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Propensity Score Estimation With Boosted Regression for Evaluating
Causal Effects in Observational Studies

Daniel F. McCaffrey, Greg Ridgeway, and Andrew R. Morral
RAND Corporation

Causal effect modeling with naturalistic rather than experimental data is challenging. In
observational studies participants in different treatment conditions may also differ on pre-
treatment characteristics that influence outcomes. Propensity score methods can theoretically
eliminate these confounds for all observed covariates, but accurate estimation of propensity
scores is impeded by large numbers of covariates, uncertain functional forms for their
associations with treatment selection, and other problems. This article demonstrates that
boosting, a modern statistical technique, can overcome many of these obstacles. The authors
illustrate this approach with a study of adolescent probationers in substance abuse treatment
programs. Propensity score weights estimated using boosting eliminate most pretreatment
group differences and substantially alter the apparent relative effects of adolescent substance

abuse treatment.

Experimental studies offer the most rigorous evidence
with which to establish treatment efficacy, but they are not
always practical or feasible. Experimental treatment evalu-
ations can be expensive to field and may be too slow to
produce answers to pressing questions. In some cases ran-
dom assignment to treatments is impractical, as with eval-
uations of the relative effectiveness of hospitals that might
be geographically dispersed. Even when randomization to
treatment conditions is logistically feasible, ethical concerns
are often raised in community treatment settings when con-
ventional wisdom favors one condition (Shadish, Cook, &
Campbell, 2002).

Because of the challenges in fielding experimental stud-
ies, alternative methods are widely used to study treatment
effects. In some circumstances, powerful quasi-experimen-
tal methods can be used to provide compelling evidence
regarding treatment effects (Shadish et al., 2002; West,
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Biesanz, & Pitts, 2000). In many evaluation contexts, how-
ever, observational data from nonequivalent groups often
represent the best available data on the effectiveness of
widely used or important interventions. For example, almost
all studies of community-based substance abuse treatment
use this design (e.g., Gerstein & Johnson, 1999; Hser et al.,
2001; Hubbard, Cavanaugh, Craddock, & Rachal, 1985;
Sells & Simpson, 1979).

Identifying true, causal effects from observational studies
of nonequivalent groups is challenging in part because
treatment assignment mechanisms are neither known nor
random. For instance, patients and those who refer them
select treatments that they believe best suit their needs and
resources. Because of these variations in treatment selec-
tion, patients entering different care models are likely to
exhibit different pretreatment characteristics that may affect
outcomes.

To minimize the confounding of treatment effects with
pretreatment group differences, researchers frequently use
statistical “case-mix adjustment” techniques. Statistical
case-mix adjustment attempts to remove selection biases
from treatment effect estimates by accounting for observed
covariates that are expected to predict both outcomes and
the treatment selection. The methods include analysis of
covariance (ANCOVA) models (with and without correc-
tion for measurement error), gain score models, instrumen-
tal variable approaches, and propensity score models. Ex-
cellent general discussions of these approaches can be found
in Shadish et al. (2002) or West et al. (2000).

Unlike the more common and traditional ANCOVA, pro-
pensity score methods account for differences between
treatment and control groups by modeling the selection
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process. The propensity score is the probability that a study
participant is assigned to the treatment of interest rather than
to a comparison group given a set of observed characteris-
tics. Rosenbaum and Rubin (1983) showed that, conditional
on this score, all observed pretreatment covariates are inde-
pendent of group assignment and, in large samples, covari-
ates will be distributed equally in both groups and will not
confound estimated treatment effects. Rosenbaum and Ru-
bin (1984) suggested stratification or matching on the pro-
pensity score when modeling treatment effects. Hirano,
Imbens, and Ridder (2003) and Farley et al. (2002) have
used propensity scores for weighting observations in treat-
ment effect models.

Although these methods have recently begun to receive
widespread use (cf, Connors et al., 1996; Dehejia & Wahba,
1999; Fiebach et al., 1990; Lieberman et al., 1996; Mojtabai
& Graff Zivin, 2003; Stone, Obrosky, Singer, Kapoor, &
Fine, 1995), the literature contains few proposed methods
for the critical step of building propensity score models
(Dehejia & Wahba, 1999; Hirano & Imbens, 2001; Rosen-
baum & Rubin, 1984). Nearly all examples in the literature
use a parametric logistic regression model that assumes
covariates are linear and additive on the log-odds scale. The
model may also include select interaction or nonlinear terms
chosen through forward selection methods. More flexible
approaches to modeling dichotomous outcomes have re-
ceived little attention in the estimation of propensity scores.

In this article, we describe the use of generalized boosted
models (GBM), a multivariate nonparametric regression
technique, to estimate the propensity score. GBM is a gen-
eral, automated, data-adaptive modeling algorithm that can
estimate the nonlinear relationship between a variable of
interest and a large number of covariates. GBM is appealing
in the context of case-mix adjustment because it can predict
treatment assignment from a large number of pretreatment
covariates while also allowing for flexible, nonlinear rela-
tionships between the covariates and the propensity score.
Other methods are less flexible and require variable selec-
tion. Variable selection risks biasing estimates of treatment
effects because it omits covariates that are important to
treatment selection or misspecifies the functional form of
the relationship between covariates and treatment selection.

We demonstrate the use of GBM for estimating the pro-
pensity scores in the Adolescent Outcomes Project (AOP).
The AOP is a study of the effects of a community-based
residential substance abuse treatment program for adoles-
cent probationers using the Phoenix Academy treatment
model in comparison with the effects of referral of similar
youths to alternative settings. The baseline interview con-
tained dozens of measures of participants’ pretreatment
demographic characteristics, drug use, criminal history,
psychological functioning, and other risk factors. Although
youths who entered the Phoenix Academy differed from
those in the comparison condition, we show that a GBM-

derived propensity score model provides a means of weight-
ing the comparison group that reduces or eliminates most
pretreatment group differences. Comparison of outcomes
associated with the Phoenix Academy versus the weighted
comparison condition provides estimates of the Phoenix
Academy treatment effect relative to alternative probation
dispositions, with little confounding by the observed pre-
treatment differences. In addition, we highlight advantages
of this method for estimating propensity scores over stan-
dard logistic regression approaches.

The Treatment Effect

Following Rosenbaum and Rubin (1983) and others (Hol-
land, 1986; Imbens, 2003), we use counterfactuals to define
the treatment effects from an observational study with a
treated and an untreated comparison group. Every member
in the population has two potential values for any outcome;
one in which the individual is assigned to the treatment
condition, y,, and one in which the individual is assigned to
a comparison group, y,. Only one of these values is ob-
served for each individual. The other counterfactual out-
come cannot be observed. The treatment effect is E(y;) —
E(yo), where expectation is over the entire population.

Often, however, the effect of interest is on the treatment
effects generalized only to clients like those typically en-
tering a particular program or type of treatment, the so-
called average treatment effect on the treated, denoted ATE,
(Wooldridge, 2001). Let z be an indicator for treatment; z =
1 if the individual received treatment and O otherwise. Then
E(y;|z = 1) is the average outcome of a treatment partic-
ipant after receiving treatment, and E(yo|z = 1) is the
average outcome of treatment participants if they had re-
ceived the comparison condition instead. The treatmen
effect on the treated is

ATE, = E(y,|lz = 1) — E(yolz = 1). @

When treatment effects are not constant, the effect of treat-
ment on the treated can differ from those for the entire
population. The treatment effect on the treated is of partic-
ular interest in the AOP example, where the Phoenix Acad-
emy treatment is expected to be most beneficial for youths
with problems like those currently assigned to the Phoeni»
Academy. In the remainder of this article, we focus or
estimating the treatment effect on the treated, though ow
discussion and results generalize to the treatment effect or
the entire population with minor modifications.

The outcomes y, are unobserved for every participan
receiving treatment, so E(y,|z = 1) must be estimated fron
the comparison group. However, as discussed in Rosen
baum and Rubin (1983), the average outcome from the
comparison group generally will not yield an unbiasec
estimate of the E(yolz = 1) because of pretreatment dif
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ferences between groups. Propensity scores adjust for these
differences by accounting for treatment selection.

The Propensity Score and Estimation of
Treatment Effects

The propensity score is the probability that a member of
the population receives treatment rather than the compari-
son condition. Conditioning on this quantity can provide an
unbiased estimate of treatment effects. That is, if x denotes
a vector of observed pretreatment characteristics, the pro-
pensity score, p(x), is equal to Pr(z = 1|x). Rosenbaum
and Rubin (1983) showed that, conditional on p(x), the
distribution of x does not depend on z. In other words,
conditioning on the propensity score ensures closely
matched covariate distributions for all observed pretreat-
ment variables across the treatment and comparison groups,
as would be expected with random assignment designs.
Rosenbaum and Rubin (1983) also proved that if the joint
distribution of y, and y, is independent of z conditional on
x, then they are independent of z conditional on the pro-
pensity score. That is, conditional on p(x), the distribution
of the observable y, for the comparison group equals the
distribution for the unobservable y, values of the treatment
group. The observed values from the comparison group can
be used to estimate E[yy|z = 1, p(x)], which can then be
used to estimate ATE,.

Propensity Score Weighting

The propensity score can be used to weight the observa-
tion when estimating the treatment effect (Hirano et al.,
2003; Rosenbaum, 1987). To estimate E(y,|z = 1), let
participant i in the comparison sample have weight w, =
p(x)/[1 — p(x,)], the odds that a randomly selected par-
ticipant with features x would go to the treatment. We
observe y; = y,, if participant i is in the treatment group
and y; = yy, if participant i is in the comparison group. The
weighted mean of the observed outcomes for the compari-
son group is

2 Wi
iec

E(ylz=1) = ST ©)

ieC

where i € C denotes the ith observation in the comparison
group, and summation is over the set of observations in this
group. We use the notation E(y,|z = 1) to denote that
Equation 2 provides an estimate of the expected value. This
estimate of E(yolz = 1) is unbiased by selection into
treatment if y, is independent of z given x (i.e., no hidden
bias remains). Letting N denote the number of individuals
in the treatment group and i € T denote the ith observation

in this group, the sample mean for these individuals,
E(y,|lz = 1) = 3,27 /Ny, estimates the average outcome
under treatment for the treated. The estimated effect of
treatment on the treated is EATE, = E(y,|z = 1) —
E(y,lz = 1). Wooldridge (2001) and Hirano et al. (2003)
discussed other estimators of E(y,|z = 1) using propensity
weights. Appendix A provides a detailed derivation of
Equation 2 and a brief discussion of other proposed
estimators.

The weighting proposed in Equation 2 is analogous to
reweighting procedures used in survey sampling to adjust
for observations having unequal probabilities of inclusion in
the sample. Heuristically, the observed values of y, are
treated like a sample with individuals sampled with proba-
bility 1 — p(x). Thus, the denominator of w;, 1 — p(x),
accounts for the oversampling of individuals into the com-
parison group and weights these individuals back to the
entire population of both treated and comparison partici-
pants. However, weighting the pooled sample to match the
x distribution of the treatment cases requires weighting each
observation by p(x,), the numerator in w,. Those compari-
son participants that have features uncharacteristic of the
treatment population will have p(x) near zero and therefore
a weight near zero. Comparison participants with features
that are characteristic of the treatment population will have
larger p(x) and therefore larger weights.

For a large sample size, the weighted freatment effect
estimate will be nearly unbiased provided that several as-
sumptions hold. Foremost, the potential outcome y, must be
independent of treatment conditional on x. That is, the
observed covariates explain all the pre-existing differences
between treatment and comparison groups that could affect
outcomes. In addition, the stable unit treatment value as-
sumption (Rubin, 1978) must hold. The stable unit treat-
ment value assumption requires that individuals’ potential
outcomes be unaffected by the treatment assignment of
other participants and other factors unrelated to treatment
(i.e., no peer effects or treatment contamination can exist).
Finally, weighting to estimate treatment effects on the
treated requires p(x) < 1 for all participants. This require-
ment means that no participant can have a 100% chance of
being in the treatment condition. If this requirement is met,
then any participant in the treatment group has the potential
to match a participant in the comparison group.’

In general, weighted means have greater sampling vari-

! Estimating treatment effects for the whole population, not just
the treated, requires both y, and y, to be independent of treatment
assignment, conditional on the observed covariates and 0 < p(x) <
1. Furthermore, approximate unbiasedness in large sample when
the weights are estimated from the data requires additional as-
sumptions on the propensity score function and its estimator.
Hirano, Imbens, and Ridder (2003) provided details on these
assumptions and the properties of the estimators.
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ance than do unweighted means from a sample of equal size.
Kong, Liu, and Wong (1994) captured this increase in
variance by computing the effective sample size (ESS) of
the weighted comparison group as

2+

ESS = “2—_W2— . (3)
ieC l

The ESS is approximately the number of observations from
a simple random sample needed to obtain an estimate, with
sampling variation equal to the sampling variation obtained
with the weighted comparison observations. Therefore, the
ESS will give an estimate of the number of comparison
participants that are comparable with the treatment group.

Fitting the Propensity Score Model

In practice, propensity scores are unknown and must be
estimated from the data. Accurate treatment effect estimates
require that the propensity score model accounts for all
covariates related to both treatment selection and outcomes
and has the correct functional form. As demonstrated by
Drake (1993), propensity score model misspecification can
substantially bias the estimated treatment effect.

Provided the necessary assumptions are met, Equation 2
can yield estimated treatment effects that are unbiased in
large samples (i.e., converge in probability to the true treat-
ment effects) even when the propensity scores and resulting
weights are estimated from data. The required assumptions
include those given above and that the propensity score
model is sufficiently flexible to describe the relationship
between pretreatment characteristics and treatment assign-
ment correctly or with minimal approximation error. Curi-
ously, even if p(x) is known, in many cases using an
estimate of p(x) produces better estimates of the treatment
effect (discussed in Hirano et al., 2003; Rosenbaum, 1987).
As discussed by Rosenbaum (1987) this phenomenon oc-
curs because weighting by the true propensity scores “com-
pensates only for the systematic differences” between
groups, whereas weighting by estimated propensity scores
“[corrects] for both systematic and chance imbalances” (p.
391).

Because neither the covariates used in selection of treat-
ment nor the functional form of the propensity score models
are known, estimation of the propensity scores involves
model selection, choosing variables to include and adap-
tively determining the functional form. Adaptive methods
add terms and variables to the model according to criteria
such as statistical significance or reduction of prediction
error. A key criterion for propensity score model selection is
how well the treatment and comparison group covariate

distributions match after controlling for the propensity score
estimated with the model.

Current methods for estimating propensity scores almost
exclusively use parametric linear logistic regression with
selected interactions and polynomial terms. The approach
used by Dehejia and Wahba (1999) is similar to the method
originally proposed by Rosenbaum and Rubin (1984) and is
typical of the methods currently used in practice (e.g., see
the Mojtabai & Graff Zivin, 2003, study of the efficacy of
substance abuse treatment for adults). Conditional on a set
of covariates, Dehejia and Wahba fit a model with main
effects and then stratified the data by propensity scores,
testing for differences in the means and standard deviations
between groups within strata. If any differences were sta-
tistically significant, then higher order polynomial terms
and interactions were added to the model. The process
continued until no significant differences remained. Rosen-
baum and Rubin (1984) used graphical displays of the
distributions of test statistics rather than formal significance
tests to select a model with sufficient balance. Selection of
covariates often occurs before any estimation of propensity
scores.

Hirano and Imbens (2001) selected propensity score mod-
els without directly considering the balance of the covari-
ates after weighting as a criterion. Their method combines
propensity score weighting and linear regression modeling
to adjust for covariates. They first developed a model for the
propensity scores. They started with a predetermined set of
predictors that included pretreatment covariates (X,

X5, ..., X}, selected higher order values of the covariates
(X3, ..., Xi, and higher order polynomials), and selected
interactions between covariates (X, X,, ..., XX,
X,X;, ..., and higher order interactions, if appropriate).

To choose predictors from this set to be included in the
propensity score model, they repeatedly fit separate logistic
regression models, each one predicting treatment assign-
ment using only one of the predictors. They included in the
final propensity score model every variable found to have a
bivariate association with treatment assignment with a ¢
statistic that exceeded a prespecified limit, ¢,,,,,.

Having selected a model for propensity scores, Hirano
and Imbens (2001) built a model for the outcome that
adjusts for covariates and is weighted by the propensity
scores. The authors used a method that is analogous to their
approach for building the propensity score model. They
selected as covariates for the outcomes model every covari-
ate found in a bivariate linear regression to predict the
outcome with a ¢ statistic that exceeded a prespecified
cutoff, t,,,. Thereafter, the final model used propensity
weights from the logistic regression model, the selected
covariates from the linear regression models, and a treat-
ment indicator to predict outcomes. The coefficient for the
treatment indicator was their estimate of the treatment
effect.
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The authors did not provide specific guidelines for select-
ing values for ¢,,,,, and treq- Instead, they considered a range
of values for both ¢,,,, and I, and a range of estimated
treatment effects. Similarly, they did not suggest procedures
for identifying interactions among variables and other terms
to be included in the initial set of predictor variables.

All approaches begin by selecting covariates for the mod-
els. In general, all available variables thought to be related
to outcomes from empirical or theoretical research and
which differ across groups should be included in the pro-
pensity score model. With a large number of covariates,
however, this approach can quickly exhaust the available
degrees of freedom in traditional regression approaches, so
modeling is restricted to a subset of the available covariates.
As noted in West et al. (2000), there are numerous strategies
for selecting covariates. Reichardt, Minton, and Schellenger
(1980), proposed limiting analyses to variables of theoreti-
cal importance to treatment selection and to those previ-
ously demonstrated to predict outcomes. The success of this
approach is contingent upon the strength of available theo-
ries of treatment selection and the sophistication or earlier
empirical analyses of these effects. Alternatively, Rosen-
baum (2002) proposed including in propensity score models
all pretreatment covariates on which group differences met
a low threshold for significance (|¢| > 1.5). Other rules of
thumb exist; for example, Rosenbaum (2002) suggested
including covariates unassociated with treatment assign-
ment but related to the outcome. West et al. (2000) noted
that pretest scores from the outcome of interest met these
criteria.

In other settings, empirical variable selection and forward
stepwise procedures are known to produce models that
perform poorly with high mean-squared prediction error.
We next discuss a modern regression approach, boosting,
that offers a flexible and powerful data-adaptive method that
can model the effects of large numbers of covariates without
greatly reducing the precision of the estimate.

GBMs for Propensity Scores

In the following sections, we describe generalized
boosted regression for estimating propensity scores. We
begin with an overview of the statistical methods of boost-
ing and generalized boosted regression. We then discuss the
application of these methods to propensity score estimation.

Generalized Boosted Modeling

Overview. Boosting is a general, automated, data-adap-
tive algorithm that can be used with a large number of
pretreatment covariates to fit a nonlinear surface and predict
treatment assignment. Friedman (2001) and Madigan and
Ridgeway (2004) have shown that boosting outperforms
alternative methods in terms of prediction error. Many vari-

ants of boosting have appeared in machine learning and
statistics literature, including the original AdaBoost algo-
rithm (Freund & Schapire, 1997), GBMs (Ridgeway, 1999),
LogitBoost (Friedman, Hastie, & Tibshirani, 2000), and the
gradient boosting machine (Friedman, 2001). Boosting is
particularly effective when the model involves a large set of
covariates (Biihlmann & Yu, 2003). We used GBMs be-
cause, unlike most other implementations of boosting, this
method is tuned to produce models yielding well-calibrated
probability estimates. That is, GBM probability estimates
match the empirical probabilities of treatment.

GBMs add together many simple functions to estimate a
smooth function of a large number of covariates. Each
individual simple function lacks smoothness and is a poor
approximation to the function of interest, but together they
can approximate a smooth function just like a sequence of
line segments can approximate a smooth curve. In our
implementation of GBMs, each simple function is a regres-
sion tree with limited depth.

Regression trees: Basic ideas. A regression tree uses
the following recursive algorithm to estimate a function
describing the relationship between a multivariate set of
independent variables and treatment assignment. Starting
with the complete dataset, the tree-fitting algorithm first
partitions the dataset into two regions on the basis of the
values of a single input variable. For example, if age and sex
are covariates, the tree might split the dataset into two
partitions, one with observations of people younger than 18
years and the other with observations of people older than or
equal to 18 years. Or the tree might split the dataset into
males and females. Splits can occur between any pair of
observed values of any of the covariates. Within a region
defined by the splits, the estimated function equals the
sample mean of the output variable for all observations with
values for their covariates that are elements of the region.
Among all the possible splits, the algorithm selects the one
that minimizes prediction error. Appendix B describes this
selection more precisely.

The algorithm then further divides each of these parti-
tions into two new partitions. The dataset is now partitioned
into four groups, defined by the combination of two splits.
Going back to the example with age and sex as covariates,
the tree might split the group of people younger than 18
years into people younger than 15 years and people older
than or equal to 15 but less than 18 years. It might also split
the group of people older than or equal to 18 years into
males and females. The dataset is now partitioned into
youths younger than 15 years old, youths 15 years or older
but younger than 18 years, males 18 years or older, and
females 18 years or older. Splitting continues recursively
until the tree includes the allowable number of splits. The
number of splits determines the complexity of the tree, with
each additional split allowing for additional interactions
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between variables. Details on regression trees can be found
in Breiman, Friedman, Olshen, and Stone (1984).

The GBM algorithm. GBM is an algorithm for itera-
tively forming a collection of simple regression tree models
to add together to estimate the propensity score. Specifi-
cally, to simplify computations, GBM models the log-odds
of treatment assignment, g(x) = log{ p(x)/[1 — p(x)]},
rather than directly modeling propensity scores. The algo-
rithm initially sets g(x) to log[z/(1 — Z)], the constant
baseline log-odds of assignment to the treatment, where 7 is
the average treatment assignment indicator for the entire
sample. The next step of the algorithm searches for a small
adjustment, (x), to add to this initial estimate to improve
the fit of the model to the data. Fit is measured by the
Bernoulli log-likelihood of Equation 4, with larger values
implying better fit:>

N

€(g) = 2 zg(x) —log{l +exp[gx)l}. (D)

i=1

Analytically, Equation 4 will yield relatively large values

~when there is agreement between the g(x;) and z;, such that
z; = 0 when g(x;) is negative and z; = 1 when g(x,) is
positive. If the algorithm finds an adjustment that can im-
prove the propensity score model’s fit to the data, then g(x),
the current model for the log-odds, becomes g(x) + A(x).
The boosting procedure iterates, each time selecting a model
adjustment that when added to g(x) offers an increase in the
log-likelihood.

Technically, 2(x) can be of any form, but we selected
h(x) to be a regression tree that models the residuals from
the current fit (i.e., the tree models r;, = z; — 1/{1 +
exp[—£(x,)]} as a function of the covariates, where 1/{1 -+
expl—2(x)]} is the estimate of the propensity score). Ap-
pendix B discusses the motivation for choosing A(x) as a
regression tree fit to the residuals. Briefly, using regression
trees to model the residuals is equivalent to estimating the
derivative of the log-likelihood function. Hence, following
standard numerical algorithms for function optimization,
GBM is an algorithm for finding the maximum-likelihood
estimate of the function g(x). As discussed in the next
subsection, using trees at this stage is a key factor affecting
the flexibility and robustness of the method.

To further reduce prediction error in GBM, Friedman
(2002) introduced a stochastic component into the boosting
algorithm. At each iteration, GBM selects a different ran-
dom subsample of the data and uses only that subsample to
estimate s. Empirical evidence suggests that subsampling
50% of the observations at each iteration can actually de-
crease bias and variance in the resulting model fit (Fried-
man, 2002).

The number of iterations determines the model’s com-
plexity and must be determined from the data. With each

iteration of the algorithm, the model becomes more com-
plex, fitting additional features of the data. When the num-
ber of iterations becomes sufficiently large, the model can
predict the responses without error but no longer provides a
meaningful estimate of the propensity score. The number of
iterations typically is determined by stopping rules that
attempt to choose the number of iterations that maximizes
the predictive performance on an independent dataset rather
than on the same data used to fit the model (Friedman,
2001). We discuss stopping rules for propensity score esti-
mation below.

Advantages of the Boosted Logistic Regression
Model

Because the final GBM model is a sum of regression
trees, it inherits many of their advantageous properties for
estimating propensity scores. Trees are computationally fast
to fit (Breiman et al., 1984). Trees handle continuous, nom-
inal, ordinal, and missing independent variables. They can
capture nonlinear effects and interaction terms. Trees are
also invariant to one-to-one transformations of the indepen-
dent variables. In other words, whether we use age,
log(age), or age® as a participant’s attribute, we get exactly
the same propensity score adjustments. Another important
attribute of trees for estimating propensity scores is their
ability to adaptively use a large number of covariates even
if most are correlated with one another or are unrelated to
the treatment assignment.

The boosting framework overcomes many of the known
shortcomings of traditional regression tree approaches,
which use only a single tree. For instance, large tree models
can produce highly variable estimates when modeling with
many covariates. When using a single tree to predict treat-
ment assignment, the model is unable to capture main
effects and lacks smoothness, often resulting in relatively
poor estimates of the probability of assignment to the treat-
ment group. However, GBM consists of a linear combina-
tion of many trees, combined in the boosting framework in
such a way that this combination can capture main effects,
can produce a smooth fit, and can often outperform single
regression tree models (Friedman et al., 2000; Friedman,
2001).

Estimating main effects and interactions with GBM.
The following example demonstrates how GBM combines
trees to achieve smooth functions unattainable by the single
discrete partitioning of the space provided by one large tree
model. If we allow each tree to have only one split, then

% The log-likelihood is the log of the joint probability of the
observed vector of treatment assignments given the function g(x)
provides the true log-odds of treatment assignment. Equation 4 is
the standard log-likelihood used for fitting linear logistic regres-
sion models when g(x) is linear.
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each additional tree is necessarily a function of only one
variable. The estimate, $(x), may therefore look like the fol-
lowing;:

8(x) = go + gi(age) + g,(drug use) + g;(drug use)
+ g (male) + gs(age) +.... (5)

The first term, g, is the log of the odds of the baseline rate.
The first regression tree, g,(age), has a single split on age,
g» s a tree that splits on a drug use index, g, again splits on
drug use, g, splits on sex, and g5 also splits on age. Because
the algorithm adds terms sequentially, categorical variables,
such as the male indicator, could appear in Equation 5
multiple times even though there are limited ways to split
such variables. After g5 makes an adjustment for age, GBM
may find at a later iteration that splitting on male provides
the best-fitting model for the current residual. Grouping
together those trees that split on the same variable (e.g., g;
and g5), we see that allowing only a single split per tree is
equivalent to fitting an additive model. In Equation 6
2" (age) simply refers to the sum of all those trees that split
on age.

8(x) = go + gilage) + gi(drug use) + gi(male). (6)

The terms in Equation 6 can approximate many curves,
including linear or quadratic terms, as well as curves that are
not well approximated by low-order polynomials. If we
allow each tree to have two splits then Equation 5 may take
the following form:

g(x) = g, + gi(age, drug use) + g,(drug use)
+ gs(male, age) + g (drug use) +.... (7)

Collecting the trees as we did in Equation 6, we see that the
algorithm fits an additive model with two-way interactions.

Using GBM to Estimate Propensity Scores

The desirable properties of GBM make it a natural tool
for estimating propensity scores. Resulting propensity
scores can then be used with Equation 2 to produce esti-
mates of ATE,, Equation 1, which we denote as EATE;p,,.
GBM-based propensity scores can also be used for stratifi-
cation or matching (Rosenbaum & Rubin, 1984, 1985). In
this article, we focus on propensity score weighting. Zador,
Judkins and Das (2001) also explored boosting to estimate
propensity scores using MART rather than the GBM imple-
Inentation presented here.

When estimating propensity scores, we suggest using all
available covariates when fitting GBM. The algorithm will
adaptively choose the variables to include in the prediction
model. Our experience has shown that, even with large
numbers of predictors, GBM can produce models that bal-
ance the covariate distributions across the groups and pro-

vide good mean-square prediction errors, even when ap-
plied to independent validation samples.

We have experimented extensively with the various tun-
ing parameters involved in GBM and offer here our recom-
mendations based on our experiences. Future research may
produce further refinements or modifications to the meth-
ods. We allow a maximum of four splits for each simple tree
used in the model, allowing for all four-way interaction
between all covariates to be considered for optimizing the
likelihood function at each iteration. This choice represents
a compromise between identification of the correct func-
tional form for the model and precise estimation of the
model. In practice, we have found that higher order inter-
actions offered no additional improvement in prediction
error. Generally, we expect that unless samples are very
large, it is unlikely that estimated five-way or higher order
interactions would improve the predictive accuracy of the
model. As discussed in Appendix B, the model also requires
specification of a shrinkage parameter. We suggest using a
value .0005, a relatively small shrinkage, ensuring a smooth
fit. We also suggest subsampling 50% of the dataset for the
regression tree fitting at each iteration.

We suggest stopping the algorithm at the number of
iterations that minimizes the average standardized absolute
mean difference (ASAM) in the covariates. To calculate the
ASAM, for each covariate we calculate the absolute value
of the difference between the mean for the treatment group
and the weighted mean for the control group, divided by the
standard deviation for treatment group. These are the stan-
dardized absolute mean differences, and we average these
across covariates to obtain the ASAM, our measure of
balance between the groups. To make the effect size com-
parisons comparable across alternative weightings, the de-
nominator of the ASAM uses the standard deviation of only
the treatment group, which is unaffected by the propensity
weights. In our experience, the ASAM always initially
decreases with each additional iteration and reaches a min-
imum, following which the ASAM increases with addi-
tional iterations. Thus, we suggest stopping when ASAM is
minimized.>

We fit GBM using the generalized boosted modeling
package developed at the RAND Corporation (Ridgeway,
2004) for the R statistical environment.* Both R and the
GBM package are freely available. Details on how to obtain
and use GBM and code for estimating propensity score

® There is no guarantee that the ASAM will have global mini-
mum value. If a minimum is not obtained, other estimation meth-
ods might be required.

#R is a full-featured, freely available language and environment
for statistical computing and graphics (Thaka & Gentleman, 1996).
R’s general syntax and approach to statistical computing is the
same as S-plus. However, the two packages have some different
functions for programming and conducting statistical analyses.
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using GBM can be found at http://dx.doi.org/10.1037/1082-
989X.9.4.403.supp. To find the iteration that minimizes the
ASAM, we run the GBM algorithm for a large number of
iterations (e.g., 20,000 in our example). R’s optimize func-
tion efficiently selects the number of iterations that mini-
mizes the ASAM.

Estimating the Variance in EATE ;g,,

The variance in EATE 4, depends on (a) the variance in
the GBM estimates of the propensity scores, (b) the vari-
ability in covariates across samples, and (c) the variance in
the outcomes within groups. Frequently, variance calcula-
tions for propensity score-based treatment effect estimates
ignore the uncertainty in the propeusity score model itself
(e.g., Hirano & Imbens, 2001). Ignoring the model uncer-
tainty results in easily computed variance estimates and has
been shown to be an upper bound for the actual sampling
variability of the estimated treatment effect for the observed
sample. However, we are primarily interested in knowing
whether the treatment will work on future participants,
participants from the same population that would undergo
the same treatment assignment process. The simple variance
calculations can underestimate the variance of estimates of
ATE, when either logistic regression or GBM is used to
estimate propensity scores. Variance formulas for GBM do
not exist, so sample re-use methods, such as the bootstrap or
jackknife (Efron & Tibshirani, 1993), are natural alterna-
tives for estimating the variance of EATE gz,

For the leave-one-out jackknife estimate of the variance
of EATEp,, we deleted observation i from the data to
obtain a jackknife sample and re-estimate the EATE;g,, on
this sample to obtain the jackknife replicate EATE ggyy;)-
We repeated this for all the observations in the data and
calculated the average of the jackknife replicates,
EATE gy The variance estimate is given by

NC + NT - 1
N¢ + Ny
X > (EATEgpysy — EATEpu)® (8)

V(EA TEgpu) =

Details on the jackknife are found in Chapter 11 of Efron
and Tibshirani (1993).

Sensitivity Analysis for Hidden Bias

Hidden bias results when individuals with the same
values on observed covariates have different probabilities
of treatment assignment. For example, if treatment as-
signment depends in part on an unobserved covariate
then two individuals with the same values of the observed
covariates but different values of the unobserved covari-
ates will have different probabilities of treatment assign-
ment. Of particular concern is the possibility that indi-

viduals in the treatment group will have greater than
assumed probability of treatment and that the error in the
propensity score model will be correlated with the out-
come variable. Hidden bias cannot be estimated from
observed data but can be explored through sensitivity
analysis by adapting methods suggested by Rosenbaum
(2002, Chapter 4). Rosenbaum’s methods apply to match-
ing and stratification by propensity scores but extend
naturally to our weighted estimator.

The presence of hidden bias means that individuals with
the same values for the covariate vector x have different
odds of treatment. That is, in the presence of hidden bias,
there exists for every individual in the sample an unobserv-
able random variable, a;, such that odds of treatment are not
w; = exp[ g(x;)], as we assumed but a,w,. We say that the
strength of the hidden bias is G > 1, if all of the random
variables a; are between 1/G and G. If the strength of the
hidden bias is G = 2, for example, then for any individual
in the sample, the odds of treatment could be twice as large
or half as large as we assumed or anywhere in between.
Larger values of G correspond to greater hidden bias,
greater possible errors in weights, and greater possible bias
in our estimated treatment effects.

We conduct a sensitivity analysis for hidden bias by
assuming that hidden bias of a given strength, G, exists and
measure changes in the estimated treatment effect. We
repeat this at increasing values of G. If inferences about the
treatment effect remain unchanged as G becomes large, then
we have added confidence that our results would not change
even if we could obtain and account for additional variables.
Or in other words, differences between the treatment and
comparison groups in unobserved variables would need to
be large before they could undermine our estimated treat-
ment effects.

Hidden bias depends not only on how much the weights
will vary but also on the correlation between the values of
a and the values of the outcome of interest. The absolute
value of hidden bias increases with the absolute value of this
correlation. Therefore, in our sensitivity analysis, we max-
imized this correlation by finding a set of values of a for the
comparison cases to maximize and to minimize the esti-
mated weighted comparison group mean. By doing this, we
bound the possible hidden bias for a given value of G, the
possible error in the odds of treatment for any individual in
the population.

For the outcome y, sensitivity analysis follows these
steps:

1. Pick a value of G near 1;
2. Find an N-vector of a values to maximize § =

2Ne, awy/ENe, aw, subject to the constraint
that 1/G =< q;, = G;
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3. Repeat Step 2, finding a vector of a values to
minimize S;

4. Repeat Steps 1 to 3 with increasing values of G.>

Choices for the range in G include increasing G until either
the maximum or minimum equals the mean for the treat-
ment group, so that the estimated treatment effect is zero or
increasing G to where inferences about G change.

Our approach is analogous to Rosenbaum’s (2002) use of
upper and lower bounds on p values to quantify the errors
from a hidden bias of G. Our approach is also similar to
bounding used by Shadish, Hu, Glaser, Kownacki, and
Wong (1998) when exploring bias from attrition. If small
values of G result in large discrepancies between the bounds
and the estimated effect, then the estimate is highly suscep-
tible to hidden bias and should be interpreted with caution.
If the bounds are close to the estimate even for large values
of G, then we can have confidence in estimated effects.

Case Study: The AOP

The AOP is a study comparing the outcomes of 449
youthful offenders under the supervision of the Los Angeles
Department of Probation (LADP): 175 received treatment at
the Phoenix Academy following referral by the LADP
(treatment); 274 received alternative services including
treatment at other residential programs (comparison). Phoe-
nix Academy is a 150-bed substance abuse treatment pro-
gram providing long-term residential care for adolescents
under 18 years old, which uses a modified therapeutic
community approach (Jaycox, Marshall, & Morral, 2002;
Morral, Jaycox, Smith, Becker, & Ebener, 2003; Morral,
McCaffrey, & Ridgeway, 2004). Therapeutic community
treatment is an experiential treatment approach that uses
counseling, encounter groups, and mutual self-help to foster
behavior change (De Leon & Dietch, 1985; J ainchill, 1997).
Youth in the comparison group received the standard ser-
vices that treatment youth would have received had they not
gone to Phoenix Academy.

Successful data collection strengthened the AOP. Study
follow-up retention was excellent. At the 12-month assess-
ments, more than 90% of the baseline sample (N = 449)
were located and successfully interviewed. See Morral et al.
(2003) for additional details on recruiting, including eligi-
bility criteria. The principal data collection instrument at
each of the four assessments was a version of the Global
Appraisal of Individual Needs (GAIN; Dennis, 1998), an
extensive instrument that collects detailed data on substance
use and related risk factors.

Pretreatment Risk Factors

Research on risk factors for poor psychosocial outcomes
of youths in substance abuse treatment has revealed a wide

range of pretreatment characteristics that may be associated
with treatment outcomes (e.g., Catalano, Hawkins, Wells, &
Miller, 1991; Orlando, Chan, & Morral, 2003; Williams,
Chang, & Addiction Centre Research Group, 2000). This
case study included 41 pretreatment variables from the
GAIN that a review of the literature suggested could influ-
ence treatment assignment and treatment outcomes. These
included demographic characteristics, lifetime and recent
drug use, criminal histories, drug problems, treatment readi-
ness indices, psychological functioning indices, measures of
home and social environment, school and work perfor-
mance measures, and other variables listed in Table 1.
Although this is only a subset of all of the variables avail-
able in the GAIN, 41 covariates are many more than pro-
pensity score models typically include.

Outcomes

For this demonstration we selected two drug use out-
comes measured 12-months after pretreatment interviews,
days of alcohol use in the previous 90 days, and days of
marijuana use in the previous 90 days. Single items on the
GAIN measured both outcomes. We estimated the treatment
effect relative to baseline values using the change in days of
alcohol use and change in days of marijuana use. For these

- outcomes, a negative value of the population average treat-

ment effect indicated that Phoenix Academy is more effec-
tive than the comparison sites in reducing substance use,
whereas a positive value indicated the opposite.

Statistical Methods

We used GBM to estimate propensity scores, tuning the
model so that the treatment and weighted comparison group
are well-matched on the pretreatment covariates by mini-
mizing the ASAM. Using the tuning parameter settings
described previously in the section, Using GBM to Estimate
Propensity Scores, we ran GBM for 20,000 iterations before
searching for the number of iterations that minimized the
ASAM for the 41 pretreatment covariates.

Logistic regression model for comparison. For compar-
ison, we also estimated propensity scores using the more
common logistic regression approach described above. Us-
ing conventional procedures, we first modeled propensity
using the subset of our 41 pretreatment variables with
significant (p < .05, two-tailed test) bivariate relationships
with treatment assignment. Because some analysts have
recommended relaxing significance requirements for this
variable selection, we also developed a logistic regression

° The constrained optimizations of Steps 2 and 3 can be replaced
by unconstrained optimizations by reparameterizing the problem
with a; = 1/{[1 + exp(—8)]G} + G/[1 + exp(8,)] and solving for
values of the 8s to optimize S.
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Table 1
Pretreatment Characteristics and Group Difference Effect Sizes (d) Between Phoenix Academy (PA) and Comparison Condition
(COMP) on All Baseline Covariates Before and After Propensity Score Weighting

Unweighted Propensity score weighted®
PA COMP COMP
Covariate M SD M SD d M SD d )4
Demographics
Age (years) 15.82 091 1531 1.28 0.56 15.76 1.11 0.07 0.58
Race (%)
African American 8.57 28.07 1861 3899 —0.36 12.23 32.76 —0.13 0.26
Latino/Hispanic 60.00 49.13 5219 50.04 0.16 5524 49.73 0.10 043
White 20.57 4054 13.14 3334 0.18 18.62 38.92 0.05 0.72
Female (%) 1829 3877 9.12  28.85 0.24 8.17 27.39 0.26 0.01
School/work participation
Last grade completed 9.04 1.25 8.59 1.36 0.36 8.85 1.28 0.15 0.20
Recency of last school/training® 5.41 1.16 528 1.36 0.11 522 1.41 0.16 0.21
Recency of paid work® 1.32 1.45 1.13 1.32 0.13 1.16 1.35 0.11 0.34
Current drug use/problems )
Days of alcohol/drug use (in past 90 days)® 6.19 3.17 3.7 3.59 0.76 5.59 3.35 0.19 0.10
Days drunk/high (in past 90 days)® 4.18 343 2.51 3.17 0.49 391 3.38 0.08 0.51
Substance involvement (recent)® 0.86 0.81 0.40 0.66 0.56 0.77 0.82 0.10 0.44
Substance use intensity index® 7.61 4.36 4.59 4.72 0.69 6.94 475 0.16 0.19
Substance problem index (in past month)® 1.61 1.32 0.70 1.08 0.68 1.39 1.28 0.16 0.17
Current withdrawal index 1.53 0.28 1.49 0.24 0.16 1.51 0.26 0.08 0.47
Self-reported treatment need for (%)
Alcohol 4.57 2095 547 2279 —0.04 7.89 26.95 —0.16 0.29
Marijuana 32.00 46.78 693 2545 054  21.10 40.81 0.23 0.08
Other drugs 27.43 44774 1204 32.61 034 1845 38.79 0.20 0.07
Drug use history
Age of first use 12.55 1.84  11.97 3.13 032 1238 2.48 0.09 0.49
Substance problem index (lifetime)® 3.05 0.78 222 1.31 1.07 2.89 0.99 0.21 0.08
Substance involvement (lifetime)° 2.15 0.60 1.73 0.71 0.69 2.03 0.62 0.18 0.11
Substance disorder level (%)
Physical dependence 60.00 49.13 37.23 - 4843 046  57.51 49.43 0.05 0.67
Dependence 1029 3046 620 24.17 0.13 7.66 26.60 0.09 0.46
Abuse 2343 4248 2701 4448 —0.08 2295 42.05 0.01 0.92
Use 629 2434 2956 4572 —0.96 11.88 3235  —-023 0.05
Prior drug treatments® 0.98 1.77 0.52 1.19 0.26 0.91 145 0.04 0.72
Smoking recency® 2.93 1.64 2.25 1.64 0.42 2.85 1.64 0.05 0.68
Injection drug use recency® 1.85 2.13 1.14 1.76 0.33 1.31 1.87 0.25 0.03
Criminal history
Lifetime arrests® 1.82 0.87 1.85 155 —0.04 1.92 1.22 —0.11 042
Aurest recency® 2.88 1.16 2.81 1.15 0.06 2.94 1.22 —0.05 0.69
Arrests (in past 90 days)® 0.76 0.62 0.70 0.60 0.10 0.72 0.59 0.06 0.58
Crime recency® 2.54 1.51 2.58 144 —0.03 2.59 1.43 —0.03 0.79
Crime days (in past 90 days)® 4.26 3.47 3.20 3.24 0.31 4.07 3.38 0.05 0.65
Property crimes (in past 90 days)® 1.90 2.48 1.65 2.77 0.10 1.78 2.85 0.05 0.70
Violent crimes (in past 90 days)® 0.98 1.51 1.08 1.57 —0.06 1.03 1.39 —0.03 0.76
Drug crimes (in past 90 days)® 1.60 2.89 1.12 2.56 0.17 1.50 2.75 0.03 0.76
Days in a controlled environment® 2.33 3.24 2.85 3.66 —0.16 2.35 3.27 —0.01 0.95
Treatment readiness
Treatment resistance index 1.11 1.01 0.97 0.98 0.13 1.10 0.98 0.01 0.93
Treatment motivation index 2.52 1.32 1.35 1.38 0.89 222 1.46 0.23 0.07
Self-efficacy index 3.38 1.19 3.42 123 —0.03 3.34 1.25 0.03 0.79

Problem orientation index 1.38 1.91 0.50 1.27 0.46 1.00 1.67 0.20 0.08
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Table 1 (continued)
Unweighted Propensity score weighted®
PA COMP COMP
Covariate M SD M SD d M SD d p

Social environment

Environmental risk index 30.61 9.76 28.94 11.06 0.17 31.09 10.61 —0.05 0.67

General social support 6.31 2.06 6.45 2.11 —0.06 6.27 2.25 0.02 0.89
Health and mental health

Past-year health® 1.87 1.12 1.55 1.10 0.29 1.71 1.09 0.15 0.20

Psychological distress recency® 1.14 1.58 1.30 1.77 —0.10 1.31 1.70 —0.10 0.38

Somatic symptoms index 1.14 1.34 0.92 1.15 0.17 0.99 1.14 0.12 0.26

Depressive symptoms index 2.39 1.88 2.05 1.88 0.18 2.26 1.87 0.07 0.56

Anxiety symptoms index 2.82 2.58 2.61 2.52 0.08 2.64 2.35 0.07 0.50
Complex behavior index 12.84 8.53 12.11 9.69 0.09 13.00 9.19 —0.02 0.88
Average absolute effect size 0.31 0.11

Note. Sample sizes: PA, n = 75; COMP, n = 274. Effective sample size after weighting: COMP, n = 107.5. Effect sizes (d) calculated as the difference
between group means divided by the standard deviation for PA. The standard deviation for PA is unaffected by propensity score weighting and allows for

comparison pre- and postweighting.

*PA cases are not weighted, so only values for COMP change with weighting.

® Recency scale spans 0 (never) to 6 (past two days).

¢ Past 90-day frequency and count variables with a range greater than 15 are square root transformed to reduce variable skew.

¢ Past-year health scale ranged from 0 (Excellent) to 4 (Poor).

model of propensity scores using a p < .20 variable inclu-
sion criterion. The second step fit a main effects logistic
regression model using the selected variables and calculated
propensity score weights from the resulting predicted prob-
abilities. The third step tested for significant differences
(p > .05, two-tailed test) between treatment means and the
weighted comparison group means of all covariates used for
fitting the model. The fourth step identified the variable with
the largest absolute effect size for these group differences
and interacted this variable with all the other covariates and
itself (e.g., the procedure used in Mojtabai & Graff Zivin,
2003). These interaction terms were included in the set of
covariates and Steps 2—4 repeated until no differences were
significant at Step 3. The final models provided the propen-
sity scores for estimating treatment effects, which we called
EATE, o1, 05 and EATE ¢ 0.

Standard error estimation. The standard error of each
treatment effect estimator was estimated using the leave-
one-out jackknife. For each estimator the entire estimation
process was replicated with each jackknife replicate sample.
Thus, our variance estimators accounted for variability of
the adaptive model selection methods used in each method.

Results

Estimated Propensity Scores and Weights

Following the procedures we discussed above, we let the
algorithm iterate until the comparison group weights de-
tived from it minimized between group differences on the
41 pretreatment characteristics. The resulting model had a

deviance R = .521 (Hosmer & Lemeshow, 1989, p. 148).
We can decompose the overall improvement in the model’s
log-likelihood, shown in Equation 4, into components at-
tributable to each of the 41 covariates, as a measure of the
relative influence of each variable (Friedman, 2001). About
30% of the increase in model likelihood is due to four
covariates: treatment motivation index, substance use inten-
sity index, complex behavior index, and substance problem
index (past month). Three of these four variables are related
to substance use, which is reassuring because Phoenix
Academy is the only disposition specifically designated as a
substance use treatment program. We can probe the mar-
ginal contribution of each of these factors using partial
dependence plots (Friedman, 2001). These plots illustrate
the nonlinear relationships between each covariate and the
log-odds that a youth is assigned to Phoenix Academy,
conditional on the effects of the other covariates (see Figure
1). This figure shows that after accounting for the influence
of other covariates, youths are more likely to belong to the
Phoenix Academy condition if they (a) have a treatment
motivation index score of 2 or greater, (b) report more
recent drug and alcohol use (on the substance use intensity
index), (c) have scores below 16 (the 60th percentile) on the
complex behavior index, and (d) report more recent prob-
lems associated with substance use. The signals that the
GBM detects are consistent with Phoenix Academy admis-
sion practices and goals.

Of the four most important variables, the ones that does
not directly concern substance use is the complex behavior
index, a count of problem behaviors associated with atten-
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boosted model propensity model improvement. These plots illustrate the nonlinear relationships
between covariates and the log odds of the probability a youth is assigned to Phoenix Academy
(PA), marginalizing with respect to the other 40 covariates in the model. Figures are plotted on the

entire range of each covariate.

tion deficits, hyperactivity, and conduct disorder. The im-
portance of this variable in the model is interesting and
highlights an advantage of the GBM methods were used.
Specifically, Table 1, discussed in detail later, shows that in
a univariate analysis, the behavioral complexity index
(Variable 41) does not appear to distinguish group mem-
bership well and therefore would likely be excluded from
case-mix adjustment models that can accept only a small
number of covariances. Because it proves to be influen-
tial in determining group membership, it suggests that
dropping variables on the basis of mean comparisons
alone can be counterproductive. Even though the mean
behavioral complexity indexes in the treatment and com-
parison groups are very similar, after accounting for other
covariates subject with higher scores on the behavioral
complexity index are much more likely to be in the
comparison group.

Figure 2 shows the distribution of propensity scores for
the treatment and comparison groups. Naturally, the treat-

ment group tends to have fairly high propensity scores. A
small number of comparison observations also have high
propensity scores, but most have scores of less than .30.
This leads to generally small observation weights for most
comparison participants, as shown in Figure 3, and a few
youths with weights exceeding 1.0 or 1.5. None of the
weights are excessive. The largest accounts for slightly
more than 2% of the total sum of the weights. The variabil-
ity of the weights reduced the ESS of the comparison group,
calculated as in Equation 3, from 274 before weighting to
107.5. This implies that the weighting effectively filtered
out 167 comparison participants that were incomparable
with the treatment participants.

Ideally, we would like to see greater overlap between
treatment and comparison propensity scores, which yield a
larger ESS for the same amount of bias reduction. With less
overlap, treatment effect estimates will have larger vari-
ances, and there is some danger that propensity score
weighting will not succeed in producing a comparison
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Figure 2. Boxplots of the generalized boosted model propensity scores for the comparison and
treatment observations. The boxes mark the first and third quartiles of the propensity scores with
solid lines drawn at the medians. The dashed lines extending from the boxes indicate the medians
plus and minus 1.5 times the interquartile range. Propensity scores more extreme than that are

indicated with open circles.

group with covariate distributions well-matched to the treat-
ment group. However, nonlinearities in GBM imply that
distances between propensity scores do not equate to dis-
tances between the covariates on the covariate scale or bias
in the treatment effects. As discussed below, the covariates
in the present example are well-balanced after weighting.

We have found that less disparity between groups in the
distribution of the propensity scores does not correspond to
better balance in means for the covariates. In fact, for the
AOP dataset, comparisons of GBM solutions using different
numbers of iterations revealed that fits resulting in treatment
and comparison groups having more disparate estimated
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Figure 3. Distribution of the generalized boosted model propensity score weights for the com-

parison group.
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propensity scores often resulted in better balance on the
covariates.

Weighting the Comparison Condition

As displayed in Table 1, before applying weights to the
comparison condition, substantial mean differences are ob-
served between conditions. Phoenix Academy youths were
older; were more likely to be White or female; and were
more involved with drugs, alcohol, and drug crimes. Com-
parison condition youths were more involved with violent
crimes and reported better health and a greater number of
family members that have been in jail or prison for signif-
icant lengths of time. Not surprisingly, Phoenix Academy
youths had higher treatment readiness scores, reported more
drug use and related problems and more recent (non-drug-
related) crime, and were more likely to report needing
treatment for marijuana and other drug use. As a rule of
thumb an effect size of .2 is considered small, .5 medium,
and .8 large when considering likely substantive importance
(Coben, 1988). Across the 41 pretreatment variables used in
the model, the unweighted mean absolute effect size is .307.
Moreover, 10 variables have effect sizes greater than .5,
with the substance problem index (Variable 15) having an
effect size greater than 1.0.

McCAFFREY, RIDGEWAY, AND MORRAL

After weights derived from the propensity scores we
applied, differences between groups diminished substa
tially, with the average absolute effect size dropping 65%
.107. No variable has an effect size over .3, and only
variables have effect sizes larger than .2. Phoenix Acaden
youths remain somewhat more likely to be female and
report recent injection drug use.

Figure 4 illustrates that after weighting, differences b
tween groups on the 41 pretreatment characteristics we
close to those we would expect had cases been random
assigned to treatment and comparison groups. p values fro
independent tests in which the null hypothesis is true has
a uniform distribution. Figure 4 shows a plot comparing tl
quantiles of the p values before and after weighting to t}
quantiles of the uniform distribution. Before weightir
(open circles), many variables have statistically significa
differences between groups (i.e., with p values near zerc
After weighting (closed circles), the p values follow the 4
line, the cumulative distribution of a uniform variable on [
1], as would be expected in test for covariate differences -
a random experiment. In a random experiment, the nu
hypothesis of no difference in covariate means betwes
treatment and comparison groups is true. The p value is tt
probability that a test statistic would exceed the observe
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Figure 4. Plot comparing the quantiles of the uniform distribution to the quantiles of the p values
for ¢ tests of group differences on 41 baseline covariates, with categorical variables dummy coded.
Open circles are the p values prior to weighting. Solid circles are p values after weighting.
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test statistic under the null hypothesis. p values are random
variables on the interval 0 to 1, and by definition, when the
null hypothesis is true, the probability that a p value is less
than any proportion (say .05) is that same proportion. Thus,
the p values for testing group mean differences among the

covariates for a true experiment would follow a uniform
distribution on the interval [0, 1]. For this figure, categorical
_variables were dummy coded, resulting in 47 significance
 fests.

Outcome Analyses

_The first two rows of Table 2 show the estimated treat-
fhént effects and 95% confidence intervals. An unweighted
'alysis would declare significant reductions in days of
marijuana use, with Phoenix Academy youths decreasing

by 10 days more than those in the comparison group.
he GBM-based propensity score adjustment, on the other
nd, indicate that the difference between groups was only
t 6 days, and this was not statistically significant. The
s of statistical significance for this comparison did not
ar to be attributable to the small increase in the size of
onfidence interval resulting from GBM-based weight-
Unadjusted, the groups had similar change in alcohol
Wéighting indicated that youths attending the Phoenix
ademy had a smaller decrease, but this difference was not
ant. A full longitudinal analysis of the outcomes for
ataset is in Morral et al. (in press).

wative Propensity Score Estimators

ompared the GBM-based method to the two logistic
n-based methods discussed above. Figure 5 con-
atterplot of the propensity scores for the compar-
oup. estimated by GBM versus the propensity scores
roup estimated by logistic regression with the .05
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inclusion criteria for main effects. The correlation was mod-
erately high (.82); however, the propensity scores from
logistic regression were more dispersed than were the GBM
estimates. Moreover, the logistic regression estimates
tended to be greater than the corresponding GBM estimates,
except at low values of both. In one case, the logistic
regression estimate for the propensity score was very close
to one, resulting in a very large weight that greatly exceeded
any of the GBM weights. The plot for logistic regression
with the .20 inclusion criteria was very similar.

Table 2 also compares the treatment effect estimates of
our recommended GBM methods for estimating propensity
scores with the two alternatives. Because we do not know
the true effect sizes, we cannot say which estimator is best.
Rather, we compare the estimators on three characteristics
that should relate to bias and variance in the estimated
treatment effect: (a) prediction error in the propensity score
model, (b) balance between groups on the means of the
covariates, and (c) variability in the estimated treatment
effect.

The GBM model for propensity scores had smaller pre-
diction error than that of the logistic alternatives. To avoid
bias in our estimate of prediction error that results from
estimating the error metrics with the same data used to fit
the models, we used the jackknife replicate samples to
estimate prediction error. Each jackknife replicate sample
predicted treatment assignment for the held-out observation.
We measured prediction error for this observation using the
deviance metric,

Deviance; = —2(z; log p“)(x) + (1 — z)log[1 — pH(x)]),
)

where p'(x) is the estimated propensity score from the ;™
model fit, with observation i left out. The deviance is -2

ar. ﬂect Estimates and Their Properties Using Unadjusted Sample Means and Three Alternative Propensity Score Weighting
neralized Boosted Models (GBM), and Two Logistic Regression Models

Treatment effect estimation method

- Unadjusted GBM Logit (0.05) Logit (0.20)
Summary statistic M CI M CI M CI M CI
eatment effect
ia 118 —-197,-38 -59 -162,43 —19 -127,88 —52 —244, 14.1
-1.2 —5.5,3.0 2.8 —3.6,93 15 -102,133 3.1 ~105,16.7
466.4 539.2 5114
al{dardized absolute mean difference
o 0.31 0.11 0.14 0.20
freatment effect (marijuana) 4.0 52 6.6 11.8
atment effect (alcohol) 2.2 33 7.2 8.3

a measure o

for grou

> ;f prediction error based on each observation’s contribution to the log-likelihood (see Equation 9). The ASAM measures
p differences on pretreatment covariates after any propensity score weights are applied. Standard errors were estimated using
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Figure 5. Scatterplot of propensity scores estimated by the generalized boosted model (GBM)
versus logistic regression for all observations in the comparison group of the Adolescent Outcomes
Project study. Logistic regression used a 0.05 inclusion criterion for selecting main effects.

times the contribution of observation i to the log-likelihood.
A large deviance implies that the observed value of z; is
unlikely, given the estimated p'*(x), which signals a poor
fit. We totaled these deviances across all observations to
calculate the prediction error for a model. The prediction
errors for the logistic regression-based method using the .05
and .20 criteria were, respectively, 16% and 10% larger than
those for the GBM method. This indicated that GBM pro-
vided the more accurate estimates of p(x).

Although accuracy in estimating p(x) offers some vali-
dation, GBM also balanced the covariates better than the
logistic regression approaches, offering additional evidence
that it is more capable of removing bias in baseline differ-
ences between the two groups. The average absolute effect
size was .11 for the GBM model compared with .14 and .20
for the .05 and the .20 logistic methods, respectively. Al-
though not shown in the table, GBM resulted in no between-
group effect sizes of .3 or greater on the pretreatment
covariates, whereas the .05 and the .20 logistic models
resulted in propensity scores allowing, respectively, 4 and 9
such large differences after weighting.

The GBM model yielded effect size estimates with sub-

stantially smaller standard errors than did the logistic m«
ods. The standard errors of EATE,; o5 and EATE,;;
for alcohol were 2.2 and 2.5 times larger than that of
EATEGgy. and for marijuana the ratios were 1.3 and 2

The different methods provided substantially diffes
estimates of the treatment effects. All the effects are posi
for alcohol, ranging from 1.5 to 3.1 days, but each estim
has a confidence interval that includes zero. The effi
were all negative for marijuana but, again, all confide
intervals included zero. Although the estimated treatm
effects were sensitive to the choice of propensity sc
method, the effects appeared weak and within the ¢
bands of the methods. Data with stronger effects mi
show more consistency across methods. /

Sensitivity Analysis

We conducted a sensitivity analysis for estimating
possible effects of hidden bias on our treatment ef
estimate concerning change in days of marijuana use. <
cifically, we examined how the treatment effect estin
might change if hidden bias with a magnitude between (



2:and G = 4 were present, and we identified the smallest
value of G for which the possible treatment effect estimate
 pounds included a null treatment effect. Ideally, the goal of
the sensitivity analysis was to lend confidence to our pri-
- mary treatment effect estimate by demonstrating that even if
. covariates that exert medium to large influence on the odds
of treatment assignment are unobserved, our treatment ef-
fect estimates would not be dramatically altered.
_ Asabenchmark against which to consider the appropriate
range of values for G, we studied the effect on our sample
veights had we omitted from our propensity score model
he 'variable found to be the most important predictor of
reatment assignment—the treatment motivation index.
reating our original propensity score estimates as the true
cores; we find that omitting the best predictor of assign-
ent has the effect of increasing some case weights by a
actor as large as 2.5 and reducing others by half. In other
ords; had treatment motivation index been the sole source
hidden bias, the strength of the hidden bias would have a
alue of G between 2.0 and 2.5. Therefore, in the sensitivity
lysis we present in this article, we took values of 2.0 to
resent a-moderate hidden bias effect and also considered
possible effects of hidden bias twice as large (G = 4).
iscussed previously, this sensitivity analysis presented
orst-case scenario in which it assumed that the observa-
the comparison group with the most extreme values
the outcome were also those with the greatest weight
ecification.
ble 3. presents the results. For four values of G, we
ated the upper and lower bound on the estimated
ment: effect that would result from a hidden bias. If
n bias was large, so that weights could be as much as
es too large or small, we might have estimated treat-
ffects as large as 28.06 (implying treatment actually
ess effective than the comparison) to —29.87 (imply-
at treatment was substantially more effective than the
arison). With G as small as 1.24, the estimated treat-
ffect could be zero given the observed outcomes and
ble effect of the hidden bias. Thus, the estimates in this

nalysis for Estimated Treatment Effect on Change
ana Use

Bounds on treatment effect estimate

Maximum Minimum
0.00 —-11.32
13.78 —20.58
23.19 —26.52
28.06 —29.87

stant representing the strength of hidden bias. Larger
orrespond to greater possible hidden bias. Maximum and
Slble‘treatment effect given hidden bias changes odds of
ighment by no more than G and no less than 1/G.
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example are sensitive to hidden bias. In other samples with
larger treatment effects and larger sample size, such analy-
ses can potentially show that treatment effects are robust to
possible hidden bias.

Discussion

Propensity scores estimated by GBM provide an appeal-
ing method for removing the confounding effects of ob-
served covariates on treatment effects estimated with data
from nonequivalent groups. GBM offers an adaptive, auto-
mated method for estimating propensity scores, which ac-
commodates data with many pretreatment variables, various
types of covariates (continuous, nominal, or ordinal), and
missing values. Because it is nonparametric model, it re-
duces the chance of model misspecification errors that have
been shown to bias estimates of treatment effects in case-
mix adjusted analyses (Drake, 1993). Creating propensity
scores and associated weights can purge estimates of treat-
ment effects of the confounding effects of many pretreat-
ment differences in groups. The same weights can also be
used to assess the treatment effect for several different
outcomes, thus making complex modeling for each outcome
variable unnecessary.

The AOP example demonstrates the advantage of GBM
for propensity scores. The relationship between pretreat-
ment variables and treatment assignment was distinctly
nonlinear as shown in Figure 1. Alternative methods for
estimating the propensity scores, such as linear logistic
regression, would not capture these nonlinearities, even if
the model included low-order polynomial terms. Also, the
GBM was fit to 41 correlated variables that were both
discrete and continuous. Modeling these variables using a
variable-selection method (such as stepwise deletion) and
logistic regression has been shown to produce unstable
estimates in other context (Breiman, 1996) and resulted in
highly variable treatment effect estimates in our example.

Even though the treatment and comparison groups dif-
fered considerably at baseline, weighting balanced the
group means on nearly all of the 41 variables in the model.
These adjustments were critical. Unadjusted group means
suggested that the Phoenix Academy reduced marijuana use
more than the comparison condition did. However, the
difference after weighting was much smaller and was not
statistically significant. Nevertheless, weighting did not
greatly inflate standard errors so that bias reduction was
achieved with minimal gain in variance.

Weighting by propensity scores did not remove group
differences in every pretreatment variable in the dataset.
However, remaining differences were small and were dis-
tributed, as we might expect, with random assignment in a
controlled experiment. We used change scores to account
for some of the residual difference across groups. To adjust
for imbalance that remains after weighting, one might also
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use a weighted ANCOVA to estimate treatment effects
rather than differences in weighted means. Whereas linear
covariate adjustment can be very problematic when group
differences are as large as they are prior to weighting, linear
adjustments combined with propensity score adjustment can
be more effective than propensity score adjustment alone
(Huppler-Hullsiek & Louis, 2002; Rosenbaum, 2002).

Covariates often are measured with error. For example,
youths may under- or overreport their level of drug use in
the months preceding treatment intake. Under the assump-
tion that treatment assignment depends on the observed
error-prone covariate (e.g., placement of probationers de-
pends on self-reported drug use), measurement error would
not matter. However, selection might depend on the pre-
cisely measured covariates (e.g., the true value of drug use
rather than self-report), independent of measurement error,
in which case the assumption of no measurement error
underlying the propensity score method is violated. Sensi-
tivity analyses can be used to explore the possible bias due
to measurement error. On the other hand, if the propensity
score model results in good balance across groups for the
error-prone measures, it might also reduce the confounding
effects of the error-free measures. Indeed, using meta-anal-
ysis, Shadish and Ragdale (1996) and Heinsman and Shad-
ish (1996) have found that nonequivalent control group
studies in which groups have been matched on important
pretreatment covariates produce reasonably good estimates
of the treatment effects observed in related studies using
randomized experimental designs.

The AOP study design attempted to create similar treat-
ment and comparison groups by restricting the comparison
group to probationers eligible for the same dispositions
from the same criminal justice system during the same time
period. This design controlled for many of the selection
issues associated with referrals to the Phoenix Academy of
Los Angeles. However, even with this careful design, the
selection of youths for the Phoenix Academy resulted in
nonequivalent groups prior to adjustment. Even with our
powerful methods of adjusting for many covariates, we
cannot guarantee that selection bias does not exist. Studies
should try to design equivalent groups so that balance is
easier to achieve, the ESS is large, and the likelihood of
hidden biases seems more remote. However, the AOP dem-
onstrates that this is not always possible, and results should
be presented with appropriate caveats.

Although GBM offers many advantages over other mod-
eling approaches, the analyst must still tune the model. We
have found that models with four levels generally fit as well
as more complex models, but this restricts the models to no
more than four factor interactions. Shrinkage also affects the
fit. Values smaller than .0005 can provide better models at
a cost of additional computation and a decreasing marginal
improvement in performance.

Our weighted estimator, as given in Equation 2, differs

from similar estimators suggested in Wooldridge (2001) and
Hirano et al. (2003). Wooldridge suggested using N, rather
than the sum of the weights for the comparison group in the
denominator in Equation 2. Hirano and colleagues sug-
gested using the sum of the probabilities for the entire
sample in the denominator of Equation 2. All three denom:
inators are estimates of N,. When the average of estimated
probabilities nearly equals the overall probability of being
in the treatment group, then all three estimators will provide
similar results. When the propensity score model is poorly
calibrated and estimated probabilities deviate from the true
probabilities of treatment assignment, like the logistic re:
gression models in the AOP example, the sum of ‘the
weights or the probabilities will differ from Ny, andthe
three alternative estimators may differ. In particular,: the
numerator is also sensitive to the sum of the weights; so the
Wooldridge and Hirano et al. estimators can produce treat:
ment effect estimates that vary with the scale of the weights,
Our estimator is invariant to the scale of the weights and is
more robust to poor calibration in the propensity score
However, the smallest bias or variance an estimator yieldsis
likely to depend on the weights and the correlation betweet
the weights and the outcomes. Additional research is nec:
essary to determine whether one estimator has a smallel

. mean squared error than the others.

As noted above, propensity score weighted estimates: oi
the treatment effect provide approximately unbiased esti
mates of the population average treatment effect for thc
treated provided the appropriate assumptions hold. These
analytic results assume large sample sizes approaching m
finity. We know of no published studies on the properties
these estimators for small or moderate sized samples.
very limited simulation study that we conducted with
simple treatment assignment function suggested that ‘s
mates can be approximately unbiased for small samples a
that the rate at which bias decreases with sample’
depends on the overlap in the distributions of pretreatm
variables between treatment and control groups. The rate
decrease increases with the overlap between the grou
However, these simulation results are very limited, a
additional research on the small sample properties of |
estimators is necessary.

The goal of case-mix adjustment should be to d
treatment effect estimates with minimum bias and vari
More research is needed on optimizing propensity
models in this way. Current approaches, including our (
method, adaptively add terms to these models until th
satisfy a data-dependent criterion. For instance, the com
logistic regression approaches add terms until no signi
pretreatment differences remain between groups after
ditioning on propensity scores. For GBM, we sugge:
lowing the algorithm to iterate until the ASAM is
mized. In both cases, emphasis is placed on removing
resulting from covariate differences. However, these :




five plocedures might achieve bias reduction by creating
highly variable weights and small ESSs.

Impxoved methods for optimizing propensity score mod-
‘els might exchange worse balance on covariates for sub-
stantial reductions in variance. In the AOP example, alter-
native stopping rules for the GBM model resulted in models
with the ASAM about 40% larger than the models we
present and jackknife standard errors for the alcohol and
arijuana treatment effects that were about 8 and 15%
_smaller than those presented in this article. The alternative
BM models used a stopping rule that resulted in a less
omplex model with fewer terms. Similarly restricting the
gistic regression models to exclude interactions also
atly reduced the standard error of the estimated treatment

espite. the need for these refinements, we believe the
roach to case-mix adjustment presented in this article
presents a substantial improvement over the present alter-
Jtives ‘available to researchers.
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Appendix A

Derivation of the Treatment Effect of the Treated Estimator

This section discusses an importance sampling style derivation
of the average treatment effect on the treated, E(y,Jz = 1) —
E(yolz = 1). Whereas the first expectation is trivial to estimate, the
second one is not directly estimable.

E(ylz=1) = f YoSf(yolz = 1)dy,

= ] f Yo fyo, X[z = Ddxdy, (AD)

The second equality in Equation Al introduces the pretreatment
measures, which can be high dimensional. Although we do not
have a sample from f(y,, x|z = 1) for the treatment group, we do
have a sample from f(y,, X|z = 0)—all those participants assigned
to the comparison group. We can multiply and divide the integrand
in Equation A1 by f{y,, x|z = 0) to get closer to an expression we
can estimate from our data.

E(yolz = 1) =f
f()’o,

= E(y" T ¥z =0)

The expectation in Equation A2 is over the distribution of the
comparison group, but the expectand is not directly observed in the
data. We can derive weights by applying Bayes’ Theorem to the
numerator and denominator in Equation A2.

E()’olZ =1 = ff Yo
f(Z_ 1|y07 X)

_flz=0)
fz=1) Y Rz = 0o, %)

X f(yo, x|z = 0)dxdy, (A4)

fyo, x|z =
mﬂym Xz = 0)dxdy,

Az = 1]y, x) Ao, X) Az = 0)
Az =0yo, x) Ayp, x) Az =1)

X Ay, Xz = 0)dxdy, (A3)

The expression fiz = 1]y, X) is the probability that a participant
with pretreatment variables equal to x and outcome in the com-

z= 0) (A2) .

parison condition equal y, is assigned to the control group. We
cannot assess this probability from the data without an assumption.
Following Rosenbaum and Rubin (1983), we assume that treat-
ment assignment is independent of the outcome given x so that
fz = 1y, %) = flz = 1[x) = p(x) and fiz = Oly,, X) = flz = Ox) =
1 — p(x). In practice, if x contains all the factors involved in
deciding assignment to the treatment program then this assumption
is met.

=1
E()’olz =1)= ;E; =1) fj Yo f((z — OI’XX))ﬂJ’o: XIZ = 0)dxdy,
1-P(z=1
= “Wz(i_l)‘_) ff Yo IL—(EX_) Fyo, Xz = 0)dxdy,  (A5)

Note that this requires that p(x) must be strictly less than 1 for all
x. Because we have a sample from f{y, x|z = 0), we can estimate
the integral in Equation A5 with the sample average,

1=P(z=1)ZL, yw{l — z)
P(z=1) 2l —z

E(ylz=1) = (A6)

where w(x) = p(x)/[1 — p(x)], the odds of being in the treatment
group. Wooldridge (2001, p. 615) used the fraction of treatment
participants in the sample to estimate P(z = 1), whereas Hirano et
al. (2003) used the sample average of the observed propensity
scores. We noted that

1= 1-Plz=1) ff P )f(yo, x|z = O)dxdy,

P(z=1) 1-px

1-Plz=1) 3%, w(l —z)
= P(Z_l) 2’1:11_!

(A7)

Dividing Equation A6 by the 1 estimated in Equation A7 produces
the estimator for the average treatment effect of the treated having
the form of a weighted average.

N 2?: yw,(l — Zi)
E(ylz=1) = m (A8)

(Appendixes continue on next page)
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Appendix B

Details of the Boosting Algorithm

Let z, be the treatment indicator for participant i. The likelihood
principle implies that to get the best estimates of p(x) we should
examine the expected Bernoulli log-likelihood function,

E(¢(p)) = E(zlog p(x) + (1 — 2)log[1 — p®)]}x). ~ (BL)

Equation B1 implies that we will evaluate any choice for p(x)
by how well on average it assigns large probabilities when z =
1 and small probabilities when z = 0. The true Pr(z = 1|x)
maximizes Equation B1. It is important to note that this expec-
tation is with respect to all future participants that might un-
dergo the same treatment assignment process. Conventional
practice uses the logistic transform of p(x) to simplify some of
the analysis.

1

T+ expl—g )] ®2

p(x) =

The logistic transform ensures that, regardless of the value of g(x),
p(x) will always be in [0, 1]. If we substitute Equation B2 into
Equation B1 then we have the log-likelihood in terms of the
regression function g(x), €(g), as shown in Equation B3.

E[¢(g)] = E(zg(x) — log{l + exp[g(x) [}}x). B3)

If we restrict g(x) to be a linear combination of x and maximize an
estimate of the expected log-likelihood with the sample partici-
pants, we have exactly a linear logistic regression. However, we
allow g to be a member of a flexible family of functions and use
boosting to choose the function.

Boosting is a numerical method useful for finding functions that
maximize expressions such as Equation B3 from data. The algo-
rithm works as follows. Assume that we have an initial estimate of
the function that maximizes Equation B3, which we will call §(x).
Commonly the overall sample log-odds, g(x) = log[y/(1 — )],
provides the initial estimate. We would like to improve upon this
initial estimate by adding a small adjustment to it. That is, we want
to find an A(x) such that

E(€(g + Ah)) > EL(8). (B4)

The new improvement offers an increase in the expected log-
likelihood and, therefore, we can update our current guess as

8(x) < &(x) + Mi(x) (B5)

for some step size A. The remaining problem is how to find an A(x)
that satisfies Equation B4.

The derivative of Equation B3, with respect to g(x), indicates
the local “direction” to move g(x) for the greatest increase in
the expected log-likelihood. Friedman (2001) suggested that
such a derivative, therefore, is a reasonable adjustment to our
current g.

1+ exp[—g(®)] X)
=E(z - p(x)[x). (B¢

— a p—
h(x) = %2 E(L(g) = E<Z

The best direction in which we should adjust g(x) is a kind ¢
residual, the difference between the treatment indicator and th
probability of assignment to the treatment. We cannot comput
Equation B6 directly (doing so would require knowledge of th
Pr(z; = 1[x)), but we can estimate it with our sample using
flexible least squares regression procedure. We use a regressio
tree algorithm (Breiman et al., 1984) to estimate h(x) to yield
nonparametric and robust prediction model. The regression tre
predicts these residuals, z — p(X), from x using a piecewis
constant function, selecting the splits to minimize the mea
squared residuals. After fitting a regression tree to the residuals, w
can update our estimate for g(x), as in Equation B5.

Given a regression tree estimate for %, the update expression i
Equation BS indicates that we simply need to do a line search fc
the A that offers the greatest increase in the log-likelihood. Friec
man (2001) suggested a computational shortcut when using ¢
gression trees to estimate Equation B6. The tree is a piecewis
constant model. It partitions the participants according to the
features into regions, Ty, 75, ..., T Within each region, tk
residuals are relatively homogeneous and the tree estimates A(3
for all xs in the region with a constant equal to the mean of tk
region’s residuals. Rather than using the average of the region
residuals to estimate the value of h(x) in a node and then pickin
a value of A so that Equation B4 holds, Friedman (2001) suggeste
solving for the best update separately for each region. The tree wi
do the work of partitioning the participants and defining tt
regions. Then the optimal adjustment to g(x) can be found sep:
rately for each region. That is, for all observations that fall into tt
kth partition, x € T},

h(x) = arg max E 7] 8(x;) + 6] — log{l + exp[ g(x;) + 01}

0 xi€Tk

- 2er 2 — piX)
EXKGTI: p(x,)[l - P(Xz)] ’

B

where arg max, denotes the value of 8 that minimizes the sum. T
avoid expensive computation, the estimate in the last line «
Equation B7 is based on maximizing a second-order Taylor a
proximation of the first line. It is very stable as long as not ¢
estimated probabilities are 0 or 1 in any terminal node. In tho:
cases, we set A(x) = 0 for that region.

Combining all of the pieces yields the following boosting alg
rithm for fitting a nonlinear logistic regression model to the tres
ment assignment data.

logz
1-z
2. Forminl,...,Mdo

1. Initialize g4(x) =
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- Letr,; = z; — Ul + exp[~§,,_,(x)].

. Construct a tree structured predictor of r, to partition the
features into terminal nodes T,..., T

c. Compute the updates for each terminal node

E.\‘iETk i~ P(Xz)

E_r,-en p(x)[1 — p(x)]

d. Update the logistic regression model as
glrl(x) <« glix-l(x) + ek(x)?

[SaE ]

0k=

where k(x) determines to which terminal node an observa-
tion with features x belongs.

The algorithm begins with an initial naive guess for #(x), the log
of the baseline odds of assignment to the treatment group (Step 1).
Then Steps 2a—c find a piecewise constant function that offers an
improvement in the observed logistic log-likelihood. Last, Step 2d
incorporates this new adjustment.

The variability of £(x) can also be reduced by modifying Step 2d
of the algorithm using a shrinkage coefficient,

gm(x) <~ gm—l(x) +a- Ok(x)’ (Bg)

where a € (0, 1]. Smaller values for o allow the algorithm to make
smaller, finer adjustments rather than large, perhaps overconfident
changes. Similar strategies exist for many parametric optimization
procedures. Smaller values of o will certainly increase the number
of iterations needed to produce good propensity score estimates.
However, empirical evidence shows smaller as result in better
model fits. Our strategy is to make « as small as possible so that
the marginal improvement in log-likelihood for a small « is
negligible. This shrinkage strategy reduces the variance without
necessarily increasing the bias.

Because each iteration produces a new estimate of g that in-
creases an estimate of the logistic log-likelihood, as additional
iterations are performed, eventually g(x) will “overfit” the data.
Because balance of the pretreatment characteristics is our primary
goal, we iterate until we achieve the best matching measured using
the average absolute effect size.
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read as

instead of as

Consequently, Equation 18 should read as

instead of as

Correction to Venter et al. (2002)

The article “Power in Randomized Group Comparisons: The Value of Adding a Single Intermediate
Time Point to a Traditional Pretest-Posttest Design™ (Psychological Methods, 2002, Vol. 7, No. 2,
pp. 194-209) contained two errors on p. 202. Appendix B correctly shows that Equation 17 should

BYIYO >0.1667 — 0.1667[)00

B> 0.1667 + 0.1667 pgy.

Y 1
1t é > 0.1667 — 0.1667pog
i)

o
Prite —~0_;’ > 0.1667 + 0.1667 pgp.
i

Corresponding threshold values should read as 0 when Pop = 1.00 and 0.08 when p,, = 0.50.




