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Abstract- The “covariance” of complex random variables 
and processes, when defined consistently with the corresponding 
notion for real random variables, is shown to be determined by 
the usual (complex) covariance together with a quantity called 
the pseudo-covariance. A characterization of uncorrelatedness 
and wide-sense stationarity in terms of covariance and pseudo- 
covariance is given. Complex random variables and processes 
with a vanishing pseudo-covariance are called proper. It is shown 
that properness is preserved under affine transformations and 
that the complex-multivariate Gaussian density assumes a natural 
form only for proper random variables. The maximum-entropy 
theorem is generalized to the complex-multivariate case. The 
differential entropy of a complex random vector with a fixed 
correlation matrix is shown to be maximum, if and only if the 
random vector is proper, Gaussian and zero-mean. The notion of 
circular stutionarity is introduced. For the class of proper complex 
random processes, a discrete Fourier transform correspondence 
is derived relating circular stationarity in the time domain to 
uncorrelatedness in the frequency domain. As an application of 
the theory, the capacity of a discrete-time channel with complex 
inputs, proper complex additive white Gaussian noise, and a finite 
complex unit-sample response is determined. This derivation 
is considerably simpler than an earlier derivation for the real 
discrete-time Gaussian channel with intersymbol interference, 
whose capacity is obtained as a by-product of the results for the 
complex channel. 

Znder Terms-Proper complex random processes, circular sta- 
tionarity, intersymbol interference, capacity. 

I. INTRODUCTION 

T HE PURPOSE of this paper is to provide a rounded 
treatment of certain complex random variables and pro- 

cesses, which we will call proper, and to show their usefulness 
in statistical communication theory. It will be shown, for 
instance, that the probability density function of a complex 
Gaussian random vector assumes the anticipated ‘natural’ 
form only for proper random vectors. The convenience of 
proper complex random variables will be demonstrated by the 
computation of capacity for the complex baseband equivalent 
of linear bandpass communication channels with memory and 
additive white Gaussian noise (AWGN). 

Linear bandpass channels are usually represented in base- 
band by an equivalent two-dimensional channel with two 
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quadrature inputs and outputs [l], [2]. In general, for a 
passband channel with memory, the quadrature components 
interfere so that the two-dimensional equivalent baseband 
channel does not reduce to a pair of independent quadrature 
channels, as in the memoryless case. To simplify notation, 
most communication engineers describe the equivalent base- 
band channel in terms of complex signals and complex impulse 
responses. Formulations of linear systems for complex-valued 
signals are also increasingly employed in adaptive signal 
processing, see e.g., [3]. Somewhat paradoxically, one finds 
in the literature very few treatments of complex random vari- 
ables and processes. In fact, many investigators resort to the 
two-dimensional real representation of systems with complex 
signals whenever a probabilistic treatment is needed. Notable 
exceptions are Doob [4], who gives considerable attention to 
complex Gaussian random processes, and Wooding [5], who 
first derived the complex-multivariate Gaussian density by 
assuming certain covariance relations, which are equivalent 

to properness in our terminology. 
The organization of this paper is as follows. In Section II, 

we characterize second-order statistical properties such as un- 
correlatedness and wide-sense stationarity of complex random 

variables and processes. We show that to specify the four 
covariances arising between the real and imaginary parts of 
two complex random variables X and Y, one needs both the 

conventional covariance cxy 2 E[(X - mx)(Y -my)*] and 

the unconventional quantity 2xy 2 E[(X - mx)(Y -my)], 
which we will call the pseudo-covariance. Complex random 
variables and processes with a vanishing pseudo-covariance 
will be called proper. In Section III, we justify the terminology 
“proper” by demonstrating several natural results for the class 
of proper complex random variables and processes that do not 
hold in general. For instance, the probability density function 

and the entropy of a proper complex Gaussian random vector 
are specified solely by the vector of means and the matrix of 
(conventional) covariances. It is also shown that for bandpass 
communication channels with real wide-sense stationary noise, 
the complex noise at the demodulator output is proper. In 
Section IV, we prove a general discrete Fourier transform cor- 
respondence between circular stationarity in the time-domain 

and uncorrelatedness in the frequency-domain for sequences 
of proper complex random variables. An application of this 
correspondence is provided in Section V, where an earlier 
derivation of capacity for discrete-time Gaussian channels with 
memory [23] is considerably simplified by first generalizing 
to complex channels. 
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II. PRELIMINARIES 

A. Complex Random Variables 

A complex random variable X is defined as a random 
variable of the form 

x=x,+jx,, j=&i, 

where the real and imaginary parts, X, and X,, are real ran- 
dom variables [4, p. 71. The subscripts “c” and “s,” borrowed 
from [l] and [2], suggest the cosine and sine components of an 
equivalent baseband signal. The expectation of a real random 
variable is naturally generalized to the complex case [6, p. 

4721 as E[X] 2 E[X,] + jE[X,]. The statistical properties 
of X = X, + jX, are determined by the joint probability 

density function (pdf) px,x, (x,, x,) of X, and X,, provided 
of course that the pdf exists. For convenience, we introduce 

the notation px(x, + jxS) 2 px,x, (x,, x,). 
Let F be a complex-valued function whose domain includes 

the range X(R) of the complex random variable X, where s2 is 
the sample space. The expectation of F(X) can be expressed 
in terms of two expectations of real functions in the real 
random variables X, and X, as 

W(X)1 
5 E[Re {F(Xc + jXs)}] + jE[Im {F(X, + jXs)}]. 

Equivalently, 

E[F(X)] = /=== /m F(x, + jx,)px(~ + h) dx, dx,. 
--oo -co 

To specify the “covariance” of the two complex random 
vectors X = X,+jX, and y = y,+jy,, the four covariance 
matrices 

cov [X,, Y,]; cov [Xc, Y,l; 
cov [KS 7 Y,]; cov [X, ? Ysl (1) 

are needed, where the covariance of two real random vectors 
u and 1 is defined as 

Cov [ZL, Y] 2 E[(IL - -WLl)(V - -WT)l. 

The covariance matrix 

(2) 

&I E E[(X - &(X - my)*], (3) 

where mx 2 E [xl, my b E[x] and “*” denotes conjugate- 
transpose,is widely used in the literature. We define also the 

pseudo-covariance matrix 

AE~ 2 E[(X - mx)(Y - my>T], (4) 

which will play a key role in what follows. To simplify the 
notation for (pseudo-)autocovariance matrices we will write 
Ax (or AK) instead of Ax x (or AX x). The “covariance” -- -- 
of two complex random vectors can be specified alternatively 

by the complex covariance and the pseudo-covariance since it 

follows from (2)-(4) that 

Cov [Xc, Y,] = $Re {hy + &y); 

Cov [X,, Y,] = ;Re {&y - &y); 

Cov [X,, Y,] = ;Im {Agy + AXE); 

Cov [AL,, IL,] = -$Im {Axy - AXE}. (5) 

The natural definition of the uncorrelatedness of X and x 
is that all four covariances in (1) vanish. From (5) we now 
obtain the following simple result. 

Lemma 1: The complex random vectors _X and 1 are 
uncorrelated if and only if Ax y = 0 and AX y = 0, i.e., -- -- 
if and only if both the covariance matrix and the pseudo- 

covariance matrix vanish. 

B. Complex Random Processes 

A continuous-time (or discrete-time) complex random 

process is defined as a random process of the form 

X(t) 2 X,(t) + jXs(t) (or X[k] fi -&[k] + jX,[k]), 
where XC(t) and X,(t) (or XCIIc] and XS[,+]) are a pair of 
real continuous-time (or discrete-time) random processes. By 
definition, a complex random process is wide-sense stationary 
(w.s.s.) if its real and imaginary parts are jointly w.s.s.. 
The .following result [7, p. 1211 characterizes wide-sense 

stationarity in terms of the mean mx (t) fi E[X(t)], the 
autocorrelation function 

T-x(7, t) 4 E[X(t + 7)X*(t)], 

and the pseudo-autocorrelation function 

fx(r, t) A E[X(t +7)X(t)] 

of the complex random process X(e). 
Lemma 2: A complex random process X(.) is w.s.s., if and 

only if mx(t), TX(T, t), and r”x(r, t) are independent of t. 

The corresponding result for discrete-time processes is 

obvious. 

III. PROPER COMPLEX RANDOM VARIABLES AND PROCESSES 

A. Proper Complex Random Variables 

Definition 1: A complex random vector 2 T & + jz, 
will be called proper if its pseudocovariance AZ vanishes. 
The complex random vectors z, and & will be called jointly 
proper if the composite random vector having & and & as 
subvectors is proper. 

Note that any subvector of a proper random vector is also 
proper. However, two individually proper random vectors are 

not necessarily also jointly proper. Defining 

4, 4 Cov [Z,, Z,] ; 4, a Cov [Z,, &I; 

A,, b Cov [Z,, &I; A,, 6 Cov [Z,, Z,] (6) 

and using the fact that A,, = ATc, the pseudo-covariance of 

z can be written as 

& = 4, - A,, + j(& + &,. (7) 



Thus, the vanishing of & is equivalent to the conditions that - 

Ax = &3 and A,, = -&., (8) 

i.e., & vanishes, if and only if & and 3, have identical - 
autocovariance matrices and their crosscovariance matrix is 
skew-symmetric. Note that the skew-symmetry of Asc implies 
that A,, has a zero main diagonal, which means that the 
real and imaginary part of each component 21, of z are 
uncorrelated. The vanishing of & does not, however, imply 
that the real part of 2, and the imaginary part of Zl are 
uncorrelated for k # 1. It should be pointed out that a real 
random vector is a proper complex random vector, if and only 
if it is constant (with probability l), since A,, = 0 and (8) 
imply A,, = 0. 

The appropriateness of the term “proper” in connection with 
complex random vectors is supported by the following lemma 
dealing with closure under affine transformations as well as 
by a number of other results to follow. 

Lemma 3: Let -2 be a proper complex n-dimensional ran- 
dom vector, i.e., A, = 0. Then any random vector obtained 
from z by a linear% affine transformation, i.e., any random 
vector y of the form r = AZ + b, where A E C”‘” and 
b E Cm are constant, is also proper. 

Proof: Since 

my=Amz+~andY-my=A(Z-mZ), - - 

we have 

&=E[(~-mx)(~-mr)T]=A&AT=O. 0 

Note that r and z as in Lemma 3 are automatically jointly 
proper, since the vector having x and z as subvectors is 
obtained by the affine transformation 

Lemma 4: Let & and & be two independent complex ran- 
dom vectors and let z, be proper. Then the linear combination 
E = a& + a&&, where al and ua are complex numbers 
and al # 0, is proper, if and only if & is also proper. 

Proof: The independence of & and & and the proper- 
ness of & imply 

Ax = afAg, + azAg, = af& , . 

Thus, Ax vanishes, if and only if &, vanishes. 0 

Lemma 1 immediately implies the following result. 
Lemma 5: Two jointly proper, complex random vectors & 

and & are uncorrelated, if and only if their covariance matrix 
Azlz2 vanishes. 

det (A) = 2”Vdet (A,,) det (A). (11) 

Note that the pdf (10) is completely specified by the vector 
of means and the conventional covariance matrix. The fact 
that the function (10) integrates to one over 3, and .z, for any 
positive-definite Hermitian matrix A was proved by Bellman 
without connection to pdf’s [12, ch. 6, section lo]. A proof of 
Theorem 1 is included in the Appendix since it provides insight 
and some intermediate results will be used in the sequel. 

As an application of Theorem 1, we generalize the 
maximum-entropy theorem [13, theorem 7.4.11, [15, theorem 
9.6.51 to the complex-multivariate case. The result will be 
used in Section V to compute the capacity of a channel with 
proper complex Gaussian noise. Consider a complex Gaussian 
random vector z = & + jz,, whose differential entropy is 
appropriately defined as the joint differential entropy of its real 

and imaginary part, i.e., h(Z) e h&Z,). 

A complex Gaussian random vector Z is defined as a vector 
with jointly Gaussian real and imaginary parts. Following 
Feller [6, p. 861, we consider Gaussian distributions to include 
degenerate distributions concentrated on a lower-dimensional 
manifold. In such degenerate cases, the 2n x 2n-covariance 
matrix 

Theorem 2: Let z be a complex, continuous, n-dimensional 

random vector with nonsingular correlation matrix Rz 2 - 
E[ZJ*]. Then, 

h(Z) I log [(TeY det (&)I 

with equality, if and only if z is proper and Gaussian with 
zero mean. 

(9) 
It is somewhat surprising that 2 must be proper in order 

to maximize entropy. Note also that no real random vector 
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is singular and the pdf does not exist unless one admits 
generalized functions, 

Note that two jointly proper Gaussian random vectors & 
and zZ are independent, if and only if Ag,g, = 0, which 
follows from Lemma 5 and the fact that uncorrelatedness and 
independence are equivalent for Gaussian random variables. 

Wooding [5] first derived the pdf of a complex Gaussian 
random vector satisfying the conditions (8) i.e., of a proper 
complex Gaussian random vector. Goodman [8] gave an 
alternative derivation based on the observation that the multi- 
plication of certain orthogonal 2 x 2-matrices is isomorphic to 
the multiplication of related complex numbers. The complex- 
multivariate Gaussian pdf is also found in [9]-[ 111. The results 
can be stated as follows. 

Theorem I: Let z be a proper complex n-dimensional 

Gaussian random vector with mean 114 and nonsingular co- 

variance matrix A e E[(Z - m)(z - rn)*]. Then the pdf of 
Z is given by 

P&> e Pz,z, (z,, z,> 
1 

= TP det (A) 
exp {-(g - rn)*A-‘(g - rn)}. (10) 

Conversely, let the pdf of a random vector Z be given by (lo), 
where A is Hermitian and positive definite. Then 2 is proper 
complex and Gaussian with covariance matrix A and mean m. 
Moreover, for a proper complex z 

A = 2(&c + A,) 

A-l = ;A-l(I - jA,,A,-,l) 

d e A,, + A,,A,-,lA,, 
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maximizes entropy for a given correlation matrix RZ when 
complex random vectors are allowed. The proof of theanalog 
to Theorem 2 for real random variables [13, p. 3361, [15, p. 
2341 is easily generalized to a proof of Theorem 2 by using the 
Gaussian density (10). We give a different proof of Theorem 
2 for a scalar complex random variable 2 = 2, + ~‘2, with 
the constraint E[lZl”] = S that better illustrates the role of 
properness. According to the maximum-entropy theorem for 

real random vectors, the real random vector W b [Zc, Z,lT, 

for which Rw a E[WWT] is nonsingular, satisfies - 

h(Z) = h(lV) 5 i log [(2re)2 det (R&l 

with equality, if and only if W is zero-mean Gaussian. By 
hypothesis, E[lZl”] = E[Zz] + E[Zz] = S and thus 

det (R& = E[~~lE[z,“] - (E[-U’s1>2 

5 E[Z,2lE[Z,2] I S2/4, 

where equality holds at both places, if and only if E [ZcZs] = 0 
and E[&?] = E[Zi]. Therefore, h(Z) = h(Z,Z,) = h(W) 5 
log [TeS] with equality, if and only if 2 is proper and Gaussian 
with zero mean. 

Note that h(Z) = h&Z,) = h(&) + h&I&) for a 
complex random vector z = & + jz, and, when z is 
Gaussian, 

h(Z) = i log [(2rejn det (&,)I, (12) 

where Act is as in Theorem 1. It follows from (12), the proof 
of Theorem 1 (see (A.9) in the Appendix), and from Theorem 
2 that, for a proper complex Gaussian random vector Z, 

h(i7,(&) = 3 log [(2re)n det (A)]. 

The matrix A is defined in (11) and known as the Schur- 
complement [14, p. 461 of Act in the matrix @ of (9). 

For a complex Gaussian random vector z with zero mean 
and covariance matrix A = A, + jd,, Theorem 2 implies the 
following nontrivial result in matrix theory, as suggested by 
a reviewer. 

Corollary I: For any symmetric matrix A, E R” xlz and 
skew-symmetric matrix A, E Rnxn such that A, + jd, is 
positive definite, 

= &det (A,) det (A, + A,A,‘A,), 

which is achieved, if and only if A,, = Ass = iA, and 

Asc = ;A,. 
The simple proof is left to the reader. 
As one might expect, the differential entropy of real and 

complex random variables is affected differently by scaling. 
For iny matrix A = A, + jA, E CnXn, - - we can re 

scaling property for real random vectors [15, p. 2341 and the 
fact that det(B) = ldet(A)12 [8, p. 1561 now imply 

h(U) = ~(X,X,) + log Pet WI 
= h(X) + 2 log ldet (A)]. (13) 

For a complex, nondegenerate scalar random variable X, (13) 
yields 

eN4 = (a(2ew), a E c:, 

which is plausible since the entropy power of a random 
variable can be interpreted as the effective size of its support 
set and the support set of X is an area. 

B. Proper Complex Random Processes 

The covariance function of a complex random process is 

defined as 

cz(~, t> A E[(z(t+~) -mz(t+T))(Z(Q -mz(t))*l, 04) 

for continuous-time processes and as 

CZ[~, n] a E[(Z[n+k] -mz[n+k])(Z[n] -mz[n])*], (15) 

for discrete-time processes, where obvious notation has been 
used for the means. Analogously, we will define the pseudo- 
covariance function of a complex random process as 

CZ(T, t) a E[(Z(t + T) - mz (t + T>> (z(t) - mz (t>>l WI 

for continuous-time processes and as 

Dejinition 2: A complex random process will be called 
proper if its pseudo-covariance function vanishes identically. 

Cz[k, n] 2 E[(Z[n + k] - mzb + ~l>(.W - mM)l (17) 

for discrete-time processes. 

Using similar arguments as in Section III-A one can show 
that any linear or affine transformation of a proper complex 
random process is proper and that a linear combination of 
independent proper complex random processes is also proper. 
Moreover, any vector of samples taken from a proper complex 
random process is also proper. 

Proper complex random processes arise in equivalent base- 
band representations of bandpass communication systems, as 
we show next. Consider the (real) additive noise channel 
together with the receiver front-end shown in Fig. 1. The 
real process X0(.) is assumed to be W.S.S. and bandlimited to 
frequencies w such that ) Jw ) - wg ) 5 27rW, where wg > 27rW, 
and the real noise process Z,(.) is W.S.S. with zero mean 
and power spectral density SZ, (w). The channel output Yo(.), 
another real process, is converted to baseband by a complex 
demodulator and an ideal lowpass filter g(7) with frequency 
response 

G(w) = ;’ 
if Iwl 5 27~W, 

7 otherwise. 

Let the complex random processes X(t) and Z(t) denote 
the response of the receiver front-end, which is a time- 
varying linear system, to the real random processes X0(t) 
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-w 
Additive Noise Channel Receiver Front-End 

Fig. 1. Additive noise channel and receiver front-end. 

and 20(t), respectively. Wozencraft and Jacobs have shown 
that Y(t) = X(t) + Z(t) p rovides sufficient statistics for an 
optimum receiver [l, p. 4961. Of particular interest here are 
the properties of the demodulated noise Z(.) that were proved 
in [l, p. 4981 and can be summarized in our terminology as 
follows. 

Theorem 3: Let the real W.S.S. process Zo(.) with zero mean 
and power spectral density 5’~~ (w) be the input to a complex 
demodulator with angul,ar frequency wg followed by an ideal 
low-pass filter (18). Then, if wo > 2nW, the complex random 
process 

Z(t) a di 
.I 

O” 20(u) e-~w”ug(t - u) du 
-02 

at the lowpass filter output is w.s.s., proper, zero mean, and 
has the autocorrelation function 

?-Z(T) + E[Z(t + T)z*(t)] 

1 

s 

2nW 

=- 

n- -2nw 

SZ, (w + wo)eJw7 dw. (19) 

In particular, if ZO(.) is white noise with power spectral 
density SzO(w) = No/& then 

sin 29~W7 
TZ(T) = No IT 

Since Z(s) is w.s.s., proper, and zero mean, cz(~) = rz(~) 
and the pseudo-covariance vanishes, i.e., 

&T(T) = FZ(T) z 0. (21) 

Property (21) is equivalent to the symmetry relations’ 

TZ,Z, (~1 = TZ,Z, (~1 and TZ,Z, (~1 = -TZ,Z, (-71, 

(22) 
i.e., the real and imaginary part of Z(+) have the same 
autocorrelation function and an odd crosscorrelation function. 
Equivalent symmetry relations were found by Dugundji and 
Zakai for a real process X(.) and its Hilbert transform 22(e) 

[16]-[18]. The process Z(.) e X(.) + j%(.) was called the 
“pre-envelope” of X( .) or an “analytic signal” and satisfies 
(21). However, the requirement that the imaginary part be the 
Hilbert transform of the real part is more stringent than the 
symmetry relations (22) and the concept of the pre-envelope 
is not appropriate for single random variables, as opposed to 
properness. 

It should be mentioned that complex random processes 
with nonzero mean are usually not of interest, since a 
“complex envelope” X ( .) with nonzero-mean corresponds 

lWe define TUV(T, t) & E[U(t + ~)v(t)] for any real processes U(.) 
and V( .) and write TUV( T) when U( .) and V( .) are jointly W.S.S. 

to a nonstationary bandpass process. To see this, let 
X,(t) = Re{X(t)fi ejwot} and note that E[Xo(t)] = 
Re {E[X(t)]fi ejwot} # constant if E[X(t)] # 0. 

We are particularly interested in the class of proper complex 
Gaussian random processes. Doob has given conditions that 
in our terminology are the necessary and sufficient conditions 
for the existence of such processes [4, theorem 3.11. Theorem 
3 shows that demodulated Gaussian noise belongs to this 
class. The proper complex AWGN channel will be defined as 
a channel of the form Y(s) = X(.) + Z(.), where X(s) and 
Z(.) are independent complex processes and Z(.) is proper 
complex AWGN with power spectral density No. The proper 
complex white noise idealization is supported by the following 
consideration: If we choose a large bandwidth W and a carrier 
frequency wo > 27rW in Theorem 3, then the correlation 

function TZ (T) closely approximates No S(T). 

IV. CIRCULAR STATIONARITY 

In this section, upper-case and lower-case letters denote 
frequency-domain and time-domain variables, respectively. 
For convenience, a length-N sequence x[O], z[l], . e . , z[N- l] 
will be written as x[O, N - 11. All indices in square brackets 
are understood to be taken modulo the integer N. 

Definition 3: A sequence of complex random variable 
z[O, N - l] will be called circularly wide-sense stationary 
(c.w.s.s.), if E[z[n]] = m, is independent of n and if 

E[z[n]z*[i]] = r,[n - i] and E[z[n]z[i]] = ?,[n - i] (23) 

holds for 0 5 i, n < N, i.e., if the correlation of two samples 
depends only on their time difference modulo N. We will call 
rz [0, N - l] and F, [0, N - I] the circular correlation sequence 
and circular pseudo-correlation sequence, respectively, of the 
C.W.S.S. sequence z[O, N - I]. Analogously, a sequence of 
real random variables x[O, N - l] will be called c.w.s.s., if 
E[z[n]] = m, is independent of n and if 

E[z[n]z[i]] = T,[n - i], 0 5 i, n < N. 

A proper complex, non-trivial C.W.S.S. sequence z[O, N - l] 
can be generated as the circular convolution of a proper com- 
plex white noise sequence w[O, N - l] with some weighting 

sequence h[O, N - I], i.e., z[n] = Cczt h[n - k]w[k], where 
m - 0, ru,[i] = No S[i], and S[i] = 1, i = 0, and S[i] = 0, w- 
i # 0. A simple calculation shows that z[O, N - l] is C.W.S.S. 
with m, = 0 and circular correlation function 

N-l 

rz[i] = E[z[n + i].z*[n]] =,No xh[k: + i]h*[k]. 

k=O 

We now show that circular stationarity of a proper complex 
time-domain sequence corresponds to uncorrelatedness of the 
components of its discrete Fourier transform (DFT). This fact 
will be used in Section V to simplify finding the capacity of 
the complex discrete-time Gaussian channel with memory. 

Recall that the DFT of a complex sequence z[O, N - l] is 
the sequence Z[O, N - l] given by 

N-l 

Z[k] e Cz[n] Rjp, O<k<N, (24) 
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where ON fi ejznlN is a primitive Nth root of unity. The The circular pseudo-correlation sequence of z[O, N - l] van- 

time-domain sequence z[O, N - l] can be recovered from the ishes because z[O, N - l] is proper with zero mean. It follows 

frequency-domain sequence Z[O, N-l] by the inverse discrete that z[O, N - I] is c.w.s.s.. 0 

Fourier transform (IDFT) Note when z[O, N - l] is C.W.S.S. that in general E[]Z[k]]2] 

k=O 

O<n<N. (25) 

Note also that 
N-l 

xQ;k = NS[k]. (26) 
n=O 

If z[O, N - 11 is a sequence of complex random variables, then 
so also is Z[O, N - 11. Clearly, z[O, N - l] is zero-mean, if 
and only if Z[O, N - l] is zero-mean. Moreover, by Lemma 3 
and the invertibility of the DFT, z[O, N - l] is proper if and 
only if Z[O, N - l] is proper. 

Theorem 4: Let z[O, N - I] and its DFT Z[O, N - l] be 
proper complex sequences with zero mean. Then the time- 
domain sequence z[O, N - l] is c.w.s.s., if and only if the 
frequency-domain sequence Z[O, N - I] is uncorrelated, i.e., 
if and only if 

E[Z[k]Z*[Z]] = NR,[k]S[k - 11, (27) 

where R,[O, N - l] is the DFT of the circular correlation 
sequence r,[O, N - 11, i.e., 

N-l 

R,[k] = xr&] ,Gkn; r,[n] = $~R,,k] @,? (28) 
n=o k=O 

Proof: Suppose that the proper complex random se- 
quence z[O, N-l] is C.W.S.S. with circular correlation sequence 
T-, [0, N - l] and let R, [0, N - l] be the DFT of T, [0, N - I]. 
Then, 

N-l N-l 

E[Z[k]Z* [Z]] = c 0% c E[z[n]z* [i]] cl;ICn 

i=o n=O 

N-l N-l 

N-l 

= R,[k] c s2$.-k)i = NR,[k]S[k - I], 
i=o 

where the second, third and last equality follow from (23) 
the shifting property of the DFT [19, p. 921 and from (26), 
respectively. It now follows from the properness of Z[O, N-l] 
and from the fact that Z[O, N - l] has zero mean that the 
components of Z[O, N - I] are uncorrelated. Conversely, 
suppose that Z[O, N - l] satisfies (27) and let r,[O, N - l] 
be the IDFT of R,[O, N - 11. Then, 

depends on k, i.e., Z[O, N-l] is not c.w.s.s.. Since uncorrelat- 
edness and independence are equivalent for Gaussian random 
variables, we immediately have 

Corollary 2: Let z[O, N - l] and its DFT Z[O, N - l] be 
proper complex Gaussian sequences with zero-mean. Then the 
time-domain sequence z[O, N - l] is c.w.s.s., if and only if the 
components of the frequency-domain sequence Z[O, N - l] 
are independent. 

It was recently shown by Hirt and Massey that the real 
DFI of a sequence of real, i.i.d., zero-mean Gaussian ran- 
dom variables is another sequence of real, i.i.d., zero-mean 
Gaussian random variables 123, lemmas 1, 21. Similarly, it 
was shown that the inverse real DFT of a (nonstationary) 
frequency-domain sequence with real, independent, zero-mean 
Gaussian components is a sequence of real, correlated, zero- 
mean Gaussian random variables [23, lemma 31. Note that 
the Lemmas l-3 of [23] are special cases of the analog to 
Corollary 2 for real random variables. Thus, to establish a 
correspondence between circular stationarity and uncorrelat- 
edness, the real DFT is needed in the case of real random 
variables, while the ordinary DFT is adequate for proper 
complex random variables. 

Note that Theorem 4 is easily generalized to K-channel 
systems, K > 2, if the length-N sequences z[O, N - l] and 
Z[O, N - I] are replaced by length-N sequences z[O, N - l] 
and z[O, N - l] of K-dimensional vectors, the correlation 
sequences r,[O, N - I] and R,[O, N - l] are replaced by 
K x K-matrix sequences r,[O, N - l] and &[O, N - I], and 
the DFT of a vector (or matrix) sequence is defined to be the 
vector (or matrix) of DFT’s. This generalization is useful in 
the study of multi-user channels with finite memory. 

V. CAPACITY OFTHE DISCRETE-TIME 

GAUSSIAN CHANNEL WITH MEMORY 

Hirt and Massey recently computed the capacity C of 
the discrete-time Gaussian channel (DTGC) with finite in- 
tersymbol interference (ISI) and an average symbol-energy 
constraint by introducing a hypothetical channel model, the 
N-circular Gaussian channel (NGCG) [23]. Using the real 
DFT, they showed the equivalence of the NCGC to a set of 
N parallel, decoupled memoryless channels. The per-symbol 
capacity CN of the NCGC was then obtained using the “water- 
filling theorem” [13, theorem 7.5.11. Moreover, they proved 
that the DTGC and the NCGC are asymptotically equivalent 
in the sense that 

c= lim CN. 
N+CX 

(29) 

Verdd [20] also used a circular convolution approach to 
determine the capacity region of the symbol-asynchronous 
Gaussian multiple-access channel. 

As an application of proper complex random variables, 
Hirt and Massey’s derivation is simplified in this section 
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and their results are generalized to channels with proper 
complex AWGN and a complex unit-sample response. A 
similar approach can be used to simplify the computation of 
capacity of Gaussian multiple-access channels with memory 
[21] as well as their complex generalizations. 

The notation is as in Section IV. We first consider a real 

DTGC whose channel filter has a real unit-sample response 

(ho, h,... , hM) and assume further that ho # 0 and hM # 0. 

Consider now that one has available two instances of this 
DTGC, viz., 

yc, = 5 hmxcn-,,, + we,, -m<n<co, (30) 
m=O 

and 
M 

Y% = c 
hmxsn-n + wsI,_, -ea<n<co, (31) 

m=O 

where {wc, } and {ws, } are independent zero-mean white 
Gaussian noise (WGN) sequences each sample of which has 
variance No/2 and where the real inputs are subject to the 
symbol-energy constraints 

E[zz_] 5 ES/2 and E[xz,] 5 E,/2, -co < n < 00. 

(32) 
This pair of real DTGC’s can be represented by the (one- 
dimensional) complex (or two-dimensional real) channel 

M 

~ln = c hmxn-m + wn, -cm<n<m, (33) 
m=O 

where x, 5 xc, + jxs,, w, 2 wc, + jws,, and yn 4 yc, + 

jYS%. Since (wc,} and {ws,} have the same autocorrelation 
function, a vanishing crosscorrelation function and zero means, 
it follows that (20~) is a proper complex WGN sequence. 
Moreover, E[w,] = 0 and E[lwn12] = NO, for all n. It will 
be shown next that the constraints (32) can be replaced by 
the weaker condition E[\x~\~] 5 E,. Clearly, capacity can be 
achieved on the channel (33) by independent sequences {xc%} 
and {x,~}, since there is no “crosstalk” between the real and 
imaginary component channels and the real and imaginary 
noise sequences are independent. If the capacity-achieving 
input distribution also satisfies (32), then C2D = 2ClD, where 
CID and C2D are the capacities of the real channel (30) [or 
(31)] and the complex (or two-dimensional real) channel (33), 
respectively. We can now get additional generality by allowing 
the unit-sample response in (33) to be complex. The resulting 
channel (33) will be called the complex DTGC. Following 
[23], we define the complex NCGC’ 

N-l 

y[n] = c h[i]x[n - i] + w[n], O<n<N, (34) 
i=o 

where N > M, where the sequence h[O, N - l] is obtained 
by padding ho, hl, . . . , hM with zeros as 

ifO<i<M, 
if M < i < N, 

2As in Section IV, all indices in square brackets are understood to be taken 
modulo N. 

and where w[.] is proper complex C.W.S.S. Gaussian noise with 
zero mean and circular correlation sequence 

r,[i] = E[w[n + i]w*[n]] = No S[i], O<i<N. 

For brevity, w [0, N - l] will be called a proper complex WGN 
sequence. Moreover, the input data x[n] are subject to the 
constraint 

E[144121 5 Es, O<n<N. (35) 

It can be easily shown that the complex DTGC and the 
complex NCGC are asymptotically equivalent in the sense of 
(29) by essentially the same argument as given in [23]. 

Theorem 5: The per-symbol capacity of the complex NCGC 
(34) is given by 

CgD = $ylog [max(P]H[lc])2/&, l)], 
k=O 

(36) 

where H[O, N - l] is the DFT of h[O, N - I] and where the 
parameter ,B is determined from the condition 

N-l 

~+I = NE,, (37) 
k=O 

in which the spectral energy distribution e[O, N - l] depends 
on /3 through 

4kl = max (P - No/lf@l12, 01, 0 < k < N. (38) 

Moreover, capacity is achieved if and only if the input se- 
quence x[O, N - l] is proper, Gaussian, and C.W.S.S. with 
zero mean and its circular correlation sequence is the IDFT 
of e[O, N - I], i.e., 

rz[i] e E[x[n + i]x*[n]] = hNce[k] @, O<i<N. 
k=O 

(39) 

Proof: It was proved in [23] that the capacity of the (real) 
NCGC equals the supremum of the average mutual informa- 
tion between the input and output sequence over all pdf’s 
satisfying a weaker block-energy constraint. Analogously, it 
will be shown for the complex NCGC that 

@D = 12D 
N N > (40) 

where 

I;D b sup$I(x[O, N - 11; y[O, N - 1]), 
PN 

where the supremum is over all pdf’s PN for x[O, N - l] 
satisfying 

(41) 

Taking the DFT of (34) yields a set of parallel, memoryless 
Gaussian channels (MGC’s) 

Y[kl = fqqX[lq + Jqkl, O<k<N, (42) 
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where H[O, N - l] is the DFT of h[O, N - l] and where 
the Wlk] are i.i.d. proper complex Gaussian random variables 
with zero mean and variance3 NNO by Corollary 2 and (27). 
Using Parseval’s relation, the constraint (41) becomes 

N-l 

c E[IX[~I12] I N2Es 

k=O 

(43) 

in the frequency domain. By (41) and the invertibility of the 

Dm, 

I&D = sup$I(X[O, N - 11; Y[O, N - I]), 
QN 

(44) 

where the supremum is over all pdf’s qN for X[O, N - l] 
satisfying (43). As in the real case, it can be easily shown that 

N-l 

I(X[O, N - 11; Y[O, iv - 11) L xI(X[lcj; WI) (45) 
k=O 

with equality, if and only if the outputs Y[k] are independent 
[13, p. 3211. Using (45), (44) can be written as a supremum 

over the allowed spectral energy distributions e[O, N - 11, viz., 

120 zz N (46) 

where 

C[k] 2 sup I(Xvd; Y[W (47) 
¶[&I: 

~11~[~1121~~+1 

is the capacity of the kth MGC (42). The average energy at 
the output of this MGC is bounded by 

E[lY[~l121 L Nl~[~I12~[~l +W = WI, (48) 

with equality, if and only if E[IX[k]12] = Ne[k]. Note that 
the condition for equality applies to all MGC’s k such that 
H[k] # 0. By Theorem 2, 

(49) 

with equality, if and only if Y [k] is proper and Gaussian with 
zero mean and variance S[k]. According to Cram&r’s Theorem 
[6], which states that the sum of two independent random 
variables is Gaussian, if and only if each of the two random 
variables is itself Gaussian, and by Lemma 4, equality holds 
in (49) if and only if X[k] is proper and Gaussian with zero 
mean and variance Ne[k]. Again, the condition for equality 
applies for all k such that H[k] # 0. Therefore, 

independence of the inputs X[k]. Thus, capacity is achieved, 
if and only if the inputs X[k] are independent, proper, and 
Gaussian with zero mean and variance Nc[k]. Invoking Theo- 
rem 4 once more shows that capacity is achieved, if and only 
if the input sequence x[O, N - l] is proper, Gaussian, and 
C.W.S.S. with zero mean and the circular correlation sequence 

(39). Since r,[O] = ES, the symbol-energy constraint (35) is 
also satisfied, confirming (40). 0 

We now return to the special case of the real NCGC 

N-l 

v[n] = c h[i]u[n - i] + z[n], O<n<N, (51) 
i=o 

treated by [23], where the unit-sample response and all random 
variables are real. The noise sequence z[O, N - l] is assumed 
to be white Gaussian with zero mean and 

E[(44>21 = S/2, OLn<N, 

and the inputs are subject to 

E[(44)21 5 KJ4 O<n<N. (52) 

Corollary 3: The per-symbol capacity of the real NCGC 
(51) is given by 

cg = c&D/2, (53) 

where C$D is obtained as in Theorem 5. Moreover, capacity 
is achieved, if and only if the input sequence u[O, N - l] 
is Gaussian and C.W.S.S. with zero mean and its circular 
correlation sequence is given by 

r,[i] 2 E[u[n + i]u[n]] 

1 N-1 c[k] 
=- 

N c -pas (2nik/N), 0 5 i < N. (54) 
k=O 

Note that /3 is related to the parameter 0 used in [23] by 
,0 = r3No. Note also that our c[k] is defined to be twice the 
“c[k]” defined in [23]. 

Proof of Corollary 3: The proof of Theorem 5 remains 
valid in the case of a real sequence h[O, N - l] and the 
complex NCGC (34) reduces to a pair of independent real 
NCGC’s of the form (51). Since capacity is achieved by zero- 
mean proper complex inputs and since rr [0] = E, we obtain 
E[xz[n]] = E[xz[n]] = E,/2, 0 5 n < N, i.e., on each of the 
real component NCGC’s the constraint (52) is satisfied with 
equality. Thus, (53) is proved. Moreover, since h[O, N - l] is 
real, H[O] is also real and H[k] = H*[N - k], 1 _< k < N [19, 
p. 1101. Therefore, (38) yields c[k] = e[N - k], 1 5 k < N, 
and (39) gives 

C[k] = log [I + IH[k]12e[k]/No]. (50) 

The solution to the water-filling problem can be adopted from 
r,[i] = $ E[O] + Ncr[k] 0% 

[13, theorem 7.5.11 without change and yields (36)-(38). Since 
k=l 1 

capacity is achieved only for proper Gaussian inputs X[k] and =- 
since the noise samples W[k] are independent, the necessary 

; E[O] + ; 

[ ( 

Nec[k] i2zN2t[N - k]G$ 
k=l k=l 

and sufficient condition for equality in (45) is equivalent to the 

3 In accordance with (3), the variance of a scalar complex random variable = $&k] cos (2zik,N), O<i<N. 

is defined as var [X] 2 E[IX - mx 1’1. k=O 
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Since the capacity-achieving inputs are proper, Gaussian and 
zero-mean and since the circular correlation sequence is real, 
the sequences x,[O, N - l] and 1c,[0, N - l] are independent 
and ru[i] = T,~ [i] = rzs [i] = r,[i]/2, 0 5 i < N. 0 

VI. SUMMARY 

Second-order statistical properties have been characterized 
for complex random variables and processes. Proper com- 
plex random variables and processes, which are characterized 
by a vanishing pseudo-covariance, were shown to have the 
desirable feature that their second-order statistics are speci- 
fied completely by their mean and their covariance. It was 
demonstrated that the complex-multivariate Gaussian density 
takes on a natural form only for proper random variables. The 
differential entropy of a complex random vector with a fixed 
correlation matrix was shown to be maximum, if and only 

if the random vector is zero-mean Gaussian and proper. The 
notion of circular stationarity was introduced and, for the class 
of proper complex random processes, a DFT correspondence 
was derived relating circular stationarity in the time domain 
to uncorrelatedness in the frequency domain. The derivation 
of the capacity of the discrete-time Gaussian channel with 
memory was simplified and the results were generalized to 
channels with proper complex AWGN and a complex unit- 
sample response. 

APPENDIX 

To prove Theorem 1, the following result on quadratic forms 
is needed. 

Lemma A.1: Let M,,, M,,, M,,, and M,, be real n x n- 

matrices, where M,, and M,, are symmetric and MT. = 
M,,. Define the Hermitian n x n-matrix 

M = Mc + W, e M,, + M,, + j(M,, - Mrc) 

and the symmetric 2n x 2n-matrix 

Then the quadratic forms 

and 

(A.1) 

64.2) 

are equal for all z e zc + jzs, if and only if 

M,, = M,, and M,, = -MTc. 64.3) 

Moreover, under the conditions (A.3) M is positive 
(semi)definite, if and only if P is positive (semi)definite. 

Proof: Since I is a Hermitian form, it is real for all x. 
Hence, 

(A4 

by definition of M. Comparing (A.4) to (A.2) shows that 
(A.3) gives the necessary and sufficient conditions for the two 
quadratic forms to be identical. But I G E’ shows that M is 
positive (semi)definite if and only if this is also true for @. 0 

Proof of Theorem 1: We first prove the direct part for 
m = 0. Recalling that any covariance matrix A is positive 
semidefinite, we see that det (A) # 0 implies that A is in fact 
positive definite. Thus, I defined by (9) is positive definite by 
Lemma A.l. Since & and z, are jointly Gaussian, 

We now show that the exponents of (10) and (A.5) are equal. 
Using a standard result for inverting block matrices [22, p. 
6561 and the properness of 2, which implies A,, = A,, and 
A,, = AT, = -Asc, we obtain 

G-1 zr 
A-l A,-,lAscA-’ 

-A-1A,,A-1 cc A-l ’ 1 
where A, defined in (ll), is symmetric. Note that @-I is 
nonsingular since @ is nonsingular, which implies that A&’ 
and A-l exist. Moreover, @-I is symmetric, since the inverse 
of a symmetric matrix is symmetric. Next, we show that the 
upper-right block of @-l is skew-symmetric. Observing that 

(A.6) 

AA,-,lA,, = A,, + A,,A,-,lA,,A;:A,, = A,,A,-,lA, 

we obtain 

A,-,lA,,A-l = A-‘A,,A-’ = (A-lAT A-l)T 

= -(A;cl/&,CC SC 

i.e., the upper-right block, and thus also the lower-left block, 
is skew-symmetric. Thus, Gs-’ has the same properties as 
@ in (A.l), namely symmetry, equal diagonal blocks, and 
skew-symmetry of off-diagonal blocks. Therefore, Lemma A.1 

applies for !i? 5 f@-’ and M 5 $A-l(I - J’A,,A~~‘). By 
the properness of z, A is given as in (11). Multiplying out 
MA yields the identity matrix. Therefore, M = A-l and the 
exponents of (10) and (A.5) are equal. It remains to show 
that 2”dm = det (A). Note that the determinant of a 
Hermitian matrix is always real. Using a well-known result 
for the determinant of block matrices (cf. [22, p. 6501 or [14, 
p. 461) and the fact that A,, = -A,,, we obtain 

det (@) = det (A,,) det (A). c4.7) 
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To compute det (A), note that AT = 2(A,, - jA,,) = 
2(1- jA,,A;l)A,,. Therefore, A-l = $AdlATA;‘. But 

det (M-l) = det ($A AmlATA;‘) 

bet WI 2 
= 22n det (A) det (Act) = ‘* 

t61 
(A-8) [71 

Combining (A.8) and (A.7) yields 

det (A) = 2” ddet (A,,) det (A) = 2n dm. (A.9) 

Now let z have nonzero-mean m. Then 2 - m is zero-mean 
Gaussian and has the pdf (10). 

We now turn to the converse part. Since A is positive 
definite, so also is M = A-l. According to Lemma A.1, there 
exists a unique symmetric, positive-definite matrix !P such that 

inthecasem=Qonehas&=E’forallz~z,+jz,.In 
the words of Feller [6, p. 841, @ induces a normal density 
in 2n dimensions. Thus, [z:, zFIT is Gaussian with mean 

[EL:, m:lT and covariance matrix I = $!P-‘. By Lemma 
A.l, 9 has equal diagonal blocks and skew-symmetric off- 
diagonal blocks, and by the argument in the direct part of the 
proof, the matrix @ shares the same properties. This implies 
the properness of z and the claim follows. 0 

ACKNOWLEDGMENT 

The authors are grateful to S. Verdu and H.-A. Loeliger for 
helpful comments, to one reviewer for pointing out Corollary 
1, and to I. Bar-David for providing [16]-[18]. 

REFERENCES 

[l] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engi- 
neering. New York: Wiley, 1965. 

[2] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 1983. 

181 

PI 

PO1 

1111 

1121 

P31 

1141 

1151 

1161 

Ml 

W 

1191 

1201 

PI 

S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice 
Hall, 1986. 
J. L. Doob, Stochastic Processes. New York: Wiley, 1953. 
R. A. Wooding, “The multivariate distribution of complex normal vari- 
ables,” Biometrika, vol. 43, pp. 212-215, 1956. 
W. Feller, An Introduction to Probability Theory and its Applications, 
vol. II. New York: Wiley, 1966. 
W. A. Gardner, Introduction to Random Processes, 2nd ed. New York: 
McGraw-Hill, 1990. 
N.R. Goodman, “Statistical analysis based on a certain multivari- 
ate complex Gaussian distribution,” Ann. Math. Statist., vol. 34, pp. 
152-176, 1963. 
E. J. Kelly and I. S. Reed, “Some properties of stationary Gaussian 
processes,” MIT Lincoln Lab, Tech. Rep. TR-157, June 1957. 
R. Arens, “Complex processes for envelopes of normal noise,” IRE 
Trans. Inform. Theory, vol. IT-3, pp. 204-207, Sept. 1957. 
I.S. Reed, “On a moment theorem for complex Gaussian processes,” 
IRE Trans. Inform. Theory, vol. IT-8, pp. 194-195, Apr. 1962. 
R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York: 
McGraw-Hill, 1970. 
R. G. Gallaner, Information Theory and Reliable Communication. New 
York: Wiley, 1968. 
P. Lancaster and M. Tismenetskv, The Theorv ofMatrices. New York: 

.’ Academic Press, 1985. 
T. M. Cover and J. A. Thomas, Elements of Information Theory. New 
York: Wiley, 1991. 
J. Dugundji, “Envelopes and pre-envelopes of real waveforms,” IRE 
Trans. Inform. Theory, vol. IT-4, pp. 53-57, Mar. 1958. 
M. Zakai, “Second-order properties of the pre-envelope and envelope 
processes,” IRE Trans. Inform. Theory, vol. IT-6, pp. 556-557, Dec. 
1960. 

“The representation of narrow-band processes,” IRE Trans. 
Inform. Theory, vol. IT-8, pp. 323-325, July 1962. 
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. En- 
glewood Cliffs, NJ: Prentice Hall, 1975. 
S. Verdh, “The capacity region of the symbol-asynchronous Gaussian 
multiple-access channel,” IEEE Trans. Inform. Theory, vol. 35, pp. 
733-751, July 1989. 
R. S. Cheng and S. Verd6, “Gaussian multiaccess channels with ISI: Ca- 
pacity region and multiuser water-filling,” IEEE Trans. Inform. Theory, 
vol. 39, pp. 773-785, May 1993.. 
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980. 
W. Hirt and J.L. Massey, “Capacity of the discrete-time Gaussian 
channel with intersymbol interference,” IEEE Trans. Inform. Theory, 
vol. 34, pp. 380-388, May 1988. 


