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Randomized clinical trials (RCT) are accepted as the gold-standard approaches to 

measure effects of intervention or treatment on outcomes. They are also the designs of 

choice for health technology assessment (HTA). Randomization ensures comparability, in 

both measured and unmeasured pretreatment characteristics, of individuals assigned to 

treatment and control or comparator. However, even adequately powered RCTs are not 

always feasible for several reasons such as cost, time, practical and ethical constraints, 

and limited generalizability. RCTs rely on data collected on selected, homogeneous 

population under highly controlled conditions; hence, they provide evidence on efficacy of 

interventions rather than on effectiveness. Alternatively, observational studies can provide 

evidence on the relative effectiveness or safety of a health technology compared to one 

or more alternatives when provided under the setting of routine health care practice. In 

observational studies, however, treatment assignment is a non-random process based on 

an individual’s baseline characteristics; hence, treatment groups may not be comparable 

in their pretreatment characteristics. As a result, direct comparison of outcomes between 

treatment groups might lead to biased estimate of the treatment effect. Propensity score 

approaches have been used to achieve balance or comparability of treatment groups in 

terms of their measured pretreatment covariates thereby controlling for confounding bias 

in estimating treatment effects. Despite the popularity of propensity scores methods and 

recent important methodological advances, misunderstandings on their applications and 

limitations are all too common. In this article, we present a review of the propensity scores 

methods, extended applications, recent advances, and their strengths and limitations.
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INTRODUCTION

Randomized clinical trials (RCTs) are generally accepted as the 
gold-standard approaches for measuring the “causal” effects of 
treatments on outcomes (Sibbald and Roland, 1998; Concato 
et al., 2000) and the design of choice for health technology 
assessment (HTA). In causal inference terminology using 
Rubin’s potential outcomes framework (Rubin, 2005), the effect 
of a certain treatment (Z = 1) versus a control or comparator 
(Z = 0) on an outcome (Y) involves comparison of potential 
outcomes under treatment (Y1)) and an alternative treatment 
(Y0)). In RCT, with sufficient numbers of participants and 
adequate concealment of allocation, randomization ensures that 
individuals assigned to treatment and control or comparator 
groups are comparable in all pretreatment characteristics, both 
measured and unmeasured (Sibbald and Roland, 1998). The only 
difference is that one group received the treatment (Z = 1) and 
the other received no treatment or the alternative treatment (Z = 
0); hence, any difference in outcomes between the two groups 
can be attributable to the effect of the treatment. In other words, 
the “causal” effect of treatment in the study population (the 
average treatment effect, ATE) on outcomes can be estimated 
by a direct comparison of the outcomes between the treatment 
and the comparator groups (Equation 1) (Concato et al., 2000). 
However, even adequately powered RCT may not always be 
feasible for reasons such as cost, time, ethical, and practical 
constraints (Sibbald and Roland, 1998). RCTs also rely on data 
collected on selected, homogeneous population under highly 
controlled conditions; hence, they provide evidence on efficacy 
rather than on effectiveness of interventions or treatments 
(Eichler et al., 2011).

 ATE E Y Y E Y E Y= − = −[ ] [ ] [ ]1 0 1 0  (1)

With steadily increasing costs of health care and the 
introduction of novel, yet very expensive, pharmaceutical 
products and diagnostics, HTA agencies such as the UK National 
Institute for Health and Care Excellence (NCIE) are inquiring 
robust methods for evaluation of relative effectiveness and safety 
of medications, devices, and diagnostics in daily clinical practice. 
In contrast to efficacy, relative effectiveness of an intervention 
or treatment is “the extent to which an intervention does more 
good than harm, when compared to one or more alternative 
intervention(s)” when used under the routine setting of health 
care practice” (Eichler et al., 2011; Schneeweiss et al., 2011). 
In addition, for medical devices and diagnostics, waiting for 
evidence from RCTs when the health technology is diffusing 
in the clinical practice could be costly for the payers, inefficient 
from policy perspective, and methodologically questionable 
(Tarricone et al., 2016). On the other hand, regulators’ and HTA 
agencies’ perception of the importance of real-world data in 
complementing evidence on the relative effectiveness of health 
technologies has been steadily increasing (Makady et al., 2017; 
Yuan et al., 2018).

The effect of a particular health technology, e.g., a medication, 
on a certain outcome event could also be investigated using non-
randomized studies (i.e., observational or quasi-experimental) 

using routinely collected data (Schneeweiss et al., 2011, Ali 
et al., 2016, Bärnighausen et al., 2017). In observational 
studies, however, treatment selection is mainly influenced by 
the patient, the physician, and, to a certain extent, the health 
system characteristics. Hence, treated and untreated groups 
differ not only in receiving the treatment but also in other 
pretreatment characteristics, leading to non-comparability or 
non-exchangeability, a phenomenon leading to confounding bias 
(Greenland and Morgenstern, 2001). This means that differences 
in outcomes between the two groups, treated versus untreated, 
could be explained by either the treatment, or other pretreatment 
variables, or both. In other words, direct comparison of outcome 
events between the two groups leads to biased estimate of the 
treatment effect. Hence, any systematic difference in pretreatment 
characteristics between treatment should be accounted for by 
design, or analysis, or both (Rubin, 1997). Over the years, several 
methodologies have been developed to control for confounding 
bias in observational studies (Figure 1); the propensity score 
methods (Rosenbaum and Rubin, 1983) are among the popular 
approaches in pharmacoepidemiology and health technology 
evaluations (Ali et al., 2015).

Propensity score approaches were first introduced by 
Rosenbaum and Rubin in 1983 (Rosenbaum and Rubin, 1983), 
and their use to control for confounding has been increasing in 
the previous decade. Propensity score (PS) is a scalar summary of 
all measured pretreatment characteristics (often called potential 
confounders); stated formally, the propensity score e(X) is the 
conditional probability of receiving a certain treatment, versus 
a comparator or no treatment, given the measured pretreatment 
characteristics (Rosenbaum and Rubin, 1983), X, denoted as

 e X pr Z X( ) ( ),= =1|  (2)

where Z = 1 for individuals in the treatment group and Z = 0 
for individuals in the comparison group (Rosenbaum and Rubin, 
1983; Rosenbaum and Rubin, 1984). Treated and untreated 
individuals with similar propensity scores have, on average, 
similar or comparable pretreatment characteristics, a situation 
similar to an RCT. However, this comparability, conditional on 
the propensity score, of the treatment groups is limited only to 
measured pretreatment characteristics included in the propensity 
score model and may not hold for unmeasured ones (Rosenbaum 
and Rubin, 1983). Hence, balancing these pretreatment potential 
confounders through propensity scores enables researchers to 
obtain a “quasi-randomization” of treatment groups to reduce 
confounding and hence to get a better estimate of the treatment 
effect. Implicitly, researchers assume “Strongly Ignorable 
Treatment Assignment” (SITA) given the measured covariates; 
this comprises “unconfoundedness” and “positivity” (Rosenbaum 
and Rubin, 1983). Unconfoundedness implies that all relevant 
pretreatment characteristics are measured and included in the 
propensity score model; hence, given these measured covariates 
are included in the propensity score, there is no unmeasured 
confounding. Positivity, on the other hand, implies that every 
individual has a non-zero (positive) probability of receiving all 
values of the treatment variable: 0 < P(Z = 1|X) < 1 for all values 
of Z (Rosenbaum and Rubin, 1983).
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In the last decade, the propensity score methods have 
been popular among clinical researchers, their use in 
pharmacoepidemiology and HTAs has been ubiquitous, and 
they have undergone substantial methodological advances. On 
the other hand, confusions and misunderstandings on what a 
propensity score method can and cannot do as well as errors in 
the design, analysis, interpretation, and reporting of propensity 
score-based analyses are unfortunately all too common (Ali 
et  al., 2015). With increasing availability of routinely collected 
electronic medical records for evaluation of effects (both 
comparative effectiveness and safety) of health technologies, 
and relatively rapid development of the methods, an up-to-date 
review of the methods and their characteristics is necessary. In 
this article, we aim to introduce propensity score methods with 
an emphasis on important aspects of the methods; describe their 
extended applications and recent developments; and discuss 
their strengths and limitations.

The manuscript, including the introduction, is organized 
into eight sections: the section Introduction has introduced RCT, 
observational studies, and propensity score in relation to HTA; 
the section Variable Selection and Propensity Score Estimation 
discusses variable selection and propensity score estimation 

approaches; the section Covariate Balance Assessment describes 
methods for assessment of covariate balance in propensity score 
methods; the section Propensity Score Methods summarizes the 
different types of propensity score methods; the section Extended 
Applications describes extended applications of propensity 
scores; the section Advantages and Limitations of Propensity Score 
Methods summarizes strengths and limitations of the propensity 
score methodology; the section Reporting highlights on reporting 
of propensity score based analysis; and the section Conclusion 
concludes the discussion.

VARIABLE SELECTION AND PROPENSITY 
SCORE ESTIMATION

Observational studies using administrative or clinical databases 
often involve high dimensionality with respect to the number 
of pretreatment covariates available for analysis including 
socioeconomic characteristics, demographics, comorbidities, 
comedications, and health system characteristics, among 
others. The inclusion of a large number of covariates in 
conventional regression models, particularly in nonlinear 

FIGURE 1 | Methods to control for confounding in observational studies.*Multiple imputation is valid when the assumption of Missing at Random (MAR) holds;**if 

time-varying confounder is affected by previous treatment, all PS-based methods except marginal structural model (MSM) using inverse probability of treatment 

weight (IPTW) will give biased estimate;***self-controlled case-series design; ♠)stratification using effect modifier and adjustment within the strata to account for 

other covariates; ♠♠)Disease risk score (prognostic score) method; ♠♠♠)restriction or choosing an active comparison group vs non-user group; ♣)G-formula 

and ♣♣)G-estimation of structural nested models, which rely on specification of the outcome model; ♣♣♣)instrumental variable methods. (Adapted in part from 

Schneeweiss (2006), Uddin et al. (2016), and Zhang et al. (2018)).
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models such as logistic regression and Cox regression models, 
requires sufficient number of outcome events (approximately 
10 outcome events per covariate) (Peduzzi et al., 1995; 
Peduzzi et al., 1996; Cepeda et al., 2003). For example, to 
adjust for 5 confounders using logistic regression model, 
one would need to have 5*10 = 50 outcome events. However, 
many practical settings in pharmacoepidemiology and other 
HTAs involve relatively few or rare outcome events; hence, 
confounding adjustment using regression methods requires 
selection of a limited number of covariates to avoid problems 
such as over-fitting (Peduzzi et al., 1995). Alternatively, the 
use of propensity score methods to summarize a large pool 
of covariates into a single score, the propensity score, avoids 
over-fitting and collinearity issues in estimating treatment 
effects (Cepeda et al., 2003). When the number of covariates 
available in the study dataset is relatively small, it is common 
practice to include all the pretreatment covariates in the 
propensity score model; however, covariate selection might 
be required when researchers are presented with very large 
number (several hundreds) of covariates and limited number 
of outcome events (Schneeweiss et al., 2009).

Covariates selection in propensity score is often based on 
prior subject-matter knowledge on the relationships underlying 
the covariates in the study data, statistical tests on the association 
between the covariates and the outcome event (using p-values 
or change in effect estimates) (Brookhart et al., 2006; Patrick 
et al., 2011; Ali et al., 2015; Adelson et al., 2017), strength of 
associations with the treatment and/or the outcome event 
(Patrick et al., 2011; Ali et al., 2015; Adelson et al., 2017), and 
machine learning methods such as generalized boosted models 
(McCaffrey et al., 2004). Each approach has its own strengths 
and limitations; however, emphasis should be given to achieve 
balance on important prognostic pretreatment characteristics 
(Rosenbaum and Rubin, 1983) and not to improve model fit 
or to predict treatment as well as possible. Hence, the use of 
p-values, goodness-of-fit tests, and model discrimination tests 
such as c-statistics should be avoided (Weitzen et al., 2005; 
Patrick et al., 2011; Westreich et al., 2011). The iterative approach 
of model fitting, by including interactions and square terms of 
the covariates, and subsequent balance assessment, which was 
recommended in the seminal paper by Rosenbaum and Rubin 
(1983), is still a more robust approach. This application helps 
to achieve the goal of propensity score modelling, “improving 
balance” of potential confounders between treatment groups so 
that the groups are comparable or exchangeable conditional on 
the propensity score.

One of the greatest strengths of propensity score approaches is 
the separation of design from analysis, i.e., propensity score methods 
purposefully disregard outcome information at this stage of the 
design (Rubin, 2004b; Leacy and Stuart, 2014). That would also 
mean, as in the classical implementation of the methods, association 
between the covariates and the outcome event in the study data is not 
assessed for selection of covariates while constructing the propensity 
score model. However, this approach is not without disadvantages: 
failure to exclude colliders (variables that are common effects of 
the treatment and the outcome) and strong instruments (variables 
that are strongly related to treatment but independent of both the 

confounders and the outcome) can lead to increased bias in the 
estimated treatment effect (Pearl, 2011; Myers et al., 2011a, Myers 
et al., 2011b; Pearl, 2012; Ali et al., 2016).

It is important to emphasize that, similar to conventional 
regression modelling, intermediates (variables on the causal 
pathway between the treatment and the outcome) and colliders 
should not be included in the propensity score model (Greenland 
and Morgenstern, 2001) since including these variables will 
tend to increase (rather than reduce) bias. In addition, strong 
instruments should also be excluded, particularly when strong 
unmeasured confounding is a concern thereby avoiding any 
amplification of the residual bias (Pearl, 2011; Myers et al., 2011a; 
Myers et al., 2011b; Pearl, 2012; Ali et al., 2016). However, it is not 
common to come across with such a scenario; the use of propensity 
score method is meaningful when the assumption of “Strongly 
Ignorable Treatment Assignment”, SITA, is met (i.e., there is no 
unmeasured confounding given the measured covariates and also 
there is positivity) (Rosenbaum and Rubin, 1983). Compared 
to residual confounding by unmeasured characteristics, bias 
amplification should be considered a secondary concern; hence, 
researchers should be cautious and are advised to err on the side 
of including rather than excluding any potential confounder 
(Myers et al., 2011b; Ali et al., 2017c). Alternatively, when a 
strong instrument—essentially a proxy measure of difference in 
treatment—is identified that is independent of confounders and 
outcome, instrumental variable analysis can be a powerful tool to 
account for any unmeasured confounding (Angrist et al., 1996).

A common question asked by clinical researchers who have not 
used propensity score methods is “why do we need to estimate the 
probability that an individual receives a certain treatment versus 
a comparator while we certainly know from the data whether that 
particular individual has received the treatment?” A brief answer 
to this important question is as follows: propensity score exists 
both in RCT and in observational studies (Joffe and Rosenbaum, 
1999; Rubin, 2004b; Ali et al., 2016). In RCT, the true propensity 
score is known by design or the treatment allocation mechanism, 
i.e., randomization. For example, consider a simple two-arm 
RCT in which individuals are assigned to a treatment versus a 
comparison group by flipping of a fair coin (also assume that the 
sample sizes are equal in both treatment groups). The propensity 
score for every individual, the probability of being assigned to 
the treatment group versus the comparator group, is equal to 
0.5, apart from chance variations. In contrast, in observational 
studies, the true propensity score for individuals is unknown 
and is dependent on several pretreatment characteristics, both 
clinical and nonclinical, under consideration by the physician. 
As a result, the propensity score should be—and can often be—
estimated using the study data (Joffe and Rosenbaum, 1999; 
Rubin, 2004b; D’Agostino, 2007; Ali et al., 2016). Estimation of 
the propensity score is needed to create a “quasi-randomized 
experiment” by using the individual’s probability of receiving 
the treatment as a summary score of all measured pretreatment 
covariates. It enables appropriate adjustment for measured 
potential confounders to estimate the effect of the treatment. This 
explains one of the key properties of the propensity score method: 
if we find two individuals with the same propensity score, one in 
the treated group and one in the untreated group, we can assume 
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that these two individuals are more or less “randomly assigned” 
to one of the treatment groups in the sense of being equally likely 
to be treated or not, with respect to measured pretreatment 
characteristics (Ali et al., 2015; Ali et al., 2016).

In practice, the propensity score is often estimated using 
ordinary logistic regression model, in which treatment status 
is regressed on measured pretreatment characteristics (Austin, 
2008a; Ali et al., 2015). The estimated propensity score is the 
predicted probability of receiving the treatment derived from the 
fitted logistic regression model. Logistic regression has several 
advantages: it is a familiar and well-understood statistical tool 
for researchers as well as easy to implement using standard 
statistical software packages (Setoguchi et al., 2008; Westreich 
et al., 2010; Ali et al., 2016). However, logistic regression is not 
the only approach; other methods have also been used including 
recursive partitioning (D’Agostino, 2007) and several machine 
learning methods, for example, classification and regression 
trees (CARTs), neural networks, and random forests (Setoguchi 
et al., 2008; Lee et al., 2010; Westreich et al., 2010; Lee et al., 
2011). Comparative simulation studies favor the use of machine 
learning methods over logistic regression when there is moderate 
or high nonlinearity (square or cubic terms of covariates) and 
non-additivity (interactions between pretreatment covariates) in 
the propensity score models. This could be explained by the fact 
that machine learning methods include interactions and square 
terms by default (Setoguchi et al., 2008), compared to logistic 
regression where the researcher should “manually” include 
interactions and square terms. When important interaction and 
square terms are included, the performance of logistic regression 
is as good as other machine learning methods (Ali et al., 2017b).

COVARIATE BALANCE ASSESSMENT

The aim of propensity score methods is to balance covariates 
between treatment groups and hence control for measured 
confounding (Rosenbaum and Rubin, 1983). Therefore, the 
quality of propensity score model should be assessed primarily 
on the covariate balance achieved. It should not be evaluated 
based on how well the propensity score model discriminates 
between treated and untreated individuals, i.e., whether the 
treatment assignment is correctly modeled (Rubin, 2004b; 
Westreich et al., 2011; Ali et al., 2015, Ali et al., 2016) or whether 
the subsequent estimates of treatment effect are smaller or larger 
than expected (Rosenbaum and Rubin, 1984; Hansen, 2004). 
Hence, propensity score modelling can be considered as an 
iterative step where the propensity score model is updated by 
adding different covariates, interactions between covariates, or 
higher-order terms of continuous covariates until an acceptable 
level of balance on important confounding variables is achieved 
(Rosenbaum and Rubin, 1984). It is also important to underline 
that variable selection and covariate balance are inseparably 
linked; however, covariate balance is often checked on a 
preselected list of pretreatment covariates (Ali et al., 2015). On 
the other hand, there are propensity score modelling techniques 
that optimize covariate balance while estimating the propensity 
score (Imai and Ratkovic, 2014; Austin, 2019).

It is helpful to start propensity score analysis by examining 
the distribution of propensity scores using histograms or density 
plots. This facilitates subjective judgment on whether there is 
sufficient overlap, also called “the common support,” between 
propensity score distributions of treated and untreated groups 
(Dehejia and Wahba, 2002). However, such plots should not 
be considered as proper measures of covariate balance; they 
can guide the choice of matching algorithms in propensity 
score matching and the number of strata in propensity score 
stratification (Ali et al., 2015; Ali et al., 2016). For example, when 
there is very little overlap in the propensity score distributions, 
matching treated and untreated individuals with replacement, 
with or without caliper, can be a better option because it will be 
challenging to find sufficient number of untreated individuals 
for the treated individuals (Ali et al., 2016). Inadequate overlap 
in the propensity score distributions, which can be quantified 
using overlapping coefficient (Ali et al., 2014), should also warn 
researchers that the dataset, no matter how large, could not 
support any causal conclusion about the effect of the treatment 
on the outcome of interest without relyng o untrustworthy model 
assumptions (Rubin, 1997; Ali et al., 2016).

To assess covariate-specific balance, several metrics have been 
proposed in the literature (Austin, 2009; Belitser et al., 2011; Ali 
et al., 2014). Each balance metric has its own advantages and 
limitations; the absolute standardized difference in means or 
proportions (ASMD) (Austin, 2009) is more robust in terms of 
sample size and covariate distribution requirements in comparison 
to other balance diagnostics, such as overlapping coefficients (Ali 
et al., 2014; Ali et al., 2015; Ali et al., 2016). The ASMD is also 
a familiar, easy-to-calculate and present, and well-understood 
statistical tool (Austin, 2009; Ali et al., 2015; Ali et  al., 2016). 
Hence, it is recommended for checking and reporting covariate 
balances in propensity score methods (Austin, 2009; Belitser et al., 
2011; Ali et al., 2014; Ali et al., 2015; Ali et al., 2016). The ASMD 
is calculated for each covariate and can be averaged to compute an 
overall covariate balance and to compare propensity score models 
(Belitser et al., 2011; Ali et al., 2014). The covariate-specific ASMD 
is useful to identify the variable that is still imbalanced and to 
modify the propensity score model with squares and interaction 
terms of the variable to improve its balance. Although there is no 
universal threshold below which the level of covariate imbalance 
is always acceptable (Imai and Van Dyk, 2004; Ali et al., 2016), 
the use of arbitrary cutoffs for balance diagnostics (e.g., < 10% for 
the ASMD) is common in the medical literature (Ali et al., 2015; 
Ali et al., 2016). Covariate balance is not only a property of the 
sample means but also of the overall distribution of the covariate; 
hence, higher-order sample moments of the covariate distribution 
such as variance should also be evaluated (Rosenbaum and Rubin, 
1985; Rubin, 2001; Ho et al., 2007; Austin, 2009; Linden and 
Samuels, 2013). Rubin (2001) proposed the ratio of variances of 
treated and untreated groups as an additional check on balance; 
a variance ratio of 1.0 in the propensity score matched sample 
indicates a good matching and acceptable balance, and a variance 
ratio below 2 is generally considered acceptable balance (Rubin, 
2001; Linden and Samuels, 2013).

In addition to numerical quantification of the covariate 
balance achieved by the specified propensity score model, 
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graphical methods such as (weighted) side-by-side box plots, 
quintile-quintile (Q-Q) plots, plots of ASMD, and empirical 
density plots of continuous pretreatment covariates provide 
a simplified overview on whether balance on individual 
pretreatment covariates has improved, compared to pre-
matching, pre-stratification, or pre-weighting (Rosenbaum 
and Rubin, 1983; Ali et al., 2016).

PROPENSITY SCORE METHODS

Once the propensity score has been estimated, researchers 
have several options of using the propensity score in the 
design or analyses, including matching, stratification (also 
called subclassification), covariate adjustment using the 
propensity score, inverse probability of treatment weighting, 
and combinations of these methods (Rosenbaum and Rubin, 
1983; Rosenbaum and Rubin, 1984; Rubin and Thomas, 2000; 
Hirano and Imbens, 2001; Johnson et al., 2018). Each method 
has its own advantages and disadvantages; the choice of a 
specific propensity score method is in part determined by the 
inferential goal of the research (i.e., the type of treatment effect 
estimand: the average treatment effect in the entire population, 
ATE, versus the average treatment effect in the treated 
population, ATT) (Imbens, 2000; Stuart, 2008; Ali et al., 2016). 
Although it is possible to estimate both ATT and ATE using all 
of the four propensity score methods, for example, by assigning 
different weights for the treated and untreated individuals, the 
default approach in each method might give slightly different 
estimand. For example, propensity score matching primarily 
estimates the treatment effect in the treated group, ATT 
(Imbens, 2004; Stuart, 2008). Therefore, to get an estimate of 
the average treatment effect in the entire population, ATE, 
one has to use either full matching (Hansen, 2004) or different 
weighting (Stuart, 2008, Stuart, 2010; Ali et al., 2015; Ali et al., 
2016). The use of a specific propensity score method has 
also direct implication on the covariate balance assessment 
(Rosenbaum and Rubin, 1983; Rosenbaum and Rubin, 1984; 
Ali et al., 2016) and interpretation of the estimated treatment 
effect (Stuart, 2008; Ali et al., 2015; Ali et al., 2016).

Propensity Score Matching
Propensity score matching, the most common application of 
propensity score (Ali et al., 2015), entails forming matched 
groups of treated and untreated individuals having a similar 
value of the propensity score (Rosenbaum and Rubin, 1983; 
Rubin and Thomas, 1996). The matching could be done in many 
ways: one-to-one or one-to-many (1:n, where n is the number 
of untreated individuals often up to five), exact or caliper 
matching, matching with or without replacement, stratified 
matching, and full matching (Hansen, 2004). However, one-to-
one caliper matching without replacement is the most common 
implementation of propensity score matching (Ali et al., 2015; 
Ali et al., 2016). For detailed discussion on different matching 
approaches, we refer to the literature (Rosenbaum and Rubin, 
1985; Hansen, 2004; Stuart, 2010).

Once a matched sample has been formed, covariate balance 
can be easily checked between the matched groups using one of 
the balance diagnostics, preferably ASMD, and then treatment 
effect can be estimated by directly comparing outcomes between 
treated and untreated individuals in the matched sample 
(Rosenbaum and Rubin, 1983; Rubin and Thomas, 1996). With 
dichotomous or binary outcomes such as the presence or absence 
of a disease (“Yes” or “No”), the effect of the treatment can be 
estimated as the difference or the ratio between the proportion 
of individuals experiencing the outcome event in each of the 
two treatment groups (treated vs. untreated) in the matched 
sample. If the outcome is continuous, for example blood pressure 
measurement or HBA1c level, the effect of the treatment is 
estimated as the difference between the mean outcome for treated 
and the mean outcome for untreated individuals in the matched 
sample (Rosenbaum and Rubin, 1983).

If matching is done with replacement or in one-to-many 
matching, weights should be incorporated to account for the 
multiple use of the same untreated individual to match with 
several treated individuals or the multiple use of the same 
treated individual to match with several untreated individuals, 
respectively (Stuart, 2010). Whether or not to account for the 
matched nature of the data in estimating the variance of the 
treatment effect, for example, using paired t-test for continuous 
outcome or McNemar’s test for binary outcome, is an ongoing 
discussion (Schafer and Kang, 2008; Stuart, 2008; Austin, 2008a; 
Austin, 2011).

The most appealing feature of propensity score matching 
is that the analysis can partly mimic that of an RCT, meaning 
that the distribution of measured pretreatment covariates will 
be, on average, similar between treatment groups. Hence, direct 
comparison of outcomes between treated and untreated groups 
within the propensity score matched sample has the potential 
to give unbiased estimate of the treatment effect, depending on 
the extent to which the measured variables have captured the 
potential confounding factors (Rosenbaum and Rubin, 1983). 
However, RCT, on average, guarantees balance on both measured 
an unmeasured confounders, whereas propensity score improves 
balance on measured confounders but those of unmeasured 
confounders only to the extent that they are related to the 
measured confounders included in the propensity score model 
(Rubin, 2004b; Austin, 2011). Other useful features include: 
separation of the design from analysis via preprocessing of the 
data to improve covariate balance without using outcome data, 
thereby a minimal reliance on model specification; relatively 
easy assessment, visualization, and communication of covariate 
balance using simple statistics or plots; and qualitative indication 
of whether the dataset at hand is good enough to address the 
causal question without relying on untrustworthy “model-
dependent” extrapolations (Rubin, 2004b; Ho et al., 2007; Ali 
et al., 2016).

Recently, the use of propensity score for matching has been 
criticized on the basis of an argument that propensity score matching 
approximates complete randomization and not completely blocked 
randomization; hence, it engages in random pruning or exclusion 
of individuals during matching. “Unlike completely blocked 
randomization, random exclusion of individuals in propensity score 
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matching, as in complete randomization, means a decrease in sample 
size leading to covariate imbalance and more model dependence, 
so called the ‘propensity score paradox’” (King and Nielsen, 2016). 
At first this might seem a valid argument; however, the practical 
implication of this paradox is very limited, if any (Ali et al., 2017a). 
This is partly due to the fact that propensity score matching could 
do better than complete randomization with respect to the balance 
of measured covariates if variables related to treatment are included 
in the propensity score model (Joffe and Rosenbaum, 1999). In 
addition, the use of matching algorithms such as caliper matching 
or matching with replacement retains the best matches thereby 
avoiding random pruning or exclusion, and hence the paradox is 
not a big concern. Furthermore, it is currently a standard practice 
to check covariate balance in the propensity score matched sample 
before estimating the treatment effect, further minimizing any risk 
of exacerbating covariate imbalance (Ali et al., 2015).

Similar to RCT, when there are residual differences in pretreatment 
characteristics between treatment groups in propensity score 
matched sample, regression adjustment can be used on the matched 
sample to reduce bias due to residual differences in important 
prognostic factors (Rubin and Thomas, 2000; Imai and Van Dyk, 
2004; Schafer and Kang, 2008). This method has been described as a 
doubly robust (DR) approach, i.e., correct specification of either the 
matching or the regression adjustment, but not necessarily both, is 
required to obtain unbiased estimate of the treatment effect (Schafer 
and Kang, 2008; Funk et al., 2011; Nguyen et al., 2017). Propensity 
score matching primarily estimates the effect of treatment in 
the treated individuals (ATT), not the effect of treatment in the 
population (treated and untreated individuals, ATE) (Imbens, 
2004; Stuart, 2008). This is because the closest untreated and treated 
individuals are matched and the remaining untreated individuals 
that were not matched are often excluded from the analysis (Stuart, 
2008; Ali et al., 2016). It is important to emphasize that exclusion 
of unmatched individuals from the analysis not only affects the 
precision of the treatment effect estimate but also could have 
consequences for the generalizability of the findings, even for the 
ATT (Lunt, 2013; Ali et al., 2016). For example, exclusion of treated 
individuals due to a lack of closer untreated matches could change 
the estimand from the effect of treatment in the treated (ATT) to the 
effect of treatment in those treated individuals for whom we can find 
untreated matches (ATT) (Lunt, 2013; Ali et al., 2016). However, it 
is possible to estimate the ATE in the matched sample with slight 
modifications of the matching algorithms. For example, using full 
matching that retains all the treated and untreated individuals in 
the study data, one can estimate either the ATE or ATT (Hansen, 
2004; Stuart, 2010). Generally, matching discards some data (often 
unmatched untreated individuals); however, it may increase the 
efficiency, reducing the estimated standard error, of the treatment 
effect estimate by reducing heterogeneity of observations (Ho et al., 
2007; Ali et al., 2016).

Propensity Score Stratification
Propensity score stratification, also called propensity score 
subclassification, involves grouping individuals into strata based 
on their propensity scores (often 5 groups using quintiles or 10 
groups using percentiles). Within these strata, treated and untreated 

individuals will have a similar distribution of measured covariates; 
hence, the effect of the treatment can be estimated by direct 
comparison of outcomes between treated and untreated groups 
within each strata (Rosenbaum and Rubin, 1984; D’Agostino, 2007; 
Ali et al., 2017a). The stratum-specific treatment effects can then 
be aggregated across subclasses to obtain an overall measure of the 
treatment effect (Rosenbaum and Rubin, 1984).

Rosenbaum and Rubin (1983, 1984) proposed quintile 
stratification on the propensity score based on their finding that 
five equal-size propensity score strata removed over 90% of the 
bias due to each of the pretreatment covariates used to construct 
the propensity score. However, it is recommended that researchers 
examine the sensitivity of their results to the number of subclasses 
by repeating the analysis using different quantiles of the propensity 
score (Imai and Van Dyk, 2004; Adelson et al., 2017). Similar to 
matching, residual imbalances after stratification can be accounted 
for using regression adjustment within each stratum (Rosenbaum 
and Rubin, 1984; Rubin, 2001). Alternatively, the propensity 
score, defined as quintiles and deciles, can be used as a categorical 
variable in a model-based adjustment to estimate treatment effects 
(Rosenbaum and Rubin, 1984; Ali et al., 2016).

Propensity score stratification can estimate the stratum-specific 
ATT, or the overall ATT across strata, or the ATE, depending on 
how the subclass treatment effect estimates are weighted. Weighting 
stratum-specific estimates by the total number of individuals 
(treated and untreated) in each stratum yields the ATE. On the 
other hand, weighting stratum-specific estimates by the proportion 
of treated individuals in each stratum provides ATT (Stuart, 2010; 
Ali et al., 2016). Similarly, pooling stratum-specific variances 
provides pooled estimates of the variance for the pooled ATT or 
ATE estimate (Imbens, 2004; Ali et al., 2016). Pooling the stratum-
specific treatment effect is straightforward when treatment effect is 
homogeneous among the propensity score strata (Ali et al., 2016). 
When there is heterogeneity of treatment effect among the strata 
even after automated iterations of the number and boundaries of 
propensity score strata (Imbens, 2004; Imbens and Rubin, 2015; 
Ali et al., 2016), pooling the stratum-specific treatment effect 
might complicate interpretation of the treatment effect estimate 
(Ali et al., 2014; Ali et al., 2016). In the presence of treatment effect 
modification regardless of the presence of confounding, Mantel-
Haenszel methods do not estimate a population parameter (ATE); 
hence, estimating the effect of treatment in the treated (ATT) rather 
than the whole population (ATE), for example, using propensity 
score matching is preferable (Stürmer et al., 2006b). Alternatively, 
one could standardize the stratum-specific estimates to a specified 
distribution of propensity scores, for example, to calculate a 
standardized mortality ratio (AMR) from the stratum-specific 
estimates (Stürmer et al., 2006b; Lunt et al., 2009)

Stratification has several advantages: it is an easy and well-
understood method to implement; it is straightforward to evaluate 
and communicate covariate balance, and to interpret particularly to 
non-technical audiences; it separates the design of the study from 
the analysis, like propensity score matching, hence less dependent 
on parametric models (Rosenbaum and Rubin, 1984); it is less 
sensitive to nonlinearities in the relationship between propensity 
scores and outcomes; and it can accommodate additional model-
based adjustments (Rosenbaum and Rubin, 1983; Rosenbaum and 
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Rubin, 1984). However, this propensity score approach is prone to 
residual confounding, which might be an issue due to propensity 
score heterogeneity within the strata.

Regression Adjustment Using Propensity 
Score
The propensity score, as a single summary of all covariates included 
in the propensity score model, can be included as a covariate in a 
regression model of the treatment, i.e., the outcome variable is 
regressed on the treatment variable and the estimated propensity 
score (Rosenbaum and Rubin, 1983; Ali et al., 2016). Although this 
approach is very easy to implement, it is generally considered to be a 
sub-optimal application of the propensity score for several reasons: 
1) The treatment effect estimation is highly model-dependent 
because it mixes the study design and data analysis steps; hence, it 
requires correct specification of the propensity score model (Rubin, 
2004b; Johnson et al., 2018). 2) It also makes additional assumptions 
unique to regression adjustment; the relationship between the 
estimated propensity score and the outcome must be linear and 
there should be no interaction between treatment status and the 
propensity score (Rosenbaum and Rubin, 1983; Austin, 2011; Ali 
et al., 2016). However, both assumptions can be checked with the 
data, and can be relaxed if necessary, for example, by combining with 
propensity score stratification. 3) It enables estimation of the ATE; 
however, its interpretation is complicated particularly in nonlinear 
models such as logistic regression or Cox regression where the 
estimand of interest is non-collapsible. Non-collapsibility refers to 
a phenomenon in which, in the presence of a non-null treatment 
effect, the marginal (overall) treatment effect estimate is different 
from the conditional (stratum-specific) treatment effect estimate, 
even in the absence of confounding (Greenland et al., 1999; Austin, 
2008b). In addition, assessment and communication of covariate 
balance are not straightforward (Ali et al., 2016).

Inverse Probability Treatment Weighting
Inverse probability weights (IPW) calculated from propensity score 
can also be used to create a weighted “artificial” population, also 
called a “pseudo-population” in which treatment and measured 
pretreatment characteristics included in the propensity score are 
independent (Hernán et  al., 2000; Robins et al., 2000; Cole and 
Hernán, 2008; Ali et al., 2016). Hence, treated individuals will be 
assigned weights equal to the inverse of their propensity scores (1/
PS, as they have received the treatment) and untreated individuals 
will be assigned weights equal to the inverse of one minus their 
propensity scores [1/(1 – PS)] (D’Agostino, 2007). A particular 
diagnostic concern in using propensity score weighting is that 
individuals with extremely large weights may disproportionately 
influence results and yield estimates with high variance (Lee et al., 
2011). When some individuals have probabilities of receiving 
the treatment close to 0 or 1, the weights for such individuals 
become extremely high or extremely low, respectively (Ali et al., 
2016). Weight stabilization to “normalize” the range of the inverse 
probabilities is often considered: the “1” in the numerator of the 
inverse probability weights can be replaced with the proportion of 
treated individuals and the proportion of untreated individuals for 

treated and untreated individuals, respectively (Hernán et al., 2000; 
Ali et al., 2016).

Alternative approaches such as weight trimming and weight 
truncation have been suggested (Cole and Hernán, 2008; Lee et al., 
2011). Weight trimming involves removing individuals in the tails 
of the propensity score distributions using percentile cut-points 
(Cole and Hernán, 2008; Lee et al., 2011), i.e., individuals who have 
extreme values of the propensity score—both very high and very low 
are excluded. On the other hand, weight truncation involves setting 
a maximum allowable weight, Wma), such that individuals with 
a weight greater than Wma) will be assigned Wma) instead of their 
actual weights. Both approaches may help stabilize weights, reduce 
the impact of extreme observations, and can improve the accuracy 
and precision of parameter estimates; however, both involve bias-
variance trade-offs (Lee et al., 2011). For example, trimming the tails 
excludes some individuals with extreme values and hence changes 
the population, which might introduce bias depending on the cut-
off (Cole and Hernán, 2008). Recently, Li et al. (2018) suggested a 
different set of weights called “overlapping weights” which weight 
each individual proportional to its probability of receiving the 
alternative treatment, i.e., the overlap weight is defined as 1-PS 
for a treated individual and PS for an untreated individual. Unlike 
standard IPW, the overlap weights are bounded between 0 and 1; 
hence, they are less sensitive to extreme weights. It also means that 
there is no need for arbitrary choice of a cut-off for inclusion in the 
analysis as well as exclusion of individuals, unlike weight trimming 
(Li et al., 2018).

In the weighted population, weighted standardized difference can 
be used to compare means, proportions, higher-order moments, and 
interactions between treated and untreated individuals. In addition, 
graphical methods can be employed to compare the distribution of 
continuous covariates between treated and untreated individuals 
(Austin and Stuart, 2015). Once sufficient covariate balance is 
achieved, the effect of the treatment can be estimated by direct 
comparison of outcomes between treated and untreated groups. 
The weights can also be used in weighted regression models to 
estimate the effect of the treatment; and adjustment can be made for 
covariates that are not sufficiently balanced in the weighted sample. 
This method focuses on estimating the average treatment effect in 
the entire population (ATE); modification of the weights allows 
to estimate the average treatment effect in the treated population 
(ATT) (Stuart, 2010; Ali et al., 2016). Most importantly, the variance 
estimation should take into account the weighted nature of the 
“pseudo-population” since some observations can have weights that 
are unequal to one another (hence, potentially inducing a within-
individual correlation in outcomes), for example, by using the sample 
weights in robust variance estimation (Hernán et al., 2000; Cole and 
Hernán, 2008; Austin and Stuart, 2015). Alternatively, bootstrapping 
could be used to construct 95% confidence intervals, which also 
takes into account the estimation of the propensity score, in addition 
to the lack of independence between duplicate observations in the 
weighted sample (Hernán et al., 2000; Austin and Stuart, 2015; Ali et 
al., 2016; Ali et al., 2017b).

Inverse probability of treatment weights (IPTW) can be also 
be used to estimate parameters of marginal structural models 
(MSMs) to deal with time-varying confounding (Hernán et 
al., 2000), time-modified confounding (Platt et al., 2009), and 
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competing risks (Hernán et al., 2000; Ali et al., 2017b). Hence, the 
implementation of propensity scores as inverse probability weights 
is often referred to as MSM using IPTW. All other propensity score 
approaches can only be extended to time-varying confounding 
and treatment settings under certain conditions as described in 
Figure 2. Comparison of the four propensity score approaches is 
summarized in Table 1.

EXTENDED APPLICATIONS

Time-Varying Treatments
In clinical practice, it is common for patients to start on a 
certain medication, stop or switch to another one (for example, 
due to intolerance or lack of adequate response); in such cases, 
treatment might be treated as a time-varying exposure. Consider 
a cohort study to estimate the effect of antiretroviral zidovudine 
treatment (AZT) in HIV (human immunodeficiency virus) 
positive individuals, on progression to AIDS (acquired immune 
deficiency syndrome), where CD4 count is a confounder. 
Assuming individuals show up for clinical visits at baseline/
pretreatment (t = 0) and then every 6 months (t = 1, 2, 3,…), 
and CD4 counts are recorded at these visits (CD4t), represented 
as CD40, CD41, CD42,…). If AZT is a time-varying dichotomous 
treatment variable indicating whether the individual is on 
antiretroviral treatment at each of the visits (AZTt, represented 
as AZT0, AZT1, AZT2,…), this means, an individual’s treatment 

plan, at each subsequent visit (t = 1,2,…), is time-varying: the 
clinician in consultation with the individual decides treatment 
AZTt based on the changing values of the individual’s clinical and 
demographic history recorded during the previous and current 
visits. These include prior treatment history, current CD4 count, 
and other confounders, which are not included in this discussion 
and ignored for now for the sake of simplicity. The relationships 
between treatment, confounder, and outcome are presented using 
directed acyclic graphs (DAGs) for clarity.

In Figure 2, we considered two time points or visits t = 
0 (baseline/pretreatment) and t = 1; hence, CD40 refers to 
baseline CD4 count and AZT0 refers to treatment at the first 
visit. Treatment decision at the first visit AZT0 is influenced 
by pretreatment CD4 count (CD40), represented in Figure 

2A by the arrow from CD40 to AZT0. In the second visit 
(t  =  1), treatment decision AZT1 is based on previous 
treatment (AZT0) and CD4 count at the current visit (CD41), 
represented in Figure 2A by the arrows from AZT0 and CD41 
to AZT1.

In settings such as DAG of Figure 2A, where there is no arrow 
from AZT0 to CD41 implying previous treatment does not affect 
current CD4 count, all the standard propensity score approaches 
can deal with the time-varying confounder CD4 count by matching, 
conditioning, stratification, or weighting, for example, by combining 
with time-varying Cox models to estimate the treatment effect. 
However, this is not biologically plausible; RCTs have proved that 
antiretroviral treatment indeed affects CD4 count. It is important 

FIGURE 2 | Causal diagrams representing time-varying treatment (AZT), outcome (progression to AIDS, AIDS), and time-varying confounding (CD4 count). 

Time-varying confounding is not affected by prior treatment (A), time-varying confounding is affected by prior treatment (B), time-varying confounding affected by 

unmeasured factor U, which is also associated with the outcome (C), and conditioning or stratifying on time-varying confounder, indicated by box around CD41), 

creates association between time-varying confounder CD40) and unmeasured factor U (D).
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to mention that there are many practical examples where both 
treatment and confounders are time-varying or dynamic, but 
previous treatment does not affect time-varying confounder; hence, 
the DAG in Figure 2A may still be valid in other situations.

When a time-varying confounder (such as CD4 count in our 
example, CD41) is affected by previous treatment (AZT0) as in the 
DAG of Figure 2B, the time-varying confounder (CD41) is also an 
“intermediate” for the effect of previous treatment (AZT0) on the 
outcome (progression to AIDS), represented by the path AZT0 → 
CD41 → AIDS. Furthermore, if there is an unmeasured common 
cause (U) of both the time-varying confounder (CD41) and the 
outcome (progression to AIDS) as in DAG of Figure 2C, the time-
varying confounder (CD41) is also a “collider” on the path AZT0 → 
CD41 ← U → AIDS (the arrows from U and CD40 collide on CD41). 
Hence, the path AZT0 → CD41 ← U → AIDS is a closed or non-
causal path because it is blocked at CD41 (using DAG terminologies). 
It also means that there is no association between AZT0 and U unless 
one conditions, matches, or stratifies on this collider, CD41 (Hernán 
et al., 2000; Robins et al., 2000). Such a time-dependent variable is a 
confounder, an intermediate, and also a collider all at the same time; 
hence, adjustment requires careful consideration.

Conventional statistical approaches including propensity score 
methods (matching, stratification, and regression adjustment) 
that condition or stratify on such a covariate will result in a biased 
estimate of the treatment effect (Hernán et al., 2000; Robins et al., 
2000). This happens because conditioning or stratifying on an 
intermediate will adjust away the indirect effect of the treatment 
mediated by the cofounder, in this case CD41; and conditioning or 
stratifying on a collider creates a spurious association between the 
treatment and the unmeasured common cause that did not exist 
before conditioning (creating an open backdoor path AZT0  → 
CD41,... U→ AIDS), which is indicated by using dotted lines 

in the DAG of Figure 2D, leading to collider-stratification bias 
(Hernán et al., 2000; Cole et al., 2009; Ali et al., 2013).

In such settings, MSM using inverse probability weighting 
is the method of choice; unlike conditioning or stratification, 
weighting creates a “pseudo-population” in which the association 
between the time-varying confounder and treatment is removed 
(Hernán et al., 2000; Robins et al., 2000). Additional methods 
are also available to deal with time-varying treatment and 
confounding including other classes of marginal structural 
models (g-formula and g-estimation of structural nested models) 
(Hernán et al., 2000; Robins et al., 2000).

It is straightforward to hypothesize that such a time-varying 
confounding can also be time-modified, which means not only the 
confounder (CD4 count) change over time but also its association 
with the treatment and its impact on the outcome (progression 
to AIDS) varies during these times. The effects of the confounder 
change over time mean that the strength of association between 
CD40 and AIDS (CD40 → AIDS) is different from that of CD41 and 
AIDS (CD41 → AIDS) (Platt et al., 2009). However, time-modified 
confounding might still exist in longitudinal treatment settings 
where the confounder is time-invariant or fixed. Standard methods 
are sufficient to deal with time-modified confounding unless the 
confounder is both time-varying and affected by previous treatment, 
which requires the implementation of marginal structural models, 
such as using inverse probability weighting.

Multiple Treatments
Propensity score methods are often used to estimate the effect of 
a binary treatment (whether treatment is received: Yes = 1 or No 
= 0) in observational data. However, with more than two levels of 
treatment, which is common in pharmacoepidemiology such as 

TABLE 1 | Comparison of the different propensity score methods.

Characteristics Matchinga Stratificationb Regressionc IPTWd

Model dependence Minimum Minimum High Minimum

Application1 Easy Easy Easy Complex

Overall transparency High High Low Medium

Easy to communicate Yes Yes Not always Not always

Design and analysis Separated Separated Mixed Separated

Easy to check balance Yes Yes No Yes

Requires unique assumption2 No No Yes No

Excluded individuals from analysis3 Yes No No Yes-No

Variance estimation Not clear Easy Easy Complex

Easy to interpret4 Not always Yes No Often

”Propensity score paradox” Sensitive No No No

Estimand5 Often ATT ATE, ATT ATE ATE, ATT

Time-varying confounding6 No No No Yes

Multiple treatments Possible Complex Complex Easier

Multi-level treatment applications Exist Exist None Exist

Treatment effect modification Easier Complex Easier Complex

aConstructs treated and untreated matched groups with similar propensity scores. bConstructs subgroups of treated and untreated individuals, often quintiles or deciles of PS. cPS 

is used, as a single summary of all covariates included in PS model, in regression model. dPSs are used as weights to create a pseudo-population in which exposure and measured 

covariates included in the treatment (PS) model are independent (Ali et al., 2016). 1Estimation of stabilized weights as well as extension to time-varying treatment and confounding 

setting in MSMs framework can be complex (Ali et al., 2016). 2Requires correct specification of PS and outcome model, apart from the basic assumptions that there is positivity 

and no unmeasured confounding (Ali et al., 2016). 3Weight trimming excludes some individuals in the tails of the propensity score distribution. 4In PSM, when treated individuals are 

excluded, interpretation of the treatment effect may change, not just ATT and in Stratification, when there is treatment effect modification by the PS, in regression adjustment using 

PS, when non-collapsible effect measures such as odds ratios are used. 5Modification of the matching or weighting method enable to estimate either ATT or ATE. 6When time-

varying confounder is affected by previous treatment, all the propensity score based methods fail to correctly control for the confounding bias including standard IPWs; however, 

MSMs using IPWs.
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comparison of three or more statins (e.g., simvastatin, atorvastatin, 
fluvastatin, lovastatin, pravastatin, and rosuvastatin) or of multiple 
doses of a certain medication (e.g., low, medium and high doses), 
estimation of treatment effects requires additional assumptions and 
modelling techniques (Imbens, 2000; McCaffrey et al., 2004). These 
include the use of multinomial logistic and multinomial probit 
models for nominal treatments and ordinal logistic regression 
or the proportional odds model for ordinal treatments (Imbens, 
2000). Alternatively, generalized boosted model, a machine learning 
approach involving an iterative process using multiple regression 
trees to capture complex, nonlinear, and non-additive relationships 
between treatment assignment and pretreatment covariates without 
the risk of over-fitting the data, can be used to fit inverse probability 
weighting for multiple treatments (McCaffrey et al., 2004). However, 
applications in pharmacoepidemiology using observational data 
are infrequent partly due to methodological complexities in fitting 
the models and understanding their assumptions as well as limited 
availability of guidance documents on these methods.

Multilevel Treatments
Propensity score methods have been extensively studied and 
widely applied in a single-level treatment (no clustering among 
participants); however, most healthcare data have a multilevel 
structure such that individuals are grouped into clusters such as 
geographical areas, treatment centers (hospital or physician), or 
insurance plans (Goldstein et al., 2002). The unknown mechanisms 
that assign individuals to clusters may be associated with individual-
level measured confounders (such as race, age, and clinical 
characteristics) and unmeasured confounders (such as unmeasured 
severity of disease, aggressiveness in seeking treatment) (Li et al., 
2013). These measured and unmeasured confounders might also 
create a cluster-level variation in treatment and/or outcome. If this 
variation is correlated with group assignment at the group or cluster 
level, it might lead to confounding (Greenland, 2000; Li et al., 2013). 
Hence, the use of standard regression or propensity score methods 
ignoring the cluster structure should be avoided. This is because 
ignoring the cluster structure often leads to invalid inferences: not 
only the standard errors are inaccurate but also the cluster-level 
effects could be confounded with individual-level effects.

Propensity score matching and weighting are often used in 
such settings (Arpino and Mealli, 2011; Li et al., 2013). One 
might consider the use of within-cluster PSM (of treated and 
untreated individuals), which automatically achieves perfect 
balance on all the measured cluster characteristics. However, it 
is very unlikely, particularly in small clusters, to find a sufficient 
number of untreated matches to treated individuals in the same 
cluster. Alternatively, PSM could be performed across clusters 
taking into account the cluster structure in the propensity score 
estimation model. Preferably, cluster structure should be taken 
into account in estimation of both the propensity score and the 
treatment effect (Li et al., 2013).

Multilevel regression models that include fixed effects and/
or random effects have been developed (Greenland, 2000; 
Goldstein et al., 2002), and extended to propensity scores 
approaches (Arpino and Mealli, 2011). Empirical applications 
of such methods in medication and device effectiveness and 

safety are rare. However, simulations studies have shown that 
multilevel propensity score matching (Arpino and Mealli, 2011) 
and weighting approaches (Li et al., 2013), without imposing a 
within-cluster matching or weighting requirement, reduce bias 
due to unmeasured cluster-level confounders.

Missing Data
Missing data is a common problem in the estimation of 
treatment effects using routinely collected data. The impact 
of such missing data on the results of the treatment effect 
estimation depends on the mechanism that caused the data 
to be missing and the way missing data are handled. Missing 
data can be categorized into three distinct classes based on 
the relationship between the missing data mechanism and the 
missing and observed values: i) Missing Completely at Random 
(MCAR), when the missing data mechanism is unrelated to the 
values of any variable, whether missing or observed. Hence, 
the observed values are representative of the entire sample 
without missing values. ii) Missing at Random (MAR), when 
the missing data mechanism is unrelated to the missing values 
but may be related to the observed values of other variables. 
iii) Missing Not at Random (MNAR), when the missing data 
mechanism is related not only to the observed values of other 
variables but also to the missing values (Rubin, 1996). For each 
of the missing data patterns, different statistical techniques are 
used to correct for its impact on the quality of the inference. It 
is important to emphasize that MCAR, MAR, and MNAR could 
exist for different variables in a specific data. However, if one 
variable is MAR or MNAR, generally, the dataset is considered 
MAR or MNAR, respectively.

Complete case analysis, including only those individuals 
who have no missing data in any of the variables that are 
required for the analysis, performs well when data are MCAR 
and may be valid under some MAR and MNAR conditions. 
However, it often results in biased estimate of the treatment 
effect if missing is at random (MAR) (Rubin, 1996; Sterne 
et  al., 2009). In MAR, as stated before, any systematic 
difference between the missing values of a variable and the 
observed values of the variable can be explained by differences 
in observed data (Sterne et al., 2009). Furthermore, missing 
data in several variables often lead to exclusion of a substantial 
proportion of the original sample, which leads to a substantial 
loss of precision (i.e., power) and hence estimates with wider 
confidence intervals (Cummings, 2013). Other approaches to 
deal with missing data include: 1) replacing missing values 
with values imputed from the observed data (for example, 
using the mean of the observed values); 2) using a missing 
category indicator; and 3) using the last observed value to 
replace missing values particularly in longitudinal studies 
[often called “last observation carried forward” (LOCF)]. 
These three approaches are generally statistically invalid, 
except under certain conditions, and they might lead to 
serious bias (Rubin, 1996; Sterne et al., 2009). Missing category 
indicator and LOCF approaches require specific assumptions 
for validity that are distinct from the MCAR, MAR, and 
MNAR categorization. On the other hand, single imputation of 
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missing values (mean imputation) usually results in too small 
standard errors, because it fails to account for the uncertainty 
about the missing values (Sterne et al., 2009).

A relatively flexible approach to allow for the uncertainty in 
the missing data is multiple imputation. Multiple imputation 
involves creating multiple different copies of the dataset 
with the missing values replaced by imputed values (Step 1); 
estimating treatment effects in each copy of the data (Step 
2); averaging the estimated treatment effects to give overall 
estimated measure of association and calculating standard 
errors using Rubin’s rules (Step 3) (Rubin, 1996; Rubin, 
2004a). Applications of propensity score methods in data 
with missing values involve a similar approach: 1) creation of 
multiple copies of imputed data; 2) estimation of propensity 
scores and treatment effects in each of the imputed copies of 
the dataset (Qu and Lipkovich, 2009; Leyrat et al., 2019); and 
3) pooling of treatment effects by averaging across the multiple 
datasets and estimation of standard errors using Ruben’s 
rule (Crowe et al., 2010; Leyrat et al., 2019) (Figure 3A). An 
alternative approach is pooling the propensity scores from 
the multiple copies of data, in step 2, and conducting the 
analysis in the pooled data (Figure 3B); however, this method 
has been proved sub-optimal in terms of bias reduction  
(Leyrat et al., 2019).

ADVANTAGES AND LIMITATIONS OF 
PROPENSITY SCORE METHODS

Previous literature reviews of observational studies have found 
that results from both traditional regression and propensity scores 
analyses are similar (Shah et al., 2005; Stürmer et al., 2006a). These 
findings may be in part due to sub-optimal implementations of 
propensity score methods (Shah et al., 2005; Austin, 2008a; Ali et al., 
2015); however, similarity of findings has been used to question the 
need for propensity score methods if they do not provide better ways 
to improve confounding control. Despite these findings, propensity 
score methods will remain advantageous for several reasons 
compared to covariate-adjustment techniques, which correct for 
covariate imbalances between treatment groups by conditioning 
them in the regression model for the outcome.

Transparency
Propensity score methods primarily aim at balancing treatment 
groups with respect to covariate distributions; when sufficient 
covariate balance is achieved, it is relatively easy to check and 
communicate the balance (Ali et al., 2015, Ali et al., 2016) by 
using simple graphical tools or quantitative statistics. In addition, 
propensity score methods, unlike regression adjustment, can 

FIGURE 3 | Multiple imputation in propensity score methods; multiple copies of imputed data are created and propensity score is estimated using these datasets. 

Treatment effects are estimated in several datasets (A) and propensity scores from multiple datasets are pooled and treatment effect estimated in a single dataset 

(B). *Other PS methods, stratification, IPTW, and covariate adjustment using PS could also be used instead of matching.
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give investigators an insight into the quality of the data at hand. 
Inadequate overlap in propensity score distributions (also called 
poor “common support”) between treatment groups should be 
considered as a warning that the data set at hand may not be 
sufficient to reliably address the causal question without “model-
dependent” extrapolations based on untrustworthy assumptions 
(Dehejia and Wahba, 2002; Rubin, 2004b; Rubin, 2007; Ali et al., 
2016). In some cases, the researcher might decide to focus on 
individuals only in the overlapping regions using propensity score 
matching or trimming; as a consequence, the conclusions of the 
findings should be restricted to individuals that are sufficiently 
represented in the overlapping regions of the propensity 
score distributions (Ali et al., 2016). Conventional regression 
methods do not provide the researcher with these possibilities. 
Furthermore, covariate balance in regression methods is a 
“black-box” and, irrespective of inadequate overlap (i.e., when 
the treated and untreated groups are disparate on pretreatment 
covariates), conventional models use extrapolations to estimate 
treatment effects that may not be generalizable to the entire 
population in the data set.

Design Tools
Similar to RCTs, propensity score methods can be considered as 
design tools for pre-processing of the data (matching, stratification, 
and weighting) without using any outcome information at this stage. 
As a result, formal causal inference models (also called the potential 
outcomes framework) (Rubin, 2005) can be applied to clearly 
specify the causal question without conflating with the modeling 
approach (Vandenbroucke et al., 2016); hence, it allows for a simple 
and transparent analysis. In addition, this approach minimizes 
bias from potential misspecification of the outcome model (Rubin, 
2004b). Furthermore, matched, stratified, and weighted analyses 
do not make strong assumptions of linearity in the relationship 
of propensity score with the outcome. If a non-parametric pre-
processing of the data using propensity score methods does not 
reduce model dependence, it is reasonable to accept that the data 
do not have enough information to reliably support the causal 
inference by any other statistical method. In fact, this knowledge in 
itself should still be useful and the conclusion may be correct (Rubin, 
2004b; Ho et al., 2007; Rubin, 2007; Ali et al., 2016).

Dimension Reduction
Propensity score typically summarizes a large number of 
measured pretreatment covariates to a single score; hence, 
it is called a “summary score.” This is particularly useful in 
high-dimensional data with a substantially large number of 
pretreatment covariates compared to the number of outcome 
events including rare events, typical of most medication 
safety studies in pharmacoepidemiology (Glynn et al., 2006). 
In this setting, maximum likelihood estimations used in 
conventional regression techniques such as logistic and Cox 
regression require several outcome events for each parameter 
included in the regression model; the rule of thumb is that 
≥  10 outcome events are required per confounder included 
in a model (Peduzzi et al., 1995; Peduzzi et al., 1996). On the 
other hand, Cepeda et al. (2003) suggested using propensity 

score when there are fewer than eight outcomes per included 
covariate to effectively improve estimation.

Doubly Robust Estimations
Generally, doubly roubst estimations (DR) estimation methods 
apply different procedures or models simultaneously and 
produce a consistent estimate of the parameter if either of the two 
models, not necessarily both, has been correctly specified (Imai 
and Ratkovic, 2014). Several applications of propensity scores 
have been described as DR in terms of estimating the effect of a 
certain treatment, including:

 1) The combined use of propensity score methods (matching, 
regression, or weighting) with regression adjustments. These 
approaches use non-parametric pre-processing of the data 
to minimize imbalances in measured covariates and, if there 
are still residual differences, the covariates can be adjusted 
in the outcome model (Rubin and Thomas, 2000; Nguyen 
et al., 2017).

 2) The combined use of propensity and prognostic score 
methods (Leacy and Stuart, 2014; Ali et al., 2018b); a 
prognostic score is any function of a set of covariates that when 
conditioned on creates independence between the potential 
outcome under the control (no treatment) condition and the 
unreduced covariates (Hansen, 2008). Hence, differences in 
outcomes between treated and untreated individuals can 
be attributed to the effect of the treatment under study. The 
two approaches could be combined in several ways such 
as full matching on a Mahalanobis distance combining the 
estimated propensity and prognostic scores; full matching 
on the estimated prognostic score within propensity score 
calipers; and subclassification on an estimated propensity 
and prognostic score grid with five subclasses, among 
others (Leacy and Stuart, 2014; Ali et al., 2018b). Methods 
combining propensity and prognostic scores were no less 
robust to model misspecification than single-score methods 
even when both prognostic and propensity score models 
were incorrectly specified in simulation and empirical 
studies (Leacy and Stuart, 2014).

 3) The use of covariate balancing propensity score (CBPS) 
introduced by Imai and Ratkovic (2014) involves estimation 
of the propensity score such that the resulting covariate 
balance is optimized. This approach utilizes the dual 
characteristics of the propensity score as a covariate 
balancing score and the conditional probability of treatment 
assignment. Specifically, “the covariate balancing property 
(i.e., mean independence between the treatment status and 
measured covariates after inverse propensity score weighting) 
is used as condition to imply estimation of the propensity 
score while also incorporating the standard estimation 
procedure” (Imai and Ratkovic, 2014). Unlike other covariate 
balancing methods, a single model determines the treatment 
assignment mechanism and the covariate balancing weights. 
Once CBPS is estimated, various propensity score methods 
such as matching and weighting can be implemented without 
modification (Imai and Ratkovic, 2014). The basic idea of 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Propensity Score Methods in HTAAli et al.

14 September 2019 | Volume 10 | Article 973Frontiers in Pharmacology | www.frontiersin.org

CBPS is optimizing covariate balance so that even when the 
propensity score model is misspecified, there will still be a 
reasonable balance of the covariates between the treatment 
and comparator groups. Unlike standard DR estimators, 
however, the CBPS approach does not require estimation of 
the outcome model.

 4) Calculation of DR estimators using different approaches, 
for example, using the propensity score, predicted, and 
observed outcome (Ŷ and Y, respectively). This approach 
involves specifying regression models for the treatment 
(Z) and the outcome (Y) as a function of covariates (X) 
and combining these subject-specific values to calculate 
the DR estimate for each individual. First, treatment is 
modelled as a function of covariates to estimate propensity 
scores for each individual using the observed data. Second, 
the relationships between measured confounders and the 
outcome are modelled within treated and untreated groups 
separately. The resulting parameter estimates are then used 
to calculate predicted outcomes (Ŷ1, Ŷ0) for each individual 
in the population that is treated (setting Z = 1) and not 
treated (setting Z = 0) given covariate values. Third, 
the DR estimates of the outcome are calculated for each 
individual both in the presence and absence of treatment 
(DR1 and DR0), respectively) using the subject-specific 
predicted (Ŷ) and observed (Y) outcomes weighted by the 
propensity score. Finally, the means of DR1 and DR0 are 
calculated across the entire study population and these 
means will be used to calculate the effect of the treatment 
(Funk et al., 2011).

Unmeasured Confounding
Propensity score methods, like other conventional regression 
methods, can account for only measured confounding factors 
and not unmeasured factors (Rosenbaum and Rubin, 1983). 
Therefore, propensity score analyses are only as good as 
the completeness and quality of the potential confounding 

variables that are available to the researcher. The only way 
to convince a critical reader that the study is not subject to 
unmeasured confounding is to have a rich set of covariates 
for constructing the propensity score model. Therefore, it 
is important to provide a detailed account of the variables 
collected and included in the propensity score model (Ali 
et al., 2015).

Modifications of the standard propensity score applications 
have been suggested to further reduce the risk of unmeasured 
confounding including the use of high-dimensional propensity 
score and propensity score calibration. High-dimensional 
propensity score refers to the use of a large number (in the 
range of several hundreds) of covariates to improve control of 
confounding; the underlying assumption is that the variables 
may collectively be proxies for unobserved confounding factors 
(Schneeweiss et al., 2009; Rassen et al., 2011). Propensity score 
calibration refers to the use of a “gold standard” propensity score 
estimated in a separate validation study, with more detailed 
covariate information unmeasured in the main study, to correct 
the main-study effect of the drug on the outcome (Stürmer et al., 
2005; Stürmer et al., 2007).

Furthermore, sensitivity analyses (Rosenbaum and Rubin, 
1983; Rosenbaum, 2005) are useful to assess the plausibility of 
the assumptions underlying the propensity score methods and 
how violations of them might affect the conclusions drawn 
(Stuart, 2010). Methods to deal with unmeasured confounding 
are summarized in Figure 1.

Effect Modification
In estimating treatment effects, there is often an interest 
to explore if the effect of treatment varies among different 
subgroups (for example, men versus women) of the population 
under study, often called “treatment effect modification.” 
There are many ways to utilize propensity score methods 
to adjust for confounding in a subgroup analysis; however, 
common implementation of propensity score matching in the 
medical literature is sub-optimal (Wang et al., 2017; Ali et al., 

FIGURE 4 | Methods to assess treatment effect modification in propensity score matching.
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2018a). The use of propensity score matched (PSM) cohort for 
subgroup analysis breaks the matched sets and might result 
in imbalance of covariates (Ali et al., 2018a). Depending on 
the frequency of treatment or outcome, small changes in the 
matched cohort might lead to large fluctuations for measures 
of association (Rassen et al., 2012).

To account for covariate imbalances, subgroup analyses 
of propensity score matched cohorts involve: i) adjusting for 

covariates in the outcome model or ii) re-matching within the 
subgroups either using the propensity score estimated in the full 
cohort or fitting new propensity score within subgroups (Figure 4) 
(Rassen et al., 2012; Wang et al., 2017). The choice of a specific 
method should take into account several factors: prevalence of 
the treatment and the outcome; strength of association between 
pretreatment covariates and the treatment; the true effect size 

TABLE 2 | Summary of considerations when planning, conducting, and reporting propensity score analysis.

Characteristics What to consider Methods available to deal with What should or should not be done

Missing data Missing data mechanism Multiple imputation if missing at 

random (MAR)

Avoid complete case analysis and missing 

indicator category, the later may be biased even 

when MCAR assumption holds.

Variable selection Potential confounders, intermediates, 

colliders

Clinical knowledge/expert opinion. Avoid adjusting for intermediates, colliders, and 

strong instrumental variables the later (only when 

sure or suspect strong unmeasured confounding).

Association between variables with 

outcome (and treatment).

Avoid the use of p-values, or step-wise variable 

selection methods.

Balance diagnostics.

Propensity score estimation Variables included, interactions and 

higher order terms.

Logistic regression, Recursive 

partitioning, Neural network, 

Classification and regression trees, 

Random forest, and Boosting 

regression.

Report on the method used for estimation 

and variables included in the propensity score 

method.

Propensity score methods The research question, the treatment 

effect estimand, and the extent of 

overlap.

Density plots of propensity scores. Report the density plots or histograms in 

the propensity score distribution (preferably 

overlapping coefficients of the density plots).

Propensity score matching Matching algorithm, matching 

with or with our replacement, and 

matching ratio

Exact (coarsened) matching, nearest 

neighbor matching (with or without 

caliper), stratified matching, and 

full matching. Matching ratio can 

be: 1-to-1 matching, 1-to- many 

matching, variable ratio matching, 

and full matching.

Report on the number of starting population, 

number matched, and number excluded (with 

their pre-treatment characteristics).

Propensity score stratification Number of strata Deciles and quintiles of propensity 

scores.

Report on the number of strata used and the 

covariate balance between treatment groups in 

each strata.

Regression adjustment using 

propensity score

Linear relationship between the 

outcome and the propensity core.

Report on whether linear relationship between 

the outcome and propensity core is checked 

and is fulfilled.

Inverse probability of treatment 

weighting

Whether there is sufficient overlap 

(positivity).

Weighted regression. Robust variance 

estimation or Bootstrapping for 

constructing confidence intervals.

Report on how weights are calculated, if 

weights are stabilized, the mean weights in both 

treatment groups, if trimming has been done.

Time-varying exposure Whether there is time-varying 

confounding, and if any, whether it is 

affected by previous treatment.

Marginal Structural models using 

IPTW, G-formula and G-estimation of 

structural nested models.

If previous treatment affect time-varying 

confounding avoid matching, stratification and 

regression adjustment; apply MSM using IPTW.

Treatment effect modification Identify potential effect modifier. Matching on PS within strata of effect 

modifier, among others.

Avoid the use of stratified analysis using the PSM 

data without adjustment for covariates.

Multilevel treatment Whether multilevel structure exists 

in the data, the number of clusters/

levels

Multilevel propensity score methods. Avoid use of single-level propensity score 

applications. Include multilevel structure at 

least in propensity score estimation or outcome 

analysis, preferably in both.

Multiple treatments Number of treatment groups, whether 

there is order in the treatment 

categories (such as dosage).

Multiple matching and weighting: 

multinomial logistic regression, ordinal 

logistic regression, or generalized 

boosted model.

Residual Confounding Whether there is imbalance in 

covariates.

Doubly robust methods, propensity 

score calibration (PSC), high 

dimensional propensity score (HDPS) 

method.

Report on which method was used and why?

Unmeasured confounding Whether there is potential 

unmeasured confounding, or 

whether the data contain proxies for 

unmeasured confounding.

Alternative methods such as 

instrumental variable methods, PSC, 

HDPS, or consider sensitivity analysis.

Report on the method used and the sensitivity 

analysis conducted.
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within subgroups; and the amount of confounding within the 
subgroups (Wang et al., 2018).

REPORTING

The credibility of any research depends on a critical assessment 
by others of the strengths and weaknesses in study design, 
conduct, and analysis. Hence, transparent and adequate 
reporting of critical aspects of propensity score-based analysis 
(Ali et al., 2015), like other observational studies, helps readers 
follow “what was planned, what was done, what was found, 
and what conclusions were drawn” (Von Elm et al., 2007). It 
also makes it easier for other researchers to replicate the study 
findings using other data sources and to judge whether and 
how results can be included in systematic reviews (Von Elm 
et al., 2007). Despite substantial methodological developments 
and common applications of the propensity score methods, 
in general, reporting on important features of the propensity 
score analysis is poor, incomplete, and inconsistent in the 
medical literature (Austin, 2008a; Ali et al., 2015; Ali et al., 
2016; Wang et al., 2017). This could in part be due to a lack 
of standards for the conduct and reporting of propensity 
score based studies in guidelines. Therefore, critical items 
relevant to propensity score analyses should be incorporated 
in guidelines on the conduct and reporting of observational 
studies, such as the STROBE statement (Von Elm et al., 2007; 
Ali et al., 2015) and the ENCePP guide on methodological 
standards in pharmacoepidemiology (Blake et al., 2012; Ali 
et al., 2015) to improve the quality of the conduct and reporting 
of propensity score based studies (Ali et al., 2015; Ali et al., 
2016). Table 2 summarizes important consideration when 
planning, conducting, and reporting propensity score analysis 
and list of items that should be reported are summarized by 
Ali et al. (2016).

CONCLUSION

Propensity score methods will remain important design and 
analytic tools to estimate effects of treatment from observational 
data. Preferably, they should be utilized in the design stage as 
tools for preprocessing of the data and they should be considered 
complementary tools, and not replacements, to conventional 
regression adjustments. In fact, when appropriate, propensity score 
methods should be used in combination with other model-based 
regression techniques. In addition, propensity score methods 
should not be regarded as magical remedies for the inadequacies of 
observational studies such as residual or unmeasured confounding 
(Rubin and Thomas, 2000; Ali et al., 2016). The ability of propensity 
score methods to overcome confounding is entirely dependent 
on the extent to which measured variables capture potential 
confounding. Taking full advantage of these methods requires 
explicit definition of the research question and appropriate 
choice of the propensity score method, transparent and detailed 
description of all subsequent statistical analyses to be conducted, 
and adequate reporting of the important aspects of the propensity 
score analyses (Ali et al., 2016).
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