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Abstract 26 

1. Mothers must balance the fecundity costs of increasing offspring size with the 27 

fitness benefits of increased offspring performance and the offspring size-performance is 28 

crucial for determining this trade-off. 29 

2. While many studies have examined the offspring size-performance relationship 30 

in individual life-history stages, very few have examined the relationship between 31 

offspring size and performance across multiple life-history stages despite the ubiquity of 32 

complex life cycles and the challenge they represent to provisioning. 33 

3. We examined the offspring size-performance relationship across several life-34 

history stages in the marine invertebrate Microcosmus squamiger (Ascidiacea) and 35 

specifically asked whether selection on offspring size was consistent across the life-36 

history. 37 

4. Offspring size had effects in some life-history stages and not others: larger 38 

offspring hatched sooner as larvae and performed better as juveniles in the field. On the 39 

other hand, no effects were found in cleavage rate and larval swimming time. 40 

5. The effects of offspring size on juvenile size were remarkably persistent - 41 

juveniles that came from larger offspring were still larger than juveniles that came from 42 

smaller offspring after 11 weeks in the field. 43 

6. We found no evidence of conflicting selection pressures on offspring size 44 

among life-history stages, rather, in this species at least, selection on offspring size at 45 

both the larval and juvenile stage appeared to favour larger offspring. 46 

Keywords: fertilization, larval size, offspring performance, post-metamorphic, 47 

settlement. 48 
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Introduction 49 

The study of offspring size is a central component of life-history theory and has 50 

long fascinated evolutionary ecologists (Lack 1947; Bagenal 1969). Offspring size is 51 

remarkably variable at all levels of organisation - among species, populations, individuals 52 

and even within broods (Clarke 1993; Williams 1994; Fox & Czesak 2000; Marshall & 53 

Keough 2008a). Variation in offspring size can have fundamental consequence for 54 

population dynamics, species range expansions and evolutionary trajectories (Fox, 55 

Czesak & Fox 2001; Buckley et al. 2003; Benton et al. 2005) Interestingly, while 56 

offspring size is a shared trait between mother and offspring, selection acts largely to 57 

maximise maternal, rather than offspring fitness (Smith & Fretwell 1974). Mothers are 58 

thought of face a trade-off with regard to the size and number of offspring that they can 59 

produce - any increase in the size of offspring that mothers make must be associated with 60 

a decrease in the number they can produce (Smith et al. 1974). The fecundity cost 61 

associated with producing offspring of increased size is offset by an increase in offspring 62 

performance. Selection will favour mothers that optimise the trade-off between offspring 63 

size and number and the major determinant of this optimal balance is the relationship 64 

between offspring size and performance (Smith et al. 1974). 65 

The offspring size-performance relationship determines the fitness benefits of 66 

producing offspring of a particular size. When there is a steep relationship between 67 

offspring size and performance, selection should favour mothers that produce larger 68 

offspring because small increases in offspring investment should yield fitness returns that 69 

exceed the associated fecundity costs (Smith et al. 1974; Parker & Begon 1986). 70 

Conversely, when there is a shallow relationship, mothers will achieve higher fitness by 71 

Page 3 of 30 Functional Ecology



For Peer Review

 4 

producing smaller offspring. Thus the size of offspring that mothers make should track 72 

closely any shifts in the relationship between offspring size and performance. Indeed 73 

there are a growing number of studies that demonstrate that shifts in the offspring size-74 

performance relationship result in shifts in the size of offspring that mothers produce at a 75 

range of scales, from inter-populations down to inter-individual variation (Fox, Thakar & 76 

Mosseau 1997; Fox 2000; Hendrickx, Maelfait & Lens 2003; Maruyama, Rusuwa & 77 

Yuma 2003; Plaistow et al. 2007; Russell et al. 2007; Marshall & Keough 2008b). The 78 

tight coupling between the size of offspring that mothers produce and the offspring size-79 

performance relationship is perhaps unsurprising in some systems but those with complex 80 

life-histories, the challenge of provisioning offspring optimally is far greater. 81 

Most organisms have complex life-cycles whereby offspring pass through 82 

multiple life-history stages before reaching adulthood. If offspring size affects each of 83 

these life-history stages in different ways, then offspring provisioning becomes 84 

problematic. For example, how should mothers provision their offspring if increased 85 

offspring size positively influences performance in one life-history stage but negatively 86 

influences a later life-history stage? There is some evidence that offspring size can affect 87 

offspring performance in different ways among life-history stages: smaller offspring can 88 

be favoured during the larval stage but larger offspring are favoured during the 89 

juvenile/adult stage (Kaplan 1992; Einum, Hendry & Fleming 2002; Marshall et al. 90 

2008a). Given that different life-history stages can have different trophic requirements, 91 

can live in different habitats and can also be subject to different physiological constraints, 92 

it seems inevitable that the relationship between offspring size and performance should 93 

vary among life-history stages. If different life-history stages select for different optimal 94 
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offspring sizes, the offspring size mothers produce may be very different to that which 95 

would be predicted based on the relationship in one life-history stage alone. 96 

Alternatively, selection for different offspring sizes among life-history stages could lead 97 

to a bet-hedging strategy being favoured because mothers are unable to provision 98 

offspring optimally as the cumulative offspring size-performance relationship could be 99 

highly unpredictable (Marshall, Bonduriansky & Bussiere in press). Thus there is the 100 

potential for conflicting selection pressures on optimal offspring size among different 101 

life-history stages with interesting consequences but this potential remains relatively 102 

unexplored. 103 

Most studies of offspring size effects are restricted to single life-history stages. 104 

Most organisms have at least one mobile life-history stage rendering the estimation of the 105 

offspring size-performance relationship longitudinally across the life-history problematic. 106 

Thus, estimates of the offspring size-performance relationship across multiple life-history 107 

stages are extremely rare (but see Einum et al. 2002). The scarcity of studies that examine 108 

offspring size effects longitudinally means that we currently have little understanding of 109 

whether provisioning offspring with complex life-histories is indeed more challenging 110 

than provisioning offspring with simple life-histories. Combining the results of several 111 

studies, each of which examined a different life-history stage for a single organism might 112 

give some insight into the potential for varying selection on offspring size across life-113 

history stages. However, offspring size effects can vary dramatically among populations 114 

and even over time in the same population (Marshall et al. 2008b) and so the insight that 115 

can be gained from combining multiple studies is highly limited. Thus, we believe a 116 
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longitudinal study offspring size effects in a single population is the most informative 117 

approach. 118 

Here we examine the effects of offspring size across multiple life-history stages in 119 

a marine invertebrate, the solitary ascidian Microcosmus squamiger. Marine invertebrates 120 

represent an excellent group for the study of offspring size effects across life-history 121 

stages for a number of reasons. First, studies show that offspring size affects offspring 122 

performance across the entire life-history in this group, from fertilisation, through 123 

development, larval settlement and post-metamorphic survival, growth and even 124 

reproduction (Marshall et al. 2008a). Second, initial studies on individual life-history 125 

stages in isolation suggest that selection on offspring size among different life-history 126 

stage could indeed be in conflict (Levitan 1996; Marshall, Styan & Keough 2002). 127 

Finally, there has been long standing theoretic interest in the evolution and ecological 128 

consequences of offspring size in marine invertebrates but field studies remain relatively 129 

rare in this group. We examined the effect of offspring size on post-fertilisation 130 

development rate and larval settlement behaviour in the laboratory and we then examined 131 

post-metamorphic survival and growth of juveniles under field conditions, a crucial 132 

element when considering offspring size effects (Fox 2000). 133 

 134 

Materials and Methods 135 

 136 

Collection site 137 

All reproductively mature Microcosmus squamiger collected for this study were 138 

from boulders located at the outer pontoon of the Manly harbour (Brisbane, Queensland, 139 

Australia - 27º27’10”S, 153º11’22”E). This location is a sheltered marina protected by a 140 
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large rocky breakwater. The collections took place during low tide periods between 141 

October and December 2006. The individuals were transported in a 20 litre insulated 142 

container with seawater to the lab (travel time ~45 minutes) where they were placed in a 143 

constantly aerated tank (20 litres) with locally collected seawater kept at room 144 

temperature. 145 

Fertilization methodology 146 

We carried out all fertilizations in the laboratory at room temperature by 147 

artificially joining male and female gametes from 4 individuals following Marshall et al. 148 

(2000). To measure sperm concentration, we used a grid haemocytometer (0.0025 mm
2
 149 

quadrats) under the stereomicroscope. As maximum fertilization success for M. 150 

squamiger was found using the highest concentration (Rius, Turon & Marshall in press), 151 

we did all the experiments using the “dry” sperm concentration (between 10
7
 and

 
10

8
 152 

sperm cells/ml) (see Marshall et al. 2000). 153 

Measures of offspring size 154 

In order to detect offspring size effects at several stages (from egg to post-155 

metamorphic), we took measurements of each developmental stage by taking digital 156 

photographs with a camera attached to the dissecting microscope connected to a 157 

computer and subsequently measured the photographs using Image Pro (v. 5.1.0.12, 158 

Media Cybernetics). We first asked whether the sizes of individuals at different life 159 

history stages were correlated (i.e. do larger eggs become larger larvae? Do larger larvae 160 

become larger settlers?). To estimate the relationship between egg size and larval size, we 161 

measured individual eggs, fertilised them in vitro as described above then placed them 162 

into their Petri dishes to allow development to take place. After 14 hours, the swimming 163 
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larvae were individually photographed and measured. Most of the cleaved eggs did not 164 

develop into larvae, which resulted in very few larvae being available for measurement. 165 

In the first run, we achieved 6 successful larval measurements, while in the second run 166 

only 4 measurements. To determine if larger larvae became larger settlers we separated 167 

42 larvae using a pipette and placed each one in separate Petri dishes with filtered 168 

seawater. We then photographed and measured the individual larvae as described above. 169 

Twenty-four hours after hatching, we photographed and measured those larvae that had 170 

settled and metamorphosed (n = 22). Importantly, egg size was correlated with larval size 171 

(Table 1) and larval size was correlated with settler size (R
2
 = 0.153, P = 0.0365) (Fig. 1). 172 

Thus we were able to use the most convenient estimate of offspring size according to 173 

which aspect of offspring performance we were interested in (e.g. we could measure 174 

settler size alone for examinations of post-metamorphic performance rather than follow 175 

individuals from eggs all the way through to settlement. Larger larvae became larger 176 

settlers although the relationship between larval size and settler size was weaker than that 177 

between egg size and larval size. 178 

Adult-egg size relationship 179 

We randomly collected 11 adult individuals in the field and measured them using 180 

the maximum longitude of the tunic (to the nearest mm) and the wet weight (to the 181 

nearest mg). Subsequently, we dissected the individuals and we photographed 20 eggs 182 

per individual to measure their perimeter. 183 

Egg size/time of cleavage relationship 184 

To determine the relationship between egg size and time of cleavage, we photo-185 

sequenced the fertilized eggs (i.e. showing a clear cleavage) every 2 minutes. The time 186 
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was recorded when the first 4, 8, 16 cells were cleaved for each fertilized egg. We 187 

measured the egg perimeter from the 1
st
 photo taken of the undivided eggs. We did 2 runs 188 

of this experiment, the first one involving 74 egg measurements and the second with 10 189 

eggs. 190 

Hatching time vs larval size 191 

In order to determine the time when the larvae hatched from the eggs, we placed 192 

fertilized eggs in a petri dish with filtered seawater. We checked hatching every hour 193 

after the fertilization. All hatched larvae within each hour were removed and placed in a 194 

vial with seawater including a few drops of formalin to preserve them (preservation does 195 

not affect estimates of size; unpubl. data). Later we measured the larvae that had hatched 196 

at each time period and we measured the external body perimeter of each larva as our 197 

estimate of size. 198 

Settlement experiments 199 

To examine the effects of larval size on larval settlement time, as biofilm has been 200 

proven to facilitate larval settlement in ascidians (Wieczorek & Todd 1997), we used 201 

Petri dishes (60 mm) with biofilm and pre-roughened surface in all settlement 202 

experiments. We roughened the Petri dish surface with sand paper and then submerged in 203 

seawater for 24 hours. We placed individual hatched larvae in separate Petri dishes with 204 

filtered seawater to assess larval swimming time. We photographed the larvae and we 205 

placed the Petri dishes to complete darkness. We checked for settlement every hour 206 

during a 32 hour period. We tracked a total of 36 larvae. 207 

Post-settlement performance in the field: effect of settler size on survival and 208 

growth 209 
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We placed 20 larvae per Petri dish (60 mm, 30 dishes in total) filled with filtered 210 

seawater. After 24 hours, we rinsed them with filtered seawater to remove any unattached 211 

larvae, and then the settlers were photographed for measurement. We then marked and 212 

numbered their positions using a pencil on the Petri dish surface. Subsequently, we gently 213 

made an 8 mm hole in the centre of the Petri dish using a hand drill. Immediately, we 214 

transported the dishes to the field in seawater in 20 l insulated containers. We attached all 215 

Petri dishes to two (500 x 500 mm) Perspex backing plates (15 Petri dishes in each plate) 216 

using stainless steel screws. The Petri dish positions were randomly assigned. We hung 217 

the plates from the most external pontoon at Manly harbour at a depth of 2 m below the 218 

Mean Low Water Spring, facing downwards to reduce the effects of light and 219 

sedimentation (following Marshall, Bolton & Keough 2003a). 220 

This experiment was run twice. For the first run, the survival was measured 221 

weekly after the deployment in the field using a dissecting microscope. From the 3
rd

 222 

week, all petri dishes were almost entirely covered by fouling organisms which made 223 

direct observation of the settlers in the field impossible. Thus, we brought back all Petri 224 

dishes to the laboratory the 3
rd

, 6
th

 and 11
th

 week and estimated settler survival and 225 

growth under dissecting microscope after carefully removing all non-M. squamiger 226 

species from the dish surface. During the same inspection, we took photographs of the 227 

settlers for settler size measurements. After the examination, we maintained all petri 228 

dishes in an aerated tank at room temperature overnight. The following day, we brought 229 

back the petri dishes to the field and placed them on the same backing plates and position. 230 

We followed the same methodology in the second run, which started a week later than the 231 
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first run. In this case, we only measured survival, and this was done on the 1
st
, 2

nd
, 5

th
 and 232 

10
th

 week. 233 

Data analysis 234 

To analyse the influence of offspring size on different development parameters 235 

such as egg hatching time and larval swimming time, we used regression and t-test when 236 

a single run was examined and ANCOVA when we examined multiple runs. In all of 237 

these analyses, offspring size was a continuous predictor and run (where included) was a 238 

random factor. 239 

For the effect of settler size on survival in the field, we used Cox’s proportional 240 

hazard regression, which models a hazard rate as a function of survival time and 241 

independent covariates (in our case, settler size). The fit (log-likelihood) of the models 242 

with and without the covariates was compared with a chi-square test. To examine the 243 

effect of settler size on subsequent juvenile size in the field, we used a Repeated-244 

measures ANCOVA where run was a random factor and settler size was a continuous 245 

factor. In all of our analyses, we found no effect of Run or an interaction between Run 246 

and settler size so both the main effect of Run and the interaction were omitted from the 247 

final model (Quinn and Keough 2002). We performed all analyses using the software 248 

SYSTAT (v. 11, SPSS Inc., 2004) and STATISTICA (v.6, Statsoft Inc., 2001). 249 
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 250 

Results 251 

Adult-egg size relationship 252 

There was no relationship between either adult weight nor adult length and the 253 

size of eggs that individuals produced (wet weight, r = 0.1717, P = 0.6137; length, r = -254 

0.018, P = 0.958). 255 

Egg size/time of cleavage relationship 256 

There was no effect of egg size on the time taken for the eggs to divide (Table 2). 257 

Offspring size effects on time until hatching 258 

As most of the larvae (approximately 500) hatched between the 11
th

 and 12
th

 hour, 259 

we only measured a subsample of 100 larvae within this hour period. The following hour, 260 

76 larvae hatched, and at both the 14
th

 and 24
th

 hour after fertilization, we found only 3 261 

larvae each time. As a result, to analyse the effect of larval size on hatching time, we only 262 

included the larvae from the 12
th

 (n = 100) and 13
th

 hour (n = 76). Larger larvae (and thus 263 

larvae from larger eggs) hatched sooner than smaller larvae (t-test, t = 8.863, df = 174, P 264 

< 0.001) (Fig. 2). 265 

Offspring size effects on larval swimming 266 

We observed that settlement mainly occurred between the 6
th

 and 8
th

 hours, 267 

although swimming time spread from 4 hours up to 26 hours. There was no relationship 268 

between larval size and the time spent swimming before settlement (r = - 0.116, n = 11, P 269 

= 0.735). 270 

Offspring size effects on post-metamorphic survival and growth 271 
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The experiment started with 146 settlers. Survival decreased gradually throughout 272 

the study period with a final figure of ca. 40% survival. The effect of initial settler size on 273 

survival showed a tendency of higher survival in larger animals, a tendency that became 274 

less marked at later observation times (Fig. 3). However, the overall regression of size on 275 

the hazard function (Cox model) showed only marginally significant results (χ
2 

difference 276 

between null model and full model = 3.3072, df = 1, P = 0.0628). 277 

Settler size was a good predictor of juvenile size in the field throughout our study 278 

period (Table 3) with a 50% increase in settler size resulting in a 25% increase in juvenile 279 

size (Fig. 4). 280 

 281 

In summary, larger offspring hatched sooner as larvae and performed better as 282 

juveniles in the field. On the other hand, no effects were found in cleavage rate and larval 283 

swimming time (Table 4). 284 

 285 

Discussion 286 
 287 

We found effects of offspring size on offspring performance in several life-history 288 

stages of Microcosmus squamiger. Increasing offspring size affected offspring 289 

performance positively both in the larval phase and the post-metamorphic juvenile phase 290 

in the field. While the effects of offspring size on post-metamorphic survival in the field 291 

were weak and diminished over time, the effect of offspring size on post-metamorphic 292 

growth were remarkably persistent - juveniles that originated as larger settlers were still 293 

larger than juveniles that originated as smaller settlers even after 10 weeks in the field. 294 

Our results suggest that in this species at least, the relationship between offspring size and 295 
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performance is relatively constant among the larval and post-metamorphic life-history 296 

stages. 297 

Offspring size effects on larval performance 298 

 Offspring size had mixed effects on larval performance. Larvae from larger eggs 299 

hatched approximately 10% earlier than larvae from smaller eggs but offspring size had 300 

no effect on the early cleavage rates or the length of the larval swimming period. 301 

Mortality during the larval phase can be extremely high for many marine invertebrates 302 

(Morgan 1995) and any reduction in the length of time spent in this vulnerable phase is 303 

likely to have positive effects on fitness. Indeed, one of the first considerations of 304 

offspring size evolution in the sea by Vance (1973) focused on the effects of offspring 305 

size on planktonic period and the major benefit associated with increased offspring size in 306 

this and later theoretical considerations was a reduction in the planktonic period and thus 307 

cumulative mortality (Levitan 1993; Podolsky & Strathmann 1996). However, Vance 308 

(1973) explicitly partitioned the effects of offspring size pre-feeding period (denoted as l) 309 

and the feeding period (p) and predicted that increases in offspring size should increase 310 

the length of l and decrease the length of p. For non-feeding larvae, only l is relevant and 311 

previous studies supported Vance’s assumption that increasing offspring size lengthened 312 

the development time (l) of non-feeding larvae (Staver & Strathmann 2002; Marshall & 313 

Bolton 2007). In our study, we found the opposite effect - larger offspring developed into 314 

larvae sooner than smaller offspring. 315 

From a physiological perspective, an association between faster development and 316 

increased offspring size is surprising given that larger offspring have smaller surface area 317 

to volume ratios and cell cleavage should take longer (Staver et al. 2002). Marshall et al. 318 
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(2002) also found that larger offspring hatched into larvae sooner than smaller offspring 319 

in the ascidian Pyura stolonifera. Thus in some species of ascidian (e.g. Ciona 320 

intestinalis, Phallusia obesa) larger eggs take longer to hatch (Marshall et al. 2007) 321 

whereas in others (e.g. P. stolonifera and M. squamiger) smaller eggs take longer to 322 

hatch. Interestingly, P. stolonifera and M. squamiger are in the same family but there are 323 

currently too few data to speculate whether the differential effects of offspring size vary 324 

according to phylogenetic affinity. Furthermore, the underlying mechanism for the 325 

positive effect of offspring size on hatching time in our study requires further exploration 326 

- it could be that larger offspring have a higher metabolic rate and develop faster because 327 

of they have extra resources but our results show that early cleavage rates do not change 328 

with offspring size. It may be that egg composition varies with size in this species and 329 

this affects development rate but this requires further testing. Regardless of the 330 

underlying cause, larger eggs hatch into larvae sooner than smaller eggs and this is likely 331 

to reduce planktonic mortality and yield higher fitness overall. 332 

In contrast to the effects of offspring size on hatching time, we found no effect of 333 

offspring size on larval swimming period prior to settlement - larval size did not affect 334 

the maximum time spent swimming before settling. Our findings contrast with studies on 335 

other marine invertebrates (including colonial ascidians) whereby larval energetic 336 

reserves strongly affect both swimming behaviour and settlement time (Miron et al. 2000; 337 

Marshall & Keough 2003b; Botello & Krug 2006). Nevertheless, our study suggests that 338 

larvae from different size eggs will differ slightly in their dispersal potential - larger 339 

larvae likely to disperse less far than smaller larvae because they hatch and become 340 

competent to metamorphose sooner. Thus, in marine invertebrates with non-feeding 341 
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larvae, there appear to be two mechanisms by which offspring size can affect larval 342 

dispersal, first by affecting when they hatch (as in this study) and second by determining 343 

the length of the larval period prior to settlement. 344 

Offspring size effects on post-metamorphic performance in the field 345 

The effects of offspring size in M. squamiger extended well beyond metamorphosis in 346 

the field affecting the size of juveniles after almost three months in the field. There was 347 

also a tendency for juveniles that originated as larger offspring to have higher survival in 348 

the field, particularly initially, but this effect was not significant. This is the first time an 349 

effect of offspring size on post-metamorphic has been demonstrated for a solitary sessile 350 

marine invertebrate, all of the preceding studies of offspring size effects on growth have 351 

been restricted to colonial marine invertebrates (Marshall et al. 2003a; Marshall & 352 

Keough 2004). Interestingly, although the effect of offspring size persisted for 11 weeks 353 

in the field, the amount of variation in juvenile size that offspring size explained appeared 354 

to diminish over time. The mechanism for the effect of offspring size on post-355 

metamorphic size is unclear, larger settlers, by definition, had larger feeding apparatuses 356 

and may have been able to capture food more effectively. Alternatively, simple allometric 357 

effects may have driven the differences - small initial differences in size may have been 358 

magnified as allometric growth occurred. 359 

Offspring size effects across multiple life-history stages 360 

We were initially interested in examining offspring size effects longitudinally in this 361 

study because we suspected that the direction of selection on offspring size would differ 362 

among life-history stages (we suspected that larger offspring would take longer to 363 

develop as larvae but would perform better in the field). We were surprised to find that 364 
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offspring size positively affects offspring performance in both life-history stages where 365 

an effect was detected and thus, in this species, there were no conflicting selection 366 

pressures among the life-history stages that we examined. It seems that the offspring size-367 

performance relationship in the larval phase and the post-metamorphic phase both select 368 

for increased offspring size. Thus, based on our results alone, the only balancing selection 369 

on offspring size that may counter selection for increased offspring size is the size 370 

fecundity trade-off (Vance 1973). However, other elements of the life-history that we did 371 

not explore may also have had a balancing influence on offspring size selection. We did 372 

not examine offspring size effects on fertilisation - in some broadcast spawning marine 373 

invertebrates including ascidians, larger eggs are more easily fertilised and so in sperm 374 

limiting environments, they have an advantage at fertilisation (Levitan 1996; Marshall et 375 

al. 2002). However, in environments where sperm are in excess, larger eggs can be more 376 

likely to suffer polyspermy (Levitan 1996; Marshall et al. 2002). Thus it would be 377 

interesting to examine the performance of different sized M. squamiger eggs under 378 

different fertilisation environments to determine if there is ever a countering selection 379 

pressures at fertilisation to reduce offspring size. Interestingly, in the ascidian Styela 380 

plicata, mothers avoid this problem by independently varying total egg target size 381 

(important for fertilisation) and ovicell size (important for post-fertilisation performance) 382 

via the manipulation of the size of follicle cells surrounding the egg (Crean & Marshall 383 

2008). It may be that egg accessory structures evolved as a means of avoiding potentially 384 

conflicting selection pressures at fertilisation and beyond but this requires further testing. 385 

 386 

 387 
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Tables and figures legends 547 

 548 

Table 1. ANCOVA test of egg size on larval size of Microcosmus squamiger. 549 

Note that the model is reduced after testing for homogeneity of slopes. 550 

Table 2. ANCOVA tests assessing the effect of egg size of Microcosmus 551 

squamiger on the time taken for cell eggs to divide. Note that the models are reduced 552 

after testing for homogeneity of slopes. 553 

Table 3. Repeated measures ANCOVA analyzing the settler size as a predictor of 554 

juvenile size of Microcosmus squamiger in the field throughout the study period. Note 555 

that the model was reduced after testing for homogeneity of slopes. 556 

Table 4. Summary table of the effects found for each of the life-history stages 557 

studied in Microcosmus squamiger. 558 

Figure 1. Relationship between larval size and settler size of Microcosmus 559 

squamiger. The trend line refers to the linear regression indicated in the text. 560 

Figure 2. Mean larval size of Microcosmus squamiger at 12 and 13 hours after 561 

fertilization. Vertical bars denote standard errors. 562 

Figure 3. Mean initial settler size of Microcosmus squamiger of the individuals 563 

that survived and died over the study period. Vertical bars denote standard errors. 564 

Figure 4. Relationship between initial settler size of Microcosmus squamiger and 565 

juvenile size after 3, 6 and 11 weeks in the field. 566 

 567 

 568 
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Tables and figures 570 

 571 

Table 1. 572 

Source df Mean-Square F-ratio P 

RUN 1 8.7953E
+07

 14.735 0.006 

EGGSIZE 1 4.4833E
+07

 7.511 0.0145 

Error 7 5969036.185   
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 605 

Table 2. 606 

2 to 4 cells / Source df Mean-Square F-ratio P 

RUN 1 0.637 0.058 0.810 

EGGSIZE 1 3.657 0.333 0.566 

Error 75 10.990   

2 to 8 cells / Source df Mean-Square F-ratio P 

RUN 1 0.576 2.148 0.162 

EGGSIZE 1 2.342 0.902 0.356 

Error 16 0.596   

2 to 16 cells / Source df Mean-Square F-ratio P 

RUN 1 91.993 17.058 0.001 

EGGSIZE 1 10.655 1.976 0.179 

Error 16 5.393   
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Table 3. 621 

Source df Mean-Square F-ratio P 

Between subjects     
Settler size 1 1.6591 7.3626 0.0119 

Among Subjects     

Time 2 15.8071 180.8015 <0.0001 

Time x Settler size 2 0.0509 0.5823 0.5624 

Error 50 0.0874   
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Table 4. 641 

Life-history stage Effect? Effect of offspring size on 

fitness 

Cleavage rate No N/A 

Hatching time Yes Positive 

Swimming time No N/A 

Post-metamorphic survival Yes N/A 

Post-metamorphic growth Yes Positive 
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Figure 1 657 
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Figure 2 680 

 681 

38000

40000

42000

44000

46000

12 13

Hatching time (hours)

L
a
rv

a
 a

re
a
 (

µ
m

2
)

 682 
 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

Page 28 of 30Functional Ecology



For Peer Review

 29 

Figure 3 704 
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Figure 4 728 
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