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Abstract 

Background: Protein–peptide interactions play a fundamental role in a wide variety 
of biological processes, such as cell signaling, regulatory networks, immune responses, 
and enzyme inhibition. Peptides are characterized by low toxicity and small interface 
areas; therefore, they are good targets for therapeutic strategies, rational drug plan-
ning and protein inhibition. Approximately 10% of the ethical pharmaceutical market 
is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions 
are mediated by peptides. Despite the fast increase in the volume of biological data, 
particularly on sequences and structures, there remains a lack of broad and compre-
hensive protein–peptide databases and tools that allow the retrieval, characterization 
and understanding of protein–peptide recognition and consequently support peptide 
design.

Results: We introduce Propedia, a comprehensive and up-to-date database with a 
web interface that permits clustering, searching and visualizing of protein–peptide 
complexes according to varied criteria. Propedia comprises over 19,000 high-resolution 
structures from the Protein Data Bank including structural and sequence information 
from protein–peptide complexes. The main advantage of Propedia over other peptide 
databases is that it allows a more comprehensive analysis of similarity and redundancy. 
It was constructed based on a hybrid clustering algorithm that compares and groups 
peptides by sequences, interface structures and binding sites. Propedia is available 
through a graphical, user-friendly and functional interface where users can retrieve, 
and analyze complexes and download each search data set. We performed case stud-
ies and verified that the utility of Propedia scores to rank promissing interacting pep-
tides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we 
showed that Propedia scores related to similarity between different peptide complexes 
with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy 
calculation.

Conclusions: Propedia is a database and tool to support structure-based rational 
design of peptides for special purposes. Protein–peptide interactions can be useful 
to predict, classifying and scoring complexes or for designing new molecules as well. 
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Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful 
interface and is available at: https ://bioin fo.dcc.ufmg.br/prope dia

Keywords: Database, Webserver, Protein structure, Protein–peptide complexes, 
Peptides, Clustering, Protein design

Background

Peptides are short chains of amino acid residues connected by peptide bonds that act in 

cell signaling and as immune modulators, among other important functions. It is esti-

mated that between 15 and 40% of all protein–protein interactions in cells are mediated 

by these molecules [1]. Additionally, peptides are structurally diverse, versatile, induce 

low resistance with limited nontarget activity and can be modulated to interact with 

specific cellular targets, making them good therapeutic agents [2]. However, their short 

half-life and poor oral bioavailability has discouraged the search for peptides as thera-

peutics in the past [3].

With the recent emergence of new synthetic approaches that permit changes in the 

biophysical and biochemical properties of peptides, these molecules are once again 

being considered as drug candidates [4–6]. In fact, over 60 peptide drugs have been 

approved in major pharmaceutical markets and hundreds of others are in active clinical 

development at the moment [3]. Peptide-like inhibitors are used as well to treat cancer, 

diabetes, and autoimmune diseases and have high success rates in commercial develop-

ment [7]. Multiple next-generation drug candidates (derived from exenatide, a synthetic 

form of a natural 39-amino acid peptide secreted by Heloderma suspectum), have been 

proposed as therapeutic agents for type 2 diabetes mellitus [3].

Understanding the structure and recognition of protein–peptide complexes may aid 

the design of novel peptides and peptide-based compounds for drug development or 

biotechnological purposes. Databases of protein–peptide complexes can pave the way 

for the analysis and comprehension of the mechanisms of protein–peptide recognition. 

�ere are several peptide databases, with varied purposes, as databases of bioactive pep-

tides [8], antimicrobials [9], cell penetrating peptides [10], hemolytic peptides [11], etc. 

[8]. Here, we briefly review some representative examples of protein–peptide databases.

London and colleagues [12] in 2010 proposed PeptiDB, comprising 103 high-resolu-

tion peptide-protein complex structures. It was proposed as a nonredundant set of high 

resolution complexes to investigate the structural bases of interactions between proteins 

and peptides and to improve understanding binding strategies for short peptides (5–15 

residues).

Also in 2010, Vanhee et al. [13] devised PepX, comprising protein–peptide complexes 

clustered based on binding interfaces. It was updated in 2014 for the last time (505 

unique protein–peptide interface clusters from 1431 complexes) and is not available 

anymore.

Das et al., in turn, proposed PepBind [14] in 2013 as a curated set of 3100 protein–

peptide complexes clustered according to structure determination methods and manu-

ally curated for cellular activity of complexes. �e authors mentioned that there was a 

web interface but it seems to no longer be available.

More recently, in 2018, Frappier et al.   [15] presented PixelDB a database that com-

prises 1966 non-redundant high-resolution complexes. Entries are clustered based on 

https://bioinfo.dcc.ufmg.br/propedia


Page 3 of 20Martins et al. BMC Bioinformatics            (2021) 22:1  

structural similarities of receptors and then on binding modes. �e authors claim to 

identify conserved peptide core structural motifs. We found a version of this database on 

GitHub updated 3 years ago.

Wen et al. [16] released PepBDB also in 2018 and this database is available through 

a web interface and for download. It contains 13,299 complexes and was last updated 

in March 2020. �e web interface presents the whole list and an individual interactive 

visualization of the 3D interface and a 2D plot of hydrogen bonds and hydrophobic 

interactions using LigPlot [17]. Protein–peptide complexes can be filtered considering 

sequence features, structure resolution and experimental method.

At the end of 2019, Xu et  al. [18] proposed PepPro, a nonredundant benchmarking 

tool for testing peptide-protein docking algorithms composed of only 89 complexes. For 

58 complexes, the unbound protein structures are available, which is useful for evaluat-

ing to what extent docking algorithms can accommodate binding-related protein con-

formational changes.

In summary, a variety of databases have been proposed to explore and increase the 

understanding of protein–peptide interactions. Nevertheless, despite their relevant 

contributions when released, most of them are obsolete and/or no longer supported. 

Among those mentioned, PepBDB is the most comprehensive, as it contains approxi-

mately 13,000 complexes. In addition, it is the only one that provides features for binding 

mode analysis.

To fill these gaps, aiming at automatically collecting a broad and up-to-date data-set 

of protein–peptide complex structures as a useful resource for diverse peptide studies, 

we propose Propedia. �is database is a comprehensive, general purpose and up-to-date 

protein–peptide resource that contains over 19,000 high-resolution structures from the 

Protein Data Bank (PDB) segmented in clusters to reduce redundancy if desired. Struc-

tures of complexes have been organized, facilitating search and visualization by differ-

ent criteria such as PDB id, sequence similarity, peptide classification, source organism, 

binding area, molecular weight, aromaticity, instability index, isoelectric point, and 

hydrophobicity, among other computed data. �ese clusters not only help accommodate 

redundancy in the database but also allow comparisons among sequences, interfaces, 

interactions and functions. �erefore, Propedia is a comprehensive and powerful tool 

for structural studies of protein–peptide recognition, support for construction of train-

ing and test data sets for docking and scoring approaches, and facilitation of peptide 

rational design.

Propedia was inspired by our previous work on defense of plants against insects and 

pathogens. Soybean, when injured by the caterpillar Anticarsia gemmatalis Hübner, pro-

duces the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), which 

impede protease-catalyzed degradation in the insect gut [19, 20]. Based on these inhibi-

tors that are naturally produced by soybean, we are interested in proposing peptide or 

mimetic peptide molecules to inhibit the proteases of the caterpillar gut. We believe 

these molecules have the potential to be used in the ecological control of this pest insect. 

We formerly designed peptides manually, with the support of certain bioinformatic tools. 

Now we are investing in the development of automatic tools to support this process, 

such as ppiGReMLIN [21]. In this context, Propedia aims to deliver a comprehensive 

data set of experimental protein–peptide complexes organized in three types of clusters 
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based on : (1) sequence similarity; (2) interface structure; and (3) protein–peptide bind-

ing site. It permits analysis of structures under different perspectives, supporting the 

detection of potential peptides for interacting with a target of interest, for example, pep-

tides that are likely to inhibit proteases of the caterpillar gut. It is important to note that 

our database is not specific to soybean and its insect pest Anticarsia gemmatalis Hübner 

and can be applied to other data sets involving protein–peptide complexes.

Construction and content

In this section, we detail the project decisions and the design process followed to build 

Propedia as well as the contents of the database.

Database construction

We used the following criteria to retrieve PDB entries: (1) structures composed by two 

or more chains, (2) one chain with at least 2 and no more than 50 residues (for peptides), 

and (3) structures solved by NMR or X-ray crystallography with resolution below 2.5 Å. 

�e present release is composed of 19,813 complexes (May 02, 2020). We developed in-

house Python scripts and the Biopython library [22] to extract PDB data and populate 

the database. Each file was filtered to remove hydrogen atoms, water molecules, alterna-

tive positions [23] and crystallographic artifacts [24].

We identified protein–peptide complexes from the remaining files. Chains with 

lengths of 2–50 residues were classified as “peptides”. �e reason for this choice is to 

keep Propedia comprehensive comprising the ranges used by the existing databases. 

Chains with more than 60 residues were classified as “receptors”. �is decision was 

empirical since, by allowing smaller receptors, we observed complexes involving two 

peptides (or small unstructured proteins).

�e protein–peptide interfaces were computed as follows: if there was at least one pep-

tide atom at a distance of 6Å from any receptor atom and the protein–peptide complex 

had an interface area (greater than 0), then the protein–peptide complex was included 

in the database. We used the method of Lee and Richards [25] to compute the interface 

area (IA) and the accessible surface area (ASA). �is algorithm returns the surface area 

of a protein in Å 2 and was computed by NACCESS [26] software. �e software receives 

a PDB file as input and returns the ASA of each atom. �e IA was calculated using the 

following equation:

where ASA(A) and ASA(B) are the ASA of the protein (A) and peptide (B), respectively, 

while ASA(AB) is the protein–peptide complex (AB) ASA. �en, IA is assumed to be the 

set of atoms that gained solvent accessibility.

With this procedure, we identified 19,813 complexes, including 19,177 from X-ray 

structures and 636 by NMR. �ere were peptides missing residues or containing non-

standard amino acid residues or binding with multiple chains describes in Table 1. Pep-

tides bound with multiple receptors may affect both it is structural conformation and 

those interface residues. �erefore, we removed these complexes, obtaining 5971 pro-

tein–peptide complexes and, from now on, we refer to them as the Clusterable Complex 

Dataset (CCD).

(1)IA = (ASA(A) + ASA(B)) − ASA(AB)
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Data collected in previous steps and computed clusters were stored in a MySQL 

database. �e entity-relationship model is depicted in Fig.  1. We have the follow-

ing entities: pdb, complex, peptide, receptor, organism, cluster (three types: sequence, 

interface, binding site) and alignment (clustal (peptide sequence), mustang, probis). �e 

group table contains keywords derived from the pdb classification. For example, the 

Table 1 Summary of  the  number of  complexes identi�ed, by  complexes 

with  only  standard amino acid residues peptides and  binding with  multiple receptors 

chains

# of receptors bound # of complexes 
with only standard

with peptide # of complexes amino acid 
residues peptides

1 8.990 5.971

2 7.040 4.232

3 2.205 1.449

4 1.204 656

5 290 50

6 84 84

Total 19.813 12.442

Fig. 1 Propedia database schema, presenting the tables, fields and relationships. The complex table (white) 
is the core of the database and interconnects all the data; pdb entities (blue) including group, pdb_groups 
and pdb tables; peptide/receptor and organism tables (yellow); cluster tables (green); and alignment tables 
(orange)
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Coronavirus Main Proteinase (3CLpro) (PDB id: 1p9u) is classified as ‘Hydrolase/Hydro-

lase Inhibitor’ and was labeled so as to be included in the groups: ‘Hydrolase’ and ‘Inhib-

itor’. Alignment tables store data from the results of molecular pair alignment, according 

to the type of clustering, and therefore have double foreign keys (id_complex1, id_com-

plex2) corresponding with the complex table due to efficiency requirements.

Clustering

Sequences

We classified peptide sequences using the tool Hammock (1.2.0) [27]. It uses hidden 

Markov model profiles for peptide sequence clustering and three external tools for 

multiple alignments, similarity search, and HMM-HMM comparison: Clustal Omega 

[28, 29], HMMER 3.0 [30], and HHSuite [31]. We ran Hammock using mode ‘full’ with 

default parameters with the exception of ‘–min_conserved_positions’, which was set 

to 3, and ‘–count_threshold’, which was set to 300. �ese values were set empirically. 

Sequence labels were assigned using Python in-house scripts. CCD was used as input 

and after the filtering step, Hammock returned 3,495 unique sequences and classified 

them into 771 clusters and 1074 unique clusters (singletons), totaling 1845 peptide 

sequence clusters. For each cluster (non singletons) a consensus sequence was generated 

using the WebLogo tool [32], and the sequence alignment was determined using Clustal 

Omega [28, 29] to store the sequence identity among the peptides of each cluster. Cen-

troids were identified as the peptides having the same sequence as the main sequence of 

each cluster.

Interface

Protein–peptide interfaces were aligned with MUSTANG [33], a multiple protein struc-

tural alignment tool that superposes structures using the distances of the C-α coordi-

nates of residues. A pairwise structural alignment was performed using only the protein 

structures of the CCD. To avoid unfavorable pairwise alignments, we considered only 

pairs of receptors sharing over 50% sequence identity. A total of 353,545 alignments 

were performed in parallel in a multicore processor, and the interface RMSD (iRMSD) 

was calculated from the results. �e protein–peptide interface was considered to be all 

residues within 6 Å of a peptide [34, 35]. In-house Python scripts were developed to 

create an undirected graph network using the NetworkX (version 1.11) Python library 

[36]. Nodes representing receptors and the edges (with the iRMSD between them) were 

added if 75% of the residues that composed the interfaces were aligned and had C α dis-

tance less than or equal to 2 Å. �is threshold is the same for PepX [13]. Each connected 

subgraph from the undirected graph was considered a cluster. Altogether, 535 clusters 

were formed, plus 1356 singletons, for a total of 1891 non redundant protein–peptide 

interfaces. Each centroid was defined as the receptor node with the highest degree, and 

in the case of a tie, the one with the lowest sum of iRMSDs.

Binding sites

We used the ProBiS algorithm [37] to identify similar protein–peptide binding sites. 

ProBis is a local alignment algorithm that aligns similar binding sites in proteins with 

dissimilar folds through 3D patterns of physicochemical properties of their surfaces, 
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considering geometrical and functional groups. Functional groups are specific groups 

of atoms in residues with particular physicochemical properties, which include hydro-

gen bond acceptors, hydrogen bond donors, acceptor/donors, aromatics and aliphatic 

groups [38]. ProBiS returns an alignment score for each pairwise alignment. �e higher 

the alignment score, the more similar the binding sites are. It also computes a Z-score, a 

statistical measure, based on alignment scores of the population. �is parameter is cal-

culated using the Karlin-Altschul equation [39]. �e input we supplied to Propedia was 

the CCD and we extracted surface structural patches of each receptor at a distance of 

6 Å from the corresponding peptide. �en, we performed a pairwise alignment using 

ProBiS.

�e population mean ( µ ) and population standard deviation ( σ ) were computed from 

pairwise alignment scores in the CCD, where µ and σ are 1.488 and 4.951, respectively.

We used a similar method to define the clusters based on interfaces. An edge with 

alignment score, as weight, between two nodes (receptors) was created if the Z-score 

between them was greater than 1.5. �is value was estimated as the point at which the 

number of clusters starts to increase exponentially. Connected subgraphs defined each 

cluster, and centroids were selected in the same way we described for previous clusters. 

Finally, 521 clusters and 945 singletons were generated, totaling 1466 distinct binding 

sites.

Propedia webserver

�e propedia database can be accessed through an interactive webserver implemented 

in the CodeIgniter PHP framework. Graph visualizations were implemented with the 

D3.js library (https ://d3js.org). Protein–peptide three-dimensional structure visualiza-

tions were generated using the 3Dmol.js library [40]. �e receptor/peptide sequence 

search mechanism is based on the blastp tool from NCBI-BLAST+ suite [41, 42] and for 

the binding site search we use the ProBiS algorithm [37].

Utility and discussion

�e Propedia interface (https ://bioin fo.dcc.ufmg.br/prope dia) is user-friendly, visual 

and interactive. It allows database searches with several options (Fig. 2a). Each entry in 

Propedia represents a protein–peptide complex. �e web tool allows access to entries 

through PDB id, which can be followed (optionally) by protein chain id and peptide 

chain id.

Propedia’s interface allows searching by pdb, complex id, organism, group (classifi-

cation keyword), peptide and protein sizes, resolution, protein and peptide sequences 

(using BLAST), protein binding site (using ProBiS), and similar complexes using differ-

ent clustering methods. When the user selects a particular complex to analyze, the web 

page presents the pdb, complex id, resolution, protein/peptide description and organism, 

and their data, includes chain, length, binding area (Å2 ), molecular weight, hydrophobic 

percent (peptide only), aromaticity, instability index, isoelectric point, and sequence. 

We enriched Propedia with other relevant information from multiple databases such 

(2)Z_score =

alignment_score − µ

σ

https://d3js.org
https://bioinfo.dcc.ufmg.br/propedia
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as UniProt and PubMed: protein chain, length, binding area and sequence information 

(Fig. 2b).

�e Propedia database was built based on a hybrid clustering approach that segments 

the set of complexes by the following: (1) sequence similarity; (2) interface structure; and 

(3) protein–peptide binding site. Due to this organization in clusters, users find similar 

protein–peptides complexes not only by traditional sequence and/or structure conserva-

tion but by interactions as well. Interactions, in fact, are essential for molecular recogni-

tion. A user can choose among these three different approaches to eliminate redundancy 

of the data set, if needed.

Comparison with other peptide databases

�ere are several peptide databases available. Table 2 compares some of their features. 

Each existing database contributes mainly to a specific piece of biological informa-

tion. PepX [13] is a protein–peptide interaction database clustered by binding inter-

faces. It has 1,431 complexes with peptide sizes between 5 and 35 amino acids. PepBind 

[14] compiles structures, sequences and experimental information for protein–pep-

tide complexes with peptides up to 35 amino acids. PeptiDB [12] comprises only 103 

Fig. 2 a Propedia scheme. The user accesses Propedia through a browser. Propedia presents each protein–
peptide as a complex. Each complex can be associated with a cluster based on sequence, interface or 
binding site. b Propedia interface. Three-dimensional structure visualization of a complex. Protein is shown 
as a cartoon (alpha-helix in magenta and beta-strands in orange). The peptide is shown as a cartoon with 
cyan sticks. Complex information includes receptor features, peptide features, clustering classification and 
similar complexes. c–e Sequence, interface and binding site, cluster pages. Sequence cluster containing the 
sequence WebLogo (consensus) and main sequence. Each cluster page has a distribution chart (boxplot), 
used to filter complexes, according to the attributes used for clustering: sequence identity, iRMSD and 
alignment score
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high-resolution complexes with peptides ranging in size from 5 to 15 amino acids. Some 

of these databases are not being updated and, for others, data are not even available.

PepPro [18], PixelDB [15] and PepBDB [16], on the other hand, are more recent and 

up-to-date efforts. �ey aggregate structural data from peptides up to 50 amino acids. 

PepPro [18] is a benchmark database built specifically for evaluation of protein–peptide 

docking algorithms. It contains 89 nonredundant complex structures retrieved from 

1,198 high-resolution PDB entries with peptide size ranging from 5 to 30 residues. Pix-

elDB [15] contains 1,966 nonredundant protein–peptide structures organized into clus-

ters to provide structural conservation data for peptide binding modes. Finally, PepBDB 

[16] comprises 12,241 protein–peptide complex structures and their interaction infor-

mation and is useful for analyzing and benchmarking docking algorithms and scoring 

functions.

Propedia is a more recent and fully automated database and webserver that will be 

updated quarterly. It is broader (comprises the entire PDB data-set) and general purpose 

protein–peptide analysis tool that is ready to collect, filter, clean, and compute several 

features and cluster data automatically always providing a comprehensive and up-to-

date resource. For instance, researchers can already retrieve SARS-CoV-2 proteins along 

with peptides in Propedia.

Case studies

We designed three case studies using Propedia’s varied features to exemplify possible use 

cases of the tool and the adjoining database.

Estrogen receptors in complexes with di�erent peptides (2JF9 and 4IV2)

We performed a case study with the estrogen receptor alpha LBD in complex with a 

tamoxifen-specific peptide antagonist (PDB id: 2jf9; peptide: chain Q; protein: chain B). 

�is is a Homo sapiens protein classified in the PDB in the transcription category. �e 

main objective of this case study was to test if Propedia would be able to find structures 

with similar binding sites but with different peptide sequences.

We compared the estrogen complex with the crystal structure of the estrogen receptor 

alpha ligand-binding domain in complex with dynamic way-derivative (PDB id: 4IV2; 

peptide: chain C; protein: chain A). Although these complexes were classified in the 

same cluster (B1) considering their interactions, the clusters for sequence was different 

(Table 3).

�us, we aligned the PDB files using the PyMol tool [43] and compared the results 

manually (Fig. 3). We observed that although the peptide primary structures were dif-

ferent, the peptide α-helix folding remained the same. In addition, Propedia was able to 

detect similar contacts in the protein–peptide interactions, suggesting conservation in 

the mechanism of recognition. Additionally, our analysis showed that the protein resi-

dues were conserved, but the residues of the peptides were not. However, the interaction 

patterns were maintained.

�is study case highlights the potential of Propedia to find similar binding patterns 

between proteins and peptides, even when peptide primary structure is not conserved.
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SARS-CoV-2 main protease interactions with peptides (6LU7)

From a SARS-CoV-2 main protease structure (PDB id: 6lu7) we performed a case study 

to find peptides that can potentially recognize the binding site and inhibit it competi-

tively. We submitted the 6lu7 structure to the Propedia database webserver using CCD 

searching scope, setting the chain (A) and binding site residues (residues within 6 Å of 

the N3 inhibitor). We searched for complexes with similar binding sites and the best 

results were ranked by alignment score (result value from the ProBiS). �e top 10 results 

were retrieved.

From these 10 peptides retrieved in complex with similar binding sites, we obtained 

the peptides presented in Table 4. We verified that both of 1lvb peptides (chains C and 

D) have the same sequence and structural conformation. �erefore, only the complex 

with 1lvb-D peptide was kept for the next analyses, which has a better bound receptor 

(chain B), based on it is alingment score and RMSD from Propedia query results.

Propedia was able to retrieve 2 proteases from SARS-CoV (previous coronavirus 

infecting human beings) and other viral proteases along with peptides that could be 

useful for the design of antiviral peptides capable of inhibiting the SARS-CoV-2 main 

protease. Consequently, we performed molecular docking experiments with the pep-

tides returned by the search on SARS-CoV-2 protease. We used the Rosetta FlexPep-

Dock docking protocol [44]. It computes high-resolution complex structures from an 

approximate model of a peptide within a receptor binding site, allowing full flexibility 

of the peptide backbone and all side chains. To provide the initial structure of each 

complex, we superposed the SARS-CoV-2 protease (PDB id: 6lu7) with the Propedia 

retrieved complex and removed the protein retaining SARS-CoV-2 and the peptide. 

�is procedure was successful for 8 complexes, in which the SARS-CoV-2 protease 

Fig. 3 a Structural alignment between 2JF9 and 4IV2. The protein residues were conserved, but the peptide 
residues were not. b Estrogen receptor alpha LBD in complex with a tamoxifen-specific peptide antagonist 
(PDB id: 2jf9; peptide chain: Q; protein chain: B). c Estrogen receptor alpha ligand-binding domain in complex 
with dynamic way-derivative (PDB id: 4IV2; peptide chain: C; protein chain: A)
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Fig. 4 MEROPS specificity matrix in shades of blue and residues from Propedia suggested peptides 
highlighted in yellow

Table 2 Comparison between propedia and other protein–peptide complex databases

N.A not available

Name # of complexes Peptide length 
(aa)

Resolution (Å) Type Availability

Propedia 19,813 2–50 < 2.5 Web server �

PepX 1431 5–35 < 2.5 Web server N.A.

PeptiDB 103 5–15 < 2.0 PDB IDs’ list �

PepBind 5314 ≤ 35 N.A Web server N.A.

PixelDB 1966 5–50 < 2.5 GitHub �

PepBDB 12,241 < 50 N.A Web server �

PepPro 1198 5–30 < 2.5 PDB IDs’ list �

Table 3 Comparison between protein and peptide characteristics of 2JF9 and 4IV2

4IV2–C–A 2JF9–Q–B

Protein

 Chain A B

 Length 232 210

 Binding area (Å2) 484.85 519.30

Peptide

 Chain C Q

 Length 10 13

 Binding area (Å2) 559.07 547.74

 Hydrophobic (% a.a.) 40% 30%

 Molecular weight 1272.50 1539.71

 Aromaticity 0.00 0.15

 Instability index 95.31 34.72

 Isoelectric point 8.76 5.79

 Sequence HKILHRLLQD SPGSREWFKDMLS

Clusters

 Sequence cluster S 0 S 1024

 Interface cluster I 1 I 1

 Binding cluster B 1 B 1
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was properly superposed with the model receptors (manual inspection and RMSD ≤ 3 

Å). For two peptides whose receptors did not align properly due to structural high 

dissimilarity (PDB id: 3caa:B and 6hgj:B), we performed a global blind docking using 

HADDOCK [45]. �en, we selected the best model from the best cluster (most nega-

tive HADDOCK score) and submitted it as thanbe initial structure to Rosetta Flex-

PepDock protocol as we did with the previous 8 peptides. We had to discard both 

peptides (PDB id: 3caa:B and 6hgj:B) because FlexDock accommodates only peptides 

shorter than 30 residues. Consequently, we obtained 8 docked models, and all of them 

exhibited considerable affinity to the SARS-CoV-2 main protease (Table  5, column 

“Rosetta score”). In addition to acceptable scores, we verified apparently adequate 

poses (Fig. 5) of each peptide for cleavage by the site considering the proximity ( α -C 

of P1) to CYS145’s sulfur atom (Table 5, column “RosettaCYS distance”).

Fig. 5 a PDB ID: 1lvb; peptide: chain D; protein: chain B; Rosetta score: − 538.306; Distance: 3.5 b PDB ID: 
5om5; peptide: chain B; protein: chain A; Rosetta score: − 538.985; Distance: 3.7 c PDB ID: 1lvm; peptide: chain 
C; protein: chain A; Rosetta score: − 528.398; Distance: 5.5 d the whole set of evaluated peptides

Table 4 List of retrieved peptides for SARS-CoV-2 main protease case study

a Sequences omitted due to their long length

PDB id Description Protein chain Peptide 
chain

Peptide AA sequence

2q6g SARS-CoV main protease H41A mutant A C -TSAVLQSGFRK

1uk4 SARS-CoV main proteinase B H —NSTLQ——-

1lvm Thermotoga maritima methyltransferase B D -ENLYFQ——-

1lvm Thermotoga maritima methyltransferase A C -ENLYFQ——-

3mmg Tobacco vein mottling virus protease A C -ETVRFQS——

1lvb Tobacco etch virus protease B D TENLYFQSGT—

1lvb Tobacco etch virus protease A C TENLYFQSGT—

5om5 Human alpha1-antichymotrypsin A B -TSAVLQSGFR–

6hgj SARS-CoV main protease variant NewBG-III A B a

3caa Cleaved antichymotrypsin A347R A B a
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In fact, according to the MEROPS database of proteolytic enzymes [46, 47], SARS 

coronavirus main proteases show preference for substrates of the general form: 

P4=V/T/A/S P3=V/W/K P2=L P1=H/Q. �ese positions are depicted in shades of 

blue in Fig.  4. According to these previous works, the site P1 is well conserved but 

the other sites are very mutable. �e peptides identified using Propedia have residues 

highlighted in yellow and it can be viewed in the webserver (https ://bioin fo.dcc.ufmg.

br/prope dia/searc h/bindi ng/covid ). Notice that this set of peptides is generally con-

sistent with peptides known to inhibit SARS coronavirus proteases.

Metadynamics estimated �Gbind correlates with the major propedia scores for the Sars-Cov-2 

MPro

�e free energy landscape (FEL) for the respective triplicates of the unbinding meta-

dynamics (MetaD) for the MPro : peptides complexes with the PDB id: 2q6g (chain C), 

1uk4 (chain H), 1lvm (chain D), and 1lvb (chain D) are shown on Additional file  1: 

Figure S.1 (maps 1–3, 4–6, 7–9 and 10–12, respectively). At each system, the min-

ima inside the protein (A) and at the aqueous environment (B) could be characterized 

with enough accuracy in order to estimate the binding free energy ( �Gbind ) according 

the described on equations (S.1, S.2, and S.3) from the Additional file 1.

Fig. 6 Correlation of MetaD �Gbind with site RMSD (left) and alignment score (right) from the Sars-Cov-2 MPro 
with peptide complexes from the PDB id: 2q6g (chain C), 1uk4 (chain H), 1lvm (chain D), and 1lvb (chain D)

Table 5 RMSDs for  SARS-CoV-2 main protease and  superposition of  receptors identi�ed 

by propedia

PDB id Chain Propedia Alig. 
score

Propedia site 
RMSD

Rosetta 
receptors RMSD

Rosetta score P1-CYS145 
distance

2q6g A 10.36 0.34 0.997 − 542.507 3.6

1uk4 B 9.47 0.44 0.659 − 525.999 3.6

1lvm B 5.69 0.84 2.175 − 525.907 4.0

1lvm A 5.26 1.53 2.085 − 528.398 5.5

3mmg A 4.67 0.47 1.785 − 530.833 3.7

1lvb B 4.54 1.21 2.521 − 530.517 3.6

5om5 A 3.18 1.63 6.665 − 538.985 3.7

6hgj A 3.38 2.20 11.156 – –

3caa A 3.25 2.16 9.943 – –

https://bioinfo.dcc.ufmg.br/propedia/search/binding/covid
https://bioinfo.dcc.ufmg.br/propedia/search/binding/covid
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It could be obtained a significant convergence for the MetaD recovered �Gbind values 

for each system in our protocol, with maximal standard deviation of 1.57 kcalmol
−1 for 

the systems 1lvm (chain D), 1lvb (chain D) and 2q6g (chain C) and a relatively higher 

deviation of 4.32 kcalmol
−1 just for 1uk4. In fact, such convergence is not surprising, 

once the already consolidated situation of the metadynamics technique as an accurate 

computational tool to estimate the binding free energy for usual ligands and peptides, 

being a powerful method on drug screening procedures [48–50]. �e accuracy of this 

technique, in this way, makes it a providential instrument to validate the Propedia meth-

odology at the screening of peptides with differential affinities for the Sars-Cov-2 MPro, 

given the still sparse availability of experimental data for peptide affinity at this new 

and important target. In this way, the correlation between the �Gbind recovered by the 

metadynamics higher performance method and the Propedia recovered scores was car-

ried aiming the validation of this computational tool. It is notorious at Fig. 6 (Additional 

file 1: Table S.1), the significant negative correlation of the MetaD �Gbind with the Pro-

pedia recovered alignment score ( R2 of 0.98) and the positive correlation with the Prope-

dia recovered RMSD in Å at the active site alignment procedure ( R2 of 0.96). Even, it is 

noteworthy that both the Propedia scores as the MetaD recovered �Gbind values put the 

known MPro specific substrate (PDB:2q6g) and the substrate-analogous MPro inhibitor 

(1uk4) at the top of the affinity ranking with this protein. In this way, both the significant 

correlation with the results from the high performance metadynamics method, as well 

the self-consistence with known functional data can be taken together as an indicative 

of validation for our new software, as well its applicability at the screening for functional 

peptides for this and other important targets.

Anticarsia gemmatalis protease

�e velvetbean caterpillar, Anticarsia gemmatalis (AG) Hübner (Lepidoptera: Noctui-

dae) is one of the primary defoliating pests in the Americas, affecting mainly soybean 

crops, and a major cause of economic losses in agriculture [51, 52]. In recent years, alter-

native approaches towards pest control, such as the development of biopesticides, have 

been explored. For instance, the use of protease inhibtors is high regarded in insect pest 

management, as it affects the bioavailability of essential amino acids, which ultimately 

hinders larvae growth and the development of insects for several species, as has been 

shown in [53, 54].

In this case study, we used the sequence of a trypsin-like serine protease extracted 

from the AG’s gut, sequenced by our research group and deposited at GenBank [55] 

(accession JX898746.1 [56]). Additionally, a 3D model was produced using the I-TASSER 

server [57]. We performed a structural alignment of the model with the highest ranked 

templates from the modeling step in order to identify the highly conserved residues from 

the catalytic triad in the protease [58]. �ese residues were identified as HIS6, ASP56, 

and SER143 in the model. Additional file 1: Figure S.2 shows the superposition of the 

structures where the triad residues are highlighted.

We queried the Propedia database server using the protease sequence and the resi-

dues from the catalytic triad as binding site residues (along with the 3D model) in two 

separate experiments, and the top 10 results in each of them were selected according 

to their alignment scores. �e results are shown in Tables  6 and  7 respectively. �en, 
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we performed molecular docking experiments of the peptides retrieved to the model of 

the AG’s protease using only HADDOCK, since a considerable number of the peptides 

retrieved contained non-standard residues, which is not supported by PepFlexDock. 

Also, for the binding site query experiment, two peptides entries from the propedia 

results were not used (which are not listed in Table  7): 1p11-P, due to its format not 

being supported by HADDOCK and 3kf2-D, due to the high sequence similarity to pep-

tide 3kf2-C in the same PDB structure.

For the sequence based dataset, we set the residues from the catalytic triad as active 

residues for the docking procedure, as well as the complete chain of each peptide. We 

selected the best resulting structures primarily according to the HADDOCK score (most 

negative) and then, according to the RMSD ( ≤ 3 angstroms) of each structure relative to 

the overall lowest energy model. Table 8 summarize the results. Finally, peptide poses 

in the protease were analysed for the top 5 scored models according to the HADDOCK 

score, for which we identified the closest residues to the SER143 residue at the S1 site, 

considering the distance between C-α atoms. �e closest residues found were cysteine 

residues located in models 3qgn-A (3.9 Å) , 4dii-L (4.4 Å) and 1ca8-A (5.1 Å). �e pres-

ence of cysteine residues close to the serine in the catalytic tryad indicate a potential use 

of the peptide as an inhibitor since substrates with these residues at position P1 are not 

usually cleaved by trypsin-like serine proteases [59]. Figure 7 shows models 3qgn-A and 

4dii-L, where the distance between residues is highlighted.

Similar to the sequence based dataset, we performed the docking for the binding site 

dataset using the residues from the catalytic triad, as well as complete peptide chains as 

active residues. A binding site signature is how a protein interacts with its ligand, and 

which amino acids are essential to keep the complex stable. A proper metric to verify 

the similarity of binding sites is the fraction of common contacts (FCC). �e FCCAB is 

the ratio of contacts between structures A and B to all contacts in A, whose value ranges 

from zero, when the chains share no contacts, to a maximum of one, when all contacts 

of chain A are with chain B [60]. �erefore, for the binding site docking experiments, a 

higher average value of FCC in a cluster indicates higher similarity of the interactions 

between different peptide poses and the protease model, which also means that the 

binding site is more conserved.

Fig. 7 AG’s Protease model, in gray, coupled with peptides 3qgn-A (a) and 4dii-L (b). The distance between 
the SER143 residue from the S1 site in the protease to the cysteine residues in the peptides are 3.9 Å and 4.4 
Å respectively
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For each peptide, we selected the cluster with the highest FCC score (relative to its 

lowest energy models produced by HADDOCK), from which sets we chose the best 

models according to their HADDOCK scores. FCC values and HADDOCK scores are 

shown in Table 9 for all peptides. �e best 4 models for each of the top 3 scored clus-

ters are shown in Fig.  8. In all models, contacts are centered in the catalytic triad 

(highlighted in red), while the remaining contact areas bind to different ligands, 

where neighboring residues on the protease side have great relevance by establish-

ing hydrophobic and hydrogen bonds. �e complete interaction map of each model 

Fig. 8 AG’s Protease model, in gray, coupled with the 4 top scored poses of peptides 6rw2-B (a), 3kn2-B (b) 
and 2obq-B (c). Residues in red represent the catalytic residues from the catalytic triad

Table 6 List of retrieved peptides for the AG protease case study using sequence query

PDB id Description Protein chain Peptide 
chain

1ekb Bovine enteropeptidase B A

1ekb Bovine enteropeptidase B C

2stb Salmon trypsin I E

2sta Salmon trypsin I E

3qgn Human thrombin A B

2zdv Human thrombin L H

1ca8 Human thrombin A B

1ca8 Human thrombin A B

4dii Human thrombin L H

4dih Human thrombin L H

4lz1 Human thrombin B A

Table 7 List of retrieved peptides for the AG protease case study using binding site query

PDB id Description Protein chain Peptide 
chain

3qgj Lysobacter enzymogenes protease D C

1p11 Lysobacter enzymogenes protease I E

2obq Hepacivirus NS3-4A protease B C

2oin Hepacivirus NS3-4A protease R155K C A

2o8m Hepacivirus NS3-4A protease S139A D B

3kn2 Hepacivirus NS3-4A protease B C

3kf2 Hepacivirus NS3-4A protease C A

3sga Streptomyces griseus protease P E

6rw2 Human Ephrin type-A receptor 2 B A

4a1t Hepacivirus NS3-4A protease D B
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is available in Additional file 1: Figure S.3. �is emphasizes the importance of using 

FCC as a suitable metric for binding site analysis rather than RMSD, and also dem-

onstrates Propedia’s accuracy in determining binding site patterns in regard to the 

ligand specificity.

Conclusions

As far as we know, Propedia is the broadest and most comprehensive set of protein–pep-

tide complexes. At the moment of publication of this paper, it comprises approximately 

20,000 complexes. Furthermore, we developed hybrid clustering strategies that organ-

ized data into 1845 clusters based on sequences, 1891 clusters based on interface struc-

tures similarity and 1466 clusters based on binding sites. �ese groups may be used for 

detecting either nonredundant or similar complexes with several purposes going from 

peptide docking and scoring function benchmarking, design of biotechnological pep-

tides and even peptide-based rational drug design. Finally, Propedia is available through 

a web interface, searches and analysis can be performed by a user-friendly interface and 

all the data are available to download.

Table 8 HADDOCK score and  RMSD for  the  selected models for  each peptide chain 

in the sequence based experiment

PDB id Chain HADDOCK iRMSD HADDOCK score S1 closest residue

1ekb C 2.564 − 49.202 –

1ekb A 2.499 − 63.477 –

2stb I 0.000 − 86.803 –

2sta I 4.275 − 81.387 –

3qgn A 0.000 − 97.979 CYS (3.9 Å)

2zdv L 0.000 − 100.560 GLU (7.4 Å)

1ca8 A 1.530 − 102.975 CYS (5.1 Å)

1ca8 C 1.158 − 75.138 –

4dii L 2.598 − 95.836 CYS (4.4 Å)

4dih L 1.508 − 95.317 ARG (5.4 Å)

Table 9 HADDOCK score and  FCC for  the  selected models for  each peptide chain 

in the binding site experiment

PDB id Chain Cluster FCC Lowest 
HADDOCK 
score

3qgj D 0.409 − 34.823

1p11 I 0.621 − 49.383

2obq B 0.833 − 80.258

2oin C 0.696 − 85.060

2o8m D 0.196 − 54.616

3kn2 B 0.840 − 78.998

3kf2 A 0.236 − 55.432

3sga P 0.650 − 61.368

6rw2 A 0.883 − 75.354

4a1t D 0.648 − 87.944
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