Unclassified

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (ol the abetract entered In Block 20, II differant (rom Raport)
18. SUPPLEMENTAAY NOTES
19. KEY WOROS (Continue on reverse elde II neceseary end Identily by block number)

Hydrodynamics
Unsteady Theory for Propeller Blade Pressure Distribution
20. ABSTRACT (Conllinue on reverce alde If necesaary and Idenllfy by block number)

See Abstract (over)

ABSTRACT

A theoretical approach is developed and a computational procedure adaptable to a high speed digital computer is established for the evaluation of the blade pressure distribution of a marine propeller due to thickness and loading effects. The dual role of the blade thickness is considered. The contribution of the "nonplanar thickness" to the propeller loading and pressure distribution and the effect of the "flow distortion thickness are studied by means of the 'thin body' approximation.

The surface integral equation which relates the unknown loading to the known velocity distribution on the blades is solved by the mode approach in conjunction with the + fift operator technique. The analysis treats both design and off-design conditions in steady-state and unsteady flows, and the proper chordwise modes are selected for each condition.

The numerical solution yields the blade loading and resulting hydrodynamic forces and moments and blade bending moments, and, in addition, the blade pressure distributions on each blade face due to both loading and thickness effects, thus providing information necessary for the prediction of cavitation inception. Calculations have been performed for a set of three 3-bladed propellers of different EAR operating in a screen-generated wake, for comparison with experimental data.

STEVENS INSTITUTE OF TECHNOLOGY
 DAVIDSON LABORATORY CASTLE POINT STATION HOBOKEN, NEW JERSEY

Report SIT-DL-76-1869
April 1976

PROPELLER BLADE PRESSURE DISTRIBUTION DUE TO LOADING AND THICKNESS EFFECTS
by
S. Tsakonas, W.R. Jacobs, M.R. Ali

This research was sponsored by the Naval Sea Systems Command General Hydrodynamics Research Program, under Contract NOOO14-75-C-0482, administered by the David Taylor Naval Ship Research and Development Center

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Approved by:

A theoretical approach is developed and a computational procedure adaptable to a high speed digital computer is established for the evaluation of the blade pressure distribution of a marine propeller due to thickness and loading effects. The dual role of the blade thickness is considered. The contribution of the "nonplanar thickness" to the propeller loading and pressure distribution and the effect of the "flow distortion thickness" are studied by means of the "thin body" approximation.

The surface integral equation which relates the unknown loading to the known velocity distribution on the blades is solved by the mode approach in conjunction with the "lift operator" technique. The analysis treats both design and off-design conditions in steady-state and unsteady flows, and the proper chordwise modes are selected for each condition.

The numerical solution yields the blade loading and resulting hydrodynamic forces and moments and blade bending moments, and, in addition, the blade pressure distributions on each blade face due to both loading and thickness effects, thus providing information necessary for the prediction of cavitation inception. Calculations have been performed for a set of three 3-bladed propellers of different EAR operating in a screengenerated wake, for comparison with experimenial data.

ACKNOWLEDGEMENT

The authors wish to express their indebtedness to Dr. John Bresin for his valuable discussions and suggestions in revising the existing program and his continuous interest and encouragement.

KEYWORDS

Hydrodynamics
Unsteady Theory for Propeller Blade Pressure Distribution

TABLE OF CONTENTS

Page
ABSTRACT iii
ACKNOWLEDGEMENT iii
NOMENCLATURE vii
INTROOUCTION 1
I. AN OUTLINE OF THE ANALYSIS 3
A. Propeller Loading Distribution 3

1. Integral Equation 3
2. Chordwise Modes 11
3. Perturbation Velocity Distributions 13
a. Normal Velocity Due to Wake 13
b. Normal Velocity Due to Blade Camber 15
c. Normal Velocity Due to "Non-planar" Blade Thickness 16
d. Normal Velocity Due to Flow Angle 20
4. Blade Pressure Distribution, Hydrodynamic Forces and Moments and Blade Bending Moments 21
a. Pressure Distribution 21
b. Propeller-generated Forces and Moments 23
c. Blade Bending Moments 26
5. Frictional Thrust and Torque 27
B. Thickness Effects (Non-lifting) 29
C. Blade Pressure Distributions Due to Loading and Thickness Effects on Each Blade Face 32
D. Information Relative to Blade Stress Analysis and Cavitation Study 33
6. NUMERICAL RESULTS 36
CONCLUSION 43
REFERENCES 46
FIGURES 1-18
APPENDIX A
APPENOIX B
APPENDIX C
C.
APPENDIX
APPENDIX E

NORLENCLATURE

$A(\lambda)$	function defined in Eqs. (33) and (35)
a	π / J (nondimensional) inversely proportional to advance
	ratio at design condition
a od	$\pi / J_{\text {od }}$ (nondimensional) inversely proportional to advance ratio of off-design condition
$\overline{\text { a }}$	designation of NACA-a meanline
C_{F}, C_{D}	frictional coefficients
C_{p}	pressure coefficient
c	expanded chord length, ft.
$F_{x, y, z}$	propeller-induced forces in x, y, z direction (see Fig. 1)
f_{c}	camberline ordinates from face pitch line
${ }^{\dagger} \tau$	blade thickness distribution
$\begin{aligned} & I_{m}() \\ & i^{(m)}() \end{aligned}$	```modified Bessel function of first kind, of order m defined in Eq. (20)```
i	index
J	design advance ratio
$J_{\text {od }}$	off-design advance ratio
ΔJ	$J_{\text {od }}{ }^{-J}$
j	index
K	kernel of integral equation
$\bar{K}^{(\bar{m}, \bar{n})}$	modified kernel after chordwise integrations
$K_{m}()$	modified Bessel function of second kind of order m
k	variable of integration
$L^{(q)}\left(p, \theta_{\alpha}\right)$	loading distribution in $\mathrm{lb} / \mathrm{ft}$.
$L^{(q)}(r)$	spanwise loading in lb/ft.
$L^{(q, \bar{n})}(p)$	spanwise loading coefficients of the chordwise mocies in

ℓ	integer multiple
M_{b}	blade bending moment about face pitcn line
$M\left(\xi, D, \theta_{0}\right)$	source strength at point ($5,2,0_{0}$)
m	index of summation
$\overline{\mathrm{m}}$	order of lift operator
N	number of blades
n	blade index
n	rps
\bar{n}	order of chordwise node
\vec{n}	unit normal vector on helicoidal surface at loading point
\vec{n}	unit normal vector on helicoidal surface at control point
P	pressure, lb/ft ${ }^{2}$
ΔP	$P_{-}-P_{+}$, pressure jump, lb/ft ${ }^{2}$
$P(r)$	geometric pitch at each radial position, ft.
$Q_{x, y, z}$	propeller-induced moments about x, y, z axis (see Fig. i)
9	order of harmonic of inflow field
R^{\prime}, R	Descartes distance
R_{c}	Reynolds number based on crorc lengtn
r	radial ordinate of control point
r_{0}	propeller radius, ft.
S	propeller lifting surface, ft^{2}
s	chordwise location as fraction of chord length
t	time, sec.
t_{0}	maximum thickness of blade, $f t$.
U	free stream velocity, ft/sec. (design)
Uod	free stream velocity, $\mathrm{ft} / \mathrm{sec}$. (off design)
u	variable of integration

$v^{(a)}(r)$	Fourier coefficients of the known downwash velocity distribution
v_{c}	normal velocity due to camber effects
v_{f}	normal velocity due to flow-incidence angle
v_{N}	normal velocity due to wake
v_{T}	normal velocity due to nonplanar thickness
v_{L}	longitudinal perturbation velocity ($V_{x}-u$)
v_{T}	tangential perturbation velocity
v_{x}	measured axial velocity
W	velocity distribution normal to propeller
$w(q, \bar{m})$	defined in Equation (20)
\times	longitudinal ordinate of control point
x, r, ϕ	cylindrical coordinates of control point
x, y, z	Cartesian coordinate system
β	$\tan ^{-1}(U / 8 r)=\tan ^{-1}(1 / a r)$
δ	defined in Eq. (12)
$\theta(\bar{n})$	chordwise mode shapes
θ	- 8 t (see Fig. 2)
θ	angular ordinate of loading point
${ }^{0}$	angular position of loading point with respect to olade reference line, in moving coordinate system (see fig. 2)
θ_{b}	subtended angle of projected blade semichord, radians
$\bar{\theta}_{n}$	$2 \pi(n-1) / N, n=1,2, \ldots N$
$\theta_{p}(r)$	geometric pitch angle at each radial position
${ }^{\circ}$	angular chordwise location of loading point (in trigonometric transformation Eq. 14)
$\Lambda^{(\bar{n})}(y)$	defined in Eq. (21) (see Appendix A)

R-1869

$\Lambda_{i}^{(\bar{n})}(y)$	defined in Appendix A
v	kinematic viscosity
ξ	longitudinal ordinate of loading point
$\overline{5,2, \theta}$	cylindrical coordinates of loading point
p	radial ordinate of loading point
p_{f}	mass density of fluid
ρ_{0}	ratio of leading edge racius to chord
σ	angular measure of skewness from blade reference line (see fig. 2)
$\Delta \sigma$	$\sigma^{r}-\sigma^{D}=$ difference in skewness at control and loating point
τ	variable of integration
\dagger	velocity potential
$\Phi(\bar{m})$	generalized lift operator (Eq. (18))
ϕ	angular ordinate of control point
θ_{0}	angular position of control point with respect ic blace reference line, in moving coordinate system (see Fig. 2)
ϕ_{α}	angular chordwise location of control point (in trigonometric transformation Eq. 15)
Y	acceleration potential
Ω	magnitude of angular velocity of propeller
ω	angular frequency of loading

Superscripts

r	refers to control point
p	refers to loading point

INTRODUCTION

Davidson Laboratory has been engaged in a series of investigations concerned with the adaptation of the linearized unsteady lifting surface theory to the case of a marine propeller operating in a nonuniform flow field (see, for example, References l-3), the objective of which has been the prediction of blade loading distributions, propeller-generated forces and moments and blade bending moments. In these investigations, it has been assumed that the lifting surfaces (blades) have zero thickness.

The linearized wing theory considers that an arbitrary wing crosssection is composed of a symmetrical part corresponding to its thickness distribution and an asymmetrical part of zero thickness but with camber and angle of attack. The asymmetrical part contributes to the lift of the wing. On the other hand, the thickness distribution contributes nothing to the lifting properties of a wing unless it is nonplanar.

The marine propeller with its blade describing a helicoidal surface is one of the few nonplanar lifting surfaces. The blade thickness plays a dual role, influencing both the lifting and non-lifting characteristics of the blade. As part of the nonplanar surface, it will induce a continuous component of velocity on points of the surface itself, thus affecting the blade loading distribution. On the other hand, the symmetrical flow disturbance caused by the blade thickness will influence the pressure distributions on the suction and pressure sides of the blade without contributing to the net blade loading. Both effects, designated for brevity as due to "nonplanar" thickness and "flow distortion" thickness, will occur in steady-state flow conditions since the blade thickness is a time-independent quantity.

The study of the blade pressure distribution arising from both loading and thickness effects has been undertaken so that the necessary information can be obtained for cavitation and blade stress analyses. The study treats both design and off-design conditions.

The surface integral equation which relates the unknown loading to the known velocity distribution on the blade is solved by the mode approach in conjunction with the "lift operator" technique. The selection of the proper chordwise modes in the steady-state flow condition at design advance ratio J is dictated by the shape of the loading distribution in twodimensional flow on a foil with the same camber distribution (NACA -a mean lines, NACA mean lines of the 4 - and 5 -digit wing series, lenticular mean line, etc.). At off-design J in the steady-state condition, there is an angle of attack due to the difference ΔJ and the additional loading (to that at design J) due to this angle of attack is represented by the first (cotangent) term of the known Birnbaum chordwise modes. The complete Birnbaum modes, which have the proper leading edge singularity and satisfy the Kutta condition at the trailing edge, are used to represent the chordwise loading distribution in the unsteady flow conditions at both design and off-design J.

The linearized unsteady lifting surface theory requires the singular behavior at the leading edge. Although the singularity is integrable, its presence in the blade pressure distributions is unrealistic. Therefore, whenever the Birnbaum modes are used, a correction factor to remove the leading edge singularity based on Van Dyke's ${ }^{4}$ and Lighthill's ${ }^{5}$ method is introduced in the blade pressure distribution.

This research is sponsored by the Navai Sea Systems Command General Hydrodynamics Research Program, under Contract N00014-75-C-0482, administered by the David Taylor Naval Ship Research and Development Center.

I. AN OUTLLNE OF THE AMALYGIS

In the analysis which follows, the blades of any ship propeller are treated as warped lifting surfaces which encounter the spatially varying inflow and, hence, develop unsteady forces which are cyclic functions of blade position. The blades need not be of a pure helicoidal surface, i.e., they may have varying pitch over the radius. However, the reference surface, along which the shed vorticity is considered to be convected, is restricted to be a pure helicoid whose local pitch is fixed by the joint action of the forward speed of the ship and the tangential velocity at any radius, or simply the pitch angle of this vortex-wake surface is $\tan ^{-1}\left(\frac{U}{r \Omega}\right)$.

The theory is formulated to give the linearized pressure distribution on each side of the blade at eight radial locations. These distributions are made up of an antisymmetric part associated with the lifting action of the blade and a symmetric part developed by the blade thickness distribution. As the blade surface is non-planar, the flow produced at any element by all other thickness elements produces a weak normal flow and this flow is balanced by the induction of anti-symmetric loading elements which, in turn, contribute to the pressure distribution as well as to the forces and moments. This small loading is referred to as being the result of the presence of non-planar thickness; the major part of the asymmetrical loading is produced by the presence of camb, geometric flow angle and the normal velocity components associated with the hull spatially variable wake. The anti-symmetric part of the blade pressure distributions are solely responsible for the forces, whereas the symmetrical and asymmetrical contributions determine the pressures on each side, the knowledge of which is essential for prediction of cavitation inception.

A. Propeller Loading Di:stribution

1. Integrat Equation

The linearized unsteady lifting surface theory for a marine propeller, with its blades lying on a helicoidal surface and operating in nonuniform flow of an incompressible, ideal fluid, is formulated by means of the acceleration potential method. It is based on a small perturbation approximation ani, also, on the assumptions that the propeller blades are thin and operate without cavitation and flow separation.

It is known that the pressure field generated by a lifting surface S is given by distributed doublets with axis parallel to the local normal and with strength equal to the pressure jump across the surface. If the acceleration potential function, γ, a scalar function of position, is introduced and defined as having its gradient equal to the acceleration vector, then the strength of the doublet distribution is proportional to the discontinuity of v between the values for the positive and negative oriented surfaces with respect to the direction of the normal $n, ~ i . e .$,

$$
\begin{equation*}
\Delta \psi=\psi_{+}-\psi_{-}=\frac{1}{\rho_{f}}\left(P-P_{+}\right)=\frac{1}{\rho_{f}} \Delta P \tag{1}
\end{equation*}
$$

Here use is made of the linearized relation between the acceleration potential and the perturbation pressure, viz.,

$$
\begin{equation*}
\Rightarrow=-\frac{P}{\rho_{f}} \tag{2}
\end{equation*}
$$

where P is local pressure and ρ_{f} is fluid mass density. Thus, the pressure jump is defined as that between the pressure at the back (suction side) and the pressure at the face (pressure side) of the blade.

The pressure P at any point (x, r,$\}) (in cylindrical coordinates)$ at time due to all pressure doublets distributed over dummy (loading) points (:,.,,j) will be given by

$$
\begin{equation*}
P(x, r, ; ; t)=\frac{-1}{4 \pi} \iint_{S} \Delta P\left(\xi_{2}, 0, \theta ; t\right) \frac{\partial}{\partial n} \frac{d S}{R^{\prime}(x, r, \phi ; \xi, \rho, \theta)} \tag{3}
\end{equation*}
$$

where $\underset{j n}{j}$ is the normal derivative on the surface S at the loading $\vec{\jmath}$ point $(\because, \hat{0}, 0)$, with \vec{n} the unit normal vector having positive axial component
and
$R^{\prime}(x, r, ; ; \forall, i, \theta)=\left[(x-\xi)^{2}+r^{2}+\rho^{2}-2 r \rho \cos (\theta-\phi)\right]^{1 / 2}$ is the Descartes distance between the given control point (x, r, ϕ) and the loading poirt ($\quad, 0,0$).

The relation between the velocity potential function ϕ and the acceleration potential function ψ has been established by solving the Euler equation of motion:

$$
\begin{equation*}
\phi(x, r, \phi ; t)=\frac{1}{U} \int_{-\infty}^{x} \psi\left(\tau, r, \phi ; t-\frac{x-\tau}{v}\right) d \tau \tag{4}
\end{equation*}
$$

where U is the undisturbed forward velocity of the lifting surface and the integral represents the total effect at time t of all previous accelerations of a fluid particle at present at the observation point x.

For doublets with pulsating strength $\angle P i \xi, \rho, 0) e^{i \omega t}$ at loading points (ξ, ρ, θ) which, together with the observation (control) points (x, r, ϕ) are rotating with angular velocity $-\Omega$ (where the negative sign is introduced to accord with a right-handed coordinate systemi, Eq. (3) becomes

$$
\begin{equation*}
\psi\left(x, r, \phi_{0} ; t\right)=+\frac{1}{4 \pi \rho_{f}} \iint_{S} \Delta P\left(\xi, \rho, \theta_{0}\right) e^{j \omega t} \frac{\partial}{\partial n} \frac{c S}{R^{\prime}\left(x, r, \psi_{0}-\Omega t ; \zeta, r, \dot{0}_{0}^{-\Omega t}\right)} \tag{5}
\end{equation*}
$$

where $\omega \quad=$ frequency in radians $/ \mathrm{sec}$.
$0_{0}, \phi_{0}=$ angular position of loading, control points with respect to blade reference line in moving coordinate system (Fig. 2).

Substituting Eq. (5) in Eq. (4) and identifying the lifzins surfact as the helicoidal surface, $x=\theta_{0} / a$ or $\xi=\theta_{0} / a$, of an N-blaced propeller yields

$$
\begin{gather*}
\varphi\left(x, r, \phi_{0} ; t\right)=+\frac{1}{4 \pi \rho_{f} U} \sum_{n=1}^{N} e^{i q \Omega t} \iint_{S} \Delta P^{(q)}\left(\xi, p, \theta_{0}\right) \\
\cdot \tag{6}\\
\int_{-\infty}^{x} e^{i q\left[a(\tau-x)-\bar{\theta}_{n}\right]} \frac{\partial}{\partial n}\left(\frac{1}{R}\right) d \tau d S
\end{gather*}
$$

where $a=\Omega / \cup$
$q=\omega / \Omega=$ order of blade harmonic
$\bar{\theta}_{\mathrm{n}}=2 \pi(n-1) / N, n=1,2, \ldots N$
$R=\left\{(\tau-\xi)^{2}+r^{2}+\rho^{2}-2 r \rho \cos \left[\theta_{0}-\phi_{0}+\bar{\theta}_{n}-a(r-x)\right]\right\}^{1 / 2}$
Then the induced velocity at the control point ($x, r, \phi_{0} ; t$) due to the loading at $\left(\xi, 0, \theta_{0} ; t\right)$, when both points are located on the propeller blades, can be determined from Eq. (6). The normal component of the velocity induced by all elements will be given by

$$
\begin{equation*}
\frac{\partial}{\partial n^{\prime}} \phi\left(x, r, \phi_{0} ; t\right) \tag{7}
\end{equation*}
$$

where \vec{n}^{\prime} is the unit normal vector on the helicoidal surface at the control point, having a positive axial component.

The requirement for an impermeable boundary (i.e., no flow through the lifting surface) is

$$
W+\frac{\partial}{\partial n^{\prime}} \phi\left(x, r, \phi_{0} ; t\right)=0
$$

where W is the known (imposed)perturbation velocity normal to any blade chord

$$
W=-\frac{\partial}{\partial n^{\prime}} \phi\left(x, r, \phi_{0} ; t\right)
$$

which expresses the equality of the negative of self-induced normal velocity with the imposed velocity ir the downwash (positiven') direction. This yields the integral iquation for the unknown pressure change ΔP at frequency q :
$W=\frac{-e^{i q \Omega t}}{4 \pi \rho \rho^{U}} \sum_{n=1}^{N} \iint_{S} \Delta P(q)\left(\xi, \rho, \theta_{0}\right) \frac{\partial}{\partial n^{\top}} \int_{-\infty}^{x} e^{i q\left[a(\tau-x)-\bar{\theta}_{n}\right]} \frac{\partial}{\partial n}\left(\frac{1}{R}\right) d \tau d S$
where

$$
\begin{align*}
& \frac{\partial}{\partial n}=\frac{\rho}{\sqrt{1+a^{2} r^{2}}}\left(a \frac{\partial}{\partial \xi}-\frac{1}{\rho^{2}} \frac{\theta}{\partial \theta_{0}}\right) \tag{9}\\
& \frac{\partial}{\partial n^{\prime}}=\frac{r}{\sqrt{1+a^{2} r^{2}}}\left(a \frac{\partial}{\partial x}-\frac{1}{r^{2}} \frac{\partial}{\partial \phi_{0}}\right)
\end{align*}
$$

It should be noted that the left side of Equation (8) is the component of the flow normal to the nose tail line of any section of the propeller blade, whereas the right side is the induced velocity normal to the helicoidal reference surface. This lack of precise identity in resolution of the onset flow and the flow induced by all loading elements is in keeping with the linearized small-perturbation theory employed. Specifically, the onset flow normal to the nose tail line is (upon omitting camber for the present) expressed by

$$
\left.W=-\sqrt{\left.U+V_{L}\right)^{2}+\left(\Omega r+V_{T}\right)^{2}} \sin \left(\theta_{P}-\tan ^{-1} \frac{U+V_{L}}{\left(\Omega r+V_{T}\right.}\right)\right)
$$

where V_{L} and V_{T} are longitudinal and tangential perturtation veiocities. When this is expanded to secure the first order approximation (aefined for the condition $V_{L}=V_{T}=0$), we obtain

$$
W=-\sqrt{U^{2}+(\Omega r)^{2}} \sin \left(\theta_{P}-\beta\right)+\left(V_{L} \cos \theta_{P}-V_{T} \sin \theta_{\rho}\right)
$$

and, for small values of $\theta_{p}-\beta$, this reduces to the linear approximation

$$
W=-\sqrt{U^{2}+(\Omega r)^{2}}\left(\theta_{P}-\beta\right)+\left(V_{L} \cos \theta_{P}-V_{T} \sin \theta_{P}\right)^{*}
$$

Here $B=\tan ^{-1} \frac{U}{\Omega r}=\tan ^{-1} \frac{1}{a r}$ and σ_{p} is the pitch angle of the propeller.
It is to be noted also that blades with zero camber, zero thickness and having pitch angle variation $\theta_{p} \equiv B$ when set into a flow with zero perturbation, i.e., $V_{L}=V_{T}=0$, will experience no crossfiow and, hence, will develop no pressure loading. Thus, all these quantities, incidence angle, camber, hull wake and inductions from non-planar inickicss are considered as perturbations of the reference flow whose direction is defined by β and which, by itself, produces zero loading. The effects of each of these imposed flows on the blades are calculated separately and simply added together as allowed by the linearity of the theory.

The left-hand side of Eq. (8) can be writien in the form

$$
\begin{equation*}
W=\sum_{q=0} v^{(q)}\left(r, \phi_{0}\right) e^{-i q \theta} \tag{10}
\end{equation*}
$$

where $\theta=-\Omega t$ in terms of a moving coordinate system and V is in complex form. All but the hull wake are perturbations from the sieacystate flow only, $q=0$, and are analytically computed from the propelle: geometry. The normal wake velocities are derived from an harannic aralysis of the wake measurements as will be shown in a later section.

[^0]On utilizing Eq. (10), the integral equation (8) requires at each frequency q that

$$
\begin{equation*}
V^{(q)}(r) e^{-i q \phi_{0}}=\iint_{S} \Delta P^{(q)}\left(\xi, p, \theta_{0}\right) K\left(r, \phi_{0} ; p, 0_{0} ; q\right) d S \tag{11}
\end{equation*}
$$

where the kernel function is given by

$$
\begin{align*}
& k\left(r, \phi_{0} ; \rho, \theta_{0} ; q\right)=-\frac{1}{4 \pi \rho} f_{f}^{U} \lim _{\delta \rightarrow 0} \sum_{n=1}^{N} e^{-i q \bar{\theta}_{n}} \frac{\partial}{\partial n^{\prime}} \int_{-\infty}^{x} e^{i q a(\tau-x)} \frac{\partial}{\partial n}\left(\frac{1}{R}\right) d \tau \\
& \text { and } \quad \delta=\frac{\theta_{0}-\phi_{0}}{a}-(x-\xi) . \tag{12}
\end{align*}
$$

The time factor has been eliminated from both sides of Eq. (11) and it is understood that the real part of the solution must be taken at the end. The limiting process is introduced in the kernel function to avoid the mathematical difficulty due to the presence of a high-order singularity. The kernel function is one of the most complex of lifting surface theory since, in addition to its high-order singularity, it presents other complications arising from the helicoidal surface and from the interference of the other blades. Thus, attention is given to the numerical solution of the integral equation by means of a high-speed digital computer. The analysis has been carried to the stage where laborious computations can be efficiently performed by the numerical procedure.

It has been assumed that the shape of the chordwise loading distribution is the same as that in two-dimensional flow; the spanwise distribution is left to be determined by the solution of the integral equation. A method called the "generalized lift operator" techniquel is applied which reduces the surface integral equation to a line integral equation along the propeller radius. Then, by the collocation method, the line integral equation is reduced to a set of algebraic equations in the unknown spanwise loading distribution.

The mathematical complexity of the problem has imposed a series of concessions with regard to propeller geometry and helicoidal blade wake. To save time and expense in computing, a most important concession was that of approximating the blade helicoidal wake in "staircase" fashion, ${ }^{2}$ which appears to be physically realistic. However, with improvement of the high-speed digital computers, the exact treatment of the blade wake ${ }^{3}$ is being utilized.

Following Ref. (3), the substitutions listed below are made in Eq. (ii),

$$
\begin{align*}
& L^{(q)}\left(\rho, \theta_{\alpha}\right)=\Delta P^{(q)}\left(\xi, \rho, \theta_{o}\right) \cdot \rho \theta_{b}^{\rho}(1 b / f t) \tag{13}\\
& \theta_{0} \equiv \sigma^{\rho}-\theta_{b}^{\rho} \cos \theta_{\alpha}, \quad 0 \leq \theta_{\alpha} \leq \pi \tag{14}\\
& \phi_{0} \equiv \sigma^{r}-\theta_{b}^{r} \cos \phi_{\alpha}, \quad 0 \leq \phi_{\alpha} \leq \pi \tag{15}\\
& \frac{1}{R}=\frac{1}{\pi} \sum_{m=-\infty}^{\infty} e^{i m\left[\theta_{0}-\phi_{0}+\bar{\theta}_{n}-a(\tau-x)\right]} \int_{-\infty}^{\infty} l_{m}(|k| \rho) k_{m}(i k \mid r) e^{i(\tau-\xi) k_{d k}} d \tag{16}
\end{align*}
$$

and
for $\rho<r$. (If $\rho>r, \rho$ and r are interchanged in the modified Bessel functions $I_{m}()$ and $K_{m}()$ of the first and second kinds.) Here σ is the angular position of the midchord line fron the generator line through the hub in the projected propeller plane, θ_{b} is the subtended angle of the projected blade semichord, θ_{α} and ϕ_{α} are angular chordwise locations of the loading and control points, respectively, and the superscripts ρ and r refer to values at loading and control points, respectively.

After the appropriate chordwise mode shapes $\theta(\bar{n})$ are introduced, so that

$$
\begin{equation*}
L^{(q)}\left(\rho, \theta_{\alpha}\right)=\bar{n}_{\bar{n}=1}^{\max } L^{(q, \bar{n})}(\rho) \theta(\bar{n}) \tag{17}
\end{equation*}
$$

where $L^{(q, \bar{n})}(\rho)$ are the spanwise loading components to be determined by the solution of the integral equations, the chordwise integration of the kernel (Eq. (12)) over θ_{α} is performed. Then both sides of the integral equation (1I) are operated upon by the "generalized" lift operator : thus,

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{\pi} \phi(\bar{m})\left\{E q . \quad(11\} d \phi_{\alpha}\right. \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Phi(1)=1-\cos \phi_{\alpha} \text { (the Glauert lift operator) } \\
& \phi(2)=1+2 \cos \phi_{\alpha} \\
& \Phi(\bar{m})=\cos (\bar{m}-1) \phi_{\alpha} \text { for } \bar{m}>2
\end{aligned}
$$

A set of line integral equations is thus obtained with maximum order \bar{m} equal to maximum \bar{n} of chordwise modes:

$$
\begin{equation*}
\frac{W^{(q, \bar{m})}(r)}{U}=\sum_{\bar{n}=1}^{\bar{n} \max } \int_{\rho} L^{(q, \bar{n})}(\rho) \bar{K}^{(\bar{m}, \bar{n})}(r, \rho ; q) d \rho \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{W^{(q, \bar{m})}(r)}{U}=\frac{1}{\pi} \int_{0}^{\pi} \Phi(\bar{m}) \frac{\left\{V^{(q)}(r) e^{-i q \phi} o\right.}{U} d_{\phi}=\frac{v^{(q)}(r)}{U} e^{-i q \sigma^{r}}{ }^{(\bar{m})}\left(q \theta_{b}^{r}\right) \tag{20}
\end{equation*}
$$

$\mathrm{f}^{(\bar{m})}(\mathrm{y})$ is given for various $\overline{\mathrm{m}}$ in Appendix A.
The modified kernel function after the θ_{α} and ϕ_{α} chordwise integrations is finally (see Ref. 3):

$$
\begin{aligned}
\bar{K}(\bar{m}, \bar{n}) & =\left\{\frac{-N}{4 \pi \rho_{f} U^{2} r_{0}}\right\} \frac{r}{a \sqrt{1+a^{2} r^{2}}} \sum_{\substack{m=-\infty \\
m=q+l N}}^{\infty} e^{-i m \Delta \sigma} \\
& \cdot\left\{\left.e^{i(m-q) \Delta \sigma}\left[a^{2}(m-q)+\frac{m}{r^{2}}\right]\left[a^{2}(m-q)+\frac{m}{\rho^{2}}\right]\right|^{(\bar{m})}\left(q \theta_{b}^{r}\right) \Lambda{ }^{(\bar{n})}\left(q \theta_{b}^{\rho}\right) \cdot\right.
\end{aligned}
$$

$$
\begin{gathered}
\cdot I_{m}(a|m-q| \rho) K_{m}(a|m-q| r) \\
-\frac{i}{\pi} \int_{-\infty}^{\infty}\left(a k+\frac{m}{r^{2}}\right)\left(a k+\frac{m}{\rho^{2}}\right) e^{i \frac{k}{a} \Delta \sigma} \frac{i^{(\bar{m})}\left(\left(m-\frac{k}{a}\right) \theta_{b}^{r}\right) \Lambda(\bar{n})}{k-a(m-q)}\left(\left(m-\frac{k}{a}\right) \theta_{b}^{b}\right) \\
\left.I_{m}(|k| \rho) k_{m}(|k| r) d k\right\}
\end{gathered}
$$

$$
\begin{equation*}
\text { where } \Lambda^{(\bar{n})}(z)=\int_{0}^{\pi} 0(\bar{n}) e^{-i z \cos \theta_{\alpha}} \sin \theta_{\alpha} d \theta_{\alpha} \text { and } \Delta \sigma=\sigma^{r}-\sigma^{\rho} \text {. } \tag{21}
\end{equation*}
$$

In Eq. (21), all terms outside the first braces are nondimensionalized with respect to propeller radius r_{0} as is also p in Eq. (19). $\Lambda^{(\bar{n})}(z)$ for various \bar{n} and $\theta(\bar{n})$ is also given in Appendix A.

The integral equations given by Eq. (19) with the kernel given by Eq. (21) are solved numerically by the usual collocation method, with the loading $L(q, \bar{n})(\rho)$ assumed to be constant over each small radial strip. Then only the kernel needs to be integrated over the radial strip.

Reference 3 details the analytical development and the various numerical procedures to obtain the finite contributions of the Cauchytype singularity of the k-integral at $k=a(m-q)$ and of the higher order Hadamard-type singularity when $p=r$.

2. Chordwise Modes

The proper selection of chordwise modes is dictated by the loading distribution on a foil in two-dimensional fluw. Thus, in the unsteady flow case, the unknown loading function is approximated in the chordwise direction by the known Birnbaum distribution which has the proper leading edge singularity and satisfies the Kutta condition at the trailing edge. In this case, Eq. (17) is

$$
\begin{align*}
L^{(q)}\left(\rho, \theta_{\alpha}\right) & =\sum_{\bar{n} \stackrel{\bar{n}}{=} 1}^{\max } L^{(q, \bar{n})}(\rho) \theta(\bar{n}) \\
& =\frac{1}{\pi}\left\{L^{(q, 1)} \cot \frac{\theta_{\alpha}^{2}}{2} \sum_{\bar{n}=2}^{\max } L(q, \bar{n})(\rho) \sin (\bar{n}-1) \theta_{\alpha}\right\} \tag{22a}
\end{align*}
$$

In the steady-state flow condition, the chordwise mode shapes are selected to conform to the observed pressure distributions of the NACA foil sections. Furthermore, the analysis and corresponding program is divided into two parts, for design and off-design propeller conditions.

At design advance ratio J, the propeller operates at almost optimum efficiency and the chordwise loading distribution due to blade camber, thickness, angle of attack and inflow conditions (mean wake effects) does not deviate much in shape from the loading distribution of an airfoil in two-dimensional flow. At off-design advance ratio, however, the same propeller in the same wake is subjected to a change in angle of attack due to ΔJ, the difference between off-design and design advance ratio. The additional load distribution, due to this change in angle of attack in the off-design condition, is in accordance with thin wing theory represented by the first term of Eq. (22a).

The camber distribution is a decisive factor in the selection of the proper mode shapes of the chordwise loading distribution in the steady-state flow condition, since it is known that many properties of wing sections are primarily functions of the shape of the mean line. Thus, the program in the steady-state case deals with two different types of mode shapes.

The first is appropriate to the NACA-a mean lines characterized by the fact that the chordwise loading is constant from $x / c=0$ at the leading edge to $x / c=\bar{a}(\bar{a}$ varying from 0 to 1) and then decreases linearly to zero at $x / c=1$, the trailing edge. For trevity, this type is designated as "roof-top" loading. In this case, Eq. (17) becomes

$$
L^{(0)}\left(\rho, \theta_{\alpha}\right)=L(\rho)^{(0,1)} \theta(1)=\left\{\begin{array}{l}
L(0)^{(0,1)}, 0 \leq x \leq \bar{a} \tag{22b}\\
\left.L(0)^{(0,1)}, \frac{1-\bar{x}}{1-\bar{a}}\right), \bar{a} \leq x \leq 1
\end{array}\right.
$$

and $\Lambda^{(1)}(z)$ of Eq. (21) is as given in Appendix A.
The second type of mode shape in the steady flow case is appropriate to NACA mean 1 ines of the 4 - and 5 -digit wing series (including the lenticular mean line) and to arbitrary mean lines in general which are characterized by the fact that the chordwise loading is finite everywhere and zero at both edges and can thus be described by a series of sine mode shapes:

$$
\begin{equation*}
L^{(0)}\left(\rho, \theta_{\alpha}\right)=\frac{1}{\pi}_{\bar{n}=1}^{\bar{n} \max } L(\rho)^{(0, \bar{n})} \sin \bar{n} \theta_{\alpha} \tag{22c}
\end{equation*}
$$

It is to be noted that, when the complete Birnbaum mode series, Eq. (22a), or the cotangent term alone,is used and the solutions for the spanwise loadings are substituted in the chordwise distribution, a correction for the leading-edge singularity is introduced based on Van Dyke's and Lighthill's method ${ }^{4}, 5$.

3. Perturbation Velocity Distributions

As mentioned earlier, the left-hand side of the integral equation represents the positive normal components of the velocity perturbations from the basic flow due to non-uniformity of the flow (wake), to blade camber, blade thickness (non-planar) and incident flow angle, in the design condition, and to an additional angle of attack in the offdesign condition arising from the difference between off-design and design advance ratios.

a) Normal Velocity Due to Wake

This is the contribution of the flow non-uniformity to $V^{(q)}(r) / U$ of Eq. (20). The positive normal component (i.e. downwash) of the wake velocity along the middle chord of each radial strip is given by

$$
\frac{V_{N}(r)}{U}=\frac{V_{L}(r)}{U} \cos \theta_{p}(r)-\frac{V_{T}(r)}{U} \sin \theta_{p}(r)
$$

where

$$
\begin{aligned}
& \frac{V_{L}(r)}{U}=-1+\frac{V_{x}}{U} \quad, \quad \text { perturbation of uriiform flow } \\
& \frac{V_{x}(r)}{U}=\text { measured axial velocity } \\
& \begin{array}{l}
\frac{V_{T}(r)}{U}=\text { measured tangential velocity } \\
\theta_{p}(r)=\tan ^{-1} \frac{P(r)}{2 \pi r r_{0}} \\
P(r)=\text { propeller pitch, ft. } \\
r_{0}=\text { propeller radius, ft. } \\
r=\text { radial distance in terms of } r_{0}
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
\frac{V_{N}(r)}{U}=\left[\frac{V_{x}(r)}{U}-1\right] \cos \theta_{p}(r)-\frac{V_{T}(r)}{U} \sin \theta_{p}(r) \tag{23}
\end{equation*}
$$

It is to be noted that the present sign convention requires that, looking forward, the positive position angles θ are defined counterclockwise from $\theta=0$ at the upright position of the blade, that the axial component of the wake V_{x} is positive downstream (positive x-direction) and the tangential component V_{T} is positive in the counterclockwise direction.

The harmonic analysis of the measured wakes yields

$$
\begin{aligned}
& \frac{V_{x}(r)}{U}=a_{0}(r)+\sum_{q=1}^{\infty}\left[a_{q}(r) \cos q \theta+b_{q}(r) \sin q \theta\right] \\
& \frac{V_{T}(r)}{U}=A_{0}(r)+\sum_{q=1}^{\infty}\left[A_{q}(r) \cos q \theta+B_{q}(r) \sin q \theta\right]
\end{aligned}
$$

The zero harmonic of the normal velocity is then

$$
\begin{equation*}
\frac{V_{N}^{(0)}(r)}{U}=\left(a_{o}(r)-1\right) \cos \theta_{p}(r)-A_{o}(r) \sin \theta_{p}(r) \tag{23a}
\end{equation*}
$$

and the other harmonics are

$$
\begin{align*}
\frac{V_{N}^{(q)}(r)}{U} & =\left[a_{q}(r) \cos \theta_{p}(r)-A_{Q}(r) \sin \theta_{p}(r)\right] \cos q \theta \\
& +\left[b_{q}(r) \cos \theta_{p}(r)-B_{Q}(r) \sin \theta_{P}(r)\right] \sin q \theta \tag{23b}
\end{align*}
$$

As stated previously (see Eq. (10), the left-hand side of the integral equation must be in complex form

$$
\frac{\bar{W}^{(q)}}{U}=\left[\left(\frac{V_{N}^{(q)}}{U}\right)_{R}+i\left(\frac{V_{N}^{(q)}}{U}\right)_{1}\right] e^{-i q \theta}
$$

and it is understood that the real part is to be taken eventually. The real part is

$$
\left(-\frac{V_{N}^{(q)}}{U}\right)_{R} \cos q \theta+\left(\frac{V_{N}^{(q)}}{U}\right)_{1} \sin q \theta
$$

Therefore, the input to the program for the real part is from Eq. (23b)

$$
\begin{equation*}
\left(\frac{V_{N}^{(q)}(r)}{U}\right)_{R}=a_{q}(r) \cos \theta_{P}(r)-A_{q}(r) \sin \theta_{p}(r) \tag{24}
\end{equation*}
$$

and for the imaginary part

$$
\left(\frac{V_{H}^{(q)}(r)}{U}\right)_{1}=b_{q}(r) \cos \theta_{p}(r)-B_{q}(r) \sin \theta_{p}(r)
$$

b) Normal Velocity Due to Blade Camber

The velocity V_{c} normal to the blade in negative direction induced by the flow disturbance caused by blade camber is independent of time (since the blades are considered rigid) so that only the steady state loading is affected. The loading due to camber effect is obtained, therefore, from the steady-state part of integral equation (19) with $v^{(0)}(r) / U$ of (20) replaced by

$$
\begin{align*}
\frac{v_{c}^{(0)}(r)}{U} & =\frac{\sqrt{1+a^{2} r^{2}}}{c(r)} \frac{\partial f_{c}(r, s)}{\partial s} \\
& =\frac{2 \sqrt{1+a^{2} r^{2}}}{c(r) \sin \phi_{\alpha}} \frac{\partial f_{c}\left(r, \phi_{\alpha}\right)}{\partial \phi_{\alpha}} \tag{25}
\end{align*}
$$

where

$$
\begin{aligned}
\frac{\partial f_{c}(r, s)}{\partial s}= & s \text { lope of the camberline } f_{c}(r, s) \text { given at discrete } \\
& \text { points measured from the face pitch line } \\
s= & \left(1-\cos \phi_{\alpha}\right) / 2, c h o r d w i s e \text { location non-dimensionalized } \\
& \text { on the basis of } c(r) \\
c(r)= & \text { chord in feet } \\
\phi_{\alpha}= & \text { angular chordwise position }
\end{aligned}
$$

On application of the generalized lift operator (see Eq. (18)) to both sides of the integral equation, the left-hand side of Eq. (19) for this particular component, camber, becomes for each order \bar{m}

$$
\begin{equation*}
\frac{\bar{V}_{c}^{(o, \bar{m})}(r)}{U}=\frac{2 \sqrt{1+a^{2} r^{2}}}{c(r)} \int_{0}^{\pi} \phi(\bar{m}) \frac{\partial f_{c}}{\partial \phi_{\alpha}} \frac{d \phi_{a}}{\sin \phi_{\alpha}} \tag{26}
\end{equation*}
$$

where, as can be seen from Eq. (18), $\Phi(\bar{m})$ can be expressed in terms of $\operatorname{cosm} \phi_{\alpha}$. Integrating by parts

$$
\begin{align*}
& \frac{1}{c(r)} \int \frac{\cos m \phi}{\sin \phi} \frac{\partial f c}{\partial f} d \phi=\frac{f_{c}(r, s) \cos m \phi}{c(r) \sin \phi} \\
& \quad+\frac{1}{c(r)} \int \frac{f_{c}(r, s)}{\sin ^{2} \phi}[m \sin m \sin \phi+\cos m \phi \cos \phi] d \phi \tag{27}
\end{align*}
$$

In the small range near the leading edges, $0 \leq \phi \leq \cos ^{-1}(0.9)$ or $0 \leq 5 \leq 0.05$, the camberline is assumed to be parabolic and, in the range $\cos ^{-1}(-.8) \leq \phi \leq \pi$ or $0.90 \leq s \leq 1.0$ near the traiiing edge, the camberline is assumed to be a straight line. The integration is done analytically in these regions and numerically over the remainder of the chord. 6 The required input information is the ratio of camber ordinate $f_{c}(r, s)$ to chord $c(i r)$ at 19 equidistant positions from $s=0.05$ to 0.95 of chord. For arbitrary camber, these ratios are read into the program. The program has options to compute them in the cases of $N A C H-\bar{a}$ meanlines ($\bar{a}=0.8,0.8$ modified, 1.0) and of lenticular (sine-squared) camberline from the ratio of maximum camber ordinate to chord at each radial position, and in the case of the NACA-4 digit series from the ratio of maximum camber ordinates to chord and the chordwise position of the maximum ordinate.
c) Normal Velocity Due to "non-planar" Blade Thickness

The thickness of propeller blades describing a helicoidal or nonplanar surface, as stated earlier, generates a velocity field on the blade itself and, consequently, affects its loading distribution (in the steady-state only since the blades are considered rigid). The normal velocity component due to the effect is

$$
\begin{equation*}
\frac{V_{\tau}^{(0)}}{U}=-\frac{1}{U} \frac{\partial \phi_{\tau}\left(x, r, \phi_{0} ; 0\right)}{\partial n^{\prime}} \tag{28}
\end{equation*}
$$

where $\partial / \partial n^{\prime}$ is as defined in Eq. (9).
Resorting to the "thin body" approximation, the velocity potential Φ_{τ} is given by that of the source-sink distribution with strength proportional to the slope of the thickness distribution. In the case of an N-blade propeller, the velocity potential is given by $\Phi_{\tau}\left(x, r, \phi_{0}\right)=-\frac{1}{4 \pi} \sum_{n=1}^{N} \int_{\theta_{0}} \int_{\rho} \frac{M\left(\xi_{,}, \rho, \theta_{0}\right)}{R} \frac{\sqrt{1+a^{2} \rho^{2}}}{a \rho} \rho d \rho d \theta_{0}$

Here the source strength M is

$$
M\left(\xi, p, \theta_{0}\right)=2 U \sqrt{1+a^{2} p^{2}} \frac{d f_{\tau}(\rho, 0)}{\partial s}=2 U \frac{\partial f_{\tau}\left(\xi, p, \theta_{0}\right)}{\partial \xi}
$$

where $f_{\tau}\left(\xi, \rho, \theta_{0}\right)=$ thickness distribution over one side of the blade section at radial position p in the propeller plane.

The Descartes distance R is

$$
R=\left\{(x-\xi)^{2}+r^{2}+p^{2}-2 r \rho \cos \left(\theta_{0}-\hat{\psi}_{0}+\bar{\theta}_{n}\right)\right\}^{1 / 2}
$$

where $x=\phi_{0} / a=\left(\sigma^{r}-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a \quad, \quad 0 \leq \phi_{\alpha} \leq \pi$

$$
\xi=\theta_{o} / a=\left(\sigma^{2}-\theta_{b}^{\rho} \cos \theta_{\alpha}\right) / a \quad, \quad 0 \leq \dot{\theta}_{\alpha} \leq \pi
$$

$$
\bar{\theta}_{n}=2 \pi(n-1) / N \quad, \quad n=1,2, \ldots N
$$

If the reciprocal of R is again expressed in a series as in Eq. (16), then

$$
\frac{\partial}{\partial n^{\prime}}\left(\frac{l}{R}\right)=\frac{i}{\pi} \frac{r}{\sqrt{1+a^{2} r^{2}}} \sum_{m=-\infty}^{\infty} e^{i m\left(\theta_{o}-\psi_{o}+\bar{e}_{n}\right)} \sum_{-\infty}^{\infty}\left(a k+\frac{m}{r^{2}}\right)(1 k)_{m} e^{i(x-\xi) k^{\prime}} d k
$$

where $(\mid K)_{m}= \begin{cases}I_{m}(|k| \rho) K_{m}(|k| r), & \rho<r \\ I_{m}(|k| r) K_{m}(|k| \rho), & \rho>r\end{cases}$
Since $\sum_{n=1}^{N} e^{i m \bar{\theta}_{n}}= \begin{cases}N & \text { for } m=\ell N, \ell=0, \pm 1, \pm 2, \ldots \\ 0 & \text { for all other } m\end{cases}$
and $d \theta_{0}=0_{b}^{j} \sin \theta_{\alpha} d \theta$ and $\frac{\partial}{\partial \xi}=\frac{a}{\theta_{b}^{0} \sin \theta_{\alpha}} \frac{\partial}{\partial \theta_{\alpha}}$
Equation (28) can be reduced to

$$
\begin{gather*}
\frac{v_{\tau}^{(o)}(r)}{U}=\frac{i N r}{2 \pi^{2} \sqrt{1+a^{2} r^{2}}} \sum_{\substack{m=-\infty \\
m=\ell N}}^{\infty} e^{-i m \Delta \sigma} \int_{0}^{\pi} \int_{\rho} \frac{\partial f_{\tau}\left(\rho, \theta_{\alpha}\right)}{\partial \theta_{\alpha}} \sqrt{1+a^{2} \rho^{2}} \\
\cdot \int_{-\infty}^{\infty}\left(a k+\frac{n}{r^{-2}}\right)(1 k)_{n i i} e^{i \Delta \sigma k / a_{e} i(k-a m) \theta_{b}^{\rho} \cos \hat{c}_{\alpha} / a} \\
\cdot e^{-i(k-a m) \theta_{b}^{r} \cos \phi_{\alpha} / a_{d k d i} d \theta_{\alpha}} \tag{30}
\end{gather*}
$$

Before the θ_{α}-integration can be performed, it is necessary to supply an analytical expression for the thickness distribution $f_{\tau}\left(\rho, \theta_{\alpha}\right)$. When the NACA 4 and 5-digit wing series were derived, it was found that the ratio of thickness distribution y_{τ} to maximum thickness t_{o} of efficient wing sections were nearly the same when their camber was removed (mean line straightened). 7 The thickness distribution of these sections is given by

$$
\frac{y_{T}}{c}= \pm \frac{t_{o}}{c}\left(1.4845 \sqrt{x}-.630 x-1.758 x^{2}+1.4215 x^{3}-.5075 x^{4}\right)
$$

where c is the chord length, x is the chordwise location, $0 \leq x \leq 1$, and the coefficient of \sqrt{x} is equal to $\sqrt{2 p_{0}}, \tilde{r}_{0}$ being the ratio of the leading edge radius to the chord c. In general, for any propeller the blade thickness distribution in the projected plane can be approximated by

$$
f_{\tau}\left(\rho, \theta_{\alpha}\right)=2 \rho \theta^{\rho}\left\{\sqrt{2 \rho_{o}(\rho)} \sqrt{x}+\frac{t_{o}(\rho)}{c(\rho)}\left\{a x+b x^{2}+c x^{3}+d x^{4}\right]\right\}
$$

and with $x=\frac{1-\cos \theta_{\alpha}}{2}, 0 \leq \theta_{\alpha} \leq \pi$

$$
\begin{equation*}
f_{\tau}\left(\rho, \theta_{\alpha}\right) \simeq 2 \rho \theta_{b}^{\rho}\left\{\sqrt{2} \rho_{o}(\rho) \sin \frac{\alpha}{2}+\frac{t_{0}(\rho)}{c(\rho)}\left[a_{o}(\rho)+\sum_{n=1}^{4} a_{n}(\rho) \cos n \theta_{\alpha}\right]\right\} \tag{31}
\end{equation*}
$$

where f_{τ} and ρ are fractions of propeller radius $r_{o}, \rho_{0}(\rho)$ is the ratio of leading edge radius to chord length $c(\rho)$ at a given radial position and t_{o} / c is the ratio of maximum thickness to chord at that radial position. The coefficients of the fourth-order polynomial in x are calculated by the "least squares" method and then with the trigonometric substitution for x, the coefficients a_{n} of Eq. (31) are obtained and inserted in the input to the program.

The slopes of the thickness distribution are, from Eq. (31)

$$
\begin{equation*}
\left.\frac{\partial f_{\tau}\left(\rho, \theta_{r}\right)}{\partial \theta_{a}}=\rho \theta_{b}^{\rho} \sqrt{2 \rho_{0}(\rho)} \cos \frac{\theta_{\alpha}}{2}-2 \rho \theta_{b}^{\rho} \frac{\tau_{0}(\rho)}{c(\rho)} \sum_{n=1}^{4} n a_{n}(\rho) \sin n \theta_{\alpha}\right\} \tag{32}
\end{equation*}
$$

Letting

$$
\begin{equation*}
A\left((k-a m) \theta_{b}^{\rho} f a\right)=\int_{0}^{\pi} \frac{\partial f_{\tau}\left(\rho, \theta_{\alpha}\right)}{\partial \theta_{\alpha}} e^{i\left((k-a m) \theta_{b}^{\rho} / a\right) \cos \theta_{\alpha}} d \theta_{\alpha} \tag{33}
\end{equation*}
$$

and applying the generalized lift operator, Equation (30) becomes for each lift operator mode $\overline{\mathrm{m}}$

$$
\begin{align*}
& \frac{\bar{v}_{\tau}^{(o, \bar{m})}(r)}{U}=\frac{i N r}{2 \pi^{2} \sqrt{1+a^{2} r^{2}}} \sum_{\substack{m=-\infty \\
m=\ell N}}^{\infty} e^{-i m \Delta \sigma} \int_{\rho} \sqrt{1+a^{2} \rho^{2}} \\
& \cdot \int_{-\infty}^{\infty}\left(a k+\frac{m}{r^{2}}\right)(1 k)_{m} e^{i \Delta \sigma k / a,(\tilde{m})}\left(\left(a m-k j \theta_{b}^{r} / a\right) A\left((k-a m) \theta_{b}^{0} / a\right) d k d p\right. \tag{34a}\\
& \text { Let } u=k \text { - am, then } \\
& \frac{\bar{V}_{r}^{(0, \bar{m})}(r)}{U}=\frac{i N r}{2 \pi^{2} \sqrt{1+a^{2} r^{2}}} \int_{F} \sqrt{1+a^{2} p^{2}} \\
& \cdot \sum_{\ell=-\infty}^{\infty} \int_{-\infty}^{\infty}\left[a u+\ell N\left(a^{2}+\frac{1}{r^{2}}\right)\right] l_{\ell N}(\mid u+a \ell N ; \dot{\prime}) K_{\ell N}(|u+a \ell N| r) e^{i \Delta \sigma u / a} \\
& .1^{(\bar{m})}\left(-u \theta_{b}^{r} / a\right) A\left(u \theta_{b}^{\rho} / a\right) \text { dudo } \tag{34b}\\
& \text { (for } p<r \text {). }
\end{align*}
$$

finally
$\frac{\bar{V}_{\tau}^{\langle o, \bar{m}\rangle}(r)}{U}=-\frac{N r}{\pi^{2} \sqrt{1+a^{2} r^{2}}} \int_{\rho} \sqrt{1+a^{2} \rho^{2}} \int_{0}^{\infty}\left\{m . P a r t\left\{e^{i \Delta \sigma u / a},(\bar{m})\left(-u \theta_{b}^{r} / a\right) A\left(u \theta_{b}^{p} / a\right)\right\}\right.$

- \{au|$\|_{0}(u \rho) K_{0}(u r)+\sum_{\ell=1}^{\infty}\left\{\left.\left[a u+\ell N\left(a^{2}+\frac{1}{r^{2}}\right\}\right]\right|_{\ell N}\left(\left\{u+a \ell N|\rho\rangle K_{\ell N}(|u+a \ell N| r)\right.\right.\right.$
$\left.\left.+\left[a u-\ell N\left(a^{2}+\frac{1}{r^{2}}\right)\right] \|_{\ell N}(|U-a \ell N| \rho) K_{\ell N}(|u-a \ell N| r)\right]\right\} d u d \rho \quad$ (34c)
(for $p<r$, otherwise p and r are interchanged in the modified Bessel functions.) As can be seen from Appendix E

$$
\begin{align*}
A(\lambda)=\rho \theta_{b}^{\rho} \sqrt{2 \rho}(\rho) & B(\lambda)-2 \rho \theta_{b}^{\rho} \frac{t_{0}(\rho)}{c(\rho)}
\end{align*}\left\{\begin{array}{l}
\\ \tag{35}
\end{array}\right.
$$

where $B(\lambda)=\int_{0}^{\pi} e^{i \lambda \cos \theta} \cos \frac{\theta}{2} d \theta \quad$ (See Appendix B, 5)

$$
G(\lambda)=\frac{\sin \lambda}{\lambda}
$$

$$
F(\lambda)=\frac{\sin \lambda-\lambda \cos \lambda}{\lambda^{2}}
$$

(It can be shown that when $u=0$ the integrand of (34c) is zero.)

d) Normal Velocity Due to Flow Angle

The incident flow angle has been defined as the difference between the geometric pitch angle $\theta_{p}(r)=\tan ^{-1}(P(r) / 2 \pi r)$ and the hydrodynamic pitch angle $B(r)=\tan ^{-1}(1 / a r)$ of the assumed helicoidal surface. The normal velocity (in the positive direction) $v_{f}^{(0)}(r) / U$ due to this effect depends only on the radial position, not on the chordwise ϕ_{α} position, and is given by

$$
\frac{v_{f}^{(o)}(r)}{U}=-\sqrt{1+a^{2} r^{2}}\left[\theta_{p}(r)-\beta(r)\right]
$$

Therefore, after application of the generalized lift operator, it becomes

$$
\frac{v_{f}^{(0, \bar{m})}(r)}{U}=\left\{\begin{array}{cl}
-\sqrt{1+a^{2} r^{2}}\left[\theta_{p}(r)-B(r)\right] & \text { for } \bar{m}=1 \text { or } 2 \tag{36}\\
0 & \text { for } \bar{m}>2
\end{array}\right.
$$

since $1^{(1)}(0)=1^{(2)}(0)=1$ and $1^{(\bar{m}>2)}(0)=0$. (See Appendix A)
In Eq. (36) $a=\pi / J$ where J is design advance ratio. At off-design advance ratio $J_{o d}$, the propeller is subjected to a change in angle of attack due to $\Delta J=J_{\text {od }}-J$. The normal velocity perturbation due to this change in angle of attack is

$$
\begin{equation*}
\frac{\Delta \bar{V}_{f}^{(0, \bar{m})}}{U_{o d}}=\left\{-\sqrt{1+a_{o d}^{2} r^{2}}\left[\theta_{p}(r)-\tan ^{-1} \frac{J_{o d}}{\pi r}\right]+\sqrt{1+a^{2} r^{2}}\left[\theta_{p}(r)-\beta(r)\right]\left(U / U_{o d}\right)\right\} \tag{37}
\end{equation*}
$$

for $\bar{m}=1$ or 2 , where $a_{o d}=\pi / J_{o d}$ and $U_{o d}$ is the off-design forward velocity.
4. Blade Pressure Distributions, Hydrodynamic Forces and Moments and Blade Bending Moments
a) Pressure Distribution

After the integral equation (19) is solved for propeller spanwise loading components $L^{(q, \bar{n})}(\rho)(l b / f t)$ due to the various perturbation velocity distributions, the spanwise loading distribution is determined from Eq. (17):

$$
\begin{align*}
L^{(q)}(r) & =\int_{0}^{\pi} L^{(q)}\left(r, \theta_{\alpha}\right) \sin \theta_{\alpha} d \theta_{\alpha} \\
& =\int_{0}^{\pi} \bar{\sum}_{n=1}^{\bar{n} \max }(q, \bar{n})(r) \theta(\bar{n}) \sin \theta_{\alpha} d \theta_{\alpha} \tag{38}
\end{align*}
$$

For the unsteady loading due to wake $(q \neq 0)$, the complete Birnbaum series is used with the chordwise loading distribution given by Eq. (22a). The spanwise loading distribution is, in this case,

$$
\begin{align*}
L^{(q)}(r) & =\frac{1}{\pi} \int_{0}^{\pi}\left\{L^{(q, 1)}(r)\left(1+\cos \theta_{\alpha}\right)+\sum_{n=2}^{\bar{n}} L^{\operatorname{riax}}(q, \bar{n})\right. \\
& \left.(r) \sin (\bar{n}-1) \theta_{\alpha} \sin \theta_{\alpha}\right\} d \theta_{\alpha} \tag{39a}\\
& =L^{(q, 1)}(r)+\frac{1}{2} L^{(q, 2)}(r)
\end{align*}
$$

For the steady loading due to ΔJ in the off-design condition, the spanwise loading distribution is the first term of Eq. (39a).

In the steady state case $(q=0)$ for NACA \bar{a} mean line blade sections, the chordwise loading distribution is the so-called "roof-top" distribution, given by Eq. (22b), which can also be expressed as

$$
L^{(0)}(r)= \begin{cases}L^{(0,1)}(r) & \text { for } 0 \leq \theta_{\alpha} \leq \cos ^{-1}(1-2 \bar{a}) \\ L^{(0,1)}(r) \frac{1+\cos \theta_{\alpha}}{2(1-\bar{a})} & \text { for } \cos ^{-1}(1-2 \bar{a}) \leq e_{\alpha} \leq \pi\end{cases}
$$

The spanwise loading distribution in this case is

$$
\begin{align*}
L^{(0)}(r) & =L^{(0,1)}(r)\left\{^{\cos ^{-1}} \int_{0}^{(1-2 \bar{a})} \sin \theta_{\alpha} d \theta_{\alpha}+\frac{1}{2(1-\bar{a})} \cos ^{-1} \int_{(1-2 \bar{a})}^{T}\left(1+\cos \theta_{\alpha}\right) \sin \theta_{\alpha} d \theta_{a}\right\} \\
& =L^{(0,1)}(r)(\bar{a}+1) \tag{39b}
\end{align*}
$$

The steady chordwise loading distribution for NACA mean lines of the 4- and 5-digit wing series and for arbitrary mean lines in general is given by Eq. (22c). The spanwise loading disiribution is then given as

$$
\begin{align*}
L^{(0)}(r) & =\frac{1}{\pi} \int_{0}^{\pi} \sum_{n=1} L^{(0, \bar{n})}(r) \sin \bar{n} \theta_{\alpha} \sin \theta_{\alpha} d \theta_{\alpha} \\
& =\frac{1}{2} L^{(0,1)}(r) \tag{39c}
\end{align*}
$$

The chordwise pressure distributions in $l \mathrm{~b} / \mathrm{ft}^{2}$ are obtained by dividing the chordwise loading distribution by the semi-chord in feet (see Eq. (13)).

Whenever the cotangent Birnbaum mode is used, the Van Dyke or Lighthill correction ${ }^{4}, 5$ is applied to the chordwise pressure distribution to remove the physically unrealizable leading edge singularity.

Their simple rule for obtaining a uniformly valid solution is

$$
\bar{c}_{p}=\frac{s}{s+\rho_{0 / 2}} c_{P_{1}}
$$

where $C_{P_{1}}=$ pressure coefficient according to first-order thin airfoil theory

$$
s^{P_{1}}=\left(1-\cos \theta_{\alpha}\right) / 2=\text { chordwise location from the leading edge in }
$$ terms of chord length

$\rho_{0}=$ leading edge radius of the profile in terms of chord length
The modified chordwise loading distribution is then

$$
\begin{equation*}
L^{(q)}\left(r, \theta_{\alpha}\right)=\frac{1}{\pi}\left(\frac{1-\cos \theta_{\alpha}}{1+\rho_{o}-\cos \theta_{\alpha}}\right)\left\{L^{(q, 1)}(r) \cot \frac{\theta_{\alpha}}{2}+\sum_{\bar{n}=2} L^{(q, \bar{n})}(r) \sin (\bar{n}-1) \theta_{\alpha} ;\right. \tag{40}
\end{equation*}
$$

Since the pressure near the leading edge is governed by the first term of (40), viz.,

$$
\frac{1-\cos \theta_{a}}{1+\rho_{0}-\cos \theta_{\alpha}} \cot \frac{0}{2}=\frac{\sin \theta_{\alpha}}{1+\rho_{0}-\cos \theta_{\alpha}}
$$

the location of maximum pressure near the leading edge is determined apparently from

$$
\frac{d}{d \theta_{\alpha}} \frac{\sin \theta_{\alpha}}{1+p_{0}-\cos \theta_{\alpha}}=0
$$

Thus $\left(\cos 0_{a}\right)_{\max }=1 /\left(1+\rho_{0}\right)$. This is the chordwise location of a point where the maximum pressure near the leading edge will occur after the application of the Van Dyke-Lighthill correction, provided D_{0} is not too large. If $\rho_{0}>.015$, the sine series of (40) will influence the location of maximum pressure near the leading edge.

b) Propeller-generated Forces and Monents

The principal components of the hydrodynamic forces and moments which are evaluated are listed below and shown in Figure 1 with the sign convention adopted:

$$
\begin{aligned}
& \text { Forces: } F_{x} \quad=\text { thrust (x-direction) } \\
& F_{y} \text { and } F_{z}=\begin{array}{l}
\text { horizontal and vertical components, } \\
\\
\text { respectively, of the bearing forces }
\end{array} \\
& \text { Moments: } Q_{x} \quad=\text { torque about the } x \text {-axis } \\
& Q_{y} \text { and } Q_{z}=\begin{aligned}
\text { bending moments about the } y \text { - and } z \text {-axis, } \\
\text { respectively }
\end{aligned}
\end{aligned}
$$

The total forces at frequency $\ell N(i=0,1,2 \ldots)$ induced by an N-bladed propeller are determined as (see Appendix C)

$$
\begin{aligned}
F_{x}= & \operatorname{Re}\left\{N r_{0} e^{i \ell N \Omega t} \int_{o}^{1} L^{(\ell N)}(r) \cos \theta_{p}(r) d r\right\} \\
F_{y}= & \operatorname{Re}\left\{\frac{N r_{0}}{2} e^{i \ell N \Omega t} \int_{0}^{1} \sum_{\bar{n}=1}\left[L^{(2 N-1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(-\theta \theta_{b}^{r}\right)+L^{(l N+1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(\theta_{b}^{r}\right)\right]\right. \\
& \left.\sin _{p}(r) d r\right\}
\end{aligned}
$$

$$
\begin{align*}
F_{Z}= & \operatorname{Re}\left\{\frac{-N r_{0}}{2 i} e^{i \ell N \Omega t} \int_{0}^{1} \sum_{\bar{n}=1}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(-\theta_{b}^{r}\right)-L^{(\chi N+1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(\theta_{b}^{r}\right)\right]\right. \\
& \left.\sin \theta_{p}(r) d r\right\} \tag{4la}
\end{align*}
$$

The moments are determined by:

$$
\begin{aligned}
& Q_{x}=-\operatorname{Re}\left\{N r_{0}^{2} e^{i \ell N \Omega t} \int_{0}^{1} L^{(\ell N)}(r) \sin \theta_{p}(r) r d r\right\} \\
& Q_{y}=\operatorname{Re}\left\{\frac { N r _ { 0 } ^ { 2 } } { 2 } e ^ { i \ell N \Omega t } \int _ { 0 } ^ { 1 } \left\{\sum_{\bar{n}=1}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(-\theta_{b}^{r}\right)+L^{(\ell N+1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(\theta_{b}^{r}\right)\right] \operatorname{cose}(r)\right.\right. \\
& \left.+\sum_{\bar{n}=1}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda_{1}^{(\bar{n})}\left(-\theta_{b}^{r}\right)-L^{(\ell N+1, \bar{n})}(r) \Lambda_{1}^{(\bar{n})}\left(\theta_{b}^{r}\right)\right]\left(i \theta_{b}^{r}\right) \sin \theta_{\rho}(r) \tan \theta_{p}(r)\right\} r d r \\
& Q_{z}=\operatorname{Re}\left\{\frac { - N r _ { 0 } ^ { 2 } } { 2 i } e ^ { i \ell N \Omega t } \int _ { 0 } ^ { 1 } \left\{\sum_{\bar{n}=1}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(-\theta_{b}^{r}\right)-L^{(\ell N+1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(\theta_{b}^{r}\right)\right] \cos \theta_{p}(r)\right.\right. \\
& \left.+\sum_{\bar{n}=1}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda_{1}^{(\bar{n})}\left(-\theta_{b}^{r}\right)+L^{(\ell N+1, \bar{n})}(r) \Lambda_{1}^{(\bar{n})}\left(\theta_{b}^{r}\right)\right]\left(i \theta_{b}^{r}\right) \sin \theta_{p}(r) \tan \theta_{p}(r)\right\} r d r .
\end{aligned}
$$

where $\Lambda^{(\bar{n})}(z)$ and $\Lambda_{1}^{(\bar{n})}(z)$ are as defined in Appendix A.
It is seen from Eqs. ($41 \mathrm{a}, \mathrm{b}$) that the transverse bearing forces and bending moments are evaluated from propeller loading components $L^{(q, \bar{n})}(r)$ associated with wake harmonics at frequencies adjacent to blade frequency, i.e. at $q=\ell N \pm 1$, whereas the thrust and torque are determined from the loading $L^{(q)}(r)$ (given by Eqs. 39a,b,c) at blade frequency $q=\ell N$. At $\ell=0$ (steady-state) the mean transverse forces and bending moments are determined at shaft frequency. Thus:

$$
\begin{aligned}
& \bar{F}_{y}=\operatorname{Re}\left\{\frac{N r_{0}}{2} \int_{0}^{1}\left[\sum_{\bar{n}=1} L^{(1, \bar{n})}(r) \Lambda{ }^{(\bar{n})}\left(\theta_{b}^{r}\right)\right] \sin \theta_{p}(r) d r\right\} \\
& \bar{F}_{z}=\operatorname{Re}\left\{\frac{N r_{o}}{2 i} \int_{0}^{1}\left[\sum_{\bar{n}=1} L^{(1, \bar{n})}(r) \Lambda{ }^{(\bar{n})}\left(\theta_{b}^{r}\right)\right] \sin \theta_{p}(r) d r\right\}
\end{aligned}
$$

$$
\begin{align*}
& \bar{Q}_{y}=\operatorname{Re}\left\{\frac { N r _ { 0 } ^ { 2 } } { 2 } \int _ { 0 } ^ { 1 } \left[\sum_{\bar{n}=1} L^{(1, \bar{n})}(r) A^{(\bar{n})}\left(0_{b}^{r}\right) \cos \theta_{p}(r)-\right.\right. \\
& {\left[\sum_{-} L^{(l, \bar{n})}(r) \Lambda_{i}^{(\bar{n})}\left(O_{b}^{r}\right)\right]\left(i G_{b}^{r}\right) \sin 0_{j}(r) \tan \dot{p}_{p}(r) j r d r j} \\
& \bar{n}=1 \\
& \bar{Q}_{z}=\operatorname{Re}\left\{\frac { N R _ { 0 } ^ { 2 } } { 2 i } \int _ { 0 } ^ { 1 } \left\{\sum _ { \overline { n } = 1 } L ^ { (1 , \overline { n }) } (r) \Lambda ^ { (\overline { n }) } \left(\because \operatorname{in}^{\prime} \operatorname{cosi}_{p}(r)-\right.\right.\right. \\
& {\left[\sum_{\bar{n}=1} L^{(1, \bar{n})}(r) A_{p}^{(\bar{n})}\left(\partial_{b}^{r}\right)\right]\left(i \hat{0}_{b}^{r}\right) \operatorname{sir} \hat{\theta}_{p}(r) \tan \dot{j}_{p}(r) \text { jrdr; }} \tag{4;c}
\end{align*}
$$

All forces and moments can be written in the form

$$
\left.R_{e}\left[c^{(q)} e^{i \phi} q e^{-i q 0}\right]=c^{(q)} \cos \left(-q 0+\phi_{q}\right)=c^{(q)} \cos (q)-\hat{\psi}_{q}\right)
$$

where θ is blade angular position, positive in tie courter-ciociwise direction from zero at the upright position (12M), q is order of shaft frequency, $C^{(q)}$ is magnitude of force or morient, and ϕ_{q} is phase angle (electrical) determined as the angle whose tangent is the imaginary part (sine part) over the real part (cosine part.. (The program output gives $c^{(q)}$ and $\left.\phi_{q}.\right)$

In comparing phase angles with those of experiment, care should be taken to ascertain if measured values refer to lead or lag position and if the quantity considered is at peak or trough. When the theoretical ϕ_{G} is positive, the peak (or trough) of the quantity is to the left of the upright position, i.e., leads. When ϕ_{q} is negative, the peak (or trough) is to the right of the upright position and lags that of input.

c) BZade Bending Moments

The blade bending moment about the face pitch line at any radius r_{j} of a blade is calculated from the chordwise integrated loading (spanwise component) $L^{(q)}(r)$ at any shaft frequency q as

$$
\begin{equation*}
M_{b}^{(q)} e^{i q \Omega t}=r_{0}^{2} e^{i q \Omega t} \int_{r_{j}}^{1}(q)(r) \cos \left[\theta_{p}(r)-\theta_{p}\left(r_{j}\right)\right]\left(r-r_{j}\right) d r \tag{42}
\end{equation*}
$$

The positive blade bending moment about the face-pitch line is that which puts the face of the blade in compression (see Figure 1).

The instantaneous blade bending moment distribution when the propeller swings around its shaft in the clockwise direction is

$$
\begin{equation*}
M_{b}=R_{e} \int_{q} M_{b}^{q} e^{-i q \theta}=\sum_{q}\left|M_{b}^{q}\right| \cos \left(q \theta-\phi_{q}\right) \tag{43}
\end{equation*}
$$

where ϕ_{G} is the phase angle (electrical) determined by

$$
\phi_{q}=\tan ^{-1} \frac{\left(M_{b}^{q}\right) \mid m}{\left(M_{b}^{q}\right) R e}
$$

and $\left(M_{b}^{q}\right)_{R e},\left(M_{b}^{q}\right)_{1 m}$ are real and imaginary parts of M_{b}^{q}.
It should be noted that in the program the value of r_{j} of Eq. (42) is limited to any of the midpoints of the radial strips into which the blade span is divided, at which points the pitch angles, as well as other geometrical characteristics, are given as input. The bending moment at
any other radial position can be obtained by interpolation or extrapolation. For example, for $r_{j}<\left(r_{1}-\Delta r\right)$, where r_{1} is the midpoint of the initial radial strip from the hub, r_{h}, and Δr is the span of the radial strip $\left(r_{1}=r_{h}+\Delta r / 2\right)$, the bending moment can be estimated as

$$
M_{b}\left(r_{j}\right)=M_{b}\left(r_{1}\right)-\frac{\left[M_{b}\left(r_{1}\right)-M_{b}\left(r_{2}=r_{1}+\Delta r\right)\right]}{\Delta r}\left(r_{j}-r_{l}\right)
$$

For the case of bending moment about the root r_{h}, this formula gives

$$
M_{b}\left(r_{h}\right)=M_{b}\left(r_{1}\right)+\frac{M_{b}\left(r_{1}\right)-M_{b}\left(r_{2}\right)}{2}
$$

5. Frictional Thrust and Torque

To obtain the frictional contribution to thrust and torque, one must resort to empirical formulae for the frictional coefficient in turbulent flow since, in this case, the theoretical analysis is extremeiy difficult. Hoerner ${ }^{8}$ suggests a formula based on statistical analysis of measured velocity distributions across the boundary layer, viz. the PrandtlSchlichting formula for the friction coefficient for one side of a smooth flat plate of length c :

$$
\begin{equation*}
C_{F}=\frac{0.455}{\left(\log _{10} R_{c}\right)^{2.58}} \tag{44}
\end{equation*}
$$

where R_{c} is Reynolds number based on length c (of the expanded chord) i.e., in the nomenclature of this paper,

$$
R_{c}(r)=\frac{u \sqrt{1+a^{2} r^{2}} c(r)}{v}
$$

where v is kinematic viscosity.
Because of thickness, the average velocity around a symmetrical foil section is higher than that of the undisturbed flow, the increase being proportional to the thickness ratio t_{0} / c. For the conventional section, the total frictional drag coefficient is approximated by ${ }^{8}$

$$
\begin{equation*}
C_{D}(r)=\left[2 C_{F}(r)\right]\left(1+2 \frac{t_{0}(r)}{c(r)}\right] \tag{45}
\end{equation*}
$$

Although no allowance is made for viscous pressure drag, nor drag associated with the deviation of the local flow direction from that along the nose-tail line, this formula agrees basically with theoretical analyses of skin-friction drag and is substantiated by experimental results ${ }^{8}$.

Taking $\Delta F_{D}(r)$ (elemental friction force) as the friction force per foot of propeller blade span with

$$
\begin{equation*}
\Delta F_{D}(r)=\frac{1}{2} \rho_{f} U^{2}\left(1+a^{2} r^{2}\right) c(r) C_{D}(r) \tag{46}
\end{equation*}
$$

for an N-bladed propeller, the total force in the positive x-direction and moment about the x-axis due to skin-friction drag are
and

$$
F_{D X}=N \int_{r} \Delta F_{D}(r) \sin \theta_{P}(r) d r
$$

$$
Q_{D x}=N \int_{r} \Delta F_{D}(r) \cos \theta_{P}(r) r d r
$$

On substitution of (44) - (46) and noting that the expanded chord length is equivalent to

$$
c(r)=\frac{2 r r_{0} \theta_{b}^{r}}{\cos \theta_{p}(r)}
$$

where r is a fraction of propeller radius r_{0}, the frictional thrust and torque become

$$
\begin{aligned}
& F_{D x}=N r_{o}^{2} \rho_{f} U^{2} \int_{0}^{1} 2 C_{F}(r)\left[1+2 \frac{t_{0}(r)}{c(r)}\right]\left(1+a^{2} r^{2}\right) r \theta_{b}^{r} \tan \theta_{p}(r) d r \\
& Q_{D x}=N r_{0}^{3} \rho_{f} U^{2} \int_{0}^{1} 2 C_{F}(r)\left[1+2 \frac{t_{0}(r)}{c(r)}\right]\left(1+a^{2} r^{2}\right) r^{2} \theta_{b}^{r} d r
\end{aligned}
$$

$F_{D x}$ and $Q_{D x}$ are added algebraically to F_{x} and Q_{x}, respectively, as calculated in the preceding section. Thrust will be decreased slightly and torque increased more noticeably.

As was mentioned earlier, this is a first attempt to incorporate the frictional thrust and torque in the program; in the event of any improvement of the estimated frictional coefficient, this portion of the program can be easily modified.

B. Thickness Effects (Non-iifting)

With the propeller in translatory and rotational motion, an additional flow disturbance is generated about the propeller blade section due to the blade thickness distribution; the fluid is pushed equally to both sides, influencing the pressure distribution on both suction and pressure sides of the blade without contributing to the net blade loading. As noted previously, this effect will occur in steady flow conditions only since the blades are considered rigid. The pressure distribution resulting from this "flow aistortion" thickness will be studied in this section by means of the "thin body" approximation.

The velocity potential due to source-sink distributions approximating the symmetrical thichness distribution of an N-bladed propeller is given by

$$
\begin{align*}
& Q(x, r, f, 0)=-\frac{1}{4 \pi} \sum_{n=1}^{i} \iint_{S} \frac{M(n, s)}{R} d S \\
& =-\frac{1}{4-} \sum_{n=1}^{N} \sum_{0}^{N} \int_{\partial}^{n(1, s)} \frac{\sqrt{1+a-a^{2}}}{a} \rho e_{b}^{p} \sin \theta_{a} d \theta_{a}^{c} \hat{\beta} \tag{48}
\end{align*}
$$

where the source strength is

$$
M(\rho, s)=2 U \sqrt{1+a^{2} \rho^{2}} \frac{\partial f_{\tau}(\rho, s)}{d s}=2 U \frac{\partial f\left(\xi, \rho, \theta_{0}\right)}{\partial \xi}
$$

the Descartes distance R is

$$
\left[(x-\xi)^{2}+r^{2}+\rho^{2}-2 r p \cos \left(\theta_{0}-\varphi_{0}+\bar{\theta}_{n}\right)\right]^{1 / 2}
$$

s is measured along the chord of the blade section and the otner symbols are as defined in section A (see Eq. (29).

From Bernculli's equation, the linearized pressure P_{τ} is

$$
P_{\tau}\left(x, r, \dot{p}_{o}\right)=-\rho_{f} u\left(\frac{\partial \phi}{\partial x}+a \frac{\partial \psi}{\partial \psi_{o}}\right)
$$

Hence
$P_{\tau}\left(x, r, \phi_{0}\right)=\frac{\rho_{f} u^{2}}{2 \pi a} \sum_{n=1}^{N} \int_{0}^{\pi} \int_{\rho} \frac{\partial f_{\tau}\left(\xi, n, \theta_{0}\right)}{\partial \xi}\left[\left(\frac{\partial}{\partial x}+a \frac{\partial}{\partial \phi_{0}}\right) \frac{1}{R}\right] \theta_{b}^{D} \sqrt{1+a^{2} \rho^{2}} \sin \theta_{\alpha} d \theta_{\alpha} d \rho$

If use is made of the expansion

$$
\frac{1}{R}=\frac{1}{\pi} \bar{\zeta}_{m=-\infty} e^{i m\left(u_{0}-\phi_{0}+\overline{3}_{n}\right)} \ddot{n}_{-\infty}(1 k)_{m} e^{i(x-\xi) k_{d}} d k
$$

where

$$
(\mid k)_{m}= \begin{cases}I_{m}(|k| \rho) k_{m i}(|k| r) & \text { for } 0<r \\ I_{m}(|k| r) k_{m}(|k| \rho) & \text { for } r<\rho\end{cases}
$$

then

$$
\begin{equation*}
\left(\frac{\tilde{\partial}}{\partial x}+a \frac{\partial}{i_{0}}\right) \frac{1}{R}=\frac{i}{\pi} \sum_{m=-\infty}^{\omega} e^{i m\left(U_{0}-t_{0}+\overline{\hat{\theta}}_{n}\right)} \int_{-\infty}^{\infty}(k-a m)(1 k)_{m} e^{i(x-\xi) k_{d k}} \tag{50}
\end{equation*}
$$

Since

$$
\begin{align*}
& \xi=\theta_{0} / a=\left(\sigma^{\rho}-\theta_{b}^{\rho} \cos \theta_{a}\right) / a \\
& \frac{\partial f_{\tau}\left(\xi, 0, v_{o}\right)}{\partial \xi}=\frac{a}{\theta_{b}^{p} \sin \theta_{u}} \frac{\left.\partial f^{\left(\rho, \theta_{a}\right.}\right)}{\partial v_{a}} \tag{51}
\end{align*}
$$

Also $\quad \sum_{n=1}^{N} e^{i m \overline{\hat{U}}} n=\left\{\begin{array}{l}N \text { for } m=2 N, \quad \imath=0, \pm 1, \pm 2 \ldots \\ 0 \text { for } m \neq 2 N\end{array}\right.$

On substituting (50) - (52) in Eq. (49), the pressure becomes

$$
\begin{gather*}
P_{\tau}\left(x, r, \phi_{0}\right)=\frac{i N_{0} U^{2}}{2 \pi^{2}} \int_{0}^{\pi} \int_{0} \frac{\hat{a}_{\tau}\left(\rho, \theta_{\alpha}\right)}{\partial \theta_{\alpha}} \sqrt{1+a \cdot \gamma^{2}} \\
\cdot \prod_{\substack{\infty \\
m=-\infty \\
m=N}}^{i m\left(\theta_{0}-\phi_{0}\right)} \int_{-\infty}^{\infty}(k-a r)(1 k)_{m} e^{i(x-\xi) k_{d k d}} d \rho \tag{53}
\end{gather*}
$$

With the trigonometric transformations for θ_{0} and ϕ_{0}

$$
\begin{align*}
& \because(k-a m)(1 k)_{m} e^{i k \Delta \sigma / a} e^{-i k\left(\theta_{b}^{r} \cos \psi_{\alpha}-\theta_{b}^{\rho} \cos \theta_{\alpha}\right) / a} d k d \theta_{\alpha} d \rho \tag{54}
\end{align*}
$$

The u_{u}-integral is as before (see Eq. (33) of Section A)

$$
\begin{equation*}
A\left((k-a m) \theta_{b}^{\rho} / a\right)=\int_{0}^{\pi} \frac{\partial f_{\tau}\left(p, \theta_{\alpha}\right)}{\partial \theta_{\alpha}} e^{i\left((k-a m) \theta_{b}^{0} / a\right) \cos \theta_{\alpha}} d \theta_{\alpha} \tag{55}
\end{equation*}
$$

which is evaluated in Eq. (35).
As in the case of "non-planar" thickness effects, the thickness distribution can be represented by Eq. (31) and the derivative with respect to ${ }_{\alpha}$ by Eq. (32). After substituting (55) and folding the m-series to $m=0$ to $+\infty$, the pressure of Eq. (54) is brought to

$$
\begin{align*}
P_{\tau}\left(x, r, \phi_{0}\right) & =\frac{i N p_{f} U^{2}}{2 \pi^{2}} \int_{\rho} \sqrt{1+a^{2} \rho^{2}} \\
\cdot & \left\{\int_{-\infty}^{\infty} A\left(k \theta_{b} / a\right) k(1 k)_{o} e^{i k\left(\Delta \sigma-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a} d k\right. \\
+ & \sum_{m=N, 2 N}^{M} \int_{-\infty}^{\infty}(i k)_{m}\left[A\left((k-a m) \theta_{b}^{p} / a\right)(k-a m) e^{i(k-a m)\left(\Delta \sigma-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a}\right. \\
& \left.\left.\quad+A\left((k+a m) \theta_{b}^{p} / a\right)(k+a m) e^{i(k+a m)\left(\Delta \sigma-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a}\right] d k\right\} d \rho \tag{56}
\end{align*}
$$

Let $k-a m=u$ in the first term and $k+a m=u$ in the second term of the second k-integral. Then this integral can be written (for $\rho<r$) as

$$
\begin{aligned}
& \sum_{m=N, 2 N}^{M} \int_{-\infty}^{\infty}\left[A\left(u \theta_{b}^{\theta} / a\right) u e^{i u\left(\Delta \sigma-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a}\right] \\
& \cdot\left[1 m(|u+a m| \rho) k_{m}(|u+a m| r)+1_{m}\left(i u-a m_{i} \mid \rho\right) k_{m}(|n-a m| r)\right] d u \\
&=\sum_{m=N, 2 N}^{M} 2 i \int_{0}^{\infty}\left\{\mid m P a r t\left[A\left(u \theta_{b}^{\rho} / a\right) e^{i u\left(\Delta \sigma-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a}\right]\right\} \\
& \cdot u\left[I_{m}(|u+a m| \rho) k_{m}(|u+a m| r)+1_{m}(|u-a m| \rho) k_{m}(|u-a m| r)\right] d u
\end{aligned}
$$

and Eq. (52) becomes finally

$$
\begin{align*}
& P_{\tau}\left(x, r, \phi_{0}\right)=\frac{-N_{\rho} U^{2}}{\pi^{2}} \int_{\rho} \sqrt{1+a^{2} \rho^{2}} \\
& \quad \cdot \int_{0}^{\infty} \operatorname{ImPart}\left[A\left(u \theta_{0}^{\rho} / a\right) e^{\left.i u\left(\Delta \rho-\theta_{b}^{r} \cos \phi_{\alpha}\right) / a\right]}\right. \\
& \cdot u\left\{l_{0}(u \rho) k_{o}(u r)+\sum_{m=N, 2 N}^{M}\left[1_{m}(u+a m \mid \rho) k_{m}(|u+a m| \cdot)\right.\right. \\
& \left.\left.+I_{m}(|u-a m| \rho) k_{m}(|u-a m| r)\right]\right\} d u d \rho \tag{57}\\
& 31
\end{align*}
$$

for $\rho<r$. (If $\rho>r, \rho$ and r are interchanged in the modified Bessel functions. Note that a, p, r, u are non-dimensionalized by propeller radius $\left.r_{0}.\right)$

It can be proved that the integrand is zero when $u=0$. When $p \rightarrow r$, the ρ-integral has a logarithmic singularity. (This is shown in Appendix D). Although a logarithmic singularity is integrable, nevertheless, since the integration is performed numerically rather than analytically, special precautions must be taken in evaluating the integrand in the region of the singularity. The procedure is described in Appendix E.

C. Biadi Pressure Distributions Due to Loading and Thickness Effects on Each Biude Face

The total pressure distribution on each blade face is a superposition of the pressure P_{τ} due to the thickness effect which produces no lift, on the pressures arising from the effects of "non-planar" thickness, camber and angle of attack of the blade and of spatial nonuniformity of the inflow field. The last four components contribute to the lift because each produces a pressure difference ΔP between the back and front faces of the blade surface. On the suction side (back face) the pressure due to the loading contributors is $\triangle P / 2$; on the pressure side (front face) the pressure is $-\Delta P / 2$.

Since the blade is considered to be rigid, the non-lifting thickness effect will be present only in the steady state. In this case ($\mathrm{q}=0$) the blade pressure distribution is made up as follows:
a) On the pressure side

$$
\begin{equation*}
P_{p}^{(0)}=-\left(\frac{\Delta P}{2}\right)_{w}^{(0)}-\left(\frac{\Delta P}{2}\right)_{c}-\left(\frac{\Delta P}{2}\right)_{f}-\left(\frac{\Delta P}{2}\right)_{n p t}+P_{F} \tag{58}
\end{equation*}
$$

b) On the suction side

$$
\begin{equation*}
P_{s}^{(0)}=\left(\frac{\lambda P}{2}\right)_{W}^{(0)}+\left(\frac{\Delta P}{2}\right)_{c}+\left(\frac{\Delta P}{2}\right)_{f}+\left(\frac{\Delta P}{2}\right)_{n p t}+P_{\tau} \tag{59}
\end{equation*}
$$

where the subscripts, w, c, f and npt refer to wake, camber, flow angle, and "non-planar" thickness, respectively.

For the unsteady flow case, $q \neq 0$

$$
\begin{align*}
& \text { a) }{\underset{p}{p}(q)}^{(q)}=-\left(\frac{\Delta p}{2}\right)_{w}^{(q)} \tag{60}\\
& \text { b) } p_{s}^{(q)}=\left(\frac{\Delta p}{2}\right)_{w}^{(q)} \tag{61}
\end{align*}
$$

Having determined the pressure distribution on each side of the blade for all frequencies contributing significantly, the instantaneous pressure, which is the sum of the blade pressures due to all frequencies, can be evaluated as the blade swings around its shaft (see the following section D). The instantaneous pressure on the front (pressure) or back (suction) face at a given radial position r is, when the propeller swings around its shaft in the clockwise direction from its upright position (at 12 o'clock) : $^{\prime}$
$P_{p, s}(r)=\operatorname{Re} \sum_{q=0} p_{p, s}^{(q)}(r) e^{-i q \theta}=\sum_{q=0}\left|p_{p, s}^{(q)}(r)\right| \cos \left(q \theta-\phi_{q}\right)$
where

$$
\phi_{q}=\text { phase angle }=\tan ^{-1} \frac{\left(p_{p, s}(q)\right)_{1 m}}{\left(p_{p, 5}^{(q))_{R e}}\right.}
$$

and the subscripts R_{s} and limindicate the real and imaginary parts of $p_{p, s}^{(q)}(r)$. (θ and ψ_{q} are negative in the clo...ise direction.)
D. Information Relative to Blade Stres. Andigsis an Cavitation Study

Having determined a realistic blade hydrodynamic loading at all frequencies of importance for a propeller operating in non-uriform inflow, taking into account the exact geometry (skewed or unskewed blade on a helicoidal surfacel and the nutual intaraction of the blades, both the structural anaivsis of the blade (displacement and state of stress) and the cavitation study can now be undertaken.

A stress analysis based on the finite element approach and the corresponding program adaptable to high-speed digital computers, both developed by Mechanics Research, Inc., are now available at CDC coniputer centers world-wide. Designated as STAROYNE, this program has been used extensively for static and dynamic structural analysis.

Experience at Davidson Laboratory ${ }^{9}$ with this program for the structural analysis of a propeller blade has suggested the format of the output of the DL program for blade loading distributions to suit the required input to the STARDYNE program. The DL program provides the mean and timedependent blade loadings at all significant shaft frequencies at 19 points along the chords of eight radial strips. The program can be easily changed to evaluate the chordwise pressures at a greater number of points. However, since the number of radial strips governs the size of the kernel matrix, a finer mesh in the radial direction will be more easily achieved by interpolation of the values between adjacent radial strips.

The instantaneous blade loading, which is the sum of the loadings due to all frequencies with proper phasing, is applied as an input to the static STARDYNE program. The angular interval between successive blade positions can be refined, depending on the type of wake. In the case of a container ship with sharp wake peaks at 12 and 6 o'clock, a finer spatial mesh is required and a small angular interval, such as 10 degrees, is advisable during the complete revolution of a blade.

The blade pressure-jump distributions due to loading at each shaft frequency can be extracted from the output of the main program and recorded on a magnetic tape to be used in an auxiliary program to evaluate the instantaneous pressure jumps in a format required by the STARDYNE program.

Another feature of the DL program provides information for prediction of cavitation inception. The blade pressures due to loading and thickness effects on suction (back) and pressure (face) sides of the blade which have been calculated at all significant shaft frequencies will be similarly extracted from the general program and recorded on another magnetic tape. Another auxiliary program will use this tape for the evaluation of the instantaneous pressure coefficients,

$$
\begin{equation*}
c_{p}=\frac{P}{\frac{1}{2} \rho_{f} U^{2}\left(1+a^{2} r^{2}\right)} \tag{63}
\end{equation*}
$$

on suction and pressure sides of the blade separately as the blade swings around its shaft (see Eq. (62)). These values must be scanned to determine
the minimum pressure coefficient for use in predicting the locations for cavitation inception.

Also extracted from the general program and recorded on magnetic tape, for possible future use, are the loading solutions $L(q, \bar{n})(r)$ for all shaft frequencies q and mode shapes \bar{n} at the various radial positions r.

II. NUMERICAL RESULTS

The theoretical procedures developed in the preceding sections to determine the blade pressure distributions due to loading and thickness effects have been adapted to a high-speed digital computer (CDC 6600 or 7600). The computer program provides the resulting hydrodynamic forces and moments and blade bending moments as well as the blade pressure distributions on each blade face in steady and unsteady flow conditions. As noted, the unrealistic leading edge singularity introduced in the blade chordwise pressure distribution by the cotangent term of the Birnbaum distribution is removed by the Van Dyke-Lighthill correction method. In addition, the frictional contribution to steady-state thrust and torque has been approximated by using the Prandtl-Schlichting formula for the friction coefficient, without taking into account the viscous pressure drag or the drag associated with the deviation of the local flow direction from that along the nose-tail line.

A set of calculations has been performed for the series of 3-bladed propellers of expanded area ratio $E A R=0.3,0.6$ and 1.2 which had been studied in Reference 3 under the assumption of zero thickness, and for which experimental data were available from controlled NSRDC tests $15,16,17$ in nonuniform inflow with wake structure rigidly specified (screen wake). The propellers, with destroyer-type blade outlines and modified NACA-66 section with $a=0.8$ mean line, were one foot in diameter with hub diameter 0.2 feet and pitch ratio 1.08 at 0.7 radius. Pelevant geometric characteristics of this set of 3-bladed propellers are given in the tables below. The ratios of naximum camber to chord length are given in Table 1 , of maximum thickness to chord length in Table 11 and of leading edge radius to chord in Table $\| 11$.

TABLE I
Ratio of inximum Camber to Chord, m_{x} / e

Radius	$E A R=0.3$	$E A R=0.6$	$E A R=1.2$
.25	.0370	.0228	.0196
.35	.0388	.0231	.0202
.45	.0372	.0224	.0196
.55	.0340	.0212	.0185
.65	.0312	.0203	.0177
.75	.0290	.0198	.0170
.85	.0270	.0189	.0160
.95	.0247	.0174	.0147

TABLE II
Ratio of Maximum Thickness to Chord, τ_{o} / c

Radius	$E A R=0.3$	$E A R=0.6$	$E A R=1.2$
.25	.253	.090	.032
.35	.192	.068	.024
.45	.146	.052	.018
.55	.113	.040	.014
.65	.087	.031	.011
.75	.068	.024	.0086
.85	.052	.018	.0066
.95	.045	.016	.0057

TABLE III
Ratio of Leading-edge Radius to Chord, ρ_{0}

Radius	$E A R=0.3$	$E A R=0.6$	$E A R=1.2$
.25	.0410	.00525	.00066
.35	.0236	.00290	.00039
.45	.0136	.00170	.00021
.55	.00817	.00100	.00013
.65	.00484	.00060	.00008
.75	.00296	.00035	.00005
.85	.00173	.00025	.00003
.95	.00133	.00020	.00002

The coefficients $a_{n}(\rho)$ in the thickness distribution given by Eq. (31) are presented in Table IV for all three propellers and all radial positions. The thickness distribution variations with EAR and radial position are determined through the $\tau_{0} / c, \rho_{o}$ and θ_{b} factors of Eq. (31). (Note that the procedure for calculating $a_{n}(\rho)$ is given on page 18.)

TABLE IV

Coefficients $a_{n}(\rho)$	
n	$a_{n}(\rho)$
1	0.5491
2	-0.1165
3	0
4	0

The tests had been conducted in the NSRDC 24-inch water tunnel using the closed-jet test section with a screen to produce the wake, a

3-cycle screen for the force along and moment about the longitudinal axis and a 4 -cycle screen for the forces along and moments about the transverse and vertical axes. The tests were run at a constant speed of 15 rps with free stream velocity close to $12.5 \mathrm{ft} / \mathrm{sec}$. The design mean thrust coefficient \bar{K}_{T} was 0.150 (practically open-water value in the 3 -cycle screen wake), the advance ratio varying slightly from propeller to propeller ${ }^{17}$. Wake information is given in Table V for 3 - and 4 -cycle screen wakes. Note that the Fourier coefficients a_{q}, b_{q}, A_{q} and B_{q} of $E q$. (23)f can be easily determined from the information given in this table.

TABLE V
Wake Information from Harmonic Analysis of 3-Cycle and 4-Cycle Screen Wakes (Reference (16))

Radius	3-Cycle Wake		4-Cycle	
	C_{3}	ϕ_{3}	C_{4}	Φ_{4}
0.2	0.089	18°	0.050	0
0.3	0.186	10°	0.134	0
0.4	0.220	6°	0.170	0
0.5	0.218	2°	0.184	0
0.6	0.203	0	0.192	0
0.7	0.212	0	0.208	0
0.8	0.230	0	0.224	0
0.9	0.252	0	0.235	0
0.95	0.251	0	0.243	0

Longitudinal Velocity $V_{x} / U=C_{q} \sin \left(q \Omega t+\phi_{q}\right)=C_{q} \sin \left(-q \theta+\phi_{q}\right)$
Tangential Velocity $V_{T} / U=0$
The computations were run for a series of advance ratio in the steady-state case, design J and $\mathrm{J}=0.7,0.6$ and 0.5 , and at design J in the unsteady cases. The values of design J were $0.841,0.831$ and 0.844 for $E A R=0.3,0.6$ and 1.2 , respectively.

The calculated mean thrust and torque coefficients at design J which include the effects of mean wake, camber, flow angle and nonplanar thickness on the loading and, in addition, the frictional thrust and torque, are compared with experimental datal7 in Figure 4. Calculated results are also shown without the frictional part.

Figure 5 exhibits the steady-state chordwise pressure distribution at one radial position, $0.65 r_{0}$, on the suction and pressure sides of the blades for all three propellers, at design J. These were obtained from Eqs. (58) and (59), for the pressure and suction sides respectively.

Figures 6 and 7 compare the calculated blade-frequency thrust and torque coefficients and phases with the experimental data of Reference 16 using the blade-frequency (third) harmonics of the screen wake given in Table V. The earlier calculations of $R \in f s .15$ and 3 were based on wake measurements reported by DTNSRDC which were taken with the screen open sections at a different position. In Figure 6, the phases (electrical) are given in accordance with the Davidson Laboratory definition on page 25 of this report. Figure 7 shows the mechanical phases according to Reference 16 and to Davidson Laboratory.

Figures 8 and 9 present comparisons of calculated and experimental blade-frequency transverse forces and moments of the three propellers at design J. The calculations use the harmonics given in Table V for the 4 -cycle screen wake in which the tests were conducted ${ }^{16}$.

Figures 10 , 11 and 12 show the blade-frequency chordwise pressure distributions at $0.65 r_{0}$ for the three propellers calculated as in Eqs. (60) and (61). The leading-edge singularity has been removed by the Van Dyke-Lighthill correction method (see Eq. (40)).

Calculations have also been conducted for off-design $J=0.5,0.6$ and 0.7 for uniform inflows. Figures 13,14 and 15 compare the chordwise pressure distributions at one radial location, $0.65 r_{0}$ for the three propellers at design J and $J=0.5$ and 0.7 . These blade pressure distributions agree qualitatively with experiments of Mavlyudovi8 (USSR). No other experimental information is available for comparison.

Having evaluated the pressure distributions in the design and offdesign flow conditions, it is possible, in principle, to determine the cavitation inception of an operating propeller. Cavitation is assumed to ensue when the local pressure falls to the value of the vapor pressure in the fluid. The speed $V_{i}(r)$ of cavitation inception is known to be given by

$$
\frac{v_{i}(r)}{V(r)}=\frac{\sigma}{\left|C_{p_{m}}\right|}
$$

where $V(r)=U \sqrt{1+a^{2} r^{2}}=$ resultant velocity at a blade section at
radial location r
$\sigma=$ cavitation number or cavitation index

$$
=(\text { total pressure - vapor pressure }) /\left(\frac{1}{2} \rho_{f} v^{2}\right)
$$

and $\quad C_{P_{m}}=\underset{\text { is most negative) }}{ } \quad$ pressure coefficient, $P_{m} /\left(\frac{1}{2} \rho_{f} v^{2}\right)\left(i . e\right.$. , where C_{p} Cavitation is assumed not to occur when $\sigma>-C_{p_{m}}$, but will persist as long as $\sigma<-C_{P_{m}}$, the critical cavitation index being when $V_{i} N=1.0$ or $\sigma_{i}=\left|C_{P_{m}}\right|$.

The critical cavitation indices have been evaluated as the absolute values of the most negative pressure coefficients established by the theoretical steady-state blade pressure distribution curves. They are plotted in Figures 16,17 and 18 for various advance ratios versus radial position and compared there with the experimental observations reported in Reference 17 for the same set of 3-bladed propellers operating in open water conditions. Since the experimental cavitation indices ${ }^{17}$ were based on speed of advance rather than resultant velocity, the theoretical pressure coefficients have also been evaluated on that base $\left(C_{p_{m}}=p_{m} /\left(\frac{l}{2} \rho_{f} U^{2}\right)\right.$.

Although no experimental values of σ_{i} for design J are given in Reference 17, the theoretical values shown in Figs. 16-18 for design J are justified by the experimental trends (i.e., extrapolation) in that vicinity. At off-design J, the theoretical predictions are sometimes conservative, sometimes non-conservative depending on $\Delta J, E A R$ and radial location.

Since inception speed is inversely proportional to the square root of the minimum pressure coefficient, $\sigma_{i}=\left|C_{p_{m}}\right|$, whenever the index of inception of cavitation σ_{i} of the experiment is greater than σ_{i} of the theoretical calculation, i.e.

$$
\sigma_{i}(\exp)>\sigma_{i}(\text { calc. })
$$

then U_{i} (exp.) $<U_{i}$ (calc.). This case indicates that the experiments show that cavitation inception is at a lower speed than that predicted by the theoretical calculations and thus the prediction is non-conservative. On the other hand, when

$$
\sigma_{i}(\exp)<o_{i}(\text { calc. })
$$

or $U_{i}(\exp)>U_{i}(c a l c$.$) , the predicted values for cavitation inception$ are conservative.

Figure 16, which is a comparison of calculated and experimentally observed cavitation index for the 3-bladed propeller 4132 (EAR $=0.3$), shows conservat ve predictions when $J=0.7$ or design J, whereas the predictions are non-conservative, somewhat at $J=0.6$ and especially so at $J=0.5$, except near the hub and near the tip. In Figures 17 and 18 , for the 3-bladed propellers $4118(E A R=0.6)$ and $4133(E A R=1.2)$, respectively, all predictions are on the conservative side except those for $J=0.5$.

Judging from this set of calculations, the predicted values of cavitation inception are on the conservative side compared with experimental observations as long as $i J=J_{d}-J_{o d}<0.3$. Nevertheless, the discrepancies which exist between predicted values of the index of cavitation inception and the experimental observations require investigation.

These observed discrepancies must not be solely attributed to the lack of accuracy of the linearized theory when modified by the Van Dyke correction. It is well known that visual determination of inception of cavitation is dependent upon the subjective evaluation of the observer and is highly dependent on the surface finish and accuracy of the model in the immediate vicinity of the leading edge of the blades. The variant patterns of the viscous flow at appreciable angles of attack can involve laminar separation with vortical flow standing off the blade surface giving extremely low pressures in the core of the vortex (as cited frequently by Eisenberg, for example) and, hence, inception at o values larger than tho minimum pressure coefficient provided by inviscid theory on the surface of the blade. Also, from the definitive measurements of Huang and Hannan ${ }^{19}$, it can be conjectured that large pressure fluctuations can occur on the blade surface at the reattachment zone abaft laminar separation. In addition, it is never certain that observed inception is attributed to truly vaporous cavitation or to the expansion of undissolved air.

The fact that the experimental o-values are generally higher than the calculated $\left|C_{p_{m}}\right|$ at the maximum excursion in J (i.e., $J=0.5, \Delta J=0.33$) suggests that the real fluid effects alluded to above may be responsible. However, at the larger $J=0.7$ (smaller $J J=0.13$), the disagreement is in the opposite direction except for the first propeller, $E A R=0.30$, where the agreement is fine. Here the fluid speeds are of the order of twice as great as at $J=0.5$ and the pressure peaks on the blades at reduced angle of attack, while lower in magnitife, are indeed sharper, i.e., the chordwise width of the pressure spike is reduced. One may speculate that the passage time of nuclei through the region of low pressure is considerably less at $J=0.7$ than at $J=0.5$ (higher speed, shorter extent) and that cavitation does not ensue until the o values are dropped below the $\left|c_{p_{m}}\right|$.

The validity of the theoretical curves should be checked by employing a rational method for finding the effective angle of attack, the effective camber and the effective thickness of the two-dimensional section (to be substituted for each bladesection) for which exact steady-state pressure distributions have been computed. This is not a simple process as was discovered when attempting to use the families of curves provided by Brockett ${ }^{20}$ and a rule for finding the effective angle of attack attributed to W. Morgan. The effective angle of attacin was found to be too imprecise; a very small error produces a larger : ror in the $C_{p_{m}}$ value.

Clearly, further studies of the pressure distribution at the leading edge of propellers are necessary. The resulis obtained thus far should be regarded as quite reasonable. Further work may require a precise mechanization of the effective two-dimensional solutions using certain inputs from the three-dimensional propeller flow field, and local sectional loadings.

CONCLUSION

In this study, a theoretical approach is evolved and a computational procedure adaptable to a high-speed digital computer (CDC 6600 and 7600) is developed for evaluation of the linearized pressure distribution on each side of a marine propeller blade, with the objective to obtain sufficient and reliable information for cavitation and blade stress analyses.

The essential information for the blade stress analysis is the antisymmetric part of the blade pressure distribution, attributed to the nonuniform inflow (wake), blade camber, incident flow angle and nonplanar thickness of the blade, all of which are associated with the lifting action of the blade and contribute to the hydrodynamic forces and moments and blade bending moments. The symmetric part of the blade pressure distribution, attributed to the planar thickness and associated with the non-lifting properties of the blade, contributes to the pressure distribution on each side of the blade, which is essential for the prediction of cavitation inception.

In addition to the blade pressure distributions at each frequency, the program furnishes the propeller-generated steady-state and timedependent hydrodynamic forces and moments and the blade bending moment about the face-pitch line at the midpoint of any of the radial strips into which the span is divided. The program also provides the instantaneous blade pressure due to loading alone and the instantaneous pressures on suction and pressure sides, as well as the instantaneous blade bending moments, as the propeller swings around its shaft. The thrust and torque due to friction is estimated by using an approximate frictional drag coefficient; in the event of any improvement of the estimated frictional coefficient, this portion of the program can be easily modified.

In applying the mode approach to the solution of the surface integral equation, the analysis and the program are divided into two main parts, one dealing with the steady-state flow case ($q=0$) and the other with the unsteady flow condition. The steady-state case is subdivided into design and off-design conditions. The selection of the proper chordwise modes in the steady-state flow condition at design advance ratio J is dictated by the shape of the loading distribution in two-dimensional flow on a foil with the same camber distribution. At off-design J in the steady-
state condition, there is an angle of attack due to the difference $\quad \mathrm{J}$ (between design and off-design advance ratio) and the additional loading due to this angle of attack is represented by the cotangent term of the Birnbaum modes. In the unsteady flow condition, the complete Birnbaum modes are used.

The linearized unsteady lifting-surface theory requires the leadingedge singularity arising from the cotangent term of the Birnbaum modes. The "square-root" singularity is integrable, but its presence in the blade pressure distributions is unrealistic and has been removed by employing the Van Dyke-Lighthill correction factor.

A set of computations has been performed for the series of 3-bladed propellers for which experimental data were available from NSRDC tests in open water and in the non-uniform inflows due to 3 -cycle and 4 -cycle screen wakes. The calculated results for the hydrodynamic forces and moments, steady and unsteady, compare well with the experimental values. There is no experimental information on blade pressure distributions for this set of propellers. However, the blade pressure distribution curves in the stcady-state case agree qualitatively with experimental curves ${ }^{8}$ shown by Movlyudov (USSR) for a different propeller model (NACA-16, $\bar{a}=0.8$ mean line section, $E A R=0.95$) at 0.8 radius. In the absence of experimentally measured blade pressure distributions for the propellers treated, a comparison is made indirectly through the index ot cavitation inception in uniform inflow. It is seen that the predicted values of $\sigma_{i}=\mid c_{p_{m}}$ | are conservative except at the smallest off-design $J=0.5$ (largest ${ }^{m} \Delta J \simeq 0.33$).

The cavitation index $\left|C_{p_{m}}\right|$ reflects the blade pressure in the neighborhood of the leading edge and this is dependent on the correction method for removing the leading edge singularity of the theoretical distribution. However, the observed discrepancies between theory and experiment cannot be attributed solely to the lack of accuracy of the linearized theory when modified by the Van Dyke correction. Experimental determination of the inception of cavitation is dependent on the subjective evaluation of the observer. It is also dependent on the surface finish and accuracy of the propeller model in the immediate vicinity of the leading edge of the blades and on the undissolved air content of the fluid as well. There is a
possibility that flow separation and vortex generation occur near the leading edge and this is not taken into account by the theory. Further studies, both theoretical and experimental, are necessary. The results obtained thus far may be considered reasonable.

BEFERENCE:

1. W. R. Jacobs and S. Tsakonas, 'Generalized Lift Operator Techinique for the Solution of the Downwash Integral Equation," OL Repori 1308, Stevens Institute of Technology, August 1968; published as in New Procedure for the Solution of Lifting Surface Problems," J. Mycronautics Vol. 3, No. 1, January 1969.
2. S. Tsakonas, W. R. Jacobs and P. H. Rank, Jr., 'Unsteady Propeller Lifting Surface Theory with Finite Number of Chordwise Moocs.' DL Report 1133, Stevens Institute of Technology, December 1966; J. Snip Research, Vol. 12, No. 1, March 1968.
3. S. Tsakonas, W. R. Jacobs and M. R. Ali, "An Exact Linear LitimgSurface Theory for a Marine Propeller in a Nonuniform Flow Ficla, DL Report 1509, Stevens Institute of Technology, February 1972 J. Ship Research Vol. 17, No. 4, December 1973.
4. M. D. Van Dyke, "Second-Order Subsonic Airfoil Theory Includi-'g Edge Effects," NACA Report 1274, 1956.
5. M. J. Lighthill, "A New Approach to Thin Aerofo'l Theory," Ace. Quart., Vol. 3, pt 3, November 1951.
6. S. Tsakonas and W. R. Jacobs, "Propeller Loading Distributions," DL Report 1319, Stevens Institute of Technology, August 1968, J. Ship Research Vol. 13, No. 4, December 1969.
7. I. H. Abbott and A. E. Von Doenhoff, Theory of Wing Sections , Dover Publications, Inc., New York, $1 \overline{959}$.
8. S. F. Hoerner, Fluid-Dynamic Drag, published by the author, 1965.
9. S. Tsakonas and W. R. Jacobs, "Steady and Time-Dependent Propeller Blade Loading and Stress Analysis," Propellers 75 Symposium, Society of Naval Architects and Marine Engineers, July 1975.
10. S. Tsakonas, C. Y. Chen and W. R. Jacobs, "Exact Treatment of the Helicoidal Wake in the Propeller Lifting-Surface Theory, "DL Report 1117, Stevens Institute of Technology, August 1966; J. Ship Research Vol. 11, No. 3, September 1967.
11. J. W. Nicholson, "The Approximate Calculations of Bessel Functions of Imaginary Argument," Phil. Mag., Series 6, Vol. 20, December 1910.
12. L. B. W. Jolley, ed., Surmation of Series, Dover Publications, Inc., New York, 1961.
13. J. B. Scarborough. Nuncrical Mathenatical inalysis, The Johns Hopkins Press, Baltimore. Md., 1958.
14. C. E. Watkins, D. S. Woolston and H. J. Cunninghan, "A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds," NASA Technical Report R-48, 1959.
15. S. Tsatonas, J.P. Breslin and M. Miller, "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Trans. SNAME, Val.75, 1967.
16. M.L. Miller, "Experimental Determination of Unsteady Propeller Forces," Seventh ONR Symposium on Naval Hydrodynamics, August 1968, pp.255-290.
17. S.B. Denny, "Cavitation and Open Water Performance Tests of a Series of Propellers Designed by Lifting Surface Methods, "NSRDC Report 2878, September 1968.
18. M.A. Mavlyudov, "Measurement of Pressure Distribution on the Blades of a Marine Propeller Model," Sbornik Statey po Gidrodinamike Dvirhiteley, "Sudostroyaniye" Publishing House, 1965, pp. 67-72.
19. T.T. Huang and D.E. Hannan, "Pressure Fluctuations in the Regions of Flow Transition," DTNSRDC Report 4723, December 1975.
20. T. Brockett, "Minimum Pressure Envelopes for Modified NACA-66 Sections with NACA $a=0.8$ Camber and Buships Type 1 and Type 11 Sections," DTMB Report 1780, February 1966.

$$
R-189
$$

FIG.2. DEFINITIONS OF ANGULAR MEASURES
NOTE: THE BLADE REFERENCE LINE IS THAT CONNECTING THE SHAFT CENTER WITH THE MIDPOINT OF THE CHORD AT THE HUB

FIG. 3 RESOLUTION OF FORCES

$$
\text { R-1 } 869
$$

FIG.4. MEAN THRUST AND TORQUE OF DTNSRDC 3-BLADED PROPELLERS AT DESIGN J

$$
5-1<9
$$

FIG.5. STEADY-STATE CHORDWISE PRESSURE DISTRIBUTION AT 0.65 RADIUS ON OTNSRDC 3-BLADED PROPELLERS AT DESIGNJ.

FIG.7. MEASURED AND CALCULATED BLADE FREQUENCY THRUST AND TORQUE COEFFICIENTS FOR DTNSRDC PROPELLER 4II8, EAR=0.6, USING WAKE VALUES OF TABLE V FROM 3-CYCLE SCREEN

 FIG.8. BLADE-FREQUENCY TRANSVERSE FORCES AND MOMENTS OF DTNSRDC 3-BLADED PROPELLERS

blade-frequency transverse forces and moments of dinsrdc 3-bladed propellers (IN 4-CYCLE SCREEN WAKE)

FIG. 10.

FIG.II.

(NOTE CHANGE IN SCALE) (EAR=1.2) AT 0.65 RADIUS
FIG. I2.
$E A R=0.3$

FIG.I3. STEADY-STATE CHORDWISE PRESSURE DISTRIBUTION AT 0.65 RADIUS ON PROPELLER 4132 (EAR=0.3) AT VARIOUS J.

FIG.14. STEADY-STATE CHORDWISE PRESSURT DISTRIBUTION AT 0.65 RADIUS ON PROPELLER 4118 (EAR=0.6) AT VARIOUS J.

FIG.15. STEADY-STATE CHORDWISE PRESSURE DISTRIBUTION AT 0.65 RADIUS ON PROPELLER 4133 (EAR = 1.2) AT \ARIOUS J.

FIG. I6. COMPARISON OF CALCULATED- $C_{P_{\min }}$ AND EXPERIMENTAL CAVITATION NUMBER σ, PROPELLER 4132 (EAR $=0.3$)

FIG.17. COMPARISON OF CALCULATED - $\mathrm{C}_{\mathrm{P}_{\min }}$ AND EXPERIMENTAL CAVITATION NUMBER σ, PROPELLER 4118 (EAR $=0.6$)

FIG. 18. COMPARISON OF CALCULATED- $\mathrm{C}_{\mathrm{P}_{\text {min }}}$ AND EXPERIMENTAL CAVITATION NUMBER σ_{1} PROPELLER 4133 (EAR $=1.2$)

APPENDIX A

1. Evaluation of the α^{-}and θ_{α}^{-}Integrals of the Integral Equation (19) 1) $1^{(\bar{m})}(y)=\frac{1}{\pi} \because_{0}^{\pi}(\bar{m}) e^{i y \cos 0} d \hat{}$

$$
\begin{aligned}
& 1^{(1)}(y)=\frac{1}{\pi} \int_{0}^{\pi}(1-\cos \varphi) e^{i \cdot \cos \varphi} d \varphi=J_{0}(y)-i J_{1}(y) \\
& 1^{(2)}(y)=\frac{1}{\pi} \int_{0}^{\pi}(1+2 \cos \varphi) e^{i y \cos \varphi} d \psi=J_{0}(y)+i 2 J_{1}(y) \\
& 1^{(\bar{m}>2)}(y)=\frac{1}{\pi} \int_{0}^{\pi} \cos (\bar{m}-1) ט e^{i y \cos \varphi} d \varphi=i^{\bar{m}-1} J_{\bar{m}-1}(y)
\end{aligned}
$$

where $J_{n}(y)$ is the Bessel function of the first kind of order n and argument y
2) $\Lambda^{(n)}(z)=\dot{j}_{0}^{\top} \theta(\bar{n}) e^{-i z \cos \theta} \sin A d \theta$
a) Birnbaum distribution

$$
\begin{aligned}
A^{(1)}(z) & =\frac{1}{\pi} j_{0}^{\pi} \cot \frac{\hat{2}}{2} e^{-i z \cos \theta} \sin d j=J_{0}(z)-i J_{1}(z) \\
A^{(\bar{n}>1)}(z) & =\frac{1}{\pi} \int_{0}^{\pi} \sin (\bar{n}-1) \hat{\sin \theta} e^{-i z \cos \theta} d \theta \\
& =\frac{(-i)^{\bar{n}-2}}{2} \int_{\bar{n}-2}(z)+J_{\bar{n}}(z)
\end{aligned}
$$

b) "Roof-tcr" distribution (a mean lines)

$$
\begin{aligned}
\Lambda^{(1)}(z)= & {\underset{j}{j}}^{\cos ^{-1}(1-2 \bar{a})} e^{-i z \cos \theta} \sin d \bar{u} \\
& +j_{j}^{\pi} \cos ^{-1}(1-2 \bar{a}) \frac{(1+\cos \theta)}{2(1-\bar{a})} \mathrm{e}^{-i z \cos \theta} \sin d \theta \\
= & \mathrm{e}^{-i z\left\{\frac{i}{z}+\frac{1}{2(1-\bar{a}) z^{2}}\left[e^{i 2 \bar{a} z}-e^{i 2 z}\right]\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\text { For } \bar{a}=1, A^{(1)}(z)=\frac{2 \sin z}{z} .\right) \\
& A^{(\bar{n}>1)}(z)=0
\end{aligned}
$$

c) Sine series distribution

$$
\begin{aligned}
\Lambda^{(n)}(z) & =\frac{1}{\pi} \stackrel{i}{0}_{0}^{\pi} \sin \bar{n} \hat{n} \sin \theta e^{-i z \cos \theta} d \theta \\
& =\frac{(-i)^{\bar{n}-1}}{2}\left[J_{\bar{n}-1}(z)+J_{\bar{n}+1}(z)\right]
\end{aligned}
$$

11. Functions Required for Evaluating the Integrand of the Kernel Function at the Singularity (see Reference 3) and the Propeller-generated Moments (see section A, 4)
1) $\quad 1_{1}^{(\bar{m})}(y)=\frac{1}{\pi} \int_{0}^{j^{\top}} \bar{g}(\bar{m}) e^{i y \cos \varphi} \cos \varphi d \varphi$
$1_{1}^{(1)}(y)=-\frac{1}{2}\left[J_{0}(y)-J_{2}(y)\right]+i J_{1}(y)$
$1_{1}^{(2)}(y)=\left[J_{0}(y)-J_{2}(y)\right]+i J_{1}(y)$
$1_{1}^{(\bar{m}>2)}(y)=\frac{i^{\bar{m}-2}}{2}\left[-J_{\bar{m}}(y)+J_{\bar{m}-2}(y)\right]$
2) $i_{i, 1}^{\bar{n}}(z)=\int_{0}^{\pi} \Theta(\bar{n}) \sin \theta \cos \theta \mathrm{e}^{-i z \cos \theta} \dot{i}$
a) Birnbaum distribution

$$
\begin{aligned}
& \Lambda_{1}^{(1)}(z)=\frac{1}{2}\left[J_{0}(z)-J_{2}(z)\right]-i J_{1}(z) \\
& \Lambda_{1}^{(\bar{n}>1)}(z)=\frac{(-i)^{\bar{n}+1}}{4}\left[J_{\bar{n}-3}(z)-J_{\bar{n}+1}(z)\right]
\end{aligned}
$$

b) "Roof-top distribution (à mean lines)

$$
\begin{aligned}
\Lambda_{1}^{(1)}(z)=e^{-i z} \frac{i}{z}+\frac{1}{z^{2}}+\frac{1}{z^{2}(1-\bar{a})} & {\left[\frac{\left(1-2 \bar{a}-\frac{i}{z}\right.}{2} e^{i 2 \bar{a} z}\right.} \\
& \left.+\left(\frac{1}{2}+\frac{i}{z}\right) e^{i 2 z}\right]
\end{aligned}
$$

$$
\left(\text { For } \bar{a}=1, \hat{\Lambda}_{1}^{(1)}(z)=\frac{i 2}{z}\left(\cos z-\frac{\sin z}{z}\right) \cdot\right)
$$

c) Sine series distribution

$$
\Lambda_{i 1}^{(\bar{n})}(z)=\frac{(-i)^{\bar{n}+2}}{4}\left[J_{\bar{n}-2}(z)-J_{\bar{n}+2}(z)\right]
$$

It is to be noted that the values for negative argument, i.e.,
1 $^{(\bar{m})}(-y), 1_{1}^{(\bar{m})}(-y), \Lambda^{(\bar{n})}(-z)$ and $\Lambda_{1}^{(\bar{n})}(-z)$, are the conjugates of the values given above.

APPENDIX 3

TABLE OF INTEGRALS OF EQUATION (SB)

1) $\int_{0}^{\pi} e^{=i \lambda \cos \theta} \sin \theta d \theta=\frac{2}{\lambda} \sin \lambda=2 G(\lambda) \quad(=2$ when $\lambda=0)$
2) $\underset{0}{i} e^{=i \lambda \cos } \sin 2 \theta d \theta= \pm \frac{4 i}{\lambda}\left(\frac{\sin \lambda}{\lambda}-\cos \quad==4 i F(\lambda) \quad(=0\right.$ when $\lambda=0)$
3) $\int_{0}^{i} e^{=i \lambda \cos \lambda} \sin 30 d \theta=\frac{2}{\lambda}\left\{\sin \lambda\left(3-\frac{8}{\lambda^{2}}+\frac{8}{\lambda} \cos \lambda=6 G(\lambda)-\frac{16}{\lambda} F(\lambda)\right.\right.$ ($=2 / 3$ when $\lambda=0$)
4) $\int_{0}^{\pi} e^{-i \lambda \cos \theta} \sin 4 \theta d \theta==\frac{8 i}{\lambda}\left\{\frac{\sin \lambda}{\lambda}\left(5-\frac{12}{2}+\cos \lambda \frac{12}{\lambda^{2}}-1,\right\}\right.$

$$
= \pm \frac{8 i}{\lambda}\left\{4 G(\lambda)+\left(\lambda-\frac{12}{\lambda} F(\lambda) ; \quad(=0 \text { when } \lambda=0)\right.\right.
$$

5) $\int_{0}^{\pi} e^{ \pm i \lambda \cos \theta} \cos \frac{\theta}{2} d \theta=2 J_{0}(\lambda)-4 \sum_{n=1}^{\infty} \frac{(-1)^{n} J_{2 n}(\lambda)}{(4 n+1)(4 n-1)}+4 i \sum_{n=1}^{\infty} \frac{(-1)^{n} J_{2 n-1}(n)}{(4 n-1)(4 n-3)}$
$=B(\neq \lambda) \quad(=2$ when $\lambda=0)$
(Three or four terms of this series are sufficient.)

APPEWDIX C

RESOLUTION OF FORCES AND MOAENTS

With the present coordinate system and sign convention (see Figures 1 to 3) the propeller, its N blades rotating with angular velocity $-\hat{2}$, is assumed to lie on helicoidal surface given by

$$
\begin{equation*}
F(x, y, z)=x+\frac{1}{a} \tan ^{-1} \frac{y}{z}=0 \tag{C-1}
\end{equation*}
$$

where in cylindrical coordinates

$$
\begin{aligned}
& x=\varphi_{0} / a \\
& y=-r \sin \theta \\
& z=r \cos \theta \\
& \theta=\varphi_{0}-\Omega t+\bar{\theta}_{n}
\end{aligned}
$$

The unit nomal to this surface has components

$$
\begin{equation*}
\bar{n}=\frac{F_{x}, F_{y}, F_{z}}{\sqrt{F_{x}^{z}+F_{y}^{2}+F_{z}^{2}}}=\frac{1, z / a r^{2},-y / a r^{2}}{\sqrt{1+a r / a r}} \tag{c-2}
\end{equation*}
$$

so that

$$
\begin{aligned}
& n_{x}=\frac{a r}{\sqrt{1+a r^{2}}}=\cos B \\
& n_{y}=\frac{z / r}{\sqrt{1+a r^{2}}}=\sin \beta \cos \theta \\
& n_{z}=\frac{-y / r}{\sqrt{1+a r^{2}}}=\sin \beta \operatorname{in} \theta
\end{aligned}
$$

where $\beta=\tan ^{-1} \frac{1}{a r}$, the hydrodynamic pitch angle.

The elemental forces are then

$$
\begin{align*}
& \Delta F_{x}=\Delta P \cos B \Delta S \\
& \Delta F_{y}=\Delta P \sin \beta \cos \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right) \Delta S \tag{c-3}\\
& \Delta F_{z}=-\Delta P \sin \beta \sin \left(\Omega t-\varphi_{0}-\theta_{n}\right) \Delta S
\end{align*}
$$

The elemental moments can be expressed as

$$
\overrightarrow{\Delta Q}=\left|\begin{array}{lll}
i & j & k \tag{c-4}\\
x & y & z \\
n_{x} & n_{y} & n_{z}
\end{array}\right|(\Delta P)(\Delta S)
$$

so that

$$
\begin{aligned}
\Delta Q_{x} & =\Delta P\left(y n_{z}-z n_{y}\right) \Delta S=-\Delta P r \sin \beta L S \\
\Delta Q_{y} & =-\Delta P\left(x n_{z}-z n_{x}\right) \Delta S \\
& =\Delta P \cdot r\left[\varphi_{0} \tan \beta \sin \beta \sin \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right)+\cos \beta \cos \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right)\right] \Delta S \\
\Delta Q_{z} & =\Delta P\left(x n_{y}-y n_{x}\right) \Delta S \\
& =\Delta P \cdot r\left[\varphi_{0} \tan \beta \sin \beta \cos \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right)-\cos \beta \sin \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right)\right] \Delta S
\end{aligned}
$$

The total force in the x-direction (thrust) is

$$
F_{x}=\operatorname{Re} \sum_{n=1}^{N} e^{i q\left(\Omega t-\bar{\theta}_{n}\right)} \hat{j}_{S} \int_{S} \Delta P^{(q)}\left(r, \varphi_{0}\right) \cos B(r) d S
$$

Since $d S=r d r d \varphi_{0}=r \theta_{b}^{r} \sin \varphi_{\alpha} d \varphi_{\alpha} d r, 0 \leq \varphi_{\alpha} \leq \pi$
$L^{(q)}\left(r, \varphi_{\alpha}\right)=\Delta p^{(q)}\left(r, \varphi_{o}\right) r \theta_{b}^{r}$
and $\sum_{n=1}^{N} e^{ \pm i q \overline{\hat{\theta}}_{n}}=\left\{\begin{array}{l}N \text { for } q=\ell N, \quad \ell=0,1,2, \ldots \\ 0 \text { otherwise }\end{array}\right.$

$$
F_{x}=R e^{?} N e^{i 2 N \cdot t} \int_{0}^{j}{\underset{r}{j}}^{j}(i N)\left(r, \vartheta_{\alpha}\right) \cos B(r) \sin \vec{\psi}_{\alpha} d \hat{\vartheta}_{\alpha} d r
$$

But $\int_{0}^{\because} L^{(\ell N)}\left(r, *_{\alpha}\right) \sin 0_{\alpha} d \psi_{\alpha}=L^{(2 N)}(r)$ the spanwise loading
therefore

$$
\begin{equation*}
F_{x}=\operatorname{Re} N_{0} e^{i\langle\lambda \ldots . t} \int_{0}^{l} L(\lambda N)(r) \cos \beta(r) d r \tag{c-5}
\end{equation*}
$$

The total force in the y-direction is

$$
\begin{aligned}
& +\epsilon^{i\left(q^{-1}\right)\left(n t-n^{-}\right)} e^{\left.-i{ }_{b}^{r} \cos \theta_{a}\right]} \cdot \sin \theta_{\alpha} d \theta_{\alpha} d r \\
& \text { Since } \underset{n=1}{N} e^{ \pm i(q=1) \bar{Y}}=\left\{\begin{array}{l}
N \text { for } q=1=i N \\
0 \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sin 3(r) \sin \theta_{\alpha} d \theta_{\alpha} d r .
\end{aligned}
$$

The $\hat{O}_{C_{x}}$-integrals are

$$
\begin{aligned}
& \int_{0}^{T} L(\ell N \overline{+})\left(r, \hat{\theta}_{\alpha}\right) e^{ \pm i c_{b}^{r} \cos \varphi_{\alpha}} \sin \psi_{\alpha} d \psi_{\alpha}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{\bar{n}=1} L^{(2 N \overline{+}+1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(\overline{+}_{b}^{r}\right) \tag{c-6}
\end{align*}
$$

where

$$
\Lambda^{(\bar{n})}\left(\overline{+}+\theta_{b}^{r}\right) \text { is given in Appendix } A
$$

The refore

$$
\begin{aligned}
& \cdot \sin \beta(r) d r j
\end{aligned}
$$

$$
\begin{gathered}
\text { The vertical force is } \\
F_{z}=\operatorname{Re} \sum_{n=1}^{N} e^{i q\left(\Omega t-\bar{\theta}_{n}\right)} \int_{S} \int_{S} \Delta P^{(q)}\left(r, \varphi_{0}\right) \sin \beta(r) \sin \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right) d S^{\prime}
\end{gathered}
$$

and following the steps indicated in the development for F_{y}, the for is finally

$$
\begin{align*}
& F_{z}=P_{k}, \frac{-N r_{0}}{2 i} e^{i \ell N \Omega t} \int_{0}^{1} \sum_{n=1}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(-\hat{\theta}_{b}^{r}\right)-L^{(\ell N+1, \bar{n})}(r) \hat{\Lambda}^{(\bar{n})}\left(\theta_{b}^{r}\right.\right. \\
&\cdot \sin \beta(r) d r) \tag{c-8}
\end{align*}
$$

The moment about the x-axis (torque) is

$$
\left.Q_{x}=\operatorname{Re} \mathcal{L}_{-} \sum_{n=1}^{N} e^{i q\left(\Omega t-\bar{\theta}_{n}\right)} \int_{S} \int_{S} \Delta P^{(q)}\left(r, \varphi_{0}\right) \sin \beta(r) r d S\right)
$$

and by analogy with F_{x} this becomes

$$
\begin{equation*}
Q_{x}=\operatorname{Re}\left\{-\operatorname{Nr}_{o}^{z} e^{i \ell N \Omega t} \int_{0}^{1} L^{(\ell N)}(r) \sin \beta(r) r d r\right\} \tag{c-9}
\end{equation*}
$$

The bending moment about the y-axis is

$$
\begin{aligned}
Q_{y}= & \operatorname{Re}\left\{\sum _ { n = 1 } ^ { N } e ^ { i q (\Omega t - \overline { \theta } _ { n }) } \hat { \jmath } _ { j } \jmath _ { S } \Delta p ^ { (q) } (r , \varphi _ { 0 }) \left[r \varphi_{0} \tan \beta(r) \sin \beta(r) \sin \left(\Omega t-\hat{\varphi}_{0}-\bar{\theta}_{n}\right)\right.\right. \\
& \left.\left.+r \cos \beta(r) \cos \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right)\right] d S\right\}
\end{aligned}
$$

.:.ch with the trigonometric transformations employed before becomes

The first $\hat{\sim}_{\alpha}$-integral is
where $i_{1}^{(n)}()$ is as defined in Appendix A. The second Q_{α}-integral is given by $(c-6)$. Finally,

$$
\begin{equation*}
\left.+L^{(\ell N+1, \bar{n})}(r) \therefore(\bar{n})\left(d_{b}^{r}\right)\right] r d r \tag{c-11}
\end{equation*}
$$

$$
\begin{aligned}
& Q_{y}=\operatorname{Re} \frac{N r_{o}}{2} e^{i i N \ldots L} \quad{ }_{0}^{\prime}{ }_{b}^{r} \sin \beta(r) \tan \beta(r) \sum_{\bar{n}=1}\left[L^{(i N-1, \bar{n})}(r) i_{1}^{(\bar{n})}\left(-\theta_{b}^{r}\right)\right. \\
& \left.-L^{(\ell N+1, \bar{n})}(r) \Lambda_{1}^{(\bar{n})}\left(\theta_{b}^{r}\right)\right]+\cos \beta(r) \underset{\bar{n}=1}{Z}\left[L^{(\ell N-1, \bar{n})}(r) \Lambda^{(\bar{n})}\left(-\theta_{b}^{r}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{T} L^{(\ell N \overline{+})}\left(r, \psi_{\alpha}\right) e^{=i j_{b}^{r} \cos \alpha_{\alpha}} \cos \dot{\psi}_{\alpha} \sin \ddot{\theta}_{\alpha} d \psi_{\alpha} \\
& =\sum_{0}^{\pi} \sum_{n=1} L^{(\hat{N+}+\bar{n})}(r) \varphi(\bar{n}) e^{-i t_{b}^{r} \cos \theta} \cos _{\alpha} \sin \hat{\theta}_{\alpha} d \theta_{\alpha} \\
& =\prod_{n=1} L^{(g N \overline{+} 1, \bar{n})}(r) \lambda_{l}^{(\bar{n})}\left(\overline{+} \cdots_{b}^{r}\right) \tag{c-10}
\end{align*}
$$

$$
\begin{aligned}
& \left.-e^{i(q-1)\left(\Omega t-\bar{\sigma}_{n}\right)} e^{-i \theta_{b}^{r} \cos \varphi_{\alpha}}\right]+\cos 3(r) i_{i}^{i(q+1)\left(., t-\bar{E}_{n}\right)} e^{i \theta_{b}^{r} \cos \theta_{\alpha}} \\
& \left.+e^{i(q-1)\left(\pi t-\bar{e}_{n}\right)} e^{-i e_{b}^{r} \cos \theta}\right] r \sin \psi_{\alpha} d \theta_{\alpha} d r
\end{aligned}
$$

$$
\begin{aligned}
& \left.-L^{(\ell N+1)}\left(r, \hat{\varphi}_{\alpha}\right) e^{-i \theta_{b}^{r} \cos \varphi_{\alpha}}\right] \cdot \cos \hat{\varphi}_{\alpha} \sin \varphi_{\alpha} d \psi_{\alpha} \\
& +j_{0}^{T} \cos 3(r)\left[L^{(2 N-1)}\left(r, \tilde{R}_{\alpha}\right) e^{i \theta_{b}^{r} \cos \theta_{\alpha}}+L^{(\delta N+1)}\left(r, \hat{\varphi}_{\alpha}\right) e^{-i \theta_{b}^{r} \cos \theta_{\alpha}^{-}}-\right. \\
& \sin \tilde{\psi}_{\alpha} d \psi_{\alpha} \cdot r d r
\end{aligned}
$$

The bending moment about the z-axis is

$$
\begin{aligned}
Q_{z}=\operatorname{Re} \sum_{n=1}^{N} e^{i q\left(\Omega t-\bar{\theta}_{n}\right)} \int & \int_{S} \Delta p^{(q)}\left(r, \omega_{0}\right)\left[r \varphi_{0} \tan \beta(r) \sin \beta(r) \cos \left(\Omega t-\varphi_{0}-\bar{r}_{n}\right)\right. \\
& \left.-r \cos \beta(r) \sin \left(\Omega t-\varphi_{0}-\bar{\theta}_{n}\right)\right] d S
\end{aligned}
$$

It can be shown that

$$
\begin{align*}
& Q_{z}=\operatorname{Re} \frac{-N r_{o}^{2}}{2 i} e^{i \ell N S t} \int_{0}^{1} \int_{0} i \theta_{b}^{r} \sin \beta(r) \tan \beta(r) \sum_{n=1}^{C_{0}}\left[L^{(\ell N-1, \bar{n})}(r) l_{1}^{(\bar{n})}\left(-\theta_{b}^{r}\right)\right. \\
& \left.+L^{(\hat{i} N+1, \bar{n})}(r) \Lambda_{1}^{(\bar{n})}\left(\hat{\theta}_{b}^{r}\right)\right]+\cos =(r) \sum_{n=1}\left[L^{(\ell N-1, \bar{n})}(r) \Omega^{(\bar{n})}\left(-\theta_{b}^{r}\right)\right. \\
& \left.-L^{(i N+1, \bar{n})}(r) h^{(\bar{n})}\left(e_{b}^{r}\right)\right] \cdot r d r \text {. } \tag{c-12}
\end{align*}
$$

In the text, and in the program as well, the hydrodynamic pitch angle $S(r)$ of the assumed helicoidal surface is replaced by the geometric pitch angle $\sigma_{p}(r)$ of the actual propeller.

APPENUIX D

THE SINGULARITIES OF THE INTEGRA:'DS OF THE

BLADE PRESSURE DISTRIBUTION
In Equation (49) for the pressure due to thickness (non-lifting) it is seen that there is a singularity when $0=r, x=\xi, \theta_{0}=\varphi_{0}$ and $\bar{\theta}_{n}=0$ (i.e., $n=1$). The singular part of the pressure can be expressed as (see Eq. (53) with the substitutions $\theta_{0}=a \overline{5}$ and $\hat{\varphi}_{0}=a x$):

$$
\begin{align*}
P_{T_{1}} & =i \frac{\rho_{f} U^{2}}{2 i \pi^{2}} \int_{0}^{\pi} \int_{\rho}^{\pi} \frac{\partial f\left(\rho, \theta_{\alpha}\right)}{\partial \theta} \sqrt{1+a^{2} \rho^{2}} \iint_{-\infty}^{\infty} k(1 k)_{o} e^{i k(x-\xi)} d k \\
& +\sum_{m=1}^{\infty} \int_{-\infty}^{\infty}(\mid k)_{m}\left[(k-a m) e^{i(k-a m)(x-\xi)}+(k \operatorname{tam}) e^{i(k+a m)(x-\xi)}\right] d k d \theta_{\alpha} d \rho \tag{0-1}
\end{align*}
$$

For arbitrary thickness (see Eq. (32)).

$$
\frac{\partial f\left(p, \theta_{\alpha}\right)}{\partial \theta_{\alpha}} \approx c_{0}(p) \cos \frac{3}{2}+\sum_{n=1}^{4} C_{n}(p) \sin n=\sigma_{\alpha}
$$

where the coefficients are obtained as shown in sect. $A, 3, c$. Then the trigonometric transformation

$$
\bar{\xi}=\left(\sigma^{\circ}-\theta_{b}^{0} \cos \theta_{\alpha}\right) / a
$$

yields

$$
\begin{aligned}
& \cos \theta_{\alpha}=\frac{\sigma^{0}-a \xi}{\theta_{b}^{p}} \\
& \cos \frac{\alpha}{2}=\sqrt{\frac{4_{b}^{0}+\sigma^{0}-a \xi}{2 A_{b}^{p}}} \\
& \sin \theta_{\alpha} d \theta_{\alpha}=\frac{a}{\theta_{b}^{\rho} d \xi}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 \sigma_{2} d \cdot=2 \sin y_{x} \cos { }_{x} d \sigma_{x}=\frac{2 a\left(c^{P}-a^{F}\right) d z}{\left(\theta_{b}^{0}\right)^{z}} \\
& \sin 3 j_{a} d \sigma=\left[-1+4 \frac{\left(f^{0}-a \bar{s}\right)^{2}}{\left(f_{b}^{2}\right)^{2}}\right] \frac{a}{a_{b}^{0}} d \xi \\
& \sin 4=\left[8 ; \frac{a^{2}-a s^{3}}{\theta_{b}^{p}}-4 \frac{\sigma^{4}-a^{\prime}}{\epsilon_{b}^{p}}\right] \frac{a}{\sigma_{b}^{\rho}} d E
\end{aligned}
$$

and thus the slope can be expressed in the following form:

$$
\begin{aligned}
\frac{f}{\sigma_{\alpha}}\left(p, \tilde{\alpha}_{\alpha}\right) d \xi_{\alpha} & \simeq\left\{\left[d_{0}(p)+\sqrt{d_{1}(p)-d_{2}(\rho) \xi}+d_{3}(\rho) \xi+d_{4}(\rho) \xi^{z}+d_{5}(\rho) \bar{s}^{3} \cdot d \xi\right.\right. \\
& =\frac{F(\xi, \rho)}{\sqrt{1+a^{2} D^{2}}} d \xi
\end{aligned}
$$

Equation ($D-1$) can be written as

$$
\begin{align*}
& P_{-}=\frac{i f^{U^{2}}}{2-} \sum_{-\infty}^{\infty} k\left(\overline{5}, \sum_{0}^{\infty} e^{i k(x-j)} d k\right. \\
& +\quad \therefore \quad j_{n=1}^{\infty}(k)_{m}\left[(k-a n) e^{i(k-a m)(x-\xi)}+(k+a n) e^{i(k+a m)(x-\xi)}\right] d k \quad \text { d } \quad \text { dp } \tag{D-2}
\end{align*}
$$

For finite \cdots te exansion of $1 / R$ in the above has no singularity. The singular behavior is present only in the infinite m-series (see Reference 10). When $m \succeq M$ large, the generalized mean value theorem can be used:

$$
\int_{c}^{d} f(k) p(k) d k \in f(A) \int_{c}^{d} p(k) d k, c \leq A \leq d
$$

where

$$
\left\{\begin{array}{l}
l_{m}(|k| p) k_{m}(|k| r) \text { for } \rho<r \\
l_{m}(|k| r) k_{m}(|k| \rho) \text { for } r<p
\end{array}\right.
$$

and $f(A)=I_{m}(|A| p) K_{m}(|A| r)$, etc. with $A \ll m$ (order).
By using Nicholson's (11) approximation for the product of the modified Bessel functions when $A \ll m$

$$
f(A) \approx \frac{1}{2 m} z^{m} \text { where } Z=\left\{\begin{array}{lll}
\rho / r & \text { for } & \rho<r \tag{0-3}\\
r / \rho & \text { for } & r \ll
\end{array}\right.
$$

Then for large m the integral can be written as

$$
\begin{align*}
I=\sum_{5}^{j} j_{\rho} F(\bar{\xi}, p) & \sum_{m=M}^{\infty} \frac{1}{m} z^{m} \cos a m(x-\tilde{\xi}) \int_{-\infty}^{\infty} k e^{i k(x-\tilde{\zeta})} d k \\
& +i \text { amsin } a m(x-\bar{\xi}) \sum_{-\infty}^{\infty} e^{i k(x-\xi)} d k j d \xi d \rho \tag{D-4}
\end{align*}
$$

From Jolley's collection of series summations (12)

$$
\text { ia } \sum_{m=1}^{\infty} z^{m} \sin m a(x-\xi)=\frac{i a Z \sin a(x-\xi)}{1-2 Z \cos a(x-\bar{\xi})+Z^{2}} \text { (see Jolley 499) }
$$

Also $\frac{\partial}{\partial Z} \sum_{m=1}^{\infty} \frac{1}{m} z^{m} \cos m a(x-\xi)=\frac{1}{Z} \sum_{m=1}^{\infty} z^{m} \cos m a(x-\xi)$

$$
=\frac{\cos a(x-E)-7}{1-2 Z \cos a(x-\bar{y})+Z^{2}} \text { (see Jolley 500) }
$$

Therefore

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{1}{m} z^{m} \cos m a(x-\bar{\xi}) & =j \frac{\cos a(x-\overline{5})-z}{1-2 Z \cos a(x-\bar{\xi})+z^{2}} d z \\
& =-\frac{1}{2} \log \left[1-2 Z \cos a(x-\overline{5})+z^{2}\right]
\end{aligned}
$$

The m-series of ($D-4$) then is equivalent to

$$
\begin{align*}
S_{m}= & \left\{-\frac{1}{2} \log \left[1-2 z \cos a(x-\xi)+z^{2}\right] \int_{-\infty}^{\infty} k e^{i k(x-\xi)} d k\right. \\
& \left.+\frac{i a Z \sin a(x-\xi)}{1-2 Z \cos a(x-\xi)+z^{2}} \int_{-\infty}^{\infty} e^{i k(x-\xi)} d k\right\} \\
- & \sum_{m=1}^{M} \frac{1}{m} z^{m}\left\{\cos a m(x-\xi) \int_{-\infty}^{\infty} k e^{i k(x-\xi)} d k\right. \\
& +i \operatorname{am} \sin a m(x-\xi) \int_{-\infty}^{\infty} e^{i k(x-\xi) d k} \tag{D-5}
\end{align*}
$$

where the finite m-series can be ignored since it is certainly not singular.
The k-integrals are evaluated as

$$
\begin{align*}
& \int_{-\infty}^{\infty} e^{i k(x-\xi)} d k=2 \pi \delta(x-\xi) \tag{D-6}\\
& \int_{-\infty}^{\infty} k e^{i k(x-\xi)} d k=-i 2 \pi \delta^{\prime}(x-\xi)
\end{align*}
$$

where $\left\{(x-\xi)\right.$ is the Dirac delta function and $\delta^{\prime}(x-\xi)$ the derivative of this function with respect to $(x-\xi)$.

With the substitution of $(D-5)$ and $(D-6)$ and letting $x_{0}=x-5$, Equation ($0-4$) becomes

$$
\begin{aligned}
1=i 2 \pi{\underset{x}{0}}_{j}^{j} \int_{0} F\left(x-x_{0}, p\right)\{ & -\frac{1}{2} \log \left(1-2 Z \cos a x_{0}+Z^{2}\right) \delta^{\prime}\left(x_{0}\right) \\
& \left.-\frac{a Z \sin a x_{0}}{1-2 Z \cos a x_{0}+Z^{2}} \delta\left(x_{0}\right)\right\} d x_{0} d_{p} \quad(0-7)
\end{aligned}
$$

and integrating over x_{0} results in

$$
\begin{equation*}
1=+\left.i \pi \int_{\rho}^{j} \frac{\left.\partial F\left(x-x_{0}\right) \rho\right)}{\partial x_{0}}\right|_{x_{0}=0} \quad \log \left(1-2 z+z^{2}\right) d \rho \tag{D-8}
\end{equation*}
$$

With $z=p / r$ or r / p,

$$
\log \left(1-2 z+z^{2}\right)=\log (1-z)^{2}=2 \log (1-z)
$$

$$
=2 \log \left(\frac{r-\rho}{r}\right) \text { or } 2 \log \left(\frac{p-r}{\rho}\right)
$$

hence the p-integral has a logarithmic singularity when $\rho \rightarrow r$ and this has a finite contribution and is integrable.

APPENDIX E
 EVALUATION OF THE p-INTEGRATION IN
 THE REGION OF THE SINGULARITY (SECTION B)

Let $\bar{K}(p)$ represent the integrand of the p-integration. It has been seen that when $\rho \rightarrow r, \bar{K}(\rho)$ varies as $\ln (p-r)$. A logarithmic singularity is integrable, but since the integration is perfomed numerically, special precautions must be taken. In the region of the singularity $p=r$, the integral is put in the form

$$
\begin{equation*}
I=\underset{r-\beta}{\mu} \frac{M(\rho)}{p-r} d p \tag{E-1}
\end{equation*}
$$

where $M(\rho)=(0-r) \bar{K}(\rho)$ so that $M=0$ when $\rho=r$, and $\beta=\Delta r / 2$.
The function $M(0)$ can be expanded about the singularity $p=r$ by the Lagrange formula

$$
\begin{equation*}
M(\rho)=\sum_{i=0}^{n} \frac{\Pi_{n}(\rho)}{\left(\rho-\rho_{i}\right) \Pi_{n}^{\prime}\left(\rho_{i}\right)} M_{i+1} \quad i=0, i, \ldots n \tag{E-2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Pi_{n}(\rho)=\left(\rho-\rho_{0}\right)\left(\rho-\rho_{i}\right) \cdots\left(\rho-\rho_{n}\right) \\
& \Pi_{n}^{\prime}\left(\rho_{i}\right)=\frac{d}{d \rho} \Pi_{n}(\rho) \text { evaluated at } \rho=\hat{\gamma}_{i}
\end{aligned}
$$

and $M_{i+1}=M\left(p_{i}\right)$ (see Scarborough ${ }^{(13)}$ and Watkins et al ${ }^{(14)}$).
In the strip from $r-\beta$ to $r+\beta$ (with $n=4$ for the 5 -point formula), $\rho_{0}=r-\beta=r-2 \delta, \rho_{1}=r-s$, etc. where $\delta=8 / 2$. Then

$$
\begin{equation*}
\Pi_{n}^{\prime}\left(\rho_{i}\right)=(-1)^{4-i} s^{4} i!(4-i)! \tag{E-3}
\end{equation*}
$$

and

$$
M(\rho)=\frac{1}{\delta^{4}} \sum_{i=0}^{4} \frac{(-1)^{i}}{i!(4-1)!} \frac{(0-r+2 s)(p-r+\delta)(p-r)(p-r-s)(p-r-2 s)}{p-r+(2-i) \delta} M_{i+1}
$$

where $M_{3}=0$ since $0_{2}=r$.
The integral is
where

$$
\begin{align*}
& g_{0}=\frac{M_{1}+M_{5}}{4!}-\frac{M_{2}+M_{4}}{3!}+\frac{M_{3}}{2!} \\
& g_{1}=\frac{2\left(M_{5}-M_{1}\right)}{4!}-\frac{\left(M_{4}-M_{2}\right)}{3!} \\
& g_{2}=\frac{-\left(M_{1}+M_{5}\right)}{4!}+\frac{4\left(M_{2}+M_{4}\right)}{3!}-\frac{5 M_{3}}{2!2!} \tag{E-6}\\
& g_{3}=\frac{2\left(M_{1}-M_{5}\right)}{4!}-\frac{4\left(M_{2}-M_{4}\right)}{3!} \\
& g_{4}=\frac{4}{2121} \quad M_{3} \quad\left(M_{3}=0\right) \\
& \text { then } 1=\frac{1}{\delta^{4}} \frac{r^{8} g 1}{3} 2(2 \delta)^{3}+\delta^{3} g_{3} 2(2 s) \\
& =\frac{16}{3} g_{1}+4 g_{3} \\
& \text { or } \quad 1=\frac{1}{9}\left(M_{5}-M_{1}\right)+\frac{16}{9}\left(M_{4}-M_{2}\right) \tag{E-7}\\
& \text { where } M_{1}=-\beta \bar{K}_{1}(0=r-\beta) \\
& M_{2}=-\frac{3}{2} \bar{K}_{2} \quad\left(\rho=r-\frac{3}{2}\right) \\
& M_{4}=+\frac{\beta}{2} \bar{K}_{L}\left(\rho=r+\frac{\beta}{2}\right) \\
& M_{5}=+\beta \bar{K}_{5}(\beta=r+\beta)
\end{align*}
$$

Therefore
1

$$
1=\frac{i}{9} \frac{\Delta r}{2}\left(\bar{K}_{5}+\bar{K}_{1}\right)+\frac{16}{9} \frac{\Delta r}{4}\left(\bar{K}_{4}+\bar{K}_{2}\right)
$$

and

$$
\begin{equation*}
\frac{1}{\Delta r}=\frac{1}{18}\left(\bar{K}_{5}+\bar{K}_{1}\right)+\frac{4}{9}\left(\bar{K}_{4}+\bar{K}_{2}\right) \tag{E-8}
\end{equation*}
$$

DISTRIBUTION LIST

40 Commander
David W. Taylor Naval Ship Researcn and Development Center Bethesda, Md. 20084
Attn: Code 1505 (1)
Code 5211.4 (39)
1 Officer-in-Charge
Annapolis Laboratory
Naval Ship Research and Development Center
Annapolis, Maryland 21402
Attn: Code 522.3 (Library)
7 Commander
Naval Sea Systems Command
Washington, D.C. 20360
Attn: SEA OGG32 (3)
SEA 03512 (Peirce)
SEA 037
SEA 0322
SEA 033
12 Director
Defence Documentation Center
5010 Duke Street
Alexandria, Virginia 22314
1 Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217
Attn: Mr. R.D. Cooper (Code 438)
I Office of Naval Research
Branch Office
492 Summer Street
Boston, Mass. 02210
1 Office of Naval Research
Branch Office (493)
536 S. Clark Street
Chicago, lliinois 60605
1 Chief Scientist
Office of liaval Research Branch office
1030 E. Green Street
Pasadena, Ca. 91106

1 Office of Naval Research Resident Representative 715 Broadway (5th floor) New York, New York 10003

1 Office of Naval Research
San Francisco Area Office
760 Market St., Rm 447
San Francisco, Ca. 94102
2 Director
Naval Research Laboratory
Washington, D.C. 20390
Attn: Code 2027 Code 2629 (ONRL)

1 Commander
Naval Facilities Engineering
Command (Code 032C)
Washington, D.C. 20390
1 Library of Congress
Science and Technology Division
Washington, D.C. 20540
1 Commander
Naval Electronics Laboratory Center (Library)
San Diego, Ca. 92152
8 Cormander
Naval Ship Engineering Center
Center Building
Prince Georges Center
Hyattsville, Maryland 20782
Attn: SEC 6034B
SEC 6110
SEC 6114 H
SEC 6120
SEC 6136
SEC 6144 G
SEC 6140B
SEC 6148
1 Naval Ship Engineering Center Norfolk Division
Small Craft Eng. Dept.
Norfolk, Virginia 23511
Attn: D. Blount (6660.03)

1 Library (Code 1640)
Naval Oceanographic Office
Washington, D.C. 20390
1 Technical Library
Naval Proving Ground
Dahlgren, Virginia 22448
1 Commander (ADL)
Naval Air Development Center Warminster, Penna. 18974

1 Naval Underwater Weapons Research and Engineering Station (Library)
Newport, R.I. 02840
1 Commanding officer (L31)
Naval Civil Engineering Laboratory
Port Hueneme, Ca. 93043
4 Commander
Naval Undersea Center
San Diego, Ca. 92132
Attn: Dr. A. Fabula (6005)
Dr. J. Hoyt (2501)
Library (13111)
1 Director
Naval Research Laboratory Underwater Sound Reference Div.
P.O. Box 8337

Orlando, Florida 32806
1 Library
Naval Underwater Systems Center
Newport, R.I. 02840
1 Research Center Library
Waterways Experimenc Station
Corps of Engineers
P.D. Box 631

Vicksburg, Mississippi 39180
2 National Bureau of Standards Washington, D.C. 20234
Attn: P. Kiebanoff (FM 105)
Fluid Mechanics Hydraulic Section

1 AFOSR/NAM
1400 Wilson Blvd.
Arlington, Virginia 22209

1 AFFOL/FYS (J. Oisen)
Wright Patterson AFB
Dayton, Ohio 45433
1 Dept. of Transportation Library TAD-491.1
4007 th St., S.W.
Washington, D.C. 20590
1 Charleston Naval Shipyard
Technical Library
Naval Base
Charleston, S.C. 29408
1 Norfolk Naval Shipyard
Technical Library
Portsmouth, Virginia 23709
1 Philadelphia Naval Shipyard
Philadelphia, Penna. 19112
Attn: Code 240
1 Portsmouth Naval Shipyard
Technical Library
Portsmouth, N.H. 03801
1 Puget Sound Naval Shipyard
Engineering Library
Bremerton, Wash. 98314
1 Long Beach Naval Shipyard
Technical Library (246L)
Long Beach, Ca. 90801
1 Hunters Point Naval Shipyard
Technical Library (Code 202.3)
San Francisco, Ca. 94135
1 Pearl Harbor Naval Shipyard
Code 202.32
Box 400 , FPO
San Francisco, Ca. 96610
1 Mare Island Niaval Shipyard Shipyard Technical Library Code 202.3
Vallejo, Ca. 94592
1 Assistant Chief Design Engineer for Naval Architecture (Code 250)
Mare Island Naval Shipyard
Vallejo, Ca. 94592

3 U.S. Naval Academy
Annapolis, Maryland 21402
Attn: Technical Library Dr. Bruce Johnson Pot. P. Van Mater, Jr.

3 Neval Postgraduate School Monterey, Ca. 93940
Attn: Library, Code 2124 Dr. T. Sarpkaya Prof. J. Miller

1 Capt. L.S. MCCready, USMS Director, National Maritime Research Center U.S. Merchant Marine Academy Kings Point, L.I., N.Y. 11204

1 U.S. Merchant Marine Academy Kings Point, L.l., N.Y. 11204
Attn: Academy Library
1 Library
The Pennsylvania State Univ.
Ordnance Research Laboratory
P.O. Box 30

State College, Penna. 16801
1 Bolt, Beranek and Newman
1701 N. For Myer Drive Arlington, Virginia 22211
Attn: Dr. F. Jackson
1 Bolt, Beranek and Newman
50 Moulton Street
Cambridge, Mass. 02138
Attn: Library
1 Bethlehem Steel Corporation
Center Technical Division
Sparrows Point Yard
Sparrows Point, Maryland 21219
I Bethlehem Sieel Corporation 25 Broadway
New York, New York 10004 Attn: library (Shipbuilding)

1 Cambridge Acoustical Asso., Inc. 1033 Massachusetts Ave. Cambridge, Mass. 02138
Attr: Dr. M. Junger

1 CALSPAN Corporation
P.O. BOX 235

Buffalo, New York 14221
ittn: Dr. A. Ritter
Aerodynamics Res. Dept.
1 Esso International
Design Division, Tanker Dept.
15 West 51 st Street
New York, New York 10019
1 Mr. V. Boatwright, Jr.
RED Manager
Electric Boat Divisior.
General Dynamics Corporation
Groton, Conn. 06340
1 Gibbs and Cox, Inc.
21 West Street
New York, New York 10006
Attn: Technical Information Control
2 Hydronautics, Inc.
Pindell School Road
Howard County
Laurel, Maryland 20810
Attn: Library Mr. M. Gertler

2 McDonnell Douglas Aircraft Co.
3855 Lakewood Blvd.
Whg Beach, Ca. 90801
Aitn: J. Hess
T. Cebeci

1 Lockheed Missiles and Space Co. P.0. Box 504

Sunnyvale, Ca. 94088
Atti: Mr. R. L. Waid, Dept. 57-74
Bldg. 150, Facility 1
1 Newport News Shipbuilding and Dry Dock Company 4101 Washington Ave. Newport News, Virginia 23607
Attn: Technical Library Dept.
1 North American Aviation, Inc.
Space and Information Systems.
12214 Lakewood Blvd.
Downey, Ca. 9024]
Attn: Mr. Ben Ujihara

1 Nielsen Engineering ε Research, Inc. I 510 Clude Avenue
Mountain View, Ca. 94043
Attn: Mr. S. Spangler
I Oceanics, Inc.
Technical Industrial Park
Plainview, L.l., N.Y. 11803
1 Society of Naval Architects and Marine Engineers
74 Trinity Place
New York, New York 10006
Attn: Technical Library
1 Sun Shipbuilding ε Dry Dock Co.
Chester, Penna. 19000
Attn: Chief Naval Architect
1 Sperry Systems Management Div.
Sperry Rand Corporation
Great Neck, N.Y. 11020
Attn: Technical Library
1 Stanford Research Institute
Menlo Park, Ca. 94025
Attn: Library G-021
2 Southwest Research Institute
P.O. Drawer 28510

San Antonio, Texas 78284
Attn: Applied Mechanics Review Dr. H. Abramson

1 Tracor, Inc.
6500 Tracor Lane
Austin, Texas 78721
1 Mr. Robert Taggart
3930 Walnut Street
Fairfax, Virginia 22030
1 Ocean Engineering Department
Woods Hole Oceanographic Inst.
Woods Hole, Mass. 02543
1 Worcester Polytechnic Inst. Alden Research Laboratories
Worcester, Mass. 01609
Attn: Technical Library

Applied Physics Laboratory University of Washington !013 N. E. 40th St.
Seattle, Washington 98105
Attn: Technical Library
1 University of Bridgeport
Bridgeport, Conn. 06602
Attn: Dr. E. Uram
1 Cornell University
Graduate School of Aerospace Eng.
Ithaca, New York 14850
Attn: Prof. W. R. Sears
4 University of California
Naval Architecture Department
College of Engineering
Berkeley, Ca. 94720
Attn: Library
Prof. W. Webster
Prof. J. Paulling
Prof. J. Wehausen
3 California Institute of Technology
Pasadena, Ca. 91109
Attn: Aeronautics Library Dr. T. Y. Wu Dr. A. J. Acosta

1 Docs/Repts/Trans. Section
Scripps Institution of Oceanography Library
University of California, San Diego P.O. Box 2367

La Jolla, Ca. 92037
1 Catholic University of America
Washington, D.C. 20017
Attn: Dr. S. Heller Dept. of Civil \& Mech. Eng.

1 Colorado State University
Foothills Campus
Fort Collins, Colorado 80521
Attn: Reading Room Engineering Research Center

1 University of California at San Diego La Jolla, Ca. 92038
Attn: Dr.A. T. Ellis Dept. of Applied Math.

2 Florida Atlantic University Ocean Engineering Department
Boca Raton, Fla. 33432
Attn: Technical Library Dr. S. Dunne

2 Harvard University
Pierce Hall
Cambridge, Mass. 02138
Attn: Prof. G. Carrier Gordon McKay Library

1 University of Hawaii
Dept. of Ocean Engineering 2565 The Mall
Honolulu, Hawaii 96822
Attn: Dr. C. Bretschneider
1 University of Illinois
Urbana, lllinois 61801
Attn: Dr. J. Robertson
3 Institute of Hydraulic Res.
The University of lowa
Iowa City, lowa 52240
Attn: Library
Dr. L. Landweber
Dr. J. Kennedy
1 The John Hopkins University
Baltimore, Md. 21218
Attn: Prof. 0. Phillips Mechanics Dept.

1 Kansas State University
Engineering Experiment Station
Seaton Hall
Manhattan, Kansas 66502
Attn: Prof. D. Nesmith
1 University of Kansas
Chm Civil Engr. Dept. Library
Lawrence, Kansas 60644
5 Department of Ocean Engineering Massachusetts Inst. of Technology Cambridge, Mass. 02139
Attn: Department Library Prof. P. Leehey Prof. P. Mandel Prof. M. Abkowitz Dr. J. Newman

1 Parsons Laboratory
Massachusetts Inst. of Technology
Cambridge, Mass. 02139
Attn: Prof. A. Ippen
5 St. Anthony Falls Hydraulic Laboratory University of Minnesota
Mississippi River at 3 rd Ave. S.E.
Minneapolis, Minnesota 55414
Attn: Prof. E. Silberman
Mr. J. Wetzel
Mr. F. Schiebe
Mr. J. Killen
Dr. C. Song
3 Department of Naval Architecture and Marine Engineering
University of Michigan
Ann Arbor, Michigan 48104
Attn: Library
Dr. T. F. Ogilvie
Prof. F. Hammitt
2 College of Engineering
University of Notre Dame
Notre Dame, Indiana 46556
Attn: Engineering Library Dr. A. Strandhagen

2 New York University
Courant Inst. of Math. Sciences
251 Mercier Street
New York, New York 10012
Attn: Prof. A. Peters
Prof. J. Stoker
1 City College, CUNY
Convent Ave. and 138th St.
New York, N.Y. 10031
Attn: Prof. W. Pierson, Jr.
1 Dept. of Aerospace and Mechanical Sciences
Princeton University
Princeton, N.J. 08540
Attn: Prof. G. Mellor
3
Davidson Laboratory
Stevens Institute of Technology
711 Hudson Street
Hoboken, New Jersey 07030
Attn: Library
Dr. J. Breslin
Dr. S. Tsakonas
1 Applied Research Laboratory Library
University of Texas
P.O. Box 8029
Austin, Texas 78712
1 College of Engineering
Utah State University
Logan, Utah 84321
Attn: Dr. R. Jeppson
2 Stanford University
Stanford, Ca. 94305
Attn: Engineering LibraryDr. R. Street
3 Webb Institute of Naval Architecture
Crescent Beach Road
Glen Cove, L.I., N.Y. 11542
Attn: Library
Prof. E. V. Lewis
Prof. L. W. Ward
1 National Science Foundation
Engineering Division Library
1800 G Street, N.W.
Washington, D.C. 20550
1 University of Connecticut
Box U-37
Storrs, Conn. 06268
Attn: Dr. V. ScottronHydraulic Research Lab.
1 Applied Research Laboratory
P.O. Box 30
State College, Pa. 16801
Attn: Dr. B. Parkin, DirectorGarfield Thomas Water Tunnel
1 Dr. Michael E. McCormick
Naval Systems Engineering Department
U.S. Naval AcademyAnnapolis, Maryland 21402
1 Dr. Douglas E. Humphreys (Code 712)Naval Coastal Systems LaboratoryPanama City, Florida 32401

[^0]: *See J.P. Bresilin, "Determination of the Normal Velocity to a Propeller Blade Section in a Ship Wake," Tech. Memo. SIT-0L-76-172, January 1976.

