‘2<6/\333>1/\$3<3>—>$123

15



but in fact it could also correctly simply be o > 3 A z3 > 1 — x1 > 3 but this
is not so obvious from the definition of f. The final rule is tight. O

Example 16. Consider the propagator f for zg «» x1 + 1 < x5 from Example 8
When applied to the domain D(z¢) = {0,1}, D(z1) = {1,2}, D(z2) = {0} it
determines f(D)(zo) = {0}. We can define lazy(f) to return propagation rules
in rep(f) as defined in Example 8. For this case lazy(f)(D) could return either
{x1 2 1AN22 <1— 29 =0} or {ze <0 — zo=0}. O

Given we understand the implementation of propagator f, it is usually
straightforward to see how to implement lazy(f).

Ezample 17. Let ¢ = 3" | a;x; — Y i~ 4 biz; < d be a linear constraint where
a; > 0,b; > 0. The bounds propagator f for c is defined as

a;

F(D)(x;) = D(z;) N | [E=bimax D@y +oo} ntl1<i<m

F(D)(x;) = D(z;) N —m..LMJ} 1<i<n

where S =d—3Y7"" | a;min D(z;)+ 1" ., bymax D(x;). If the bounds changes
for some z;,1 < ¢ < m, so u; = max f(D)(x;) < max D(z;) then the propagation
rule lazy(f) generates is

n m
/\ x; > min D(x;) A /\ x; < max D(x;) — z; < u;
j=1,j1 j=n+1

similarly for z;,n + 1 < i < m. Note that this is not necessarily tight. O

We claim extending a propagator f to create lazy(f) is usually straightfor-
ward. For example, Katsirelos and Bacchus [19] explain how to create lazy(f) (or
the equivalent in their terms) for the alldifferent domain propagator f by un-
derstanding the algorithm for f. For a propagator f defined by indexicals [34], we
can straightforwardly construct lazy(f) since the indexical definition illustrates
directly which atomic constraints contributed to the result. Direct constructions
of lazy(f) may not necessarily be tight. For propagators implemented using Bi-
nary Decision Diagrams we can automatically generate tight propagation rules
using BDD operations [16]. If we want to generate tight propagation rules from
arbitrary propagators f then we may need to modify the algorithm for f more
substantially to obtain lazy(f).

Ezample 18. We can make the propagation rules of Example 17 tight by weaken-
ing the bounds on some other variables. Let r = a;(u; +1)— (S —a; min D(z;))—1
be the remainder before rounding down will increase the bound. If there exists
a; < r where min D(x;) > min D;,;(z;) then we can weaken the propagation
rule replacing the atomic constraint z; > min D(z;) by z; > min D(x;) — r;
where r; = min{ Léj ymin D(z;) —min D;y;;(z;)}. This reduces the remainder r
by a;r;. Similarly if there exists b; < r. We can repeat the process until r < a;
and 7 < b; for all j. The result is tight.

16



For example given 100x; + 5025 + 1023 + 924 < 100 where Djni(x1) =
Dz’nit(xQ) = D,-Mt(xg) = Dznvt(xél) = [73 . 10] where D(Il) = D(Z‘Q) =
D(z3) = D(z4) = [0..10] then the propagation gives S = 100. The new upper
bound on 1 is u3 =1, and r = 100 x 2 — (100 — 100 x 0) — 1 = 99. The initial
propagation rule is

o 20ANx3 20Ny 20— 27 <1

We have az < r so we can decrease the coefficient of x5 by min{[22],3} = 1.
There is still a remainder of r = 99 — 1 x 50 = 49. We can reduce the coefficient
of z3 by 3 (the maximum since this takes it to the initial lower bound). This
still leaves r = 49 — 3 x 10 = 19. We can reduce the coefficient of x4 by 2, the
remainder is now 1, and less than any coefficient. The final tight propagation

rule is
To > —1NANx3 > —-3Nxy > —2—21<1 O

Regardless of the tightness of propagation rules, the lazy clause generation
approach ensures that the unit propagation that results is at least as strong as
applying the propagators themselves.

Theorem 4. Let (A,T) = LAZY_PROP(assign(D), F, DOM) then A = {1} or
A D assign(solv(F, D)).

Proof. If A = {1} we are done, so assume A # {L}. By definition of LAZY_PROP,
if D' = domain(A) then f(D’) = D’ otherwise LAZY_PROP would have added
a new propagation rule to the theory T. Hence D’ = solv(F,D’) and clearly
D’ C solv(F, D). since solv(F, D) is the largest mutual fixpoint of f € F less
than D. Thus A = assign(D’) 2 assign(solv(F, D). O

Because we only execute the propagators at a fixpoint of unit propagation,
generating a propagation rule whose right hand side gives new information means
the clause cannot previously occur. The advantage of tight propagators is that,
if the set of propagation rules R generated by lazy(f) is tight, over the lifetime
of a search it will not involve any direct redundancy.

7 Choices for Modelling in Lazy Clause Generation

Lazy clause generation combines a SAT solver with a finite domain solver. Be-
cause we have two solvers available a whole range of possibilities arise in mod-
elling a constraint problem. In this section we explore some of the modelling
possibilities that the novel solving technology of lazy clause generation allows.

7.1 Laziness and Eagerness

An important choice in the lazy clause generation approach is whether to imple-
ment a propagator lazily (which is the default) or eagerly. The eager represen-
tation of a propagator f simply adds the clauses cl(r) for all 7 € rep(f) into the

17



SAT solver before beginning the search. This clearly can improve search, since
more information is known a priori, but the size of the clausal representation
may make it inefficient.

Ezample 19. The representation of the domain propagator for disequality = # y
where Djpit(x) = Dinit(y) = [1..u] requires 2(u — [ + 1) binary clauses. Hence
it is possible to model eagerly.

The representation of the bounds propagator for x; + --- 4+ xz,, < k where
Dinit(xl) == Dinit(xn) = [O 1] has

propagation rules. Clearly it is impossible to represent this eagerly for large n
and k. 0

In practice eager representation is only useful for constraints that have small
representations.

7.2 Variable representation

The lazy clause generation approach represents variables domains of possible
values in dual manner: a Boolean assignment and a domain D on integer vari-
ables. There are a number of choices of how we can represent integer variables
in terms of Boolean variables. The default choice (full integer representation) is
described in the Section 5. We present new choices below.

Non-continuous variables We can represent an integer variable where
Dinit(x) = {dy,...,d,} where d; < d;j+1,1 < ¢ < n, and the values are non-
continuous. This requires fewer Boolean variables, and fewer domain constraints
than representing the domain [d; ..d, ]. The Boolean representation uses vari-
ables [r =d;],1<i<nand [z <d;],1<i<n.

The clauses DOM (z) required to maintain faithfulness of the Boolean as-
signment are:

e <d]V]r<dip1] 1<i<n—1 (8)
Sle=di]V[r<d] 1<i<n (9)
Slzr=d] Ve <dica] 1<i<n (10)

[z =di] vV —[z < di] (11)
[r=d]V-lz<d]V]r<dioi] 1<i<n (12)
[z =d,]V [z <dn] (13)

Bounds variables We can represent an integer variable only using the bounds
variables [z < d],l < d < u where Djp;+(x) = [l..u]. While this means we
cannot represent all possible subsets of [I..u], it has the advantage of requiring

18



fewer Boolean variables, and the domain representation requires only the clauses

(1):

Sz <dVzr<d+1] I<d<u-1

Non-continuous bounds variables We can clearly restrict the representation
of non-continuous variables to bounds only analogously, just using the Boolean
variables [r < d;] and the clauses (8).

7.3 Propagator and variable representation independence

In a usual finite domain solver we are restricted so that if we use bounds variables,
they must be restricted to only occur in bounds propagators. Indeed we can use
this observation to avoid using full integer variables for variables that only occur
in bounds propagators. In the lazy clause generation solver we can separate the
Boolean variable representation from the propagator type. This is because the
propagator works on the domains representing the variables, and this is distinct
from the Boolean representation of domains.

With this separation the propagation engine can work without knowing
whether integer variable x is a full integer, non-continuous, or bounds variable,
since the translation of assignments to domains, and from propagation rules to
clauses, completely captures the relationship between the Boolean representation
and the integer variable.

Because of this separation we can independently choose which propagator
we will use to represent a problem, without considering the Boolean variable
representation. Hence for an individual constraint we can choose any of the
propagators for that constraint.

Non-continuous variables We extend the translation of atomic constraints it
to map atomic constraints involving non-continuous variable & where D;y,;(x) =

{d1,...,dn} as follows:

. 1L d di,...,dy
lit(x =d) = ﬂxzdiﬂdigil }
. T d dy,...,dy,
lit(x # d) = ﬂ[[x:di]]diiiil '
T d>=d,
lit(x <d)=< L d<dy
[[Jigdz]] d,‘<d<di+1
T d<dy
lit(x >d) =< L d>d,

ﬁII.’L' < dz]] d; <d< di+1
Note that each atomic constraint is translated as a single literal.

Ezxample 20. Consider the translation of the propagation rules x =3 — y # 3
and & # 3 — y = 3, where D;,;(x) = {0,3,5} and Djni(y) = {1,2,4}. The

19



resulting clauses are =z = 3]V T or T (the always true clause) and Jx = 3]V L
or equivalently [z = 3]. O

Bounds variables We extend the translation of atomic constraints /it to map

atomic constraints involving bounds variable x where Dy (z) = [I..u] as fol-
lows:
[z < d] d=1
o Jlz<dA-[z<d-1],i<d<u
lit(x = d)= r<u—1] deu
L otherwise
[ < d] d=1
. Az <dlvz<d-1],l<d<u
lit(xz # d)= [z <u—1] d—u
T otherwise

The translations of z < d and x > d are as for full integer variables. Note that
these translations now no longer guarantee to return a single literal.

Clearly “Boolean integer” variables x where D;p;:(x) = [0..1] can be rep-
resented as bounds only variables without loss of expressiveness since x < 0 «
r=0<-(x=1).

We can translate any propagation rule to a conjunction of clauses by simply
applying lit as before. This creates (a possibly non-clausal) Boolean formulae
which can be transformed to conjunctive normal form.

Ezxample 21. Consider the translation of the propagation rule x = 3 — y # 3,
where z and y are bounds only variables. The resulting formula is =z < 3] V
[ <2]V[y <2]V-[y < 3], which is a clause already.

Consider the translation of the propagation rule x # 3 — y = 3. The re-
sulting formula is =([z < 2]V =]z < 3]) V (J[y < 3] A~y < 2]). The conjunctive
normal form is

e <2V Iy <3l
e <3]V [y < 3]

e <2 v-ly <2

[ < 3]V -y < 2] O

It would appear that the conversion of propagation rules including bounds
variables could lead to an exponential explosion in the number of clauses required
to represent them. By restricting the conversion of the rules to clauses which may
actually be able to cause unit propagation, in fact we can represent them with
at most 2 clauses.

Lemma 2. If domain D = domain(A) is such that D(x) = x # d where x is a
bounds only variable, then D(x) Ex >d+1 or D(z) Ex <d—1.

Proof. Now A can only include literals [z < d'] or =]z < d'] for some d’. Hence
domain(A)(z) is a range domain. If D(z) = x # d then either D(z) |z > d+1
or D(z) Fe<d—1. O

20



Define the bounds simplification bs(r) of a propagation rule r = C » ¢, for
domain D = domain(A) for some assignment A which fires the rule, as follows.
Replace each atomic constraint « # d appearing in C' where x is a bounds only
variable by either x < d — 1 or x > d + 1, whichever holds in D. The resulting
propagation rule can create at most 2 clauses.

Theorem 5. The conjunctive normal form of the clausal representation of bs(r)
involves at most 2 clauses.

Proof. Each atomic constraint appearing in the left hand side of bs(r) is trans-
lated as a single Boolean literal. The only conjunction that can occur in the
translation is if the right hand side is an atomic constraint x = d and z is a
bounds variable. The resulting CNF has two clauses. O

Ezample 22. Consider the translation of the propagation rule r = x # 3 —
y = 3 where x and y are bounds variables ranging over [0..10]. Suppose the
domain that causes it to fire is D = domain(A) where A = {[x < 1]}. Then
D(z) =[0..1] and D(z) Ex < 2 and bs(r) = 2 < 2 — y = 3. The translation
to Booleans is the formula =z < 2] V ([y < 3] A =y < 2]), which in CNF is
(=fz <2] VvV [y <3]) A (= <2] vV —y <2]). Note that the two clauses from
Example 21 that are missing could not fire in A. t

There is an important new behaviour that arises when we consider using
domain propagators on bounds variables. The result of propagation is always a
clause of a form

c(C — ¢) =Veec(=lit(d)) V lit(c),

where = lit(¢’) are all false in the current assignment and lit(c) is either undefined
or false in the current assignment. Previously lit(c) was always a single literal,
hence we could guarantee unit propagation would apply, and set lit(c) to true.
Now there is a possibility that lit(c) is itself a disjunction and unit propagation
will not apply.

Example 23. Consider the execution of the domain propagation for = # y
(Example 2) where z and y are bounds variables on the assignment A =
{[x <3],~[x < 2]}. Then in the corresponding domain(A)(x) = {3} and the
propagation rule x = 3 — y # 3 fires. The resulting clause is =[x < 3]V[z < 2]V
[y < 3]V [y < 2]. No unit propagation is possible using A and this new clause.

In fact the domain propagator for x # y applied to bounds variables x and
y generates exactly the same clauses as the bounds propagator, but it generates
them earlier! O

7.4 Disjunctive propagators

The discussion of the end of the last subsection motivates examining a new
possibility. Propagation rules are designed so that the result of the propagation

21



is a single atomic constraint, which can then be represented immediately as a
change in domain. Given that we will convert the propagation rules to clauses
in any case we can extend them to allow disjunction on the right hand side. A
disjunctive propagation rule has the form ¢y A --- A ¢y = Cug1 Voo V Cngme-
The translation to clauses is clear cl(c;i A -+ Acp — Cpp1 V oo+ V Cppm) =
S lit(er) V-V = lit(en) Vlit(cng1) Voo - V lit(Cpym ). Presently we restrict our
implementation to only support disjunctive propagation rules with at most two
literals on the right hand side.

Ezample 24. Consider the constraint |z —y| > k for constant & > 0. The bounds
propagator for this constraint has representation given by the propagation rules:
(where I + k> u —k)

rzlhNz<unNy<Il+k—-1—y<u—=Fk
zz2lhNz<uhNyzu—k+1—y=l+k
y2lANy<uhx<Il+k—1—ax<u—k
y2lANy<uhzz2u—k+1—ax>l+k

A more eager version of this propagator fires when the range on one variable is
small enough to guarantee some (disjunctive) constraints on the other variable.
It is defined by the disjunctive propagation rules: (where [ + k > u — k)

r2iNc<u—y>2l+kvVy<u—=~k
y2lANy<u—x>2l+kvVe<u—~k O

Disjunctive propagators can be seen as a more eager form of lazy clause
generation.

We shall see in the next section that disjunctive propagators (including those
resulting from domain propagation on bounds variables) do complicate things
considerably, principally becuase we are not guaranteed that they will cause unit
propagation when they are added to the SAT solver.

8 Building a Lazy Clause Generator System

The creation of a practical lazy clause generation solver involves many more
considerations than were addressed in Section 6. To build the system we add a
cut down propagation engine into a SAT solver and modify it as a lazy clause
generator.

The SAT solver applies unit propagation, and when it reaches a fixpoint it
calls the propagation engine. The new literals set by the SAT solver are con-
verted into domain changes in the propagation solver, and these “events” queue
up propagators for execution. Fach Boolean literal in the SAT solver actually
corresponds to a different event in a propagation engine: [z < d] and [e € T
corresponds to lower bound change events, -]z < d] and —[e € T] correspond
to upper bound change events, [z = d]] corresponds to a variable fixing event,
and =[xz = d] corresponds to a domain change event.

22



The first propagator in the queue is then executed. If it causes propagation,
then the clausal representation of the first propagation rule that fires is added
to the SAT solver and unit propagation is applied. When the SAT solver finishes
we re-execute the same propagator (which is still at the head of the queue) to
search for another firing propagation rule. When there are no more firing rules
the propagator is removed from the queue and the next propagator considered.
The reason we add clauses as soon as possible is to detect failure as soon as
possible. Unit propagations may schedule (or re-schedule) propagators. The
process continues until the propagation queue is empty and unit propagation is
at fixpoint. At this point the SAT solver makes a decision about a literal to set
true and search continues.

On failure the propagation queue is cleared, and the SAT solver backtracks up
the trail of decided and inferred literals. For each canceled Boolean literal [ which
is removed from the current assignment, we undo the change of atomic constraint
lit (1) to the domain D. Note that since all individual domain changes are
reflected in Boolean literals this is sufficient.

Ezample 25. Suppose [z < 5] was inferred at an earlier point in execution so
max D(z) = 5. Then suppose [z < 2] is inferred. In forward execution we will
modify max D(z) = 2, but unit propagation will also infer [z < 3] and [z < 4].
On backtracking we walk up the trail of decided and inferred variables. When
we unset [z < 4] we reset max D(z) = 5, and then when unsetting [z < 3] and
[x < 2] we do not change it further. O

A subtle point we have not addressed is why we do not worry about a propa-
gator creating duplicates of clauses corresponding to its propagation rules, par-
ticularly since we can execute the propagator repeatedly simply to create all the
propagation rules that fire for one domain. The reason is that since a propagator
f is only run at domain D = domain(A) for an assignment A which is a unit
propagation fixpoint, then if ¢l(r) is already in the SAT solver then r cannot fire
on domain D (it has no new information).

Ezample 26. Consider the propagation of the constraint z = y with Dy, (x) =
Dinit(y) = [0..4]. After the SAT solver sets =z = 2] and —[y = 3] the first
propagation rule that fires is * # 2 — y # 2. This is added as the clause
[x = 2] V—[y = 2] and propagated to set =]y = 2]. Returning to the propagation
engine, the propagator for x = y is still at the head of the queue. The original
propagation rule no longer fires since y # 2 is not new information. Hence the
next propagation rule y # 3 — x # 3 is considered. O

When we extend lazy clause generation to allow domain propagators on
bounds variables, or more generally disjunctive propagators the considerations
above fail to hold. The reason is that the resulting newly added clauses may
not cause unit propagation with the current assignment. Hence we can add the
clauses multiple times.

This requires two modifications to the approach. First disjunctive propa-
gators at the head of the queue must store an index of the propagation rule

23



processed last, and clear this index every time the propagator queue is cleared.
This is to avoid them regenerating the same propagation rule when they are
still the head of the queue. Secondly, before adding a clause corresponding to a
disjunctive propagation rule we need to check that it is not already in the SAT
solver.

We could build a separate data structure to record which clauses have been
sent to the solver. To avoid the complexity and space required to do this we re-
use existing data structures in the SAT solver. The following approach relies on
the restriction that the right hand side of a disjunctive propagation rule has at
most two literals. This is clearly the case for all disjunctive propagators resulting
from domain propagation on bounds variables.

Suppose a disjunctive propagation rule C — c¢; V ¢ already has its corre-
sponding clause Cl in the SAT solver. All literals in the clause except lit(cy)
and lit(c2) must be false in the current assignment, otherwise the propagation
rule would not fire. The SAT solver keeps track of at least two literals in each
clause which are not false, the so-called watched literals, in order to detect unit
propagations. Hence lit(c;) and lit(ce) must be the watched literals for Cl. To
check if Cl appears in the SAT solver already, we check all clauses where lit(cy)
is a watched literal (the SAT solver provides this data structure), and see if one
is identical to CI. This check is reasonably expensive, but much cheaper than
looking at all clauses involving lit(cy) since it will be the watched literal in few
of them.

9 Experiments

We have built a prototype lazy clause generator system using MiniSat [25] version
2.0 beta as the starting point. We now give the results of a number of different
experiments using lazy clause generation. We also compare various modelling
choices for lazy clause generation on some problems. We use 3 letter codes to de-
fine a modelling choice: the first letter indicates (e)ager or (1)azy modelling; the
second letter indicates (f)ull integer representation, (n)on-continuous represen-
tation, (b)ounds representation, and n(o)n-continuous bounds representation;
and the third letter represents (b)ounds or (d)omain propagators. Note that
for the eager approach with bounds variable representation the clauses for the
bounds and domain propagators are exactly the same, and thus we write eb(bd)
to denote ebb and ebd. We compare our approach versus eager approaches us-
ing the MiniSat [25] version 2.0 beta as the SAT solver, and versus the Gecode
1.3.1 [14] finite domain propagation system.

The open-shop scheduling experiments were run on a 3GHz Intel Pentium
D with 4Gb RAM running Debian Linux 3.1, while the remaining experiments
were run on a 3.4GHz Intel Pentium D with 4Gb RAM running Debian Linux 4.

9.1 Open Shop Scheduling Problems

The first set of experiments use open-shop scheduling problems from [8]. Each
of the constraints in these problems is of the form xy V z3, 1 +d < x5 or

24



To & T1 +d < x9 where d is a constant. These problems are also amenable
to solving using SAT modulo difference logic. All of the propagators we use are
tight bounds propagators so we only use Boolean variables of the form [z < d]
and the first class of clause for DOM (z). We use eager models for the first two
kinds of constraints x; V x2, £1 + d < 2 since they only require a linear in
domain size number of binary clauses to model. We use lazy propagators for the
reified difference inequalities g < 21 +d < z2 .

We compare our lazy clause generation approach versus the eager modelling
approach where we used the minimal clausal representations generated by [33].
The eager models are run with MiniSat version 2.0 beta as the SAT solver.
For open-shop scheduling problems we do not compare against Gecode, because
without very sophisticated encodings and search strategies [21], they are not
competitive on these problems, since they lack nogoods. Instead we compare
against the Barcelogic DPLL(T) SAT modulo theories (SMT) solver version 1.1
using its difference logic theory solver [13], since these problems fall into the class
of difference logic problems which can be handled by this solver very efficiently.

These scheduling problems are optimization problems. we search for the min-
imal makespan (completion time for all jobs). The minimization is conducted by
dichotomic search over the space of possible makespans, see [33] for details. We
note that dichotomic optimization search is in a sense advantageous to the eager
modelling approach since it generates clauses once which are effectively used in
solving multiple (linked) satisfaction sub-problems.

Since these are large suites of benchmarks, we show summary results as well
as a few individual instances to illustrate the spread of results. In each table we
show the user time to find and prove the optimal solution for: the lazy approach
Ibb, the eager approach ebb (and just the time spent in the SAT solver for
the eager approach sat), and the SMT approach smt. We also give the number
of conflicts for each approach, and the average and minimum, across all sub-
problems in the dichotomic search, of the ratio of clauses for the eager approach
divided by the total created by the lazy approach.

The open-shop scheduling suite gp shown in Table 1 is easy for all approaches.
For these problems ebb spends most of its time just generating the clauses. While
clearly smt requires more search to find the solution, given the tiny description
of the problem for smt it is very rapid. Note that some of these problems were
only closed in 2005 [21], so they are not considered easy for technologies without
nogoods. Indeed tackling gp06-* problems in Gecode fails to find a solution
within 5 minutes.

The open-shop scheduling suite tai shown in Table 2 is more difficult. As the
problem size grows the advantage of the lazy and eager approaches grows over
the SMT approach. The search space explored by the lazy approach is around
twice that of the eager approach, but it is still uniformly faster. Note also that
the larger the example the smaller the percentage of clauses generated by the
lazy approach.

The open-shop scheduling suite j shown in Table 3 is much harder. The three
hardest problems j7-per0-0, j8-per0-1, and j8-per10-2 which were closed

25



Table 1. Open shop scheduling suite gp (80 instances)

Benchmark Time(sec) Conflict number|Clause ratio

Ibb ebb sat smt|lbb ebb smt| ave min
gp04-09 0.38 6.84 1.310.17| 32 21 39| 5.15 5.15
gp05-01 1.41 2732 6.53 0.27| 39 19 61| 5.67 5.67
gp08-09 5.09 136.62 32.25 0.86/129 53 121{ 9.05 9.05
gpl10-07 16.25 347.60 99.30 9.53|622 622 1400(11.05  10.97
gpl0-10 21.68 410.34 115.79 7.80{995 857 1371/10.85  10.82
Arith. mean | 6.04 113.46 30.05 2.59|311 242 492| 7.43 7.40
Geom. mean | 2.49 47.43 11.14 0.59|100 48 94| 7.03 7.02

Table 2. Open shop scheduling suite tai (60 instances)

Benchmark Time(sec) Conflict number |Clause ratio

Ibb ebb  sat smt| lbb ebb smt| ave min
tai_5x5_1 042 464 1.08 095 887 774 1679| 6.33 5.563
tai_Tx7_6 16.23  23.75 10.37 452.15|12722 4397 264167| 7.38 5.38

tai_-10x10-1 7.52 78.76 18.65 674.99| 3614 1599 108764(12.90  10.63
tai-10x10_10 | 3.80 79.32 17.97 33.34| 1431 2675 7848|13.21 12.66
tai_20x20-4 (269.89 1361.31 369.42 601.35{11247 3782 39831|26.23  24.42
tai-20x20_8 [424.78 1420.77 428.60 6035.09[56092 15891 345876|24.42  20.51
Arith. mean | 62.42 317.95 88.39 631.78| 6611 3597 43231|13.17 12.03
Geom. mean | 4.02 4247 9.98 21.12| 1783 1231 5565/11.20 10.14

recently [33] are examined separately. The lazy approach is better than the eager
approach except for j7-per10-2, and better than SMT on the larger problems.
To save experimental time for the three hardest problems we only try to find a
solution with optimal makespan (a single sub-problem) (dichotomic search for
the largest problem takes over 2 days for ebb). Surprisingly ebb improves on
Ibb for two of these problems, showing that having all the clause information
from the beginning can be advantageous. The main extra cost appears to be the
size of nogoods generated.

Overall, 1Ibb solves faster than ebb except for j7-per0-0, j8-per10-2 and
j7-per10-2. Across the suites it is an order of magnitude faster in geometric
mean. While it requires more search than ebb, the massive reduction in clauses
pays off. The lowest clause ratio that occurs in any instance is 3.46. Overall 1bb
generally improves upon smt the harder the examples become.

9.2 Crypt-Arithmetic Problems

The next set of problems are crypt-arithmetic problems like the famous:
SEND+MORE=MONEY problem where each letter represents a different digit
and the equation has to hold. They involve large linear equations and a sin-
gle alldifferent constraint. For none of these problems could the eager ap-
proach ([33]) generate the clauses within hours.

26



Table 3. Open shop scheduling suite j (4843 instances)

Benchmark Time(sec) Conflict number |Cl. ratio

Ibb  ebb sat  smt Ibb ebb smt|ave min
j3-per0-2 0.29 4.02 0.89 0.15 57 20 31(3.46 3.46
j6-per0-0 500.68 703.66 638.23 277.67| 158117 137911 212512(6.22 5.35
j7-perl0-1 2545 84.75 36.84 47.83 8967 5019  23478|8.23 7.75
j7-perl0-2 1451.79 1437.52 1379.42 3136.69| 303011 250942 1625354(6.90 5.04
j8-per20-0 19.02 104.56 36.57 552.40 5493 3138 186300(9.36 8.55

Arith. mean | 113.48 252.97 226.08 298.71| 25430 29877 110525/6.51 6.21
Geom. mean 3.19  29.37 8.96 2.66 780 559 937(6.30 6.04
j7-per0-0-sat 8443 5246 5210 11470| 991907 533852 4328222|3.92 3.92

j8-per0-1-sat | 19031 34322 34246 324131828054 1452649 8539727|5.90 5.90
j8-perl0-2-sat| 2205 1395 1322  3846| 209822 160075 1316112|5.52 5.52

All the models use bounds propagators for the large linear equation, while the
third code letter represents the style of propagator used for the alldifferent.
The lazy clause generation approach uses an alldifferent propagator equivalent
to propagation on a set of independent disequations (z7 # x2) using either do-
main propagators or bounds propagation for the disequations, while Gecode uses
its native distinct propagator. All solvers look for all solutions. We compare
Ifd, 1bd and lbb using VSIDS search and first fail search versus Gecode using
first fail search.

We compare the approaches on the well known alpha problem and instances
taken from [30]. We show the instances from [30] which require more than 1000
conflicts/failure for some solver and search. A full description of the problems
can be found at [12].

The results are shown in Table 4 and Table 5. Clearly the flexibility of us-
ing domain propagators on a bounds representation can be beneficial since 1bd
outperforms Ifd, but the best lazy approach is simply using bounds propaga-
tion. Clearly nogoods can significantly reduce the search for these problems.
The highly engineered Gecode solver propagates much faster than our naive
propagation engine, and there is not enough search here to really benefit from
nogoods. Interestingly here is a case where VSIDS search is bettered by a more
usual CP style search, although admittedly the problems are easy.

9.3 Quasigroup Completion Problems

A n x n latin square is a square of values z;;,1 < 7,7 < n where each num-
ber [1..n] appears exactly once in each row and column. It is represented by
constraints
alldifferent([zi1,..., 2], 1 <i<n
alldifferent([z1;,...,Zn], 1 <j<n

The quasigroup completion problem (QCP) is a latin square problem where
some of the z;; are given. These are challenging problems which exhibit phase

27



Table 4. Crypt-arithmetic problems: user-time

Benchmark VSIDS first fail
enehmar r{ Tbd 1bb|| Ifd Ibd Ibb gecode
alpha 0.02 0.01 0.001][ 0.01 0.01 0.01 0.001

problem0 0.62 0.30 0.34|] 0.39 0.28 0.32 0.04
problem1 0.17 0.17 0.25|| 0.11 0.10 0.11 0.02
problem2 0.16 0.18 0.15|| 0.18 0.18 0.15 0.03
problem3 1.120.79 0.69|| 0.13 0.15 0.14 0.02
problem4 0.03 0.03 0.05(|0.001 0.001 0.01 0.001
problem6 0.37 0.30 0.36|| 0.19 0.20 0.17 0.02
problem34 ]0.25 0.34 0.03|| 0.18 0.001 0.001  0.001
problem57 ]0.12 0.11 0.72{/0.001 0.03 0.03 0.001
problem63 |0.61 0.31 0.10{| 0.03 0.02 0.02 0.01
Arith mean [0.38 0.35 0.32] 0.11 0.07 0.07 0.01
Geom mean (0.24 0.20 0.16]| 0.05 0.04 0.03 0.01

transition behaviour. We use examples from the 2006 Constraint Satisfaction
Solver Competition [6], and some larger examples generated by the 1sencode [22]
generator. Again the propagators for the alldifferent constraint are equivalent
to propagation on a set of independent disequations (x; # x2) using either
domain propagators or bounds propagators for the disequations. We compare
against Gecode using distinct with first fail search.

Tables 6 and 7 compare the user time and amount of search for finding
the first solution of quasigroup completion problems of size 15 x 15 for various
modelling possibilities. For eager modelling the time for constructing the clausal
representation is included, it is either 0.01 or 0.02 seconds. The benchmarks 0-9
are satisfiable while 10-14 are unsatisfiable.

We can see that nogoods are really effective in these problems in reducing
search. While Gecode is much more efficient in propagation, for hard examples
the reduction in search space is so dramatic that it cannot compete. The eager
approaches are best for these examples, while the 1fd combination is the best lazy
approach. This is interesting as the bounds propagation is worse than domain
propagation for the lazy approach, but better for the eager approach.

Table 8 shows the results on 25 x 25 QCP problems in order to see the trend
for modelling choices as size increases. These problems are hard for Gecode,
taking hours to complete. In 8 out of 15 instances 1fd improves upon the eager
approach efd, and overall it solves the whole suite faster. Even though QCP
problems are small (the cost of eager clause generation is less than 0.10 seconds)
the lazy approach avoids the overhead of examining many useless clauses, and
hence starts outperforming the eager approach as the problem size grows. In-
terestingly eb(bd) is still better than the lazy approach 1fd for these problems,
even though the lazy bounds representations are poorer than lfd. Examining
the novel combination 1bd where it has the same search as 1fd it is substantially

28



Table 5. Crypt-arithmetic problems: conflicts

Benchmark VSIDS first fail
enchma [fd 1bd 1bb|| Ifd Ibd Ibb gecode
alpha A1 47 51| 34 36 34 33

problem0 10025 6535 7201(|6743 6280 7213 8213
problem1 3718 4203 6213|2579 2479 2746 4008
problem2 3559 4274 4150|3986 3998 3519 6204
problem3 15137 13124 12089(|2511 2647 2543 2560

problem4 725 789 1396| 182 195 183 181
problem6 6271 6335 7898|3444 3533 3439 3737
problem34 4861 7616  789|13999 200 164 62

problemb57 2647 2950 12287|| 112 529 535 337
problem63 9122 7330 2737|| 604 488 468 427
Arith mean | 6077 6200 6195([2035 1592 1507 1691
Geom mean | 4275 4265 4058|1089 899 815 825

faster, but usually the search space is bigger, and even bigger than the weaker
Ibb strangely.

In order to further view the trends as the problem size increased we generated
problems of size 35 x 35 with 600 holes [12] using the lsencode [22] problem
generator. Results are presented in Table 9, where all problems are satisfiable.
We can see that now Ifd is the best method overall, significantly beating the
eager version efd, and just better than the eager bounds version eb(bd). For
these larger problems lbd now improves upon lbb and actually gives the best
results for 5 out of 20 instances. With a better implementation of duplicate
checking it might be quite competitive.

This shows that it may well be the case that lazy propagation is worthwhile
even for problems where an eager encoding is quite good. One should remember
that there are very few constraints in the propagation engine, QCP n xn requires
only 2n alldifferent constraints.

9.4 CELAR Radio Link Frequency Assignment Problems

The CELAR Radio Link Frequency Assignment Problems [3] consist of a set of
radio frequencies and a set of radio links to assign a frequency to each radio
link. Some pairs of radio links must be an exact distance apart in frequency,
while other should be at least some distance apart. We use the first 5 problems
(where all constraints are mutually satisfiable) while minimizing the maximum
frequency used. The set of possible frequencies F' is non-continuous:

{2+ 1401 <i <11} U {24 1418 < i < 28}
U{8 + 14|29 < i < 30} U {8 + 14i[46 < i < 56},

using only 44 values in the range [16..792] of 777 possible values. So these
problems are candidates for the non-continuous representation. We model the

29



Table 6. QCP 15 x 15 instances: user time

Time(sec)
efd|eb(bd)| 1fd|1bd|1lbb|/gecode
qcp-15-120-0_ext |0.03 0.02|0.03/0.14/|0.02 0.02
qcp-15-120-1_ext [0.03 0.04/0.06|0.22|0.04 0.08
qcp-15-120-2_ext [0.06 0.02{0.05(0.16/0.03|| 454.53
qcp-15-120-3_ext |0.03 0.04/0.14/0.26/0.03 0.19
qcp-15-120-4_ext [0.18 0.02{0.02|0.33|0.22 5.50
qcp-15-120-5_ext |0.13 0.09]0.21]0.62(0.15|| 117.08
qcp-15-120-6_ext |0.02 0.02|0.01|0.17|0.04 38.01
qcp-15-120-7_ext |0.10 0.13]0.29/|0.24/|0.39 1.28
qcp-15-120-8_ext |0.04 0.10{0.04|0.18|0.06 6.70
qcp-15-120-9_ext |0.06 0.14/0.24|0.27|0.07|| 1685.44
qcp-15-120-10-_ext|0.04 0.04]0.04/0.20{0.04| 1044.80
qcp-15-120-11_ext(0.01 0.05|0.01/0.32|0.05 47.64
qcp-15-120-12_ext|0.01 0.01]0.02|0.04|0.01|] 862.29
qcp-15-120-13_ext|0.14 0.30{0.17]|0.21{0.46|| 179.18
qcp-15-120-14_ext(0.01 0.01/0.01/0.01|0.12([2034.72
Arith mean 0.08 0.07]0.09|0.22]0.12|| 431.83
Geom mean 0.06 0.04/0.05(0.17|0.07|| 24.67

Benchmark

problem using bounds propagators for |z — y| > k (see Example 24), and model
|x—y| = k using the bounds propagators for the individual constraints |[x—y| > k,
r—y<kandy—z<k.

We compare the full integer representation, non-continuous representation,
bounds representation, and non-continuous bounds representation. For the full
integer representation we statically add constraints —[z = d],d € [16..792] — F
to the SAT solver, while for the (continuous) bounds representation we statically
add the constraints —[z < d;] V [x < d;11] where d; and d;;1 are consecutive
values in F'. We also compare with Gecode using reified constraints to represent
lx—ylzkase—y=2kVy—z >k

The results for the various modelling choices are shown for: user time in Ta-
ble 10, failures in Table 11, and unit propagation executed in Table 12. Clearly
the non-continuous representations are significantly better than the continuous
representations, they involve around 20x fewer variables. The failure results
show that it is not the results of a better search because there are fewer Boolean
variables to branch on, instead it is simply the overhead of more unit propaga-
tions to deal with the larger number of variables.

This clearly shows the benefit of separation of propagator implementation
from variable representation. The propagator is highly effective on the non-
continuous Boolean representations without being modified.

Interestingly for these problems the disjunctive propagator explained in Ex-
ample 24 does not improve upon the bounds propagator.

30



Table 7. QCP 15 x 15 instances: conflicts/failures

Benchmark Conflicts/Failures
efd|eb(bd)| 1fd| Ibd| Ibb|| gecode
qcp-15-120-0_ext | 369 174| 151|1437| 148 301

qcp-15-120-1_ext | 312 635 522|2113| 211 2717
qcp-15-120-2_ext (1214 455| 599|1886| 468(|15994711
qcp-15-120-3_ext | 470 767(1319(2961| 223 6195
qcp-15-120-4_ext |2823 156 88|3870|2595|| 196310
qcp-15-120-5_ext (1995 1354|1964|6106{1520|| 3892358
qcp-15-120-6_ext | 271 148| 59|1615| 326{| 1334910
qcp-15-120-7_ext 1259  2091|2440(2569|3942 43141
qcp-15-120-8_ext | 458 1771 401]2028| 715|| 226380
qcp-15-120-9_ext (1045  2199|2376|3163| 890(|59032321
qcp-15-120-10_ext| 762 805| 497|2453| 650|38584120
qcp-15-120-11_ext| 19 843| 27|3529| 382|| 1619456

qcp-15-120-12_ext| 49 85| 164| 556 97|[32919163
qcp-15-120-13_ext|2172|  4437|1578|2349|5077| 6364807
qcp-15-120-14_ext| 26 45| 42| 157|2041||74004918
Arith mean 883 1064| 815|2453|1286|(15614787
Geom mean 422 546| 359(1928| 673|| 814626

9.5 Lazy Clauses as Nogoods

The lazy clause generation approach adds clauses representing the propagators
to the SAT solver permanently, so they can never be removed. But since we
continually run the propagation engine, this is not necessary. If we removed
them later they would be rediscovered by the propagation engine, if needed.
It seems worthwhile then to consider treating these added clauses like nogood
clauses, which are added and then later removed when they seem not be useful.

The final experiment checks if giving lazy clauses as nogoods could improve
an overall performance of our solver, i.e. leaving it to a SAT solver to decide
which lazy clauses to keep. We changed our implementation slightly to give a
lazy clause as follows. We do not add a conflict clause to the clause store of the
SAT solver but simply give it as a reason for a conflict. A clause with an implied
literal is added as a learnt clause.

We compared either keeping clauses from propagators as permanent clauses
or as nogoods on the gp and tai open-shop scheduling suites using lbb and
QCP 25 x 25 suite using 1fd. The relative performance of the version with lazy
clauses treated as nogoods is shown in Table 13. The table illustrates that it is
not beneficial to keep lazy clauses as nogoods, and doing so always increased the
search and the number of clauses generated.

Note that we only used MiniSATs default strategy for nogood management,
which may not be suited to the lazy clause generation, so this should probably be
more deeply investigated Clearly if the size of the lazy clauses generates becomes
prohibitive for some problems the cost of using nogoods to store lazy clauses is
not prohibitive in any case.

31



Table 8. QCP 25 x 25

Time(sec) Conflicts (’000)
efd eb(bd) Ifd 1bd Ibb| efd eb(bd) 1fd lbd Ibb
qcp-25-264-0_ext [114.07  65.56 149.88 85.89 34.81| 212 117159 174 98
qcp-25-264-1_ext [832.31 108.37 99.84 374.77 258.95|1037 178 119 626 608
qcp-25-264-2_ext | 15.40 44.40 12.25 47.34 41.34| 44 99 29 125 146
qcp-25-264-3_ext [542.61 273.36 442.57 532.47 471.86| 814 393 399 892 1123
qcp-25-264-4_ext [265.00 268.84 24.87 418.33 65.55| 417 405 42 760 193
qcp-25-264-5_ext [108.60 146.36 341.25 158.62 311.52| 210 256 325 345 790
qcp-25-264-6_ext [255.60 185.53 130.06 127.91 67.32| 397 282161 273 185
qcp-25-264-7_ext | 35.36 1.52 34.07 78.26 94.09| 84 9.6 60 178 238
qcp-25-264-8_ext 9.52 48.36 81.10 171.35 137.44| 30 96 102 352 360
qcp-25-264-9_ext | 27.80 153.52 286.20 710.96 49.41| 70 261 291 1301 155
qcp-25-264-10_ext| 30.92 125.67 165.77 346.78 415.15| 76 226 182 709 1058
qcp-25-264-11_ext| 0.14 0.06 0.10 0.17 0.05| 0.2 0.2 0.3 0.7 0.2
qcp-25-264-12_ext| 0.23 0.21 0.24 032 0.16] 1.6 3121 28 1.3
qcp-25-264-13_ext| 0.36 029 034 0.34 0.69] 4.1 4139 31 6.0
qcp-25-264-14_ext(107.82  131.88 175.01 176.97 58.41| 192 208 170 352 168
Arith mean 156.38 103.60 129.57 215.37 133.78| 239 169 136 406 342
Geom mean 26.40 23.75 30.31 53.07 30.74| 64 61 53 137 100

Benchmark

10 Related Work

The paper [33] explains how to eagerly encode linear arithmetic constraints into
CNF (to give tight clauses) using the propositions [z < d]. They closed three
very hard open-shop scheduling problems using their eager approach, but the
approach is manifestly impractical when the linear constraint involves a sig-
nificant number of variables. Our lazy approach makes the encoding of linear
arithmetic possible for large linear constraints, and allows encoding of arbitrary
propagators.

Gent [15] describes how to encode arc consistency in SAT using the sup-
port encoding [17]. This is tantamount to encoding the propagation rules of an
arc consistency algorithm. Gent [15] shows that the support encoding is more
efficient than the usual direct encoding of binary CSPs to SAT. Again the ap-
proach, which is analogous to that of [33], is completely impractical for large
arity constraints.

The closest related work to this paper is the hybrid BDD and SAT bounds
propagation set solver described in [16]. There a BDD-based set solver and a
SAT solver are integrated and the BDD set solver passes clauses describing its
propagations to the SAT solver in order to make use of the nogood capabilities of
the SAT solver. Using BDD propagators, the construction of tight propagation
rules can be automatic. Here we extend the approach beyond set variables to
support integer variables, eliminate the propagation solver by embedding the
minimal amount of machinery required into the SAT solver.

32



Table 9. QCP 35 x 35

Time(sec) Conflicts (’000)
efd eb(bd) 1fd lbd 1bb| efd eb(bd) 1fd lbd 1bb
qcp35-600-0 (4299 474 741 202 1612|2326 436 642 388 1390
qcp35-600-1 | 919 1323 226 204 231| 653 797 286 293 437
qcp35-600-2 | 164 424 283 107 136] 392 628 403 290 388
qcp35-600-3 (1976 309 1641 1316 433|1132 288 904 1075 471
qcp35-600-4 | 954 451 23 214 639| 783 431 94 410 752

Benchmark

qcp35-600-5 {1514 51431 446 2589|1256 30 809 868 2155
qcp35-600-6 {1850 1584 654 1868 129(1709 901 524 1259 227
qcp35-600-7 | 100 97 7714413 299| 227 260 813 3275 557
qcp35-600-8 56 144 184 200 91| 142 248 210 365 181
qcp35-600-9 | 125 70 19 179 1380| 366 250 85 5201214

qcp35-600-10{1932 1167 782 917 288(1609 761 779 844 796
qcp35-600-11| 168 2744 79 97 687| 286 1242 189 230 989
qcp35-600-12| 770 130 912 478 1665 628 235 719 1145 1613

qcp35-600-13| 439 20 237 374 409| 473 55 278 565 467
qcp35-600-14| 156 1446 724 1562 2907| 344 1128 532 1333 2914
qcp35-600-15|3883 33 582 86 655|1563 69 644 317 761

qcp35-600-16| 817 1775 342 126 846| 570 965 352 334 853
qcp35-600-17| 233 784 1322 50 547| 339 716 773 167 693
qcp35-600-18| 19 216 2122 1398 429 80 365 1599 2002 560
qcp35-600-19|2084 200 114 1047 12|1123 314 1811075 57
Arith mean (1123 670 660 764 799| 800 506 541 838 874
Geom mean | 506 277 373 376 448| 578 353 421 617 638

There is a substantial body of work on look back methods in constraint
satisfaction (see e.g. [10], chapter 6), but there was little evidence until recently
of success for look back methods that combine with propagation. The work
of Katsirelos and Bacchus [18] showed that one could use nogood technology
derived from SAT for storing and managing nogoods in a CSP system using FC-
CBJ. In further work [19] they consider how to generate explanations (which are
effectively clauses) of propagation for a number of global constraints, in order to
support nogoods in a CP solver. They consider the usual DIMACS encoding of
integers {[x = d]} and hence do not consider bounds propagation.

Roussel [31] gave a linear encoding of domains (not including inequality lit-
erals) which has the same unit propagation strength as our new encoding, but
requires more variables and literals.

The lazy propagation approach can be viewed as a special form of Satisfi-
ability Modulo Theories [27] solver, where each propagator is considered as a
separate theory, and theory propagation is used to learn clauses.

There are other propagation solvers which allow different representation of
integers, in particular Minion [24] and Gecode [14]. All representations either
support all atomic constraints or are restricted in the propagators they can
be used. The views approach of Gecode [32] allows variables defined by simple
constraints to be seen as mappings from atomic constraint to atomic constraints,

33



Table 10. CELAR problems: user time

Prob User Time(sec)

Ifb| Inb| Ibb|lob|/gecode
scen01(285.22(13.67|104.65(9.37|| > 400
scen02| 2.03| 0.16] 0.86/0.11]] > 400
scen03| 39.90| 3.16| 20.06/2.19|| > 400
scen04| 2.17| 0.16] 0.88]0.10 0.46
scen05| 2.25| 0.17] 0.96{0.10 0.34

Table 11. CELAR problems: Conflicts/Failures

Prob Conflicts/Failures

Ifb| Inb| 1bb| lob||gecode
scen01|5036(4542(4160|4247 —
scen02| 202| 127| 180| 261 —
scen03|3039(2380(2667|2553 —
scen04 7 6 2 1 31
scen05| 17| 22| 36| 24 74

and hence has some similarity with the mapping idea of this paper. For example
a variable y = x 4 3 effectively rewrites atomic constraint like z > 4 toy > 6
and vice versa. It would be useful to include views in the lazy clause generation
solver, since it reduces the number of Boolean variables required.

11 Conclusion

In conclusion, we have constructed a hybrid SAT finite domain propagation
solver using lazy clause generation that captures some of the advantages of both
paradigms. It can tackle hard scheduling problems efficiently without complex
search strategies. Where large amounts of search are required we expect it to be
more effective than propagation based solvers because it includes nogoods and
conflict directed backjumping. We have examined the modelling choices that
arise from the lazy clause generation hybrid solving approach. We find that the
separation of choice of propagator from Boolean variable representation leads
to an increased number of modelling choices. The direct representation of non-
continuous variables is clearly advantageous, and there is some evidence that
the use of disjunctive propagators (domain propagators for bounds variables)
can improve upon other modelling approaches. It also appears there sometimes
even if an eager model is quite small, as in QCP, it still may be preferable to
use a lazy propagation approach. But we have only really scratched the surface
of the possibilities of the lazy approach.

34



Table 12. CELAR problems: unit propagations

Unit Propagations

Prob Ifb Inb Ibb|  lob
scen01|177561515|13081789(133403108(7133763
scen02| 1969516 183084 1732660 112612
scen03| 43087573| 3608960| 38598246(1918102
scen04 628192 36289 304949 17368
scen05 901257 65516 1375927| 47145

Table 13. Treating lazy clauses as nogoods

Suite ‘ Time‘Conﬂicts‘Lazy Clauses

gp +11.2%| +4.9% +65.7%
tai +43.4%| +26.7% +53.5%
qcp-25(+20.5%| +20.5% +3.6%

References

1.

10.
11.

C. Ansétegui and F. Manyd. Mapping problems with finite-domain variables into
problems with Boolean variables. In Proceedings of the Seventh International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’04), volume 3542
of LNCS, pages 1-15, 2004.

. O. Bailleux and Y. Boufkhad. Efficient CNF encoding of Boolean cardinality

constraints. In F. Rossi, editor, Proceedings of the 9th International Conference
on Principles and Practice of Constraint Programming (CP2003), volume 2833 of
LNCS, pages 108-122, 2003.

. B. Cabon, S. de Givrey, L. Lobjois, T. Schiex, and L.P. Warners. Radio link

frequency assignment. Constraints, 4(1):78-89, 1999.

. C.W. Choi, J.H.M. Lee, and P. J. Stuckey. Propagation redundancy in redundant

modelling. In F. Rossi, editor, Proceedings of the Ninth International Conference
on Principles and Practices of Constraint Programming (CP2003), volume 2833 of
LNCS, pages 229243, 2003.

. C.W. Choi, J.HM. Lee, and P.J. Stuckey. Removing propagation redundant

constraints in redundant modeling. ACM Transactions on Computational Logic,
8(4):article 23, 2007.

. CSP competition 2006. http://cpai.ucc.ie/06/Competition.html. [Accessed

Jun07].

. J. Crawford and A. Baker. Experimental results on the application of satisfiability

algorithms to scheduling problems. In Proceedings of the 12th National Conference
on Artificial Intelligence (AAAI’94), pages 1092-1097, 1994.

. CSP2SAT. http://bach.istc.kobe-u.ac.jp/csp2sat/. [Dec06].
. M. Davis, G. Logemman, and D. Loveland. A machine program for theorem prov-

ing. Communications of the ACM, 5(7):394-397, 1962.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

N. Eén and N. Sorensson. Translating pseudo-Boolean constraints into SAT. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 2:1-26, 2006.

35



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

Benchmarks for Lazy Clause Generation. http://www.cs.mu.oz.au/ olgao/
benchmarks.htm. [Accessed Dec07].

Barcelogic for SMT. www.lsi.upc.es/"oliveras/bclt-main.html. [Accessed
Feb07].

GECODE. www.gecode.org. [Accessed Feb07].

Tan P. Gent. Arc consistency in SAT. In Proceedings of the 15th Eureopean Con-
ference on Artificial Intelligence, ECAI’2002, Lyon, France, July 2002, pages 121—
125, 2002.

P. Hawkins and P.J. Stuckey. A hybrid BDD and SAT finite domain constraint
solver. In P. Van Hentenryck, editor, Proceedings of the Practical Applications of
Declarative Programming (PADL’06), volume 3819 of LNCS, pages 103-117, 2006.
S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45:275-286, 1990.

G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In
F. Rossi, editor, Proceedings of the 9th International Conference on Principles
and Practice of Constraint Programming (CP2008), volume 2833 of LNCS, pages
873877, 2003.

G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In The Twentieth
National Conference on Artificial Intelligence (AAAI’05), pages 390-396, 2005.
H.A. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI’92), pages 359-363, 1992.
P. Laborie. Complete MCS-based search: Application to resource constrained
project scheduling. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI’05), pages 181-186, 2005.

Lsencode. http://www.cs.cornell.edu/gomes/SOFT/1lsencode-vl.1.tar.Z/.
[Accessed Nov07].

K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

Minion. minion.sourceforge.net. [Accessed Feb07].

MiniSat. www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/. [Accessed
Dec06].

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of 38th Conference on Design Automation
(DAC’01), pages 530-535, 2001.

R. Niewenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract DPLL
modulo theories. In Proceedings of the 11th International Conference on Logic
for Programming Artificial Intelligence and Reasoning (LPAR’04), volume 3452 of
LNAI, pages 36-50, 2004.

O. Ohrimenko and P.J. Stuckey. Modelling for lazy clause generation. In J. Har-
land and P. Manyem, editors, Proceedings of the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS 2008), volume 77 of CRPIT, pages 27-38,
2008.

O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation = lazy clause genera-
tion. In C. Bessiere, editor, Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming, volume 4741 of LNCS, pages
544-558, 2007.

Cryptarithmetic puzzles. http://www.tkcs-collins.com/truman/alphamet/
alphamet.shtml. [Accessed Dec07].

O. Roussel. Some notes on the implementation of csp2sat+zchaff, a sim- ple trans-
lator from CSP to SAT. In Proceedings of the 2nd International Workshop on
Constraint Propagation and Implementation, pages 83—88. 2005.

36



32

33.

34.

35.

C. Schulte and G. Tack. Views and iterators for generic constraint implementations.
In Peter van Beek, editor, Proceedings of the 11th International Conference on
Principles and Practice of Constraint Programming (CP 2005), volume 3709 of
Lecture Notes in Computer Science, pages 817-821, 2005.

N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP
to SAT. In F. Benhamou, editor, Proceedings of 12th International Conference
on Principles and Practice of Constraint Programming (CP2006), volume 4204 of
LNCS, pages 590-603, 2006.

P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and
evaluation of the constraint language cc(FD). Journal of Logic Programming, 37(1—
3):139-164, 1998.

T. Walsh. SAT v CSP. In Rina Dechter, editor, Proceedings of 6th International
Conference on Principles and Practice of Constraint Programming (CP2000), vol-
ume 1894 of LNCS, pages 441-456, 2000.

37



