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In view of a recent interest in the quantum field-theoretical creation of particles in a 

big-bang universe (which, via the problem how their vacuum state should be defined, will 

be connected with their propagators whose structure depends also on that of the universe), 

our previous formulae for bi-scalar Green's functions corresponding to a massless scalar 

neld in the radiation- and matter-dominated stages of the Friedmann universe with flat 

3-space are extended in a classical level. One is to derive the formulae for a massive scalar 

field in the same universe, and another lies in deriving the ones applicable to the respective 

stages of a closed universe with spherical topology. As an application, we discuss a mass

less scalar field (e.g., photons or gravitons defined suitably) and its physical property in the 

cases where its source distribution is spatially uniform and where that is of a delta-singularity. 

It is shown that the energy-momentum tensor in the first case is formally the same as that for 

a perfect fluid whose sound velocity relative to the light velocity is unity, while the tensor in 

the second case leads naturally to Robertson's formula for the apparent luminosity of a 

receding galaxy. The behavior of photons or gravitons generated from a turbulent medium 

in an early universe is also dealt with. 

§ 1. Introduction 

As shown by De Witt and Brehme,t> the propagation of any massless scalar 

•or vector wave in a curved space-time is different from that in the Minkowski 

space-time, because the relevant Green's function does not generally vanish inside 

the light cone. However, even in the simplest case of an isotropic expanding 

universe with flat 3-space, their procedure for deriving the Green's function is 

practically infeasible owing to the difficulty in fiinding out required expression for 

a time-like or space-like geodesic interval in the universe. The infeasibility is more 

serious in the case of an isotropic expanding universe with closed 3-space, because 

of its topological nature. In spite of this, by another procedure, one of the authors 

(H.N.) and Kimura•a> derived the hi-scalar Green's function in the Friedmann 

universe with flat 3-space, and the one in a closed universe was later dealt with2d> 

to study the problem of Mach's principle in the Brans-Dicke cosmology. 3> 

Now, the hi-scalar Green's function stemmed from our investigation (on the basis 

of Arnowitt, Deser and Misner's canonical formalism4> to general relativity) of the 

quantum nature of gravitons (whose constituent field is a massless scalar field 
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Propagators for a Scalar Field 1117 

extracted suitably from the transverse-traceless part of the metric tensor) in the 

background Friedmann universe. After that, Parker5> studied the quantization of 

a massive scalar or spinor field in any isotropic expanding universe with flat 3-

space by laying emphasis on a possibility of particle creation in the universe. On 

the other hand, Zel'dovich and Starobinski6> studied the particle creation in the 

Kasner universe (adopted as representing an early, highly anisotropic and vacuum 

stage of the universe) to see how the reaction of the produced particles leads to 

isotropization of the universe. Related works are now going on in various aspects/> 

e.g., Parker and Fulling's work on the avoidance of initial singularity of the big

bang universe via a quantum theoretical violation of the energy conditions entering 

into the singularity theorems. 8> 

On the other hand, it is well-known that vanous propagators play a singni

ficant role in the usual quantum field theory. Contrary to this, there are almost no 

mention about the propagators in the above works. Clutton-Brock9J has recently 

referred to them in his work on the homogenization of an early universe via 

quantum effect of hadrons, but those propagators have implicitly been assumed to 

be of the same structure as the ones in the Minkowski space-time, in contradiction 

to De\Vitt and Brehme's result. 1> Such a disregard of the propagators will mainly 

be due to the situation that the vacuum state cannot be defined uniquely in the 

cosmological space-time/c> which leads to the violation of the well-known relation 

between the vacuum expectation value of field operators and the related propagator 

In the usual quantum field theory. 

In spite of the above situation, it will be useful to study how the mass term 

111 the Lagrangian density and the topological nature of a background universe 

have influence upon the structure of the bi-scalar Green's functions derived pre

viously. Such a work and the related one (to be made in the next paper) in 

the case of an anisotropic universe may be an inevitable step necessary to look 

into the problem how those Green's functions can be connected with the concept 

of vacuum state, in relation to which the particle creation in the respective uni

verses should be discussed. 

In § 2, after summarizing the dynamical behavior of the Friedmann universes 

with flat, open and closed 3-spaces, the Lagrangian approach to a massless or mas

sive scalar field in these universes is dealt with. In § 3 general formulae for 

various Green's functions of the scalar field are given in a heuristic manner. 

Sections 4 and 5 are devoted to the derivation of those bi-scalar functions in the 

universe with flat 3-space and in the one with closed 3-space, respectively. In 

§ 6, as an application of the Green's functions thus derived, a massless scalar 

field generated from two kinds of sources, i.e., the spatially uniform distribution of 

sources and the point source, is dealt with. In § 7 what property has the scalar 

field obtained in § 6 is made clear, by examining its energy-momentum tensor. 

In § 8 the behavior of photons or gravitons to be generated from a turbulent 

medium in an early universe is discussed. 
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1118 H. Nariai and K. Tanabe 

§ 2. Lagrangian formalism of a scalar field in the Friedmann universes 

As is well-known, the metric for an isotropic universe is of the form 

with 

l dx2 + sin2xdQ2, 

du 2 = r a(3dxadx(J = dx 2 + -ldQ2, 

'dx2+ sh2xdQ2, 

(s=1) ) 

(8=;=0) i 
(c:= -1)} 

(2 ·1) 

(2·2) 

where d.sd 2=d02 + sin2Bdqi, and (- g) 112 = a 4 (r;) / 112 with / 112= {det(ra/3)r12 = (sin2x, x", 
sh2x) sin e. Moreover, the cosmic time t is defined by 

dt=a(r;)dr;. (2·3) 

If we denote the background density and pressure of the universe by p and p, re

spectively, we have p=a- 4 or a- 3 according as its substratum is dominated by 

radiation (p/p=1/3) or matter (pjp=O). Then the temporal behavior of the 

scale factor a (r;) is given as follows. 

(i) The stage dominated by radiation: 

( a= a0 sin r; , 

J a=aor;, 

l a= ao sh r;, 

where a 0 is positive constant. 

t = a0 (1 -cos r;), 

t = t a0 1J2
, 

t = a 0 ( ch r; - 1) , 

(ii) The stage dominated by matter: 

(8 = 1) 

(8=0) 

(8=-1) 

ia=a1 (1-cOSYJ), t=a1 (YJ-sinYJ), (s=1) 

a=ta1YJ 2, t=ia1r; 3, (8=0) 

, a=a1 (chij-1), t=a1 (slq-r;), (8= -1) 

(2·4) 

(2·5) 

where a 1 is a pos1t1ve constant different from a 0 ; these parameters can be settled 

by various astronomical observations. While the spatial part of the universes with 

c: = 0 and -1 is infinite, the universe with 8 = 1 has a closed 3-space, so that we 

shall henceforth assume that it has a spherical topology, i.e., (r;, x, {}, q;) = (r;, X 

+2i7, e, q;). 

Lagrangian formalism for a scalar field 

Let us take the Lagrangian density of a scalar field ~with mass m m the 

universe under consideration as follows: 

(2· 6) *) 

*> The system of units such as c=h= l is used. 
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Propagators for a Scalar Field 1119 

vvhere R-gij Rij is the scalar curvature and A= 1 or 0 according as we postulate 

the conformal invariance (when rn=0) 6) of L or not. 5l [It will be useful to 

point out that, if we extract a massless scalar field from a-'(r;)g~~/v2'al or 

a- 1 (r;)il"T 2bl (g~~ and Aar stand for the transverse-traceless part of the metric 

perturbation oga;J and the transverse part of the electro-magnetic potential ila) in 

the universe with 2 = 0, these scalar fields obey the above L with rn = 0 in the 

cases ).=0 (for gravitons) and J-=1 (for photons), respectively.] For simplicity 

and owing to the situation that R = 0 at least in the radiation dominated stage of 

the universes, let us temporarily consider the case ). = 0. Then there arises the 

following field equation: 

(0 -m2)¢=a- 2 { -i'J~'-2(a' /a)i'J.+P'-rn'a')¢=0, 

where P'=T- 112 Da(T 112 T"fli)~) and a'=dajdr;. 

The energy-momentum tensor of the scalar field is given by 

TJ _ ( -g)-112 {"'. _a£ __ 0J L} =-~, ·¢'j _I_ aJ(¢ ¢·k _]_ Jn'-"') 
> 'f',t () (¢,;) > 'f',r 2 ' ,k 1 'f' ' 

(2·7) 

(2·8) 

vvhere ¢·i-gij¢,j· By virtue of Eq. (2·7), it follows from Eq. (2·8) that 

TL= (0¢-m'¢)¢;,i=O (2· 9) 

showing the conservation of T/. 
At this stage, we shall mainly be concerned with the Friedmann universe 

with spherical 3-space and the one with flat 3-space, the latter of which may be 

expressed more conveniently by Cartesian coordinates x = (x, y, z) or r a~= o afJ· 

To so he Eq. (2 · 7), let us put 

¢=a-l(r;) sjk(f7)Cik·xdk' 

¢=a- 1 ('7) :Z: fn(f7)"}3~(Y.)_ 
n,l,m Slll X 

(e =0) 

plm (cos fJ) ( c~s ) mrp , 
Slll 

(c: = 1) (2·10) 

where P,m is the associated Legendre function and Bnl is Infeld and Schild's 

function 2dl obeying the differential equation 

(2·11) 

m which we must have n=1,2,3, ... and l=0,1,2,· .. , (n-1) for the adopted 

topology. On inserting Eq. (1·10) into Eq. (2 · 7), we obtain 

f {d'/dl+k'+ (m'-R/6)a'}fk=O, 

l {d'/dr/+n'+ (m'-R/6)a'}fn=O, 

(e = 0) 

(e = 1) 
(2 ·12) 

where R=6a-'(a" /a+c) is the scalar curvature; the R-dependent terms disappear 

if we adopt }, = 1 (in place of ). = 0) in Eq. (2 · 6). Here let !us denote two par

ticular solutions of Eq. (2 ·12) for fk or fn by (ak, bk) or (an, b,J as follows: 
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1120 H. Nariai and K. Tanabe 

{ 
ap(1}) =1, 

bp(1J)=O, 

a/ (1}) = 0,} 
at -· 

b/(1])=1 1}-"f/*, 
(2 ·13) 

where p = k or n, and 1}* stands for a special epoch. Then, by the use of Eq. 

(2 ·12), it is easily seen that 

av(1J)b/(1J) -a/(1J)bv(1J) =1 at any epoch. (2·14) 

Remark The counterparts of Eqs. (2 ·10) and (2 ·11) in the universe with 

s = -1 are obtained from those when e = 1 by replacing sin X and l:n with sh X and 

J;; dn, respectively. 

§ 3. General formulae for various Green's functions 

For simplicity, let us denote two eventsinanyFriedmannuniverseby x=(IJ, 

x) and x'=(IJ',x'), so that x in the case c:=1 is an abbreviation of (x,O,cp). 

Then we can define the following 2-point function G(x; x') = -G(x'; x) satisfying 

the homogeneous wave equation (2 · 7): 

111 the case c:=O (where r=x-x'), and 

G (x; x') =- _!___ {a (·Q) a (1]')} -l I: n sin_ (nu)__ {an (1}) bn (1]') -an (1]') bn (1})} 
(2n.Y n sm u 

(3 ·1· 2) 

1n the case e = 1 (where cos u=cos X cos x' +sin X sin x' cos@ and cos @=cos 6 cos 0' 

+sin e sin 0' cos ( 9- cp')), which satisfy the boundary conditions 

(3·2·1) 

and 

{ 
G(x· x') =0 l 

(c:=1): ' ' . at 1J=1J 1
• 

fJ"G(x; x') = -a- 2 (1]) {Y(x, x')}- 112o(x, x') J 
(3. 2. 2) 

In Eq. (3·2·2), r(x,x')={r(x)r(x')} 112 and the 3-dimensional delta function is 

.defined by2dl 

o (x, x') = (2n)- 2 {Y (x, x') }1/ 2 I: n sin. (nu )__ . (3. 3) 
n Sln U 

After the above preparation, let us further introduce the following two-point 

functions: 

lGret(x;x') = -6(1j-1j 1 )G(x;x'), 

Gadv(x; x') =6(1} 1 -lj)G(x; x'), 

G(x; x') =t{Gret(x; x') +Gadv(x; x')}, 

(3-4) 
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Propagators for a Scalar Field 1121 

where O(r;-r;')=1-6(r;'-'lJ) is the step function. By makinguseofEqs. (3·1) 

~ (3 · 3), vve can verify that any one of the three quantities defined by Eq. (3 · 4). 

e.g., Gret (x; x'), satisfies the inhomogeneous wave equation 

(0- m') Gret (x; x') = - {g (x, x')} -- 11204 (x, x'), (3. 5) 

,,-here g(x,x')={g(x)g(x')} 112 ={a(r;)a(r;')}"Y(x,x') (r=1 if c=O) 1s a bi-scalar 

density introduced by De Witt and Brehme1l and 04 (x, x') = o('lJ -r;') o (x -x') or 

o ( 'lJ- 'lJ') o (x. x') stands for the 4-dimensional delta function. Since the right-hand 

side of Eq. (3·5) is a bi-scalar of the required singularity and (0 -m 2 ) on the 

left-hand side is the covariant Klein-Gordon operator, we may call Gret (.:r; x'), 

Gactv(x; x') and G(x; x') bi-scalar retarcled, advanced and symmetric Green's func

tions, respectively, because of their proper surviving regions. 

In what follows, let us rewrite G(x;x'), Gret(x;x'), Gactv(x;x') and G(x: 

x') for a massless (m=O) field as D(x;x'), Dret(x;x'), Dactv(x;x') and D(x. 

x'), respectively. Then it is easily seen that the formulae (3·1) for G(x; x') 

are formally equivalent to their counterparts'al,,d> for D(x; x'). 

Remark The expression for G(x; x') in the universe with c = -1 is obtained 

from Eq. (3·1·2) by replacing sin(nu)/sinu and .En with sh(nu)/shu and j''(;dn,. 

respectively, where 

ch u=ch X ch x'- sh X sh x' cos@. 

§ 4. The hi-scalar function G (x; x') in the universe with c = 0 

By making use of Eqs. (2 · 4) and (2 · 5), we can reduce the first of Eq" 

(2 -12) to 

and 

(p/p= 0): {d'/dr;'+ k' -2 (1- ,\) /r;'+ (t ma1)2r; 4} ( ak) = 0, 
bk 

(4 ·1) 

(4 -2) 

where ak and bk should satisfy the initial conditions (2 ·13), and }. in Eq. ( 4 · 2) 

is the parameter appearing in Eq. (2 · 6). 

(1) The case of a massless (m=O) field: 

In this case, it is an easy matter to solve Eqs. (4·1) and (4·2) without any 

approximation. A substitution of the solutions in Eq. (3-1-1) for D(x;x') in 

place of G (x; x') and the subsequent dk-integration lead to 

(p/p=1/3): D(x;x') = _z(f) {a('lJ)a('lJ')}-1 o(ifl- 1) 

4n r 
(4· 3) 

and 
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1122 H. Nariai and K. Tanabe 

(p/p=O): D(x;x') = _e(f) {a(77)a(77 ')}-l{o(!f!-r) 
4rr r 

(4·4) 

as already shown,"a1 where e(~) =()(~) -6( -f) and f=77-77'. 

(2) The case of a massive field: 

In this case, it is very difficult to solve exactly Eq s. ( 4 ·1) and ( 4 · 2) because 

·of the coupling between m and a(77), except when k=O. If k=O in particular, 

we can solve these equations in the form of 77112Z114 (!ma0772 ) and 77312Z,(ma1773/6) 

(v2 = (5- 8Jc) /36), respectively. Then, for instance, we have 

-Jv4(cz') Yv4(cz)}, 

where c=!ma077* 2 and z=(rJ/77*) 2
, z'-(77'/77*r. 

(4· 5) 

However, the temporal variation of mass terms m Eqs. ( 4 ·1) and ( 4 · 2) is 

rather slow, so that it will be permissible to perform the following approximation: 

After solving these equations by regarding m 2a 2 (77) as m 2 and deriving from Eq. 

(3 ·1·1) the expression for G (x; x') (the first step), we recover the mass-increasing 

effect by replacing m appearing in G(x; x') thus derived with 11 (77, 77') =m {a (77) · 

a(77')} 112 (the second step). For illustration, we shall consider only the radiation 

dominated stage. Then, as the first-step solution, we have 

( 4 ° 6) 

and, therefore, 

(p/p=1/3): G(x; x') = _e(n {a(77)a(77 ')}-l{o(if!-r) 
4rr r 

(4 ° 7) 

where k0 =(k"+m2 ) 112 , ~-77-77', z=(e-r2 ) 112 and J 1 is the Bessel function of 

the first order. (The above G(x; x') is very similar to that in the Minkowski 

space-time, except for the appearance of the time-dependent factor {a ( 77) a (-r;')} -J 

and the situation that the light cone is represented by I 77- 77'1 = r, but not It- t'l 
=r.) The second-step solution is easily obtained, so its expression is omitted. It 

would not be useless to point out that, when A= 0, the counterpart of Eq. ( 4 · 7) 

in the matter dominated stage has tvvo terms (with opposite signs) stuv-iving in 

the time-like region specified by I 77-77'1 >r. 

§ 5. The hi-scalar function D (x; x') in the spherical universe 

The counterparts of Eqs. (4·1) and (4·2) in the universe vvith e=1 are of 
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Propagators for a Scalar Field 1123 

the form 

(5 ·1) 

and 

where an and bn should satisfy the initial conditions (2 ·13). Of the two equations, 

the simpler one (5 ·1) is the Mathieu equation, but its solutions cannot be periodic 

because of its particular form. If we adopt the approximation mentioned in § 4, 

we can derive the counterparts of Eqs. ( 4 · 6) and ( 4 · 7) from Eqs. (5 ·1), (5 · 2) 

and (3·1·2). 

However, our main concern in this section is to examine how the spherical 

topology of the universe with c: = 1 has influence upon the structure of various 

Green's functions. Accordingly we shall confine ourselves to the derivation of 

D(x;x') for a massless field. In this case, we can solve Eqs. (5·1) and (5·2) 

without any approximation. Namely we have 

and 

(pjp=O): an('l])bn(1;') -an('l]')bn('l]) =- n(4n;_ 1) [{4n2 

+ cot('l}/2) cot('l}' /2)} sin{n ('l] -'l]')} + 2n{cot('l}/2) -cot('lJ' /2)} 

Xcos{n('l}-'l] 1)}] (if },=0). (5·4) 

On inserting these expressions into Eq. (3·1·2) for D(x;x') in place of G(x;x') 

and making use of the formulae 

l ~cos {n (~ -u)} =no(~ -u) -1/2, 

~cos {n (~ -u)} / (4n2 -1) = 1/2- (n/4) c: (~ -u) sin{(~ -u) /2}, 
n 

we arrive at 

(pjp= 1/3): D(x; x') =- 8 (~) {a(-1) a('l}') }-1 ()'1!_~1--:_~)- (5 · 5) 
4n s111 u 

and 

(pjp=O): D(x;x') = _c:i:n{a(· 1 )a(1J')}- 1 [-~~J-u)_ 
4n s111 u 

+ (1-,t)O(I~I-u) {-. sec(u(~) ---}], (5·6) 
4 S111 ( 'lJ /2) S111 ( IJ 1 /2) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

5
/4

/1
1
1
6
/1

9
1
3
3
5
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1124 H. Nariai and K. Tanabe 

where ;=r;-r;', and 1;1 =u stands for a light cone. 

As is easily seen, the above expressions for D(x; x') are reduced to the ones 

given by Eqs. (4·3) and (4·4) in the limit of (r;, r;', u) ""'0, but the difference 

betv,ceen them becomes large for other values of r;, r;' and u. Since u(x, x') defined 

by cos u=cos X cos x' +sin xsinx' cos@ is invariant under the transformations X-"X 

+ 2rr and/ or x' ->x' + 2rr, the above bi-scalar functions are also the case. 

Remark The D(x; x')-function in the open universe with s= -1 is obtained 

from Eq. (5 · 6) by replacing sin u and sec (u/2) ·with shu and sech (u/2), on the 

prescription that ch u = ch X ch z'- sh X sh x' cos 0. 

§ 6. A massless scalar field generated from two kinds of sources 

As a typical problem in which various Green's functions obtained in §§ 3"-'5· 

play a positive role, we shall consider a massless scalar field (e.g., photons or 

gravitons whose wave character is specified by ( D-R/6) or D) to be generated 

from two kinds of sources. 

(1) The case where the source distribution is spatially uniform: 

Such a source distribution may be realized in an early stage of the universe. 

For simplicity, let us assume that the early stage was dominated by radiation, 

while there is also an opposite view. 10) 

At the radiation-dominated stage (P / p = 1/3 and R = 0), the scalar field m 

question will be described by the following inhomogeneous wave equation: 

(6·1) 

where S(r;) and b(r;) stand for the uniform source-distribution (whose duration 

is specified by r;;<r;<r;1) and an effective attenuation length of the generated field, 

respectively. If the attenuation length is not very large compared ·with a(r;), the 

above equation is formally transformed into the one for a massive field with mass 

m(r;)=b- 1 (1J), 1.e., 

(6 ·1') 

For definiteness, let us further assume that m(r;) =const=m or m(r;) =j.1a- 1 (1J) (i; 

IS a dimensionless constant). This means that, in the derivation of Gret (x; x') 

=-fJ(r;-r;')G(x;x') which, together with Eqs. (3·1), permits us to obtain the 

retarded solution of Eq. (6·1'), we can make use of either Eqs. (4·1) and (5·1) 

(when m(r;) =const=m) or their modified ones (-when m(r;) =pa- 1 (1J)) in such 

a way as m 2a 2 (r;)-"f12 • On this premise, the retarded solution of Eq. (6·1') is 

given by 

¢retCr;, x) = -a-1 (r;) [n fJ(r;,-r;')a(r;')S(r;') {ac(r;)bc(r/) -ac(r;')bc(7J)}dr;', 
Jn, 

(6·2) 

where c = 0 (if £ = 0) or c = 1 (if £ = 1). The above expression shovvs that only 
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Propagators for a Scalar Field 1125 

the lmvest wave-number modes (k=O and n=1) contribute to the solution ¢retC'f/, 

x) which, by the way, depends only on r;. 

(i) The universe with s=O: 

In this universe, the expression for {a0 (r;)b0 (r;') -a0 (r;')b0 (r;)} -vvhen m('r;) =m 

1s given by Eq. (4·5). On the other hand, its counterpartwhen m('r;)=fJ.a- 1 (r;) 

1s obtained from Eq. (4·6) by putting k=O and replacing k0 with /1, 1.e., 

a 0 (r;)b0 (r;') -a0 (r;')b0 (r;) = -sin{fJ.(r;-r;')}/fJ.. 

A substitution of Eq. (6·3) into Eq. (6·2) gives 

where a(r;) =a 0r; has been used. 

(ii) The universe with c = 1: 

(6·3) 

(6·4) 

The counterpart of Eq. (6 · 3) m the spherical universe is obtained by solving 

Eq. (5·1) with n=1 and fJ. 2 in place of (ma0 )
2sin'r;, i.e., 

(6·5) 

On inserting Eq. (6 · 5) and a (r;) =a0 sin 'f/ into Eq. (6 · 2), we obtain 

(6·6) 

where ;1= (/12 + 1) uz. 

(2) The case of a point source: 

Let us consider a massless scalar field whose source is situated at x 0 = (x0 , y 0 , 

z 0 ) or (:z0 , 60 , yo) according as c = 0 or 1. The scalar field should be described by 

the following inhomogeneous wave equation: 

(0-J.R/6)¢= -a- 2 (7J) {4rrN(7J)rl2 • o ' {
o(x-x) (e=O) 

{7 (x, Xo) }-1120 (x, xo), (s = 1) } 

(6·7) 

where ~4(r;) is a given quantity ·whose physical meaning is shown in the next 

section. The retarded Green's function Dret (x; x') = - (} ( 7J- r;') D (x; x') neces

sary to soh-e Eq. (6·7) is already given, by virtue of Eqs. (4·3), (4·4), (5·5) 

and (5 · 6). However, such a point-source problem is mainly realized in a later 

and matter-dominated stage of the universe, so that we shall confine ourselves to 

the stage P / p = 0. Then we obtain the retarded solution in the following form: 

(e=O): rPret(7J, x) = (1/4rr]l12 {5_(7j-r)} [A(7j-r) 
a(7J)r 

+(1-JL)(r/7J) r~-r A(7J') {-a(r;')_}Cdr;'/7J')] 
Jo a(r;-r) 

(6·8) 
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and 

H. Nariai and K. Tanabe 

( c = 1): ¢ret (r;, x) = (1/4rrYI2 {-aj_r;=. ul} [A (r;- u) 
a(r;)smu 

+ (1- Jc) {sin (u/2)} rn-u A (r;') {· !!__Cr;]_ ··} (rl_r;:L2)_] (6. 9) 
sin(r;/2) Jo a(r;-u) sin(r;' /2) ' 

where r=lx-x01 (for c=O) and cos u=cos X cos xo+ {cos(} cos (}o+sin (}sin (}0 cos(9 

-Y?0)}sinxsinxo (for c=1). 

Now let us perform the spectral decomposition of A ( r;) as follows : 

( (1/2rr) f_00

00
dwA(w)ei"'", A*(w) =A( -w) if c=O, 

A(r;)=J 

/ (1/2rr) f:nA(n)ein", A*(n)=A(-n) if c=1, 
\ -oo 

(6 ·10) 

where A* 1s the complex conjugate of A. Then the respective factors [A(r;-r) 

+ ···] and [A(r;-u) + ···] in Eqs. (6·8) and (6·9) are transformed into 

and 

where 

(c = 1): 

l Bo (iw, ·r;) = (iwr;)- 1 - (1-e-i"'") (iwr;)- 2, 

B 1 (in, r;) = (- 4n
2
-) [ {2in sin (r; /2)} - 1 - {cos ( r; /2) - e-in"} 

4n2-1 

X {2in sin (r; /2)} - 2]. 

§ 7. Energy-momentum tensor of the scalar field obtained in § 6 

(6 ·11) 

(6 ·13) 

In this section, we shall examine the energy-momentum tensor of the scalar 

field obtained in § 6. 

(1) The case where the source distribution is spatially uniform: 

As shown by Eq. (6·2), the scalar field ¢ret(YJ,x) in this case is independent 

of x, so we shall henceforth abbreviate it as¢ ('r;). If we apply the expression for T/ 
or Eq. (2·8) to this field (by replacing Jn with m(r;) =canst or jta- 1 ('1)), it is 

easily seen that there are only two surviving components T 0° and T/= (T//3)o/. 
In other words, we can regard this scalar field as a perfect fluid whose density 

and pressure are of the form 
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Propagators for a Scalar Field 

{ 
-T 0 °=Pc~l=i{a- 2 (7J) (d¢/d7J)2 +m'(r;)c/l}, 

T/" /3=Pc~l = i{a-' (7J) (d¢/d7J)2 - m' (7J) ¢'}. 

1127 

(7 ·1) 

When m('lJ) =fJ.a-\r;), it follows from Eqs. (6·4), (6·6) and (7·1) that 

Pc¢1 = ta- 6 ('lJ) {T' ('lJ) + V' ('lJ)}, Pc¢1 = ta- 6 ('lJ) {T' (r;)- V' ('lJ)} (7 · 2) 

{ 

T (") ~ I 0 (n,-n') a (n'): ("') [a(,) coe {v c,-n')} -a' (n) ein:(v c; "')[]a"', 

V(r;)=(1-s/v'YI'a(7J) t 8(7J1 -7J')a(7J')S(r;') sin{V(7J-7J')}d7J', 

(7. 3) 

wherea(r;)=a07Jora0 sin7Jaccordingass=O or 1, and v=(fl.'+sr 1
'. IffJ.=O 

(corresponding to the case where the attenuation length b ( 'lJ) = f1.- 1a ( 'lJ) 1s m

finitely large) in particular, we have V('lJ) =0 and, therefore, 

(7 ·4) 

It is noticeable that the relation p,11 = Pc¢1 is formally identical with the one ennsag

ed by Zel'dovich in a different context.ll) 

Moreover, it follows from Eq. (7 · 4) and its counterpart for the background 

substratum, i.e., 3P=p=p*(a*/a) 4
, that 

T(7J)={Pc~l/p} 1 1'=Ka- 1 (7J) 1: 8(7J1 -r;')a'(r;')S(7J')dr;', (if fJ=O) 

(7 ·5) 

where K= (2p*a* ") - 112 is an observable quantity. The 7J-dependence of a ('lJ), i.e., 

a('lJ) =a07J or a0 sin 7J according as c=O or 1, in Eq. (7·5), has been deri,·ed without 

recourse to the existence of the perfect fluid specified by Eq. (7 · 4). In order 

that such a premise may be assured, we must have T(r;)<f(l. On the contrary, if 

there is some process \vhich leads to r ( 'lJ) ~ 1 in the relevant stage, the reaction 

effect of the fluid on the background universe must be taken into consideration. 

(2) The case of a point source: 

Let us impose the following conditions for the spectral function )\: (w) or 

)[ (n) appearing in Eq. (6 ·10): 

(7. 6·1) 

and 

(c=1): A(n)=f=O only for ,inl~1, cotu,cot'l/, lcot('lJ-u)l. (7·6·2) 

Then, from Eqs. (6·8), (6·9) and (6·11)~(6·13), we can approximately derive 

the following expressions: 
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1128 H. Nariai and K. Tanabe 

(s = 0): ( ¢,o) = (1/4nY12 {air;_-r)} (1/2n) Jo' dw(iw) ( 1 )A:Cw)eiw("-'l 
¢,a a (YJ) r -= -r,a 

(7. 7 ·1) 

and 

(s=1): (¢' 0 )=C1/4nY 12 {!!~YJ-.U2}C1/2n)I,;n(in)( 1 )A:(n)ein("-ul, 
¢,a a(YJ)smu -= -u,a 

(7. 7. 2) 

where rp(YJ, x) is an abbreviation for ¢ret(YJ, x). The above expressions for ¢.i 

satisfy the relation 

gi1¢.;¢,1 =0, (for both c:=O and 1) (7 ·8) 

because r)"Pr, ar, {J = r""u. aU, {J = 1. This means that the above ¢. i lS a null-field. A 

substitution of Eq. (7 · 8) in Eq. (2 · 8) with m = 0 gives 

(7 ·9) 

Let us introduce here two unit vectors in the YJ- and r- (or u-) directions at 

an observation event (YJ, x), i.e., 

e;=a- 1 () (1 0) e;=a- 1 () ' ' 
(O) (r) ( (0 r•") (s = 0) ) 

YJ ' ' YJ (0, u•"). (s =1) 
(7 ·10) 

Then we can define two physical components of Ti1 given by Eq. (7 · 9) as follows: 

(0) (0) 

i U -e;e1Ti1 = a- 2 (YJ) (¢,oY, 

F= -~~~jT;J= -a-2(YJ) (¢,o) ( ¢,ar'", (c:=O)) 

' ¢,au'", (e = 1) 

which specify the energy density and the energy flow, respectively. 

introduce the following quantity: 

( (1/2n) s:= (io)) A (w) eiw"dw ' (c: = 0) I 
v 1z (YJ) = 1 

l (1/2n) ~n(in)A(n)ein". (c:=1) J 

(7 ·11) 

Let us further 

(7 ·12) 

On inserting Eqs. (7 · 7) into Eq. (7 ·11) and making use of Eq. (7 ·12), we obtain 

i 
-- _!-__ (YJ- r)__ ( 0) 

4na2 (YJ) r 2 (1 + zY' 8 = 
U=F= 

L(YJ-U) 

' 4na2 (YJ) (sin uY (1 + ;)2 ' 

I 
(c: = 1) J 

(7 ·13) 

where z=a(YJ)/a(YJ-r) -1 or a(YJ)/a(YJ-u) -1 is the redshift of the radiation 

measured at ( YJ, x). It is of course that, if we replace sin u by sh u in the second 

of Eq. (7 ·13), there arises the expression applicable in the open universe with 
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Propagators for a Scalar Field 1129 

,z= -1. 

If the observer is situated at the ongm of coordinates x=O, 1ve can put 

r=u=xo in Eq. (7·13). Then we arrive at Robertson's 1vell-knovvn formula 12
l 

for the apparent luminosity l (=F) of a receding galaxy: 

_ L(r;- Xo) 
l----- - ··- ·-

4na2 (r;) o' (xo) (1 + z) 2 ' 

(7 -14) 

where o(xo)=sinx0 , Xo or shxo according as s=1,0 or -1, and 1+z=a(r;)/a(r; 

-x0). In the above formula, the quantity L(1J-xo) stands for the absolute lumino

sity of the galaxy at the emission epoch (r;-x0). 

Solving Eq. (7 ·12) with respect to A (co) or A (n) and inserting the sol uti on 

into Eq. (6 -10), we obtain 

A (r;) = r V12 (r;) dr;, (irrespective of c: = 1, o or -1) (7 -15) 

which, together with Eq. (7 ·14), gives the physical meaning of A (1!) in question. 

§ 8. The behavior of photons or gravitons generated from a turbulent 

medium in an early universe 

Similarly to case (1) in § 6, let us assume that an early universe was clominat 

ed by radiation; we shall consider only the universe with c = 0 for mathematical 

simplicity in a later discussion. If the universe was in a turbulent state, a massless 

scalar field (e.g., photons or gravitons) generated from the turbulent medium 

should obey a stochastic version of Eq. (6·1). For this purpose, we shall at 

first replace the source term by -a-'('r;)B(r;, x), where B(r;, x) is a stochast'c 

quantity which consists in general of several fundamental stochastic variables 

(whose mean-values vanish) and their derivatives. The attenuation length b(r;) 

should also be replaced by its stochastic version, but we shall adopt here b (-r;) 

=!J.- 1a(1J) used in § 6 for simplicity. Then we have 

(8·1) 

where a(r;) =a01j corresponding to P/p=l/3 and c:=O. 

The retarded Green's function Gret (x; x') = -f) ( 1J -r;') G (x; x') necessary to 

solve formally the above stochastic equation is obtained from Eq. ( 4 · 7) by replacing 

m 1vith fL Then the formal solution of Eq. (8 ·1) is of the form 

¢(r;,x) = l_ sclr_[a(r;-r)B(r;-r,x+r) -p.r ~~ a(r;-t)B(-r;-t,x+r) 
4na(r;) r Jr 

X {z- 1J 1 (!J.z) }dt], (8·2) 

where z=(t'-r') 112 , and ¢(r;,x) is an abbreviation for ¢ret(1J,x). At this stage, 

let us perform the following approximation to the second integration term: 
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1130 H. Nariai and K. Tanabe 

fJ.r{a (r;- t) B (r;- t, x+ r) h~r · {z-1JI (Jtz) h~" · f dt. (8· 3) 

Accordingly we can reduce Eq. (8 · 2) to 

Sdr 
¢(r;, x) = (1/4n) - h(r;, r; fJ.)B(r;-r, x+r), 

r 
(8·4) 

where 

(8· 5) 

Now let us assume that the turbulent field is homogeneous and isotropic 

similarly to the background universe itself, so that correlations of, say, B(r;, x)B('r;. 

x+r) and a,1B(r;, x)aPB(r;, x+r) are of the form 

{ 
( B ( r;, x) B ( r;, x + r) ) = C ( r;, r) , 

(a"B (r;, x) a"B (r;, X+ r) > = D (·r;, r)' 
(8·6) 

which are even with respect to r=l rl. Once a stochastic dynamical equation for 

B(r;, x) is given, we can determine the respective functional forms of these mean

value quantities. By making use of Eq. (8 · 6), it follows from Eq. (8 · 4) that 

(¢ (r;, x) ¢ (r;, x + r)) = (1/4nY J~' {h (r;, r'; fl.) }2C (r; -r', R) (8 · 7) 

vvith 

~ Sd" C (r; -r', R) = ;,,- C (r; -r', lr -r' + r"l) (R= lr -r'l) 

= (2n/R) roo dz rR+z C(-r;-r', x)xdx 
Jo JIR-zi 

(8·8) 

= (4n/R) ioo {(} (R -x) x+ f) (x -R) R}C (r; -r', x) xdx. 

In the derivation of Eq. (8 · 7), we have assumed that the stochastic character 

of h (r;, r; J!.) B(r; -r, x + r) in Eq. (8 · 4) refers to its (x +r) -dependence rather than 

its (r;-r)-dependence. The last form in Eq. (8·8) is a consequence of dz-integra

tion after exchanging the order of two successive integrations. 

On inserting Eq. (8 · 8) into Eq. (8 · 7) and performing a lengthy calculation, 

we obtain 

(¢(r;,x)¢(r;,x+r))= roox2dx[ecr-x) {_1:_ rr-x ydy+ roo dy 
Jo r Jo Jr-x 

- r x-y dy +(}(x-r) - ydy+ dy i r+x ( + y } { 1 ix-r ioo 

r-x 4rx x o x-r 

- -- ---- dy {h Cr;, y, J!.)} C (r; y, x). i x+r (r + X- y Y } J _ . z • _ 

x-r 4rx 
(8·9) 
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Propagators for a Scalar Field 1131 

Similarly, it follows from Eqs. (8 · 4) and (8 · 6) that 

(IJ,¢ ('lJ, x) 3,¢ (-r;, x+ r) > = ix x'dx[tl (r -x) {·. ·} + e (x -r) {·. ·} J 

X [ {h ('lJ, y; p) }'D ('lJ- y, x) + {3,/1 (·f), y; p)} .!!_ {h (·f), y; p) C ('lJ- y, x)} J, 
IJ'lj 

(8 ·10) 

where {···}'s are an abbre,·iation for the terms appearing m Eq. (8·9). If r=O 

in particular, the above expressions are reduced to 

(¢("'!), x)¢('lJ, x))= ixxdx i=dy{tl(x-y)y+O(y-x)x} {h('lj, y; p)}'C('lj-y, x) 

(8 ·11) 

and 

(3"¢("'f),x)3"¢(1J,x))= ix xdx i=dy{tl(x-y)y+tl(y-x)x} 

X [ {h('lJ, y; p)}'D("'f)-y, x) + {EJ"h('lJ, y; ,L!)} :'lJ {h('lJ, y; fJ.)C(1J-y, x)} J. 
(8 ·12) 

The last two quantities may be regarded as the counterparts of ¢'('lJ) and 

(d¢/d'lJ) 2, respectively, appearing m Eq. (7·1) with m('lJ) =tJ.a- 1 ('lJ), when the 

source distribution is turbulent. 

Moreover, it would not be useless to point out that the above procedure for 

deriving Eq. (8 · 9) may also be applied to refine our formula 13} for the intensity 

of sound generated from primordial cosmic turbulence. 
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