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Abstract In this paper, using the framework of equivariant differential geometry, we study
proper SO(p + 1) × SO(q + 1)-invariant biconservative hypersurfaces into the Euclidean
space R

n (n = p + q + 2) and proper SO(p + 1)-invariant biconservative hypersurfaces
into the Euclidean space R

n (n = p + 2). Moreover, we show that, in these two classes of
invariant families, there exists no proper biharmonic immersion.
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1 Introduction

A hypersurface Mn−1 in an n-dimensional Riemannian manifold Nn is called biconservative
if
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404 S. Montaldo et al.

2A(grad f ) + f grad f = 2 f RicciN (η)�, (1.1)

where A is the shape operator, f = trace A is (n − 1) times the mean curvature function,
and RicciN (η)� is the tangent component of the Ricci curvature of N in the direction of the
unit normal η of M in N .

As we shall detail in Sect. 2, biconservative hypersurfaces are those with divergence-free
stress-bienergy tensor and can be characterized as the hypersurfaces with vanishing tangent
component of the bitension field

τ2(ϕ) = −�τ(ϕ) − trace RN (dϕ, τ(ϕ))dϕ. (1.2)

To give sense to (1.2), we recall that a smooth map ϕ : (M, g) → (N , h) is a harmonic
map if it is a critical point of the energy functional

E(ϕ) = 1

2

∫
M

|dϕ|2 dvg, (1.3)

of which the Euler–Lagrange equation is τ(ϕ) = trace∇dϕ = 0. A natural generalization
of harmonic maps is the so-called biharmonic maps: these maps are the critical points of the
bienergy functional (as suggested by Eells–Lemaire [10])

E2(ϕ) = 1

2

∫
M

|τ(ϕ)|2 dvg. (1.4)

In [20], G. Jiang showed that the Euler–Lagrange equation associated with E2(ϕ) is given
by τ2(ϕ) = 0.

An immersed submanifold into a Riemannian manifold (N , h) is called a biharmonic
submanifold if the immersion is a biharmonic map. Thus, biharmonic hypersurfaces are
biconservative.

In this paper, we consider biconservative hypersurfaces in the Euclidean space Rn . In this
case, (1.1) becomes

2A(grad f ) + f grad f = 0. (1.5)

From (1.5),we see immediately thatCMChypersurfaces are biconservative. Thus, our interest
will be on biconservative hypersurfaces which are not CMC: we shall call them proper
biconservative.

In [4] and [17], the authors have classified proper biconservative surfaces in R
3, proving

that theymust be of revolution. In higher-dimensional Euclidean spaces, the situation is rather
different, as shown in [17], where the authors have found other families of biconservative
hypersurfaces inR4, and, in particular, they have shown that some of them are SO(1)×SO(1)-
invariant. Recently, in [5], the authors proved that a δ(2)-ideal biconservative hypersurface
in Euclidean space R

n (n ≥ 3) is either minimal or a spherical hypercylinder. Moreover,
we would like to mention that there is parallel study of biconservative hypersurfaces in
semi-Riemannian geometry (see, for example, [13]).

In [28], the author carried out a complete classification of biconservative hypersurfaces in
R
n with at most three distinct principal curvatures. In particular, he showed that they can only

be either SO(p + 1) × SO(q + 1)-invariant hypersurfaces or generalized cylinders over a
rotational hypersurface. Our goal is to perform a detailed qualitative study of biconservative
SO(p + 1) × SO(q + 1)-invariant hypersurfaces in R

n, n = p + q + 2, and biconservative
SO(p + 1)-invariant hypersurfaces in R

n, n = p + 2, using the framework of equivariant
differential geometry in the spirit of [12,19] and [24]. These invariant hypersurfaces are
completely described by means of their associated profile curve γ (s) in the orbit space (see
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Proper biconservative immersions into the Euclidean space 405

Definition 3.1 below). Our analysis will lead us to the following main results (Theorem 1.1
is an immediate consequence of Theorem 4.12, which we shall prove in Sect. 4):

Theorem 1.1 There exists an infinite family of proper SO(p + 1) × SO(q + 1)-invariant
biconservative hypersurfaces (cones) in R

n (n = p + q + 2). Their corresponding profile
curves γ (s) tend asymptotically to the profile of a minimal cone. If p + q ≤ 17, at infinity
the profile curves γ intersect the profile of the minimal cone at infinitely many points, while,
if p+ q ≥ 18, at infinity the profile curves γ do not intersect the profile of the minimal cone.
None of these hypersurfaces is complete.

Remark 1.2 The lack of completeness is due to the fact that these hypersurfaces present a
topological (cone-like) singularity at the origin of Rn .

Theorem 6.5. There exists an infinite family of complete, proper SO(p+1)-invariant bicon-
servative hypersurfaces in R

n (n = p + 2). Their corresponding profile curves γ (s) are of
“catenary” type.

The study of biconservative hypersurfaces in the Euclidean space is also relevant for the
study of biharmonic hypersurfaces. In fact, for biharmonic submanifolds in R

n , it is still
open the Chen’s conjecture (see [6]): biharmonic submanifolds into R

n are minimal. The
conjecture is still open even for biharmonic hypersurfaces inRn . As we have already noticed,
biharmonic hypersurfaces are biconservative; thus, a way to tackle the Chen conjecture is
to prove that, amongst the proper biconservative hypersurfaces, none is proper biharmonic.
Clearly, SO(p + 1)-invariant hypersurfaces in R

n (n = p + 2) have at most two distinct
principal curvatures, and, by a result of Dimitric (see [8]), any biharmonic hypersurface in
R
n with at most two distinct principal curvatures is minimal. By contrast, the SO(p + 1) ×

SO(q + 1)-invariant hypersurfaces of Theorem 1.1 have three distinct principal curvatures,
and there is no general result that forces a biharmonic hypersurface in R

n with at least three
distinct principal curvatures to be minimal. The only exceptions are hypersurfaces in R

4 or
in R

5, for which it was proved, in [9,17] and [14], respectively, that biharmonicity implies
minimality.

Following this venue, we show in Sect. 5 that, amongst our proper SO(p+1)×SO(q+1)-
invariant biconservative hypersurfaces inRn (n = p+q+2), there are no proper biharmonic
hypersurfaces. This result may be considered as a further step towards the proof of Chen’s
conjecture.

2 Biharmonic maps and the stress-energy tensor

As described byHilbert in [18], the stress-energy tensor associatedwith a variational problem
is a symmetric 2-covariant tensor S conservative at critical points, i.e. with div S = 0.

In the context of harmonic maps ϕ : (M, g) → (N , h) between two Riemannian mani-
folds, the stress-energy tensor was studied in detail by Baird and Eells in [1] (see also [27]
and [2]). Indeed, the Euler–Lagrange equation associated with the energy functional (1.3) is
equivalent to the vanishing of the tension field τ(ϕ) = trace∇dϕ (see [11]), and the tensor

S = 1

2
|dϕ|2g − ϕ∗h

satisfies div S = −〈τ(ϕ), dϕ〉. Therefore, div S = 0 when the map is harmonic.

Remark 2.1 We point out that, in the case of isometric immersions, the condition div S = 0
is always satisfied, since τ(ϕ) is normal.
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406 S. Montaldo et al.

Now, we begin our study of the bienergy functional (1.4) and of its associated Euler–
Lagrange equation (1.2). In particular, we point out that, in the expression (1.2) of the biten-
sion field, � is the rough Laplacian on sections of ϕ−1 (TN) that, for a local orthonormal
frame {ei }mi=1 on M , is defined by

� = −
m∑
i=1

{
∇ϕ
ei ∇ϕ

ei − ∇ϕ

∇M
ei
ei

}
.

The curvature operator on (N , h), which also appears in (1.2), can be computed by means
of

RN (X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] .

The study of the stress-energy tensor for the bienergy was initiated in [21] and afterwards
developed in [22]. Its expression is

S2(X, Y ) = 1

2
|τ(ϕ)|2〈X, Y 〉 + 〈dϕ,∇τ(ϕ)〉〈X, Y 〉

−〈dϕ(X),∇Y τ(ϕ)〉 − 〈dϕ(Y ),∇X τ(ϕ)〉,
and it satisfies the condition

div S2 = −〈τ2(ϕ), dϕ〉, (2.1)

thus conforming to the principle of a stress-energy tensor for the bienergy.
If ϕ : (M, g) → (N , h) is an isometric immersion, then (2.1) becomes

div S2 = −τ2(ϕ)�.

This means that isometric immersions with div S2 = 0 correspond to immersions with van-
ishing tangent part of the corresponding bitension field. The decomposition of the bitension
field with respect to its normal and tangent components was obtained with contributions of
[3,7,23,25,26], and for hypersurfaces, it can be summarized in the following theorem.

Theorem 2.2 Let ϕ : Mn−1 → Nn be an isometric immersion with mean curvature vector
field H = ( f/(n − 1)) η. Then, ϕ is biharmonic if and only if the normal and the tangent
components of τ2(ϕ) vanish, i.e., respectively,

� f + f |A|2 − f RicciN (η, η) = 0 (2.2a)

and

2A(grad f ) + f grad f − 2 f RicciN (η)� = 0, (2.2b)

where A is the shape operator andRicciN (η)� is the tangent component of theRicci curvature
of N in the direction of the unit normal η of M in N.

Finally, from (2.2b), an isometric immersion ϕ : Mn−1 → Nn satisfies div S2 = 0, i.e. it
is biconservative, if and only if

2A(grad f ) + f grad f − 2 f RicciN (η)� = 0

which is Eq. (1.1) given in the introduction.
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Proper biconservative immersions into the Euclidean space 407

3 SO( p)× SO(q)-invariant immersions into Euclidean spaces

In this section, we carry out the differential geometric work, which is necessary in order
to study biconservative SO(p + 1) × SO(q + 1)-invariant immersions into the Euclidean
R
n, n = p + q + 2. More precisely, assuming the canonical splitting R

n = R
p+1 × R

q+1,
we shall study isometric immersions of the following type:

ϕp,q : M = S
p × S

q × (a, b) → R
p+1 × R

q+1

(w , z , s ) 
−→ (x(s)w, y(s) z),
(3.1)

where (a, b) is a real interval which will be precised during the analysis and x(s), y(s) are
smooth positive functions. When it is clear from the context, we shall write ϕ instead of ϕp,q .
We shall also assume that

ẋ2 + ẏ2 = 1, (3.2)

so that the induced metric on the domain in (3.1) is given by:

g = x2(s) gSp + y2(s) gSq + ds2, (3.3)

where gSp and gSq denote the Euclidean metrics of the unit spheres Sp and S
q , respectively.

We also note that the unit normal to ϕ(M) can be conveniently written as

η = (− ẏ w, ẋ z). (3.4)

Immersions of type (3.1) areG = SO(p+1)×SO(q+1)-invariant, and therefore, we can
work in the framework of equivariant differential geometry (see [12,19,24]). In particular,
the orbit space coincides with the flat Euclidean first quadrant

Q = R
n/G = {

(x, y) ∈ R
2 : x, y ≥ 0

}
. (3.5)

We note that regular (i.e. corresponding to a point (x, y) with both x, y > 0) orbits are of
the type Sp ×S

q . The orbit associated with the origin is a single point, while the other points
on the x-axis (respectively, the y-axis) correspond to S

p (respectively, Sq ).

Definition 3.1 The curve γ (s) = (x(s), y(s)) in the orbit space Q, where x(s), y(s) are
the functions which appear in (3.1), is called the profile curve associated with the equivariant
immersion.

We also note that, since (3.2) holds, it is often convenient to express quantities with respect
to the angle α that the profile curve γ (s) = (x(s), y(s)) forms with the x-axis. In particular,
we have: {

ẋ = cosα

ẏ = sin α
(3.6)

and also, for future use,
α̇ = ÿ ẋ − ẍ ẏ. (3.7)

The property that an immersion of type (3.1) is biconservative (respectively, biharmonic) is
equivalent to the fact that γ verifies an ODE (respectively, a system of ODE) in the orbit
space. More precisely, we prove the following result:

Proposition 3.2 Let ϕ be an immersion as in (3.1) and let

f = α̇ + p
sin α

x
− q

cosα

y
. (3.8)
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408 S. Montaldo et al.

Then, the tangential and normal parts of the bitension field τ2(ϕ) vanish if, respectively,

ḟ ( f + 2 α̇) = 0 (3.9)

and

f̈ + ḟ

(
p
ẋ

x
+ q

ẏ

y

)
− f

(
p

(
ẏ

x

)2

+ q

(
ẋ

y

)2

+ α̇2

)
= 0. (3.10)

Proof We write down explicitly τ(ϕ). For this purpose, let {Xi }pi=1 and {Ya}qa=1 be local
orthonormal frames on S

p and S
q , respectively, and let ∂s = ∂/∂s be the tangent vector field

to (a, b). Then, the frame {
Xi

x
,
Ya
y

, ∂s

}
i=1,...,p; a=1,...,q

(3.11)

is a local orthonormal frame on M with respect to the induced metric (3.3). Now, using the
definition of the pull-back connection and the Weingarten equation of Sp in R

p+1 (respec-
tively, of Sq in R

q+1), we obtain

∇ϕ
Xi
x

dϕ

(
Xi

x

)
= ∇R

p+1

Xi
Xi , ∇ϕ

Ya
y

dϕ

(
Ya
y

)
= ∇R

q+1

Ya Ya . (3.12)

Moreover, defining the following vector fields on R
n

Z1(w̃, z̃) = (w̃, 0), Z2(w̃, z̃) = (0, z̃),

we have

∇ϕ
∂s
dϕ (∂s) = ∇ϕ

∂s
(ẋ w, ẏ z) = ∇ϕ

∂s
(ẋ w, 0) + ∇ϕ

∂s
(0, ẏ z)

=∇ϕ
∂s

[
ẋ

x
(x w, 0)

]
+∇ϕ

∂s

[
ẏ

y
(0, y w)

]
=∇ϕ

∂s

[
ẋ

x
(Z1 ◦ ϕ)

]
+∇ϕ

∂s

[
ẏ

y
(Z2 ◦ ϕ)

]

= ẍ x − ẋ2

x2
(x w, 0) + ẋ

x
∇R

n

(ẋ w,ẏ z)Z1 + ÿ y − ẏ2

y2
(0, y z) + ẏ

y
∇R

n

(ẋ w,ẏ z)Z2

= (ẍ w, ÿ z) = α̇ η. (3.13)

To conclude the computation of the tension field, bearing in mind that the nonzero Christoffel
symbols of the metric (3.3) are


k
i j = S

p

k
i j , 
c

ab =S
q


c
ab ,


α
i j = −x ẋ (gSp )i j , 
α

ab = −y ẏ (gSq )ab, α = p + q + 1,

we can write

∇M
Xi
x

Xi

x
= 1

x2
∇S

p

Xi
Xi − ẋ

x
∂s, ∇M

Ya
y

Ya
a

= 1

y2
∇S

q

Ya Ya − ẏ

y
∂s . (3.14)

Finally, taking into account (3.12)–(3.14) and that

dϕ(∇S
p

Xi
Xi ) = x2 ∇S

p(x)
Xi

Xi , dϕ(∇S
q

Ya Ya) = y2 ∇S
q (y)

Ya
Ya
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Proper biconservative immersions into the Euclidean space 409

where Sp(x) and S
q(y) are the spheres of radius x and y, respectively, we obtain

τ(ϕ) =
∑
i

{
∇ϕ

Xi
x

dϕ

(
Xi

x

)
− dϕ

(
∇M

Xi
x

Xi

x

)}
+

∑
a

{
∇ϕ

Ya
y

dϕ

(
Ya
y

)
− dϕ

(
∇M

Ya
y

Ya
y

)}

+∇ϕ
∂s
dϕ (∂s) − dϕ

(
∇M

∂s
∂s

)

=
∑
i

{
∇R

p+1

Xi
Xi − ∇S

p(x)
Xi

Xi

}
+

∑
a

{
∇R

q+1

Ya Ya − ∇S
q (y)

Ya
Ya

}
+

(
p
ẋ

x
+ q

ẏ

y

)

dϕ(∂s) + α̇ η

= − p

x
w − q

y
z +

(
p
ẋ

x
+ q

ẏ

y

)
dϕ(∂s) + α̇ η.

Now, since ϕ is an isometric immersion, τ(ϕ) = f η, and, by direct inspection,

f = α̇ + p
ẏ

x
− q

ẋ

y
. (3.15)

We now proceed to the computation of the shape operator of the isometric immersion ϕ.
Since, for X ∈ C(TSp), we have (using the notation of (3.13))

∇ϕ
Xη = ∇ϕ

X (−ẏ w, ẋ z) = ∇ϕ
X

[
− ẏ

x
(x w, 0) + ẋ

y
(0, y z)

]

= ∇ϕ
X

[
− ẏ

x
(Z1 ◦ ϕ)

]
+ ∇ϕ

X

[
ẋ

y
(Z2 ◦ ϕ)

]

= −ẏ X = dϕ

(
− ẏ

x
X

)
,

we conclude that

A(X) = ẏ

x
X.

Similarly, for Y ∈ C(TSq), we obtain

A(Y ) = − ẋ

y
Y.

Moreover, with analogous computations, we find

∇ϕ
∂s

η = dϕ(−α̇ ∂s),

thus

A(∂s) = α̇ ∂s .

Then, with respect to the frame (3.11), the matrix of the shape operator is the diagonal matrix
with entries in the diagonal:

p-times︷ ︸︸ ︷
ẏ

x
· · · ẏ

x

q-times︷ ︸︸ ︷
− ẋ

y
· · · − ẋ

y
α̇ (3.16)

Note that, from (3.16), we recover (3.15), since f = trace A. To compute the tangential
and normal parts of the bitension field τ2(ϕ), we use Theorem 2.2. Since grad f = ḟ ∂s ,
from (2.2b) and the expression of the shape operator (3.16), we immediately deduce that the
tangential component of τ2(ϕ) vanishes when (3.9) is satisfied. As for the normal part, we
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410 S. Montaldo et al.

need to compute the Laplacian of f . Using the orthonormal frame (3.11) and taking into
account (3.14), we find

−� f =
∑
i

{
1

x
Xi

(
1

x
Xi ( f )

)
−

(
∇M

Xi
x

Xi

x

)
f

}
+

∑
a

{
1

y
Ya

(
1

y
Ya( f )

)
−

(
∇M

Ya
y

Ya
y

)
f

}

+∂s(∂s( f )) −
(
∇M

∂s
∂s

)
f

= p
ẋ

x
ḟ + q

ẏ

y
ḟ + f̈ .

Finally, since

|A|2 = p

(
ẏ

x

)2

+ q

(
ẋ

y

)2

+ α̇2

we obtain that the normal part of τ2(ϕ) vanishes when (3.10) is satisfied. 
�
Remark 3.3 We point out that the function f in (3.8) coincides, up to a constant factor,
with the mean curvature function. In particular, we recover immediately from (3.9) the well-
known property, already announced in the introduction that a CMC immersion in R

n is
biconservative. We shall prove below that there exist biconservative immersions of type (3.1)
which are not CMC: we shall call them proper biconservative immersions.

4 Proper SO( p)× SO(q)-invariant biconservative immersions

According to (3.9), an immersion of type (3.1) is proper biconservative if f is not constant
and

f + 2 α̇ = 0.

Taking into account (3.8), we see that the previous equation is equivalent to:

3 α̇ + p
sin α

x
− q

cosα

y
= 0. (4.1)

Remark 4.1 Since the only curves with α̇ = constant �= 0 are arcs of circles parametrized
by arc length, it is easy to check by direct inspection that (4.1) does not admit any solution
with α̇ = constant �= 0. We also observe that the only solution of (4.1) with α̇ = 0 is the line
y = √

(q/p) x (parametrized by arc length). This solution corresponds to a minimal cone in
R
n . We conclude that an immersion of type (3.1) is proper biconservative if and only if the

profile curve γ is a solution of (4.1) with α̇ not identically zero.

An immediate consequence of (4.1) is the following result.

Proposition 4.2 Let ϕp,q be an immersion of type (3.1), γ (s) = (x(s), y(s)) its profile curve
and assume that p = 3p′ and q = 3q ′. Ifϕp,q is proper biconservative, thenϕp′,q ′ is minimal.
Conversely, if ϕp′,q ′ is minimal, then ϕp,q is either minimal or proper biconservative.

Proof The assertion follows easily from the fact that if p = 3p′ and q = 3q ′, then (4.1)
becomes

3

(
α̇ + p′ sin α

x
− q ′ cosα

y

)
= 3 f p′,q ′ = 0.


�
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Proper biconservative immersions into the Euclidean space 411

In order to state our results concerning existence and qualitative behaviour of solutions of
(4.1), we first carry out some preliminary analytical work. First, we introduce two quantities,
which play an important role in the study of solutions of (4.1):

Lemma 4.3 Let
I = y(q/3) cosα and J = x (p/3) sin α. (4.2)

Then, I and J are increasing along solutions of (4.1).

Proof We compute

İ = q

3
y(q/3)−1 ẏ cosα − y(q/3) sin α α̇

= p

3

sin2 α

x
y(q/3) ≥ 0, (4.3)

where, in order to obtain the second equality, we have used (4.1) and (3.6). Similarly, we
compute

J̇ = q

3

cos2 α

y
x (p/3) ≥ 0. (4.4)


�
Next, we observe that (4.1) is invariant by homotheties: in other words, if γ (s) is a solution of
(4.1), so is γc(s) = (1/c) γ (cs), ∀ c �= 0. This invariance suggests to study the qualitative
behaviour of solutions in the (ϑ, α)-plane, where the angle ϑ is related to x, y by means of
the usual polar coordinate transformation:{

x = r cosϑ

y = r sin ϑ, 0 < ϑ < (π/2).
(4.5)

Lemma 4.4 Let us consider the following vector field

X (ϑ, α) = 3 ( cosϑ sin ϑ sin(α − ϑ) )
∂

∂ϑ
+ ( p sin α sin ϑ − q cosα cosϑ)

∂

∂α
(4.6)

in the (ϑ, α)-plane. The solutions of (4.1) correspond to the trajectories of X (ϑ, α), 0 <

ϑ < (π/2), that is they are solutions of the following first-order differential system:{
ϑ̇ = 3 sin ϑ cosϑ sin(α − ϑ)

α̇ = q cosα cosϑ − p sin α sin ϑ.
(4.7)

Proof We use the following equalities:

(i)
dα

dϑ
= α̇

ds

dϑ
(ii)

dϑ

ds
= sin(α − ϑ)

r
. (4.8)

The equality (4.8) (i) is obvious; as for (4.8) (ii), we use (3.6) and observe that differentiation
in (4.5) yields: {

cosα ds (= dx) = cosϑ dr − r sin ϑ dϑ
sin α ds (= dy) = sin ϑ dr + r cosϑ dϑ.

(4.9)

Next, wemultiply the first equation in (4.9) by− sin ϑ , the second equation in (4.9) by cosϑ ,
and then, we add them to obtain

r dϑ = (sin α cosϑ − cosα sin ϑ) ds

= sin(α − ϑ) ds,
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412 S. Montaldo et al.

from which (4.8) (ii) follows immediately. Next, using (4.5) and (4.8) (i), (ii) we find that
(4.1) becomes

3
dα

dϑ

sin(α − ϑ)

r
+ p

sin α

r cosϑ
− q

cosα

r sin ϑ
= 0,

which we rewrite as:

3 ( cosϑ sin ϑ sin(α − ϑ) ) dα + ( p sin α sin ϑ − q cosα cosϑ) dϑ = 0. (4.10)

Finally, (4.7) follows readily from (4.10). 
�
Remark 4.5 We point out that to each trajectory of the vector field X (ϑ, α) corresponds a
family of homothetic solutions of (4.1). We also notice that, though solutions of (4.7) are
defined for all s ∈ R, some care is needed to go back from these curves in the (ϑ, α)-plane
to solutions of (4.1) in the orbit space Q. To make this statement more explicit, it is enough
to examine more in detail the minimal cone introduced in Remark 4.1, which corresponds
to:

ϑ(s) ≡ α0; α(s) ≡ α0, (4.11)

where α0 = arctan
√

(q/p). In the orbit space Q, this trajectory becomes the half-line
γ (s) = ((cosα0 ) s, (sin α0 ) s) which, at s = 0, reaches the boundary of Q at the origin.

First, it is useful to observe that the vector field X (ϑ, α) is defined on the region 0 ≤ ϑ ≤
(π/2). We also note that, if we consider a point with either ϑ = 0 or ϑ = π/2, then the
integral curve passing through it is either a vertical segment or a point.

Now, we proceed to the study of the qualitative behaviour of the trajectories of the vector
field (4.6). Since 0 ≤ ϑ ≤ (π/2) and the vector field has period T = 2π with respect to
the variable α, it is enough to study trajectories in the region R = R1

⋃
R2, where R1 and

R2 are the two parallelograms of Fig. 1: the analytical description of these regions in the
(ϑ, α)-plane is

R1 =
{
(ϑ, α) : 0 ≤ ϑ ≤ π

2
, ϑ − π

2
≤ α ≤ ϑ + π

2

}
,

R2 =
{
(ϑ, α) : 0 ≤ ϑ ≤ π

2
, ϑ + π

2
≤ α ≤ ϑ + 3π

2

}
.

As a first step, in the following lemma, we analyse the stationary points of the vector field.

Lemma 4.6 Let α0 = arctan
√

(q/p). The stationary points (in R) of the differential system
(4.7) are as follows:

P0 = (α0, α0), P1 = (α0, α0 + π), Q1 =
(
0,

π

2

)
, Q2 =

(
0,

3π

2

)
,

Q3 =
(π

2
, 0

)
, Q4 =

(π

2
, π

)
. (4.12)

Moreover, P0 is a spiral sink if (p + q) ≤ 17, while it is a nodal sink if (p + q) ≥ 18. P1
is a spiral source if (p + q) ≤ 17, while it is a nodal source if (p + q) ≥ 18. All the other
stationary points are saddle points.

Proof The list (4.12) of stationary points in R can easily be obtained by direct inspection of
(4.7). Next, one has to evaluate the Jacobian matrix J at each of the stationary points. At P0,
we find

J (P0) = sin α0 cosα0

[
3 −3

(p + q) (p + q)

]
(4.13)
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Fig. 1 The vector field X (ϑ, α)

in the (ϑ, α)-plane

Now, it is easy to check that, if (p+q) ≤ 17, the eigenvalues of J (P0) are complex conjugate
with negative real part (spiral sink), while, if (p+q) ≥ 18, the eigenvalues of J (P0) are both
real and negative (nodal sink). Similarly, a simple computation shows that J (P1) = − J (P0):
then, it is again easy to conclude that, if (p+q) ≤ 17, the eigenvalues of J (P1) are complex
conjugate with positive real part (spiral source), while if (p + q) ≥ 18, the eigenvalues of
J (P1) are both real and positive (nodal source). As for the points Qi , i = 1, . . . , 4, we have
two real eigenvalues of opposite sign (saddle points). 
�
Lemma 4.7 Let (ϑ(s), α(s)) be a trajectory of the differential system (4.7). Suppose that, for
some s0, the trajectory is in R1: 0 < ϑ(s0) < (π/2), ϑ(s0) − (π/2) ≤ α(s0) ≤ ϑ(s0) + (π/

2). Then, the trajectory remains in R1 for all s ≥ s0.

Proof At both the upper and the lower edge of R1, the vector field (4.7) points towards
the interior of R1 (see also Fig. 1). Thus, the trajectory cannot cross these bounds. On the
other hand, the trajectory cannot reach neither ϑ = 0 nor ϑ = (π/2); otherwise, it would
be contradicted the principle of uniqueness: more precisely, by uniqueness, any trajectory
through a point of the type ϑ = 0 (respectively, ϑ = (π/2)) remains on this vertical straight
line, a fact which makes our proof completed. 
�
Lemma 4.8 Let (ϑ(s), α(s)) be a trajectory of the vector field (4.7). Suppose that, for some
s0, the trajectory is in R2 : 0 < ϑ(s0) < (π/2), ϑ(s0) + (π/2) ≤ α(s0) ≤ ϑ(s0) + (3π/2).
Then, the trajectory is in R2 for all s ≤ s0.

123



414 S. Montaldo et al.

Fig. 2 Non-existence of periodic
orbits: case p > q

Proof The proof is analogous to that of Lemma 4.7, so we omit the details. 
�
Remark 4.9 As a consequence of the arguments used in the proof of the previous two lem-
mata, we point out an important property of solutions of (4.1). Namely, if (x(s), y(s)) is
a solution of (4.1) in the orbit space Q, then it can reach the boundary of Q at the origin
only: more precisely, all the other boundary points are not allowed because the corresponding
trajectory in the (ϑ, α)-plane would reach either the locus ϑ = 0 or the locus ϑ = (π/2), a
fact which is not possible, as explained above.

Lemma 4.10 Let (ϑ(s), α(s)) be a trajectory of the differential system (4.7). Suppose that,
for some s0, the trajectory is in R1, with 0 < ϑ(s0) < (π/2), ϑ(s0) − (π/2) ≤ α(s0) ≤
ϑ(s0) + (π/2). Then,

lim
s→+∞(ϑ(s), α(s)) = P0 . (4.14)

Proof The Poincare–Bendixson theory ([16]), together with Lemmata 4.6, 4.7, tells us that
the conclusion follows if we prove that the differential system (4.7) has no periodic orbit in
R1 (apart from the stationary point P0). To this purpose, it is convenient to divide the region
R1 into four subregions Ti , i = 1, . . . , 4, as in Figs. 2 and 3: this partition of R1 is obtained
by considering the curves α = ϑ and α = g(ϑ), where

g(ϑ) = cot−1
(

p

q
tan ϑ

)
.

It is important to note that these are precisely the two curves where ϑ̇ = 0 and α̇ = 0,
respectively. In particular, in the interior of these four subregions, we have:
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Fig. 3 Non-existence of periodic
orbits: case p < q

2

2

20

0

T3

T1

T2T4 g

1

2

3
4

(i) ϑ̇ > 0 and α̇ < 0 in T1;
(ii) ϑ̇ < 0 and α̇ < 0 in T2;
(iii) ϑ̇ < 0 and α̇ > 0 in T3;
(iv) ϑ̇ > 0 and α̇ > 0 in T4.

By the general theory (see [16]), we know that, if there exists a periodic orbit in R1, it must
enclose the equilibrium point P0 (actually, this statement is also a simple consequence of
our partition of the region R1). Assume first that p > q , so that we are in the situation of
Fig. 2. Preliminarily, it is useful to observe that the function g(ϑ) is strictly decreasing and
g(ϑ) = g−1(ϑ), a fact which is a consequence of the symmetry of the curve

q cosα cosϑ − p sin α sin ϑ = 0

with respect to the bisector line α = ϑ . Now, if there is a periodic orbit, it must cross the
subdividing curves, as s increases, at a sequence of points wi = (ϑi , αi ), i = 1, . . . , 4, in
such a way that, keeping into account the signs of ϑ̇, α̇ inside the various subregions,

α4 < g(g(ϑ1)) = ϑ1 = α1 : (4.15)

but the inequality in (4.15), together with the periodicity, contradicts the fact that α̇ < 0 in
T1. The case p < q (illustrated in Fig. 3) can be handled similarly, starting with w1 on the
boundary between T1 and T4 and deriving ϑ4 > ϑ1, a fact which contradicts ϑ̇ > 0 in T4.
The case p = q (in which g(ϑ) = (π/2) − ϑ) can be treated in either way, so the proof is
ended. 
�
In an analogous way, we also have (the details of the proof are precisely as in Lemma 4.10):

123



416 S. Montaldo et al.

Lemma 4.11 Let = (ϑ(s), α(s)) be a trajectory of the differential system (4.7). Suppose
that, for some s0, the trajectory is in R2, with 0 < ϑ(s0) < (π/2), ϑ(s0)+ (π/2) ≤ α(s0) ≤
ϑ(s0) + (3π/2). Then,

lim
s→−∞(ϑ(s), α(s)) = P1 . (4.16)

We are now in the right position to transfer all this material to the orbit space Q: our results
are summarized in the following

Theorem 4.12 There exists an infinite family of proper SO(p + 1) × SO(q + 1)-invariant
biconservative immersions (cones) inRn (n = p+q+2), of type (3.1). Their corresponding
profile curves γ (s) are defined on intervals of the type either (i) [s0, +∞) or (ii) (−∞, s0],
with γ (s0) = (0, 0) in both cases and γ (s) in the interior of Q if s �= s0. Moreover, in
the case (i), as s increases to +∞, the curve γ (s) tends asymptotically to the profile of the
minimal cone, i.e. (q cosα0 x − p sin α0 y) = 0. Similarly, in the case (ii), as s decreases to
−∞, the curve γ (s) tends asymptotically to the profile of the minimal cone. In both cases:
if p + q ≤ 17, at infinity the profile curves γ intersect the profile of the minimal cone at
infinitely many points, while, if p + q ≥ 18, at infinity the profile curves γ do not intersect
the profile of the minimal cone. None of these hypersurfaces is complete.

Proof Let γ (s) = (x(s), y(s)) be a local solution of (4.1) in the interior of Q. Let us first
assume that, at some point s∗, the corresponding trajectory in the (ϑ, α)-plane is in R1. Then,
we can assume that

−π

2
< α(s∗) < π.

We know, from Remark 4.9, that γ (s) will be defined for all s ≥ s∗ unless it reaches the
origin (0, 0). We argue by contradiction: suppose that

−π

2
< α(s∗) <

π

2
:

then I (s∗) > 0. Therefore, the hypothesis that γ reaches the origin, for some s > s∗, would
contradict the fact that, according to Lemma 4.3, I (s) is increasing along solutions. Similarly,
if

0 < α(s∗) < π,

one uses the monotonicity of J (s) to conclude that γ cannot reach the origin. By way of
summary, we conclude that γ (s) is defined at least for all s ≥ s∗. Next, the qualitative
asymptotic behaviour of γ (s) as s tends to +∞ is an immediate consequence of the fact
(see Lemma 4.6) that P0 is a spiral sink if (p + q) ≤ 17, and a nodal sink if (p + q) ≥ 18.
At this stage, we have to investigate the qualitative behaviour of our solution for s < s∗: to
summarize, we have only two possibilities:

(A) The solution is defined for all s < s∗;
(B) The solution reaches the origin at some s0 < s∗.

In order to complete our analysis, it is enough to show that (A) is not possible, so that (B)
holds. So, arguing again by contradiction, let us assume that (A) holds. Then, necessarily
(use Fig. 1 and Lemma 4.11) the corresponding trajectory in the (ϑ, α)-plane must leave R1

and tend to P1 as s decreases to −∞. In particular, say near −∞, there exists a point s̄ at
which π < α(s̄) < (3π/2), so that I (s̄) < 0 and J (s̄) < 0. Because I and J must become
both positive moving along the solution in the sense of increasing values of s (because, in the
(ϑ, α)-plane, the trajectory tends to P0) , we conclude that the solution must pass through
the origin, a fact which makes (A) not possible and so confirms (B).
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In a dual way, one completes the proof by studying the qualitative behaviour, as s decreases
to −∞, of solutions with a point in R2: since the arguments are the same as above, we omit
the details. 
�
Remark 4.13 Wehave chosen the above formulation for Theorem 4.12 because wewanted to
give a fairly complete portrait of solutions in Q and of their counterparts in the (ϑ, α)-plane.
However, we point out that, up to reparametrization, each of the profiles of the biconservative
cones of Theorem 4.12 could be described by means of a curve γ (s), s ≥ 0, with γ (0) =
(0, 0) and γ (s) in the interior of Q for s > 0. By way of example, there is no geometric
difference between the profiles γ (s) = (cosα0 s, sin α0 s) with s ≥ 0 (i.e. the minimal cone
α(s) ≡ α0), and γ (s) = (cos(α0 + π) s, sin(α0 + π) s) = (− cosα0 s, − sin α0 s) with
s ≤ 0 (i.e. the same minimal cone represented as α(s) ≡ (α0 + π)).

5 SO( p+ 1)× SO(q + 1)-invariant biharmonic immersions

In this section, we prove that biharmonic SO(p + 1) × SO(q + 1)-invariant immersions
into the Euclidean space R

n, n = p + q + 2, are minimal. More precisely, we obtain the
following:

Theorem 5.1 Let ϕ : M = S
p ×S

q × (a, b) → R
p+1 ×R

q+1 be a SO(p+1)× SO(q+1)-
invariant biharmonic immersion, that is a map of type (3.1)where x(s) and y(s) are solutions
of the system of ODE:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ḟ

(
3(ÿ ẋ − ẍ ẏ) + p

ẏ

x
− q

ẋ

y

)
= 0

f̈ + p
ẋ

x
ḟ + q

ẏ

y
ḟ − f

(
p

(
ẏ

x

)2

+ q

(
ẋ

y

)2

+ (ÿ ẋ − ẍ ẏ)2
)

= 0,
(5.1)

with

f = (ÿ ẋ − ẍ ẏ) + p
ẏ

x
− q

ẋ

y
.

Then ϕ is a minimal immersion.

Proof It is sufficient to show that ϕ is a CMC immersion. In fact, biharmonic CMC immer-
sions in R

n are minimal. Assume that ϕ is not CMC, then there exists an open interval I of
(a, b) where ḟ (s) > 0, for all s ∈ I .

From the first Eq. (5.1), multiplied by ẋ , it is easy to deduce that

ÿ = − ẋ

3

(
p
ẏ

x
− q

ẋ

y

)
. (5.2)

In the same way, multiplying by ẏ, we have

ẍ = ẏ

3

(
p
ẏ

x
− q

ẋ

y

)
. (5.3)

Using (5.2) and (5.3), the expression of f becomes

f = 2

3

(
p
ẏ

x
− q

ẋ

y

)
. (5.4)
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Now, using (5.2), (5.3) and (5.4), we find that the second Eq. (5.1) takes the form

A(x, y) ẋ2 ẏ + B(x, y) ẋ ẏ2 + C(x, y) ẋ + D(x, y) ẏ = 0, (5.5)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(x, y) = 3 p (3 + 2p) y3 − 6 p q x2 y

B(x, y) = −3 q (3 + 2q) x3 + 6 p q x y2

C(x, y) = q2 (6 + q) x3 + p q(p − 3) x y2

D(x, y) = −p2 (p + 6) y3 − p q(q − 3) x2 y.

For a fixed s0 ∈ I , we put x0 = x(s0). Since ẋ2 + ẏ2 = 1, we can express y as a function
of x, y = y(x), with x ∈ (x0 − ε, x0 + ε), and write

ẏ = dy

dx
ẋ . (5.6)

From ẋ2 + ẏ2 = 1, we obtain

ẋ2 = 1

1 +
(
dy

dx

)2 . (5.7)

Deriving (5.6) with respect to s an easy computation leads us to

ÿ = 1(
1 +

(
dy

dx

)2
)2

d2y

dx2
, (5.8)

that, together with (5.2), gives

d2y

dx2
= 1

3

(
1 +

(
dy

dx

)2
) (

q

y
− p

x

dy

dx

)
. (5.9)

Substituting (5.6) and (5.7) in (5.5),weobtain, up to amultiplicative factor ẋ/
(
1+(dy/dx)2

)
,

D(x, y)

(
dy

dx

)3

+(B(x, y)+C(x, y))

(
dy

dx

)2

+(A(x, y) + D(x, y))

(
dy

dx

)
+C(x, y)=0,

which we rewrite as

A3(x, y)

(
dy

dx

)3

+ A2(x, y)

(
dy

dx

)2

+ A1(x, y)

(
dy

dx

)
+ A0(x, y) = 0. (5.10)

Next, taking the derivative of (5.10) with respect to x and bearing in mind (5.9), we obtain

B5

(
dy

dx

)5

+ B4

(
dy

dx

)4

+ B3

(
dy

dx

)3

+ B2

(
dy

dx

)2

+ B1

(
dy

dx

)
+ B0 = 0 (5.11)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B5(x, y) = 3 p2 q (q − 3) x2 y2 + 3 p3 (p + 6) y4

B4(x, y) = −p q (5 q2 − 6 q − 27) x3 y − p2 (5 p q + 9 p + 24 q + 54) x y3

B3(x, y) = 2 q2 (q2 − 9) x4 + 6 p q (p q + 6) x2 y2 + p2 (4 p2 + 18 p − 9) y4

B2(x, y) = 3 q [p (−2 q2 + q + 3) + 3 (q2 − 9)] x3 y + 3 p [−p2 (2 q + 3) − 7 p q + 6 q + 27] x y3

B1(x, y) = 2 q2 (q2 − 9) x4 + 3 p q [p (q + 3) − 12] x2y2 + p2 (p2 − 9) y4

B0(x, y) = −q2 [p (q + 3) − 9 (q + 6)] x3 y − p2 q (p − 3) x y3.
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For any arbitrarily fixed x1 ∈ (x0 − ε, x0 + ε), setting y1 = y(x1), (5.10) and (5.11) can
be thought as two polynomial equations in dy/dx , with coefficients given, respectively, by
Ai (x1, y1), i = 0, . . . , 3 and Bi (x1, y1), i = 0, . . . , 5, which have the common solution
(dy/dx)(x1). Using standard arguments of algebraic geometry ([17]), this implies that the
resultant of the two polynomials is zero for any x1 ∈ (x0 − ε, x0 + ε). Now, since the coeffi-
cients Ai (x, y) and Bi (x, y) are homogeneous polynomials of degree 3 and 4, respectively,
it turns out that the resultant is a homogeneous polynomial of degree 27 = 3 · 5 + 4 · 3.
Then, the only real factors are of type y −mx or of type a2 x2 + b2 y2, and this implies that
a common solution of (5.10) and (5.11) must be of the form y = mx . Using Remark 4.1, we
know that the only solution of (5.10) of type y = mx is y = √

q/p x , which corresponds to
the invariant minimal cone, a contradiction. 
�
Remark 5.2 Wepoint out that Theorem 5.1 could also be deduced from a very recent result of
Fu ([15], personal communication), where, by different methods, he proved that biharmonic
hypersurfaces with at most three distinct principal curvatures in R

n (n ≥ 4) are minimal.

6 Proper SO( p+ 1)-invariant biconservative hypersurfaces

In this section, we investigate the existence of biconservative SO(p+1)-invariant immersions
into the Euclidean spaceRn, n = p+2.More precisely, we shall study isometric immersions
of the following type:

ϕ : M = S
p × (a, b) → R

p+2

(w , s ) 
−→ (x(s)w, y(s)),
(6.1)

where (a, b) is a real interval which will be precised during the analysis, x(s) is a smooth
positive function, while y(s) is a smooth function with isolated zeros. We shall also assume
that

ẋ2 + ẏ2 = 1, (6.2)

so that the induced metric on the domain in (6.1) is given by:

g = x2(s) gSp + ds2, (6.3)

The unit normal to ϕ(M) can be written, in this case, as

η = (− ẏ w, ẋ). (6.4)

Immersions of the type (6.1) are G = SO(p + 1)-invariant, and the orbit space of the target
coincides with the half plane

Q = R
n/G = {

(x, y) ∈ R
2 : x ≥ 0

}
.

We note that regular (i.e. corresponding to a point (x, y) with x > 0) orbits are of the type
S
p . The orbit associated with a point of the y-axis is a single point. Also, in this case, since

(6.2) holds, we express quantities with respect to the angle α that the profile curve (defined
in analogy with Definition 3.1) γ (s) = (x(s), y(s)) forms with the x-axis. Thus, we have:⎧⎨

⎩
ẋ = cosα

ẏ = sin α

α̇ = ÿ ẋ − ẍ ẏ.
(6.5)

In this context, we have the following analog of Proposition 3.2:
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Proposition 6.1 Let ϕ be an immersion as in (6.1) and let

f = α̇ + p
ẏ

x
. (6.6)

Then, the tangential and normal parts of the bitension field τ2(ϕ) vanish if, respectively,

ḟ ( f + 2 α̇) = 0, (6.7)

and

f̈ + p ḟ
ẋ

x
− f

(
p

(
ẏ

x

)2

+ α̇2

)
= 0. (6.8)

Remark 6.2 Wefirst point out that the statement in Proposition 6.1 is those of Proposition 3.2
with q = 0. Moreover, the immersion (6.1) has at most two different principal curvatures,
namely

p−times︷ ︸︸ ︷
ẏ

x
· · · ẏ

x
α̇.

Since a biharmonic hypersurface with at most two different principal curvatures in R
n is

minimal (see [8]), we conclude that there exists no proper biharmonic immersion of type
(6.1).

Now, we study proper biconservative hypersurfaces of type (6.1): that is, according to
(6.7), we look for nonconstant functions f such that

f + 2 α̇ = 3 α̇ + p
sin α

x
= 0. (6.9)

In this case, the analysis of the qualitative behaviour of solutions of (6.9) is facilitated by the
existence of the following prime integral (the proof is just a direct computation):

Lemma 6.3 Let
J = x (p/3) sin α. (6.10)

Then, J is constant along any solution of (6.9).

Remark 6.4 Let (x(s), y(s), α(s)) be a solution of (6.9) defined for s ∈ I . Then, it is easy
to check the following properties of the solution:

(1) the reflection across a horizontal line y = y0, that is (x(s), 2y0 − y(s),−α(s)), remains
a solution (defined on I );

(2) (x(s + d), y(s + d), α(s + d)) remains a solution;
(3) when I = (−ε, ε), then (x(−s), y(−s), α(−s) + π) remains a solution.

Using the prime integral J , we can prove the main result of this section, which can be
stated as follows:

Theorem 6.5 There exists an infinite family of complete, proper SO(p+1)-invariant bicon-
servative immersions in R

n (n = p + 2) of type (6.1). Their corresponding profile curves
γ (s) are of “catenary” type.
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x
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y0
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p C3

y0

(b)

Fig. 4 Profile curves of biconservative immersions as in Theorem 6.5

Proof Let γ (s) = (x(s), y(s)), s ∈ (a, b), be a solution of (6.9) with x(s) > 0. Then, from
Lemma 6.3, along γ , we have

J = x (p/3) sin α = C = constant .

If C = 0, then we must have sin α = ẏ = 0, and this would imply that the solution has
f = constant. Thus, we can assume that C > 0. Then, we have sin α = C x−p/3 and
cosα = √

1 − C2 x−2p/3, so that

dy

dx
= C x p/3

√
x2p/3 − C2

. (6.11)

From (6.11), we obtain a local solution y = y(x) of (6.9) defined for x ∈ (
p
√
C3, +∞),

and when x tends to p
√
C3, the curve becomes parallel to the y-axes. Moreover, dy/dx > 0,

which means that y(x) is strictly increasing and, finally, limx→+∞ dy/dx = C (see Fig. 4a).
Since the length of the curve (x, y(x)) is infinite, its reparametrization by arc length is defined
on (s0, +∞). Therefore, according to Remark 6.4, we can consider the solution γ̃ of (6.9)
defined on (−∞,+∞) \ {0}. By uniqueness (considering the solution γ of (6.9) determined
by the initial conditions (x0 = p

√
C3, y0, α0 = π/2)), we can extend γ̃ to a solution defined

in (−∞, +∞). These curves are of “catenary” type, as shown in Fig. 4b. 
�
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